Files
lammps/lib/linalg/zlarfb.cpp
Axel Kohlmeyer 1e8b2ad5a0 whitespace fixes
2022-12-28 13:48:43 -05:00

950 lines
34 KiB
C++

/* fortran/zlarfb.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static doublecomplex c_b1 = {1.,0.};
static integer c__1 = 1;
/* > \brief \b ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix. */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download ZLARFB + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfb.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfb.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfb.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE ZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, */
/* T, LDT, C, LDC, WORK, LDWORK ) */
/* .. Scalar Arguments .. */
/* CHARACTER DIRECT, SIDE, STOREV, TRANS */
/* INTEGER K, LDC, LDT, LDV, LDWORK, M, N */
/* .. */
/* .. Array Arguments .. */
/* COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ), */
/* $ WORK( LDWORK, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZLARFB applies a complex block reflector H or its transpose H**H to a */
/* > complex M-by-N matrix C, from either the left or the right. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'L': apply H or H**H from the Left */
/* > = 'R': apply H or H**H from the Right */
/* > \endverbatim */
/* > */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > = 'N': apply H (No transpose) */
/* > = 'C': apply H**H (Conjugate transpose) */
/* > \endverbatim */
/* > */
/* > \param[in] DIRECT */
/* > \verbatim */
/* > DIRECT is CHARACTER*1 */
/* > Indicates how H is formed from a product of elementary */
/* > reflectors */
/* > = 'F': H = H(1) H(2) . . . H(k) (Forward) */
/* > = 'B': H = H(k) . . . H(2) H(1) (Backward) */
/* > \endverbatim */
/* > */
/* > \param[in] STOREV */
/* > \verbatim */
/* > STOREV is CHARACTER*1 */
/* > Indicates how the vectors which define the elementary */
/* > reflectors are stored: */
/* > = 'C': Columnwise */
/* > = 'R': Rowwise */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix C. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix C. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > The order of the matrix T (= the number of elementary */
/* > reflectors whose product defines the block reflector). */
/* > If SIDE = 'L', M >= K >= 0; */
/* > if SIDE = 'R', N >= K >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] V */
/* > \verbatim */
/* > V is COMPLEX*16 array, dimension */
/* > (LDV,K) if STOREV = 'C' */
/* > (LDV,M) if STOREV = 'R' and SIDE = 'L' */
/* > (LDV,N) if STOREV = 'R' and SIDE = 'R' */
/* > See Further Details. */
/* > \endverbatim */
/* > */
/* > \param[in] LDV */
/* > \verbatim */
/* > LDV is INTEGER */
/* > The leading dimension of the array V. */
/* > If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); */
/* > if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); */
/* > if STOREV = 'R', LDV >= K. */
/* > \endverbatim */
/* > */
/* > \param[in] T */
/* > \verbatim */
/* > T is COMPLEX*16 array, dimension (LDT,K) */
/* > The triangular K-by-K matrix T in the representation of the */
/* > block reflector. */
/* > \endverbatim */
/* > */
/* > \param[in] LDT */
/* > \verbatim */
/* > LDT is INTEGER */
/* > The leading dimension of the array T. LDT >= K. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C */
/* > \verbatim */
/* > C is COMPLEX*16 array, dimension (LDC,N) */
/* > On entry, the M-by-N matrix C. */
/* > On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > The leading dimension of the array C. LDC >= max(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is COMPLEX*16 array, dimension (LDWORK,K) */
/* > \endverbatim */
/* > */
