309 lines
9.2 KiB
C++
309 lines
9.2 KiB
C++
/* fortran/ztptri.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static doublecomplex c_b1 = {1.,0.};
|
|
static integer c__1 = 1;
|
|
|
|
/* > \brief \b ZTPTRI */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download ZTPTRI + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ztptri.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ztptri.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ztptri.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE ZTPTRI( UPLO, DIAG, N, AP, INFO ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* CHARACTER DIAG, UPLO */
|
|
/* INTEGER INFO, N */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* COMPLEX*16 AP( * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ZTPTRI computes the inverse of a complex upper or lower triangular */
|
|
/* > matrix A stored in packed format. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > = 'U': A is upper triangular; */
|
|
/* > = 'L': A is lower triangular. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] DIAG */
|
|
/* > \verbatim */
|
|
/* > DIAG is CHARACTER*1 */
|
|
/* > = 'N': A is non-unit triangular; */
|
|
/* > = 'U': A is unit triangular. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] AP */
|
|
/* > \verbatim */
|
|
/* > AP is COMPLEX*16 array, dimension (N*(N+1)/2) */
|
|
/* > On entry, the upper or lower triangular matrix A, stored */
|
|
/* > columnwise in a linear array. The j-th column of A is stored */
|
|
/* > in the array AP as follows: */
|
|
/* > if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
|
|
/* > if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n. */
|
|
/* > See below for further details. */
|
|
/* > On exit, the (triangular) inverse of the original matrix, in */
|
|
/* > the same packed storage format. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > > 0: if INFO = i, A(i,i) is exactly zero. The triangular */
|
|
/* > matrix is singular and its inverse can not be computed. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup complex16OTHERcomputational */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > A triangular matrix A can be transferred to packed storage using one */
|
|
/* > of the following program segments: */
|
|
/* > */
|
|
/* > UPLO = 'U': UPLO = 'L': */
|
|
/* > */
|
|
/* > JC = 1 JC = 1 */
|
|
/* > DO 2 J = 1, N DO 2 J = 1, N */
|
|
/* > DO 1 I = 1, J DO 1 I = J, N */
|
|
/* > AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J) */
|
|
/* > 1 CONTINUE 1 CONTINUE */
|
|
/* > JC = JC + J JC = JC + N - J + 1 */
|
|
/* > 2 CONTINUE 2 CONTINUE */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int ztptri_(char *uplo, char *diag, integer *n,
|
|
doublecomplex *ap, integer *info, ftnlen uplo_len, ftnlen diag_len)
|
|
{
|
|
/* System generated locals */
|
|
integer i__1, i__2;
|
|
doublecomplex z__1;
|
|
|
|
/* Builtin functions */
|
|
void z_div(doublecomplex *, doublecomplex *, doublecomplex *);
|
|
|
|
/* Local variables */
|
|
integer j, jc, jj;
|
|
doublecomplex ajj;
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
extern /* Subroutine */ int zscal_(integer *, doublecomplex *,
|
|
doublecomplex *, integer *);
|
|
logical upper;
|
|
extern /* Subroutine */ int ztpmv_(char *, char *, char *, integer *,
|
|
doublecomplex *, doublecomplex *, integer *, ftnlen, ftnlen,
|
|
ftnlen), xerbla_(char *, integer *, ftnlen);
|
|
integer jclast;
|
|
logical nounit;
|
|
|
|
|
|
/* -- LAPACK computational routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--ap;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
|
|
nounit = lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1);
|
|
if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
|
|
*info = -1;
|
|
} else if (! nounit && ! lsame_(diag, (char *)"U", (ftnlen)1, (ftnlen)1)) {
|
|
*info = -2;
|
|
} else if (*n < 0) {
|
|
*info = -3;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_((char *)"ZTPTRI", &i__1, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Check for singularity if non-unit. */
|
|
|
|
if (nounit) {
|
|
if (upper) {
|
|
jj = 0;
|
|
i__1 = *n;
|
|
for (*info = 1; *info <= i__1; ++(*info)) {
|
|
jj += *info;
|
|
i__2 = jj;
|
|
if (ap[i__2].r == 0. && ap[i__2].i == 0.) {
|
|
return 0;
|
|
}
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
jj = 1;
|
|
i__1 = *n;
|
|
for (*info = 1; *info <= i__1; ++(*info)) {
|
|
i__2 = jj;
|
|
if (ap[i__2].r == 0. && ap[i__2].i == 0.) {
|
|
return 0;
|
|
}
|
|
jj = jj + *n - *info + 1;
|
|
/* L20: */
|
|
}
|
|
}
|
|
*info = 0;
|
|
}
|
|
|
|
if (upper) {
|
|
|
|
/* Compute inverse of upper triangular matrix. */
|
|
|
|
jc = 1;
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (nounit) {
|
|
i__2 = jc + j - 1;
|
|
z_div(&z__1, &c_b1, &ap[jc + j - 1]);
|
|
ap[i__2].r = z__1.r, ap[i__2].i = z__1.i;
|
|
i__2 = jc + j - 1;
|
|
z__1.r = -ap[i__2].r, z__1.i = -ap[i__2].i;
|
|
ajj.r = z__1.r, ajj.i = z__1.i;
|
|
} else {
|
|
z__1.r = -1., z__1.i = -0.;
|
|
ajj.r = z__1.r, ajj.i = z__1.i;
|
|
}
|
|
|
|
/* Compute elements 1:j-1 of j-th column. */
|
|
|
|
i__2 = j - 1;
|
|
ztpmv_((char *)"Upper", (char *)"No transpose", diag, &i__2, &ap[1], &ap[jc], &
|
|
c__1, (ftnlen)5, (ftnlen)12, (ftnlen)1);
|
|
i__2 = j - 1;
|
|
zscal_(&i__2, &ajj, &ap[jc], &c__1);
|
|
jc += j;
|
|
/* L30: */
|
|
}
|
|
|
|
} else {
|
|
|
|
/* Compute inverse of lower triangular matrix. */
|
|
|
|
jc = *n * (*n + 1) / 2;
|
|
for (j = *n; j >= 1; --j) {
|
|
if (nounit) {
|
|
i__1 = jc;
|
|
z_div(&z__1, &c_b1, &ap[jc]);
|
|
ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
|
|
i__1 = jc;
|
|
z__1.r = -ap[i__1].r, z__1.i = -ap[i__1].i;
|
|
ajj.r = z__1.r, ajj.i = z__1.i;
|
|
} else {
|
|
z__1.r = -1., z__1.i = -0.;
|
|
ajj.r = z__1.r, ajj.i = z__1.i;
|
|
}
|
|
if (j < *n) {
|
|
|
|
/* Compute elements j+1:n of j-th column. */
|
|
|
|
i__1 = *n - j;
|
|
ztpmv_((char *)"Lower", (char *)"No transpose", diag, &i__1, &ap[jclast], &ap[
|
|
jc + 1], &c__1, (ftnlen)5, (ftnlen)12, (ftnlen)1);
|
|
i__1 = *n - j;
|
|
zscal_(&i__1, &ajj, &ap[jc + 1], &c__1);
|
|
}
|
|
jclast = jc;
|
|
jc = jc - *n + j - 2;
|
|
/* L40: */
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of ZTPTRI */
|
|
|
|
} /* ztptri_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|