347 lines
10 KiB
C++
347 lines
10 KiB
C++
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://lammps.sandia.gov/, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing authors: Chris Lorenz and Mark Stevens (SNL)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "bond_quartic.h"
|
|
|
|
#include <cmath>
|
|
#include "atom.h"
|
|
#include "neighbor.h"
|
|
#include "comm.h"
|
|
#include "force.h"
|
|
#include "pair.h"
|
|
#include "memory.h"
|
|
#include "error.h"
|
|
|
|
|
|
using namespace LAMMPS_NS;
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
BondQuartic::BondQuartic(LAMMPS *lmp) : Bond(lmp)
|
|
{
|
|
TWO_1_3 = pow(2.0,(1.0/3.0));
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
BondQuartic::~BondQuartic()
|
|
{
|
|
if (allocated) {
|
|
memory->destroy(setflag);
|
|
memory->destroy(k);
|
|
memory->destroy(b1);
|
|
memory->destroy(b2);
|
|
memory->destroy(rc);
|
|
memory->destroy(u0);
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void BondQuartic::compute(int eflag, int vflag)
|
|
{
|
|
int i1,i2,n,m,type,itype,jtype;
|
|
double delx,dely,delz,ebond,fbond,evdwl,fpair;
|
|
double r,rsq,dr,r2,ra,rb,sr2,sr6;
|
|
|
|
ebond = evdwl = sr6 = 0.0;
|
|
ev_init(eflag,vflag);
|
|
|
|
// insure pair->ev_tally() will use 1-4 virial contribution
|
|
|
|
if (vflag_global == VIRIAL_FDOTR)
|
|
force->pair->vflag_either = force->pair->vflag_global = 1;
|
|
|
|
double **cutsq = force->pair->cutsq;
|
|
double **x = atom->x;
|
|
double **f = atom->f;
|
|
int **bondlist = neighbor->bondlist;
|
|
int nbondlist = neighbor->nbondlist;
|
|
int nlocal = atom->nlocal;
|
|
int newton_bond = force->newton_bond;
|
|
|
|
for (n = 0; n < nbondlist; n++) {
|
|
|
|
// skip bond if already broken
|
|
|
|
if (bondlist[n][2] <= 0) continue;
|
|
|
|
i1 = bondlist[n][0];
|
|
i2 = bondlist[n][1];
|
|
type = bondlist[n][2];
|
|
|
|
delx = x[i1][0] - x[i2][0];
|
|
dely = x[i1][1] - x[i2][1];
|
|
delz = x[i1][2] - x[i2][2];
|
|
|
|
rsq = delx*delx + dely*dely + delz*delz;
|
|
|
|
// if bond breaks, set type to 0
|
|
// both in temporary bondlist and permanent bond_type
|
|
// if this proc owns both atoms,
|
|
// negate bond_type twice if other atom stores it
|
|
// if other proc owns 2nd atom, other proc will also break bond
|
|
|
|
if (rsq > rc[type]*rc[type]) {
|
|
bondlist[n][2] = 0;
|
|
for (m = 0; m < atom->num_bond[i1]; m++)
|
|
if (atom->bond_atom[i1][m] == atom->tag[i2])
|
|
atom->bond_type[i1][m] = 0;
|
|
if (i2 < atom->nlocal)
|
|
for (m = 0; m < atom->num_bond[i2]; m++)
|
|
if (atom->bond_atom[i2][m] == atom->tag[i1])
|
|
atom->bond_type[i2][m] = 0;
|
|
continue;
|
|
}
|
|
|
|
// quartic bond
|
|
// 1st portion is from quartic term
|
|
// 2nd portion is from LJ term cut at 2^(1/6) with eps = sigma = 1.0
|
|
|
|
r = sqrt(rsq);
|
|
dr = r - rc[type];
|
|
r2 = dr*dr;
|
|
ra = dr - b1[type];
|
|
rb = dr - b2[type];
|
|
fbond = -k[type]/r * (r2*(ra+rb) + 2.0*dr*ra*rb);
|
|
|
|
if (rsq < TWO_1_3) {
|
|
sr2 = 1.0/rsq;
|
|
sr6 = sr2*sr2*sr2;
|
|
fbond += 48.0*sr6*(sr6-0.5)/rsq;
|
|
}
|
|
|
|
if (eflag) {
|
|
ebond = k[type]*r2*ra*rb + u0[type];
|
|
if (rsq < TWO_1_3) ebond += 4.0*sr6*(sr6-1.0) + 1.0;
|
|
}
|
|
|
|
// apply force to each of 2 atoms
|
|
|
|
if (newton_bond || i1 < nlocal) {
|
|
f[i1][0] += delx*fbond;
|
|
f[i1][1] += dely*fbond;
