249 lines
7.2 KiB
C++
249 lines
7.2 KiB
C++
/* fortran/zpptri.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static doublereal c_b8 = 1.;
|
|
static integer c__1 = 1;
|
|
|
|
/* > \brief \b ZPPTRI */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download ZPPTRI + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zpptri.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zpptri.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zpptri.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE ZPPTRI( UPLO, N, AP, INFO ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* CHARACTER UPLO */
|
|
/* INTEGER INFO, N */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* COMPLEX*16 AP( * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ZPPTRI computes the inverse of a complex Hermitian positive definite */
|
|
/* > matrix A using the Cholesky factorization A = U**H*U or A = L*L**H */
|
|
/* > computed by ZPPTRF. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > = 'U': Upper triangular factor is stored in AP; */
|
|
/* > = 'L': Lower triangular factor is stored in AP. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] AP */
|
|
/* > \verbatim */
|
|
/* > AP is COMPLEX*16 array, dimension (N*(N+1)/2) */
|
|
/* > On entry, the triangular factor U or L from the Cholesky */
|
|
/* > factorization A = U**H*U or A = L*L**H, packed columnwise as */
|
|
/* > a linear array. The j-th column of U or L is stored in the */
|
|
/* > array AP as follows: */
|
|
/* > if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; */
|
|
/* > if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. */
|
|
/* > */
|
|
/* > On exit, the upper or lower triangle of the (Hermitian) */
|
|
/* > inverse of A, overwriting the input factor U or L. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > > 0: if INFO = i, the (i,i) element of the factor U or L is */
|
|
/* > zero, and the inverse could not be computed. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup complex16OTHERcomputational */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int zpptri_(char *uplo, integer *n, doublecomplex *ap,
|
|
integer *info, ftnlen uplo_len)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1, i__2, i__3;
|
|
doublereal d__1;
|
|
doublecomplex z__1;
|
|
|
|
/* Local variables */
|
|
integer j, jc, jj;
|
|
doublereal ajj;
|
|
integer jjn;
|
|
extern /* Subroutine */ int zhpr_(char *, integer *, doublereal *,
|
|
doublecomplex *, integer *, doublecomplex *, ftnlen);
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
|
|
doublecomplex *, integer *, doublecomplex *, integer *);
|
|
logical upper;
|
|
extern /* Subroutine */ int ztpmv_(char *, char *, char *, integer *,
|
|
doublecomplex *, doublecomplex *, integer *, ftnlen, ftnlen,
|
|
ftnlen), xerbla_(char *, integer *, ftnlen), zdscal_(integer *,
|
|
doublereal *, doublecomplex *, integer *), ztptri_(char *, char *,
|
|
integer *, doublecomplex *, integer *, ftnlen, ftnlen);
|
|
|
|
|
|
/* -- LAPACK computational routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--ap;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
|
|
if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_((char *)"ZPPTRI", &i__1, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* Invert the triangular Cholesky factor U or L. */
|
|
|
|
ztptri_(uplo, (char *)"Non-unit", n, &ap[1], info, (ftnlen)1, (ftnlen)8);
|
|
if (*info > 0) {
|
|
return 0;
|
|
}
|
|
if (upper) {
|
|
|
|
/* Compute the product inv(U) * inv(U)**H. */
|
|
|
|
jj = 0;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
jc = jj + 1;
|
|
jj += j;
|
|
if (j > 1) {
|
|
i__2 = j - 1;
|
|
zhpr_((char *)"Upper", &i__2, &c_b8, &ap[jc], &c__1, &ap[1], (ftnlen)
|
|
5);
|
|
}
|
|
i__2 = jj;
|
|
ajj = ap[i__2].r;
|
|
zdscal_(&j, &ajj, &ap[jc], &c__1);
|
|
/* L10: */
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Compute the product inv(L)**H * inv(L). */
|
|
|
|
jj = 1;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
jjn = jj + *n - j + 1;
|
|
i__2 = jj;
|
|
i__3 = *n - j + 1;
|
|
zdotc_(&z__1, &i__3, &ap[jj], &c__1, &ap[jj], &c__1);
|
|
d__1 = z__1.r;
|
|
ap[i__2].r = d__1, ap[i__2].i = 0.;
|
|
if (j < *n) {
|
|
i__2 = *n - j;
|
|
ztpmv_((char *)"Lower", (char *)"Conjugate transpose", (char *)"Non-unit", &i__2, &ap[
|
|
jjn], &ap[jj + 1], &c__1, (ftnlen)5, (ftnlen)19, (
|
|
ftnlen)8);
|
|
}
|
|
jj = jjn;
|
|
/* L20: */
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of ZPPTRI */
|
|
|
|
} /* zpptri_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|