302 lines
8.6 KiB
C++
302 lines
8.6 KiB
C++
/* fortran/zpptrf.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static doublereal c_b16 = -1.;
|
|
|
|
/* > \brief \b ZPPTRF */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download ZPPTRF + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpptrf.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpptrf.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpptrf.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE ZPPTRF( UPLO, N, AP, INFO ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* CHARACTER UPLO */
|
|
/* INTEGER INFO, N */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* COMPLEX*16 AP( * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ZPPTRF computes the Cholesky factorization of a complex Hermitian */
|
|
/* > positive definite matrix A stored in packed format. */
|
|
/* > */
|
|
/* > The factorization has the form */
|
|
/* > A = U**H * U, if UPLO = 'U', or */
|
|
/* > A = L * L**H, if UPLO = 'L', */
|
|
/* > where U is an upper triangular matrix and L is lower triangular. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > = 'U': Upper triangle of A is stored; */
|
|
/* > = 'L': Lower triangle of A is stored. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] AP */
|
|
/* > \verbatim */
|
|
/* > AP is COMPLEX*16 array, dimension (N*(N+1)/2) */
|
|
/* > On entry, the upper or lower triangle of the Hermitian matrix */
|
|
/* > A, packed columnwise in a linear array. The j-th column of A */
|
|
/* > is stored in the array AP as follows: */
|
|
/* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
|
|
/* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
|
|
/* > See below for further details. */
|
|
/* > */
|
|
/* > On exit, if INFO = 0, the triangular factor U or L from the */
|
|
/* > Cholesky factorization A = U**H*U or A = L*L**H, in the same */
|
|
/* > storage format as A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > > 0: if INFO = i, the leading minor of order i is not */
|
|
/* > positive definite, and the factorization could not be */
|
|
/* > completed. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup complex16OTHERcomputational */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > The packed storage scheme is illustrated by the following example */
|
|
/* > when N = 4, UPLO = 'U': */
|
|
/* > */
|
|
/* > Two-dimensional storage of the Hermitian matrix A: */
|
|
/* > */
|
|
/* > a11 a12 a13 a14 */
|
|
/* > a22 a23 a24 */
|
|
/* > a33 a34 (aij = conjg(aji)) */
|
|
/* > a44 */
|
|
/* > */
|
|
/* > Packed storage of the upper triangle of A: */
|
|
/* > */
|
|
/* > AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int zpptrf_(char *uplo, integer *n, doublecomplex *ap,
|
|
integer *info, ftnlen uplo_len)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1, i__2, i__3;
|
|
doublereal d__1;
|
|
doublecomplex z__1;
|
|
|
|
/* Builtin functions */
|
|
double sqrt(doublereal);
|
|
|
|
/* Local variables */
|
|
integer j, jc, jj;
|
|
doublereal ajj;
|
|
extern /* Subroutine */ int zhpr_(char *, integer *, doublereal *,
|
|
doublecomplex *, integer *, doublecomplex *, ftnlen);
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
|
|
doublecomplex *, integer *, doublecomplex *, integer *);
|
|
logical upper;
|
|
extern /* Subroutine */ int ztpsv_(char *, char *, char *, integer *,
|
|
doublecomplex *, doublecomplex *, integer *, ftnlen, ftnlen,
|
|
ftnlen), xerbla_(char *, integer *, ftnlen), zdscal_(integer *,
|
|
doublereal *, doublecomplex *, integer *);
|
|
|
|
|
|
/* -- LAPACK computational routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--ap;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
|
|
if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_((char *)"ZPPTRF", &i__1, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (upper) {
|
|
|
|
/* Compute the Cholesky factorization A = U**H * U. */
|
|
|
|
jj = 0;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
jc = jj + 1;
|
|
jj += j;
|
|
|
|
/* Compute elements 1:J-1 of column J. */
|
|
|
|
if (j > 1) {
|
|
i__2 = j - 1;
|
|
ztpsv_((char *)"Upper", (char *)"Conjugate transpose", (char *)"Non-unit", &i__2, &ap[
|
|
1], &ap[jc], &c__1, (ftnlen)5, (ftnlen)19, (ftnlen)8);
|
|
}
|
|
|
|
/* Compute U(J,J) and test for non-positive-definiteness. */
|
|
|
|
i__2 = jj;
|
|
i__3 = j - 1;
|
|
zdotc_(&z__1, &i__3, &ap[jc], &c__1, &ap[jc], &c__1);
|
|
ajj = ap[i__2].r - z__1.r;
|
|
if (ajj <= 0.) {
|
|
i__2 = jj;
|
|
ap[i__2].r = ajj, ap[i__2].i = 0.;
|
|
goto L30;
|
|
}
|
|
i__2 = jj;
|
|
d__1 = sqrt(ajj);
|
|
ap[i__2].r = d__1, ap[i__2].i = 0.;
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
|
|
/* Compute the Cholesky factorization A = L * L**H. */
|
|
|
|
jj = 1;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
/* Compute L(J,J) and test for non-positive-definiteness. */
|
|
|
|
i__2 = jj;
|
|
ajj = ap[i__2].r;
|
|
if (ajj <= 0.) {
|
|
i__2 = jj;
|
|
ap[i__2].r = ajj, ap[i__2].i = 0.;
|
|
goto L30;
|
|
}
|
|
ajj = sqrt(ajj);
|
|
i__2 = jj;
|
|
ap[i__2].r = ajj, ap[i__2].i = 0.;
|
|
|
|
/* Compute elements J+1:N of column J and update the trailing */
|
|
/* submatrix. */
|
|
|
|
if (j < *n) {
|
|
i__2 = *n - j;
|
|
d__1 = 1. / ajj;
|
|
zdscal_(&i__2, &d__1, &ap[jj + 1], &c__1);
|
|
i__2 = *n - j;
|
|
zhpr_((char *)"Lower", &i__2, &c_b16, &ap[jj + 1], &c__1, &ap[jj + *n
|
|
- j + 1], (ftnlen)5);
|
|
jj = jj + *n - j + 1;
|
|
}
|
|
/* L20: */
|
|
}
|
|
}
|
|
goto L40;
|
|
|
|
L30:
|
|
*info = j;
|
|
|
|
L40:
|
|
return 0;
|
|
|
|
/* End of ZPPTRF */
|
|
|
|
} /* zpptrf_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|