/* > \param[in] LDWORK */
/* > \verbatim */
/* > LDWORK is INTEGER */
/* > The leading dimension of the array WORK. */
/* > If SIDE = 'L', LDWORK >= max(1,N); */
/* > if SIDE = 'R', LDWORK >= max(1,M). */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup complex16OTHERauxiliary */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > The shape of the matrix V and the storage of the vectors which define */
/* > the H(i) is best illustrated by the following example with n = 5 and */
/* > k = 3. The elements equal to 1 are not stored; the corresponding */
/* > array elements are modified but restored on exit. The rest of the */
/* > array is not used. */
/* > */
/* > DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': */
/* > */
/* > V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) */
/* > ( v1 1 ) ( 1 v2 v2 v2 ) */
/* > ( v1 v2 1 ) ( 1 v3 v3 ) */
/* > ( v1 v2 v3 ) */
/* > ( v1 v2 v3 ) */
/* > */
/* > DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': */
/* > */
/* > V = ( v1 v2 v3 ) V = ( v1 v1 1 ) */
/* > ( v1 v2 v3 ) ( v2 v2 v2 1 ) */
/* > ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) */
/* > ( 1 v3 ) */
/* > ( 1 ) */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int zlarfb_(char *side, char *trans, char *direct, char *
storev, integer *m, integer *n, integer *k, doublecomplex *v, integer
*ldv, doublecomplex *t, integer *ldt, doublecomplex *c__, integer *
ldc, doublecomplex *work, integer *ldwork, ftnlen side_len, ftnlen
trans_len, ftnlen direct_len, ftnlen storev_len)
{
/* System generated locals */
integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1,
work_offset, i__1, i__2, i__3, i__4, i__5;
doublecomplex z__1, z__2;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int zgemm_(char *, char *, integer *, integer *,
integer *, doublecomplex *, doublecomplex *, integer *,
doublecomplex *, integer *, doublecomplex *, doublecomplex *,
integer *, ftnlen, ftnlen), zcopy_(integer *, doublecomplex *,
integer *, doublecomplex *, integer *), ztrmm_(char *, char *,
char *, char *, integer *, integer *, doublecomplex *,
doublecomplex *, integer *, doublecomplex *, integer *, ftnlen,
ftnlen, ftnlen, ftnlen), zlacgv_(integer *, doublecomplex *,
integer *);
char transt[1];
/* -- LAPACK auxiliary routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Quick return if possible */
/* Parameter adjustments */
v_dim1 = *ldv;
v_offset = 1 + v_dim1;
v -= v_offset;
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
work_dim1 = *ldwork;
work_offset = 1 + work_dim1;
work -= work_offset;
/* Function Body */
if (*m <= 0 || *n <= 0) {
return 0;
}
if (lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1)) {
*(unsigned char *)transt = 'C';
} else {
*(unsigned char *)transt = 'N';
}
if (lsame_(storev, (char *)"C", (ftnlen)1, (ftnlen)1)) {
if (lsame_(direct, (char *)"F", (ftnlen)1, (ftnlen)1)) {
/* Let V = ( V1 ) (first K rows) */
/* ( V2 ) */
/* where V1 is unit lower triangular. */
if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) {
/* Form H * C or H**H * C where C = ( C1 ) */
/* ( C2 ) */
/* W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK) */
/* W := C1**H */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
zcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
&c__1);
zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
/* L10: */
}
/* W := W * V1 */
ztrmm_((char *)"Right", (char *)"Lower", (char *)"No transpose", (char *)"Unit", n, k, &c_b1,
&v[v_offset], ldv, &work[work_offset], ldwork, (
ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4);
if (*m > *k) {
/* W := W + C2**H * V2 */
i__1 = *m - *k;
zgemm_((char *)"Conjugate transpose", (char *)"No transpose", n, k, &i__1,