|
|
f[i1][2] += delz*fbond;
|
|
}
|
|
|
|
if (newton_bond || i2 < nlocal) {
|
|
f[i2][0] -= delx*fbond;
|
|
f[i2][1] -= dely*fbond;
|
|
f[i2][2] -= delz*fbond;
|
|
}
|
|
|
|
if (evflag) ev_tally(i1,i2,nlocal,newton_bond,ebond,fbond,delx,dely,delz);
|
|
|
|
// subtract out pairwise contribution from 2 atoms via pair->single()
|
|
// required since special_bond = 1,1,1
|
|
// tally energy/virial in pair, using newton_bond as newton flag
|
|
|
|
itype = atom->type[i1];
|
|
jtype = atom->type[i2];
|
|
|
|
if (rsq < cutsq[itype][jtype]) {
|
|
evdwl = -force->pair->single(i1,i2,itype,jtype,rsq,1.0,1.0,fpair);
|
|
fpair = -fpair;
|
|
|
|
if (newton_bond || i1 < nlocal) {
|
|
f[i1][0] += delx*fpair;
|
|
f[i1][1] += dely*fpair;
|
|
f[i1][2] += delz*fpair;
|
|
}
|
|
if (newton_bond || i2 < nlocal) {
|
|
f[i2][0] -= delx*fpair;
|
|
f[i2][1] -= dely*fpair;
|
|
f[i2][2] -= delz*fpair;
|
|
}
|
|
|
|
if (evflag) force->pair->ev_tally(i1,i2,nlocal,newton_bond,
|
|
evdwl,0.0,fpair,delx,dely,delz);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void BondQuartic::allocate()
|
|
{
|
|
allocated = 1;
|
|
int n = atom->nbondtypes;
|
|
|
|
memory->create(k,n+1,"bond:k");
|
|
memory->create(b1,n+1,"bond:b1");
|
|
memory->create(b2,n+1,"bond:b2");
|
|
memory->create(rc,n+1,"bond:rc");
|
|
memory->create(u0,n+1,"bond:u0");
|
|
|
|
memory->create(setflag,n+1,"bond:setflag");
|
|
for (int i = 1; i <= n; i++) setflag[i] = 0;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
set coeffs for one or more types
|
|
------------------------------------------------------------------------- */
|
|
|
|
void BondQuartic::coeff(int narg, char **arg)
|
|
{
|
|
if (narg != 6) error->all(FLERR,"Incorrect args for bond coefficients");
|
|
if (!allocated) allocate();
|
|
|
|
int ilo,ihi;
|
|
utils::bounds(FLERR,arg[0],1,atom->nbondtypes,ilo,ihi,error);
|
|
|
|
double k_one = utils::numeric(FLERR,arg[1],false,lmp);
|
|
double b1_one = utils::numeric(FLERR,arg[2],false,lmp);
|
|
double b2_one = utils::numeric(FLERR,arg[3],false,lmp);
|
|
double rc_one = utils::numeric(FLERR,arg[4],false,lmp);
|
|
double u0_one = utils::numeric(FLERR,arg[5],false,lmp);
|
|
|
|
int count = 0;
|
|
for (int i = ilo; i <= ihi; i++) {
|
|
k[i] = k_one;
|
|
b1[i] = b1_one;
|
|
b2[i] = b2_one;
|
|
rc[i] = rc_one;
|
|
u0[i] = u0_one;
|
|
setflag[i] = 1;
|
|
count++;
|
|
}
|
|
|
|
if (count == 0) error->all(FLERR,"Incorrect args for bond coefficients");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
check if pair defined and special_bond settings are valid
|
|
------------------------------------------------------------------------- */
|
|
|
|
void BondQuartic::init_style()
|
|
{
|
|
if (force->pair == nullptr || force->pair->single_enable == 0)
|
|
error->all(FLERR,"Pair style does not support bond_style quartic");
|
|
if (force->angle || force->dihedral || force->improper)
|
|
error->all(FLERR,
|
|
"Bond style quartic cannot be used with 3,4-body interactions");
|
|
if (atom->molecular == Atom::TEMPLATE)
|
|
error->all(FLERR,
|
|
"Bond style quartic cannot be used with atom style template");
|
|
|
|
// special bonds must be 1 1 1
|
|
|
|
if (force->special_lj[1] != 1.0 || force->special_lj[2] != 1.0 ||
|
|
force->special_lj[3] != 1.0)
|
|
error->all(FLERR,"Bond style quartic requires special_bonds = 1,1,1");
