41 lines
1.3 KiB
Python
41 lines
1.3 KiB
Python
from lammps.mliap.mliap_unified_abc import MLIAPUnified
|
|
import numpy as np
|
|
|
|
|
|
class MLIAPUnifiedJAX(MLIAPUnified):
|
|
"""Test implementation for MLIAPUnified."""
|
|
|
|
def __init__(self, element_types, epsilon=1.0, sigma=1.0, rcutfac=1.25):
|
|
# ARGS: interface, element_types, ndescriptors, nparams, rcutfac
|
|
super().__init__(None, element_types, 1, 3, rcutfac)
|
|
# Mimicking the LJ pair-style:
|
|
# pair_style lj/cut 2.5
|
|
# pair_coeff * * 1 1
|
|
self.epsilon = epsilon
|
|
self.sigma = sigma
|
|
|
|
def compute_gradients(self, data):
|
|
"""Test compute_gradients."""
|
|
|
|
def compute_descriptors(self, data):
|
|
"""Test compute_descriptors."""
|
|
|
|
def compute_forces(self, data):
|
|
"""Test compute_forces."""
|
|
eij, fij = self.compute_pair_ef(data)
|
|
data.update_pair_energy(eij)
|
|
data.update_pair_forces(fij)
|
|
|
|
def compute_pair_ef(self, data):
|
|
rij = data.rij
|
|
|
|
r2inv = 1.0 / np.sum(rij ** 2, axis=1)
|
|
r6inv = r2inv * r2inv * r2inv
|
|
|
|
lj1 = 4.0 * self.epsilon * self.sigma**12
|
|
lj2 = 4.0 * self.epsilon * self.sigma**6
|
|
|
|
eij = r6inv * (lj1 * r6inv - lj2)
|
|
fij = r6inv * (3.0 * lj2 - 6.0 * lj2 * r6inv) * r2inv
|
|
fij = fij[:, np.newaxis] * rij
|
|
return eij, fij |