&c_b1, &c__[*k + 1 + c_dim1], ldc, &v[*k + 1 +
v_dim1], ldv, &c_b1, &work[work_offset], ldwork, (
ftnlen)19, (ftnlen)12);
}
/* W := W * T**H or W * T */
ztrmm_((char *)"Right", (char *)"Upper", transt, (char *)"Non-unit", n, k, &c_b1, &t[
t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5,
(ftnlen)5, (ftnlen)1, (ftnlen)8);
/* C := C - V * W**H */
if (*m > *k) {
/* C2 := C2 - V2 * W**H */
i__1 = *m - *k;
z__1.r = -1., z__1.i = -0.;
zgemm_((char *)"No transpose", (char *)"Conjugate transpose", &i__1, n, k,
&z__1, &v[*k + 1 + v_dim1], ldv, &work[
work_offset], ldwork, &c_b1, &c__[*k + 1 + c_dim1]
, ldc, (ftnlen)12, (ftnlen)19);
}
/* W := W * V1**H */
ztrmm_((char *)"Right", (char *)"Lower", (char *)"Conjugate transpose", (char *)"Unit", n, k,
&c_b1, &v[v_offset], ldv, &work[work_offset], ldwork,
(ftnlen)5, (ftnlen)5, (ftnlen)19, (ftnlen)4);
/* C1 := C1 - W**H */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = j + i__ * c_dim1;
i__4 = j + i__ * c_dim1;
d_cnjg(&z__2, &work[i__ + j * work_dim1]);
z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i -
z__2.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L20: */
}
/* L30: */
}
} else if (lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) {
/* Form C * H or C * H**H where C = ( C1 C2 ) */
/* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */
/* W := C1 */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
zcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
work_dim1 + 1], &c__1);
/* L40: */
}
/* W := W * V1 */
ztrmm_((char *)"Right", (char *)"Lower", (char *)"No transpose", (char *)"Unit", m, k, &c_b1,
&v[v_offset], ldv, &work[work_offset], ldwork, (
ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4);
if (*n > *k) {
/* W := W + C2 * V2 */
i__1 = *n - *k;
zgemm_((char *)"No transpose", (char *)"No transpose", m, k, &i__1, &c_b1,
&c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k + 1 +
v_dim1], ldv, &c_b1, &work[work_offset], ldwork, (
ftnlen)12, (ftnlen)12);
}
/* W := W * T or W * T**H */
ztrmm_((char *)"Right", (char *)"Upper", trans, (char *)"Non-unit", m, k, &c_b1, &t[
t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5,
(ftnlen)5, (ftnlen)1, (ftnlen)8);
/* C := C - W * V**H */
if (*n > *k) {
/* C2 := C2 - W * V2**H */
i__1 = *n - *k;
z__1.r = -1., z__1.i = -0.;
zgemm_((char *)"No transpose", (char *)"Conjugate transpose", m, &i__1, k,
&z__1, &work[work_offset], ldwork, &v[*k + 1 +
v_dim1], ldv, &c_b1, &c__[(*k + 1) * c_dim1 + 1],
ldc, (ftnlen)12, (ftnlen)19);
}
/* W := W * V1**H */
ztrmm_((char *)"Right", (char *)"Lower", (char *)"Conjugate transpose", (char *)"Unit", m, k,
&c_b1, &v[v_offset], ldv, &work[work_offset], ldwork,
(ftnlen)5, (ftnlen)5, (ftnlen)19, (ftnlen)4);
/* C1 := C1 - W */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
i__5 = i__ + j * work_dim1;
z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
i__4].i - work[i__5].i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L50: */
}
/* L60: */
}
}
} else {
/* Let V = ( V1 ) */
/* ( V2 ) (last K rows) */
/* where V2 is unit upper triangular. */
if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) {
/* Form H * C or H**H * C where C = ( C1 ) */
/* ( C2 ) */
/* W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK) */
/* W := C2**H */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
zcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
work_dim1 + 1], &c__1);
zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
/* L70: */
}
/* W := W * V2 */
ztrmm_((char *)"Right", (char *)"Upper", (char *)"No transpose", (char *)"Unit", n, k, &c_b1,
&v[*m - *k + 1 + v_dim1], ldv, &work[work_offset],
ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4);
if (*m > *k) {
/* W := W + C1**H * V1 */
i__1 = *m - *k;
zgemm_((char *)"Conjugate transpose", (char *)"No transpose", n, k, &i__1,
&c_b1, &c__[c_offset], ldc, &v[v_offset], ldv, &
c_b1, &work[work_offset], ldwork, (ftnlen)19, (
ftnlen)12);
}
/* W := W * T**H or W * T */
ztrmm_((char *)"Right", (char *)"Lower", transt, (char *)"Non-unit", n, k, &c_b1, &t[
t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5,
(ftnlen)5, (ftnlen)1, (ftnlen)8);
/* C := C - V * W**H */
if (*m > *k) {
/* C1 := C1 - V1 * W**H */
i__1 = *m - *k;
z__1.r = -1., z__1.i = -0.;
zgemm_((char *)"No transpose", (char *)"Conjugate transpose", &i__1, n, k,
&z__1, &v[v_offset], ldv, &work[work_offset],
ldwork, &c_b1, &c__[c_offset], ldc, (ftnlen)12, (
ftnlen)19);
}
/* W := W * V2**H */
ztrmm_((char *)"Right", (char *)"Upper", (char *)"Conjugate transpose", (char *)"Unit", n, k,
&c_b1, &v[*m - *k + 1 + v_dim1], ldv, &work[
work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)
19, (ftnlen)4);
/* C2 := C2 - W**H */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = *m - *k + j + i__ * c_dim1;
i__4 = *m - *k + j + i__ * c_dim1;
d_cnjg(&z__2, &work[i__ + j * work_dim1]);
z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i -
z__2.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L80: */
}
/* L90: */
}
} else if (lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) {
/* Form C * H or C * H**H where C = ( C1 C2 ) */
/* W := C * V = (C1*V1 + C2*V2) (stored in WORK) */
/* W := C2 */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
zcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
j * work_dim1 + 1], &c__1);
/* L100: */
}
/* W := W * V2 */
ztrmm_((char *)"Right", (char *)"Upper", (char *)"No transpose", (char *)"Unit", m, k, &c_b1,
&v[*n - *k + 1 + v_dim1], ldv, &work[work_offset],
ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4);
if (*n > *k) {
/* W := W + C1 * V1 */
i__1 = *n - *k;
zgemm_((char *)"No transpose", (char *)"No transpose", m, k, &i__1, &c_b1,
&c__[c_offset], ldc, &v[v_offset], ldv, &c_b1, &
work[work_offset], ldwork, (ftnlen)12, (ftnlen)12)
;
}
/* W := W * T or W * T**H */
ztrmm_((char *)"Right", (char *)"Lower", trans, (char *)"Non-unit", m, k, &c_b1, &t[
t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5,
(ftnlen)5, (ftnlen)1, (ftnlen)8);
/* C := C - W * V**H */
if (*n > *k) {
/* C1 := C1 - W * V1**H */
i__1 = *n - *k;
z__1.r = -1., z__1.i = -0.;
zgemm_((char *)"No transpose", (char *)"Conjugate transpose", m, &i__1, k,
&z__1, &work[work_offset], ldwork, &v[v_offset],
ldv, &c_b1, &c__[c_offset], ldc, (ftnlen)12, (
ftnlen)19);
}
/* W := W * V2**H */
ztrmm_((char *)"Right", (char *)"Upper", (char *)"Conjugate transpose", (char *)"Unit", m, k,
&c_b1, &v[*n - *k + 1 + v_dim1], ldv, &work[
work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)
19, (ftnlen)4);
/* C2 := C2 - W */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + (*n - *k + j) * c_dim1;
i__4 = i__ + (*n - *k + j) * c_dim1;
i__5 = i__ + j * work_dim1;
z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
i__4].i - work[i__5].i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L110: */
}
/* L120: */
}
}
}
} else if (lsame_(storev, (char *)"R", (ftnlen)1, (ftnlen)1)) {
if (lsame_(direct, (char *)"F", (ftnlen)1, (ftnlen)1)) {
/* Let V = ( V1 V2 ) (V1: first K columns) */
/* where V1 is unit upper triangular. */
if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) {
/* Form H * C or H**H * C where C = ( C1 ) */
/* ( C2 ) */
/* W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK) */
/* W := C1**H */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
zcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