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
return an equilbrium bond length
|
|
------------------------------------------------------------------------- */
|
|
|
|
double BondQuartic::equilibrium_distance(int /*i*/)
|
|
{
|
|
return 0.97;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes out coeffs to restart file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void BondQuartic::write_restart(FILE *fp)
|
|
{
|
|
fwrite(&k[1],sizeof(double),atom->nbondtypes,fp);
|
|
fwrite(&b1[1],sizeof(double),atom->nbondtypes,fp);
|
|
fwrite(&b2[1],sizeof(double),atom->nbondtypes,fp);
|
|
fwrite(&rc[1],sizeof(double),atom->nbondtypes,fp);
|
|
fwrite(&u0[1],sizeof(double),atom->nbondtypes,fp);
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 reads coeffs from restart file, bcasts them
|
|
------------------------------------------------------------------------- */
|
|
|
|
void BondQuartic::read_restart(FILE *fp)
|
|
{
|
|
allocate();
|
|
|
|
if (comm->me == 0) {
|
|
utils::sfread(FLERR,&k[1],sizeof(double),atom->nbondtypes,fp,nullptr,error);
|
|
utils::sfread(FLERR,&b1[1],sizeof(double),atom->nbondtypes,fp,nullptr,error);
|
|
utils::sfread(FLERR,&b2[1],sizeof(double),atom->nbondtypes,fp,nullptr,error);
|
|
utils::sfread(FLERR,&rc[1],sizeof(double),atom->nbondtypes,fp,nullptr,error);
|
|
utils::sfread(FLERR,&u0[1],sizeof(double),atom->nbondtypes,fp,nullptr,error);
|
|
}
|
|
MPI_Bcast(&k[1],atom->nbondtypes,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&b1[1],atom->nbondtypes,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&b2[1],atom->nbondtypes,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&rc[1],atom->nbondtypes,MPI_DOUBLE,0,world);
|
|
MPI_Bcast(&u0[1],atom->nbondtypes,MPI_DOUBLE,0,world);
|
|
|
|
for (int i = 1; i <= atom->nbondtypes; i++) setflag[i] = 1;
|
|
}
|
|
|
|
/* ----------------------------------------------------------------------
|
|
proc 0 writes to data file
|
|
------------------------------------------------------------------------- */
|
|
|
|
void BondQuartic::write_data(FILE *fp)
|
|
{
|
|
for (int i = 1; i <= atom->nbondtypes; i++)
|
|
fprintf(fp,"%d %g %g %g %g %g\n",i,k[i],b1[i],b2[i],rc[i],u0[i]);
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
double BondQuartic::single(int type, double rsq, int i, int j,
|
|
double &fforce)
|
|
{
|
|
double r,dr,r2,ra,rb,sr2,sr6;
|
|
|
|
if (type <= 0) return 0.0;
|
|
double eng = 0.0;
|
|
|
|
// subtract out pairwise contribution from 2 atoms via pair->single()
|
|
// required since special_bond = 1,1,1
|
|
|
|
int itype = atom->type[i];
|
|
int jtype = atom->type[j];
|
|
|
|
if (rsq < force->pair->cutsq[itype][jtype]) {
|
|
double tmp;
|
|
eng = -force->pair->single(i,j,itype,jtype,rsq,1.0,1.0,tmp);
|
|
}
|
|
|
|
// quartic bond
|
|
// 1st portion is from quartic term
|
|
// 2nd portion is from LJ term cut at 2^(1/6) with eps = sigma = 1.0
|
|
|
|
r = sqrt(rsq);
|
|
dr = r - rc[type];
|
|
r2 = dr*dr;
|
|
ra = dr - b1[type];
|
|
rb = dr - b2[type];
|
|
|
|
eng += k[type]*r2*ra*rb + u0[type];
|
|
fforce = -k[type]/r * (r2*(ra+rb) + 2.0*dr*ra*rb);
|
|
|
|
if (rsq < TWO_1_3) {
|
|
sr2 = 1.0/rsq;
|
|
sr6 = sr2*sr2*sr2;
|
|
eng += 4.0*sr6*(sr6-1.0) + 1.0;
|
|
fforce += 48.0*sr6*(sr6-0.5)/rsq;
|
|
}
|
|
|
|
return eng;
|
|
}
|