&c__1);
zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
/* L130: */
}
/* W := W * V1**H */
ztrmm_((char *)"Right", (char *)"Upper", (char *)"Conjugate transpose", (char *)"Unit", n, k,
&c_b1, &v[v_offset], ldv, &work[work_offset], ldwork,
(ftnlen)5, (ftnlen)5, (ftnlen)19, (ftnlen)4);
if (*m > *k) {
/* W := W + C2**H * V2**H */
i__1 = *m - *k;
zgemm_((char *)"Conjugate transpose", (char *)"Conjugate transpose", n, k,
&i__1, &c_b1, &c__[*k + 1 + c_dim1], ldc, &v[(*k
+ 1) * v_dim1 + 1], ldv, &c_b1, &work[work_offset]
, ldwork, (ftnlen)19, (ftnlen)19);
}
/* W := W * T**H or W * T */
ztrmm_((char *)"Right", (char *)"Upper", transt, (char *)"Non-unit", n, k, &c_b1, &t[
t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5,
(ftnlen)5, (ftnlen)1, (ftnlen)8);
/* C := C - V**H * W**H */
if (*m > *k) {
/* C2 := C2 - V2**H * W**H */
i__1 = *m - *k;
z__1.r = -1., z__1.i = -0.;
zgemm_((char *)"Conjugate transpose", (char *)"Conjugate transpose", &
i__1, n, k, &z__1, &v[(*k + 1) * v_dim1 + 1], ldv,
&work[work_offset], ldwork, &c_b1, &c__[*k + 1 +
c_dim1], ldc, (ftnlen)19, (ftnlen)19);
}
/* W := W * V1 */
ztrmm_((char *)"Right", (char *)"Upper", (char *)"No transpose", (char *)"Unit", n, k, &c_b1,
&v[v_offset], ldv, &work[work_offset], ldwork, (
ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4);
/* C1 := C1 - W**H */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = j + i__ * c_dim1;
i__4 = j + i__ * c_dim1;
d_cnjg(&z__2, &work[i__ + j * work_dim1]);
z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i -
z__2.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L140: */
}
/* L150: */
}
} else if (lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) {
/* Form C * H or C * H**H where C = ( C1 C2 ) */
/* W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK) */
/* W := C1 */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
zcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j *
work_dim1 + 1], &c__1);
/* L160: */
}
/* W := W * V1**H */
ztrmm_((char *)"Right", (char *)"Upper", (char *)"Conjugate transpose", (char *)"Unit", m, k,
&c_b1, &v[v_offset], ldv, &work[work_offset], ldwork,
(ftnlen)5, (ftnlen)5, (ftnlen)19, (ftnlen)4);
if (*n > *k) {
/* W := W + C2 * V2**H */
i__1 = *n - *k;
zgemm_((char *)"No transpose", (char *)"Conjugate transpose", m, k, &i__1,
&c_b1, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k
+ 1) * v_dim1 + 1], ldv, &c_b1, &work[work_offset]
, ldwork, (ftnlen)12, (ftnlen)19);
}
/* W := W * T or W * T**H */
ztrmm_((char *)"Right", (char *)"Upper", trans, (char *)"Non-unit", m, k, &c_b1, &t[
t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5,
(ftnlen)5, (ftnlen)1, (ftnlen)8);
/* C := C - W * V */
if (*n > *k) {
/* C2 := C2 - W * V2 */
i__1 = *n - *k;
z__1.r = -1., z__1.i = -0.;
zgemm_((char *)"No transpose", (char *)"No transpose", m, &i__1, k, &z__1,
&work[work_offset], ldwork, &v[(*k + 1) * v_dim1
+ 1], ldv, &c_b1, &c__[(*k + 1) * c_dim1 + 1],
ldc, (ftnlen)12, (ftnlen)12);
}
/* W := W * V1 */
ztrmm_((char *)"Right", (char *)"Upper", (char *)"No transpose", (char *)"Unit", m, k, &c_b1,
&v[v_offset], ldv, &work[work_offset], ldwork, (
ftnlen)5, (ftnlen)5, (ftnlen)12, (ftnlen)4);
/* C1 := C1 - W */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
i__5 = i__ + j * work_dim1;
z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
i__4].i - work[i__5].i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L170: */
}
/* L180: */
}
}
} else {
/* Let V = ( V1 V2 ) (V2: last K columns) */
/* where V2 is unit lower triangular. */
if (lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1)) {
/* Form H * C or H**H * C where C = ( C1 ) */
/* ( C2 ) */
/* W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK) */
/* W := C2**H */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
zcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j *
work_dim1 + 1], &c__1);
zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
/* L190: */
}
/* W := W * V2**H */
ztrmm_((char *)"Right", (char *)"Lower", (char *)"Conjugate transpose", (char *)"Unit", n, k,
&c_b1, &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)
19, (ftnlen)4);
if (*m > *k) {
/* W := W + C1**H * V1**H */
i__1 = *m - *k;
zgemm_((char *)"Conjugate transpose", (char *)"Conjugate transpose", n, k,
&i__1, &c_b1, &c__[c_offset], ldc, &v[v_offset],
ldv, &c_b1, &work[work_offset], ldwork, (ftnlen)
19, (ftnlen)19);
}
/* W := W * T**H or W * T */
ztrmm_((char *)"Right", (char *)"Lower", transt, (char *)"Non-unit", n, k, &c_b1, &t[
t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5,
(ftnlen)5, (ftnlen)1, (ftnlen)8);
/* C := C - V**H * W**H */
if (*m > *k) {
/* C1 := C1 - V1**H * W**H */
i__1 = *m - *k;
z__1.r = -1., z__1.i = -0.;
zgemm_((char *)"Conjugate transpose", (char *)"Conjugate transpose", &
i__1, n, k, &z__1, &v[v_offset], ldv, &work[
work_offset], ldwork, &c_b1, &c__[c_offset], ldc,
(ftnlen)19, (ftnlen)19);
}
/* W := W * V2 */
ztrmm_((char *)"Right", (char *)"Lower", (char *)"No transpose", (char *)"Unit", n, k, &c_b1,
&v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)
12, (ftnlen)4);
/* C2 := C2 - W**H */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = *m - *k + j + i__ * c_dim1;
i__4 = *m - *k + j + i__ * c_dim1;
d_cnjg(&z__2, &work[i__ + j * work_dim1]);
z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i -
z__2.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L200: */
}
/* L210: */
}
} else if (lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) {
/* Form C * H or C * H**H where C = ( C1 C2 ) */
/* W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK) */
/* W := C2 */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
zcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
j * work_dim1 + 1], &c__1);
/* L220: */
}
/* W := W * V2**H */
ztrmm_((char *)"Right", (char *)"Lower", (char *)"Conjugate transpose", (char *)"Unit", m, k,
&c_b1, &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)
19, (ftnlen)4);
if (*n > *k) {
/* W := W + C1 * V1**H */
i__1 = *n - *k;
zgemm_((char *)"No transpose", (char *)"Conjugate transpose", m, k, &i__1,
&c_b1, &c__[c_offset], ldc, &v[v_offset], ldv, &
c_b1, &work[work_offset], ldwork, (ftnlen)12, (
ftnlen)19);
}
/* W := W * T or W * T**H */
ztrmm_((char *)"Right", (char *)"Lower", trans, (char *)"Non-unit", m, k, &c_b1, &t[
t_offset], ldt, &work[work_offset], ldwork, (ftnlen)5,
(ftnlen)5, (ftnlen)1, (ftnlen)8);
/* C := C - W * V */
if (*n > *k) {
/* C1 := C1 - W * V1 */
i__1 = *n - *k;
z__1.r = -1., z__1.i = -0.;
zgemm_((char *)"No transpose", (char *)"No transpose", m, &i__1, k, &z__1,
&work[work_offset], ldwork, &v[v_offset], ldv, &
c_b1, &c__[c_offset], ldc, (ftnlen)12, (ftnlen)12)
;
}
/* W := W * V2 */
ztrmm_((char *)"Right", (char *)"Lower", (char *)"No transpose", (char *)"Unit", m, k, &c_b1,
&v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
work_offset], ldwork, (ftnlen)5, (ftnlen)5, (ftnlen)
12, (ftnlen)4);
/* C1 := C1 - W */
i__1 = *k;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + (*n - *k + j) * c_dim1;
i__4 = i__ + (*n - *k + j) * c_dim1;
i__5 = i__ + j * work_dim1;
z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
i__4].i - work[i__5].i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L230: */
}
/* L240: */
}
}
}
}
return 0;
/* End of ZLARFB */
} /* zlarfb_ */
#ifdef __cplusplus
}
#endif