Files
lammps/src/USER-MISC/angle_gaussian.cpp

348 lines
10 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "angle_gaussian.h"
#include <cmath>
#include "atom.h"
#include "neighbor.h"
#include "domain.h"
#include "comm.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
using namespace MathConst;
#define SMAL 0.001
#define SMALL 1.0e-8
/* ---------------------------------------------------------------------- */
AngleGaussian::AngleGaussian(LAMMPS *lmp)
: Angle(lmp), nterms(nullptr), angle_temperature(nullptr),
alpha(nullptr), width(nullptr), theta0(nullptr)
{
}
/* ---------------------------------------------------------------------- */
AngleGaussian::~AngleGaussian()
{
if (allocated && !copymode) {
memory->destroy(setflag);
memory->destroy(nterms);
memory->destroy(angle_temperature);
for (int i = 1; i <= atom->nangletypes; i++) {
delete [] alpha[i];
delete [] width[i];
delete [] theta0[i];
}
delete [] alpha;
delete [] width;
delete [] theta0;
}
}
/* ---------------------------------------------------------------------- */
void AngleGaussian::compute(int eflag, int vflag)
{
int i1,i2,i3,n,type;
double delx1,dely1,delz1,delx2,dely2,delz2;
double eangle,f1[3],f3[3];
double dtheta;
double rsq1,rsq2,r1,r2,c,s,a,a11,a12,a22;
double prefactor, exponent, g_i, sum_g_i, sum_numerator;
eangle = 0.0;
ev_init(eflag,vflag);
double **x = atom->x;
double **f = atom->f;
int **anglelist = neighbor->anglelist;
int nanglelist = neighbor->nanglelist;
int nlocal = atom->nlocal;
int newton_bond = force->newton_bond;
for (n = 0; n < nanglelist; n++) {
i1 = anglelist[n][0];
i2 = anglelist[n][1];
i3 = anglelist[n][2];
type = anglelist[n][3];
// 1st bond
delx1 = x[i1][0] - x[i2][0];
dely1 = x[i1][1] - x[i2][1];
delz1 = x[i1][2] - x[i2][2];
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
r1 = sqrt(rsq1);
// 2nd bond
delx2 = x[i3][0] - x[i2][0];
dely2 = x[i3][1] - x[i2][1];
delz2 = x[i3][2] - x[i2][2];
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
r2 = sqrt(rsq2);
// angle (cos and sin)
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
s = sqrt(1.0 - c*c);
if (s < SMAL) s = SMAL;
s = 1.0/s;
// force & energy
double theta = acos(c);
sum_g_i = 0.0;
sum_numerator = 0.0;
for (int i = 0; i < nterms[type]; i++) {
dtheta = theta - theta0[type][i];
prefactor = (alpha[type][i]/(width[type][i]*sqrt(MY_PI2)));
exponent = -2*dtheta*dtheta/(width[type][i]*width[type][i]);
g_i = prefactor*exp(exponent);
sum_g_i += g_i;
sum_numerator += g_i*dtheta/(width[type][i]*width[type][i]);
}
if (sum_g_i < SMALL) sum_g_i = SMALL;
if (eflag) eangle = -(force->boltz*angle_temperature[type])*log(sum_g_i);
// I should check about the sign of this expression
a = -4.0*(force->boltz*angle_temperature[type])*(sum_numerator/sum_g_i)*s;
a11 = a*c / rsq1;
a12 = -a / (r1*r2);
a22 = a*c / rsq2;
f1[0] = a11*delx1 + a12*delx2;
f1[1] = a11*dely1 + a12*dely2;
f1[2] = a11*delz1 + a12*delz2;
f3[0] = a22*delx2 + a12*delx1;
f3[1] = a22*dely2 + a12*dely1;
f3[2] = a22*delz2 + a12*delz1;
// apply force to each of 3 atoms
if (newton_bond || i1 < nlocal) {
f[i1][0] += f1[0];
f[i1][1] += f1[1];
f[i1][2] += f1[2];
}
if (newton_bond || i2 < nlocal) {
f[i2][0] -= f1[0] + f3[0];
f[i2][1] -= f1[1] + f3[1];
f[i2][2] -= f1[2] + f3[2];
}
if (newton_bond || i3 < nlocal) {
f[i3][0] += f3[0];
f[i3][1] += f3[1];
f[i3][2] += f3[2];
}
if (evflag) ev_tally(i1,i2,i3,nlocal,newton_bond,eangle,f1,f3,
delx1,dely1,delz1,delx2,dely2,delz2);
}
}
/* ---------------------------------------------------------------------- */
void AngleGaussian::allocate()
{
allocated = 1;
int n = atom->nangletypes;
memory->create(nterms,n+1,"angle:nterms");
memory->create(angle_temperature,n+1,"angle:angle_temperature");
alpha = new double *[n+1];
width = new double *[n+1];
theta0 = new double *[n+1];
memset(alpha,0,sizeof(double)*(n+1));
memset(width,0,sizeof(double)*(n+1));
memset(theta0,0,sizeof(double)*(n+1));
memory->create(setflag,n+1,"angle:setflag");
for (int i = 1; i <= n; i++) setflag[i] = 0;
}
/* ----------------------------------------------------------------------
set coeffs for one or more types
------------------------------------------------------------------------- */
void AngleGaussian::coeff(int narg, char **arg)
{
if (narg < 6) error->all(FLERR,"Incorrect args for angle coefficients");
int ilo,ihi;
utils::bounds(FLERR,arg[0],1,atom->nangletypes,ilo,ihi,error);
double angle_temperature_one = utils::numeric(FLERR,arg[1],false,lmp);
int n = utils::inumeric(FLERR,arg[2],false,lmp);
if (narg != 3*n + 3)
error->all(FLERR,"Incorrect args for angle coefficients");
if (!allocated) allocate();
// convert theta0 from degrees to radians
int count = 0;
for (int i = ilo; i <= ihi; i++) {
angle_temperature[i] = angle_temperature_one;
nterms[i] = n;
delete[] alpha[i];
alpha[i] = new double [n];
delete[] width[i];
width[i] = new double [n];
delete[] theta0[i];
theta0[i] = new double [n];
for (int j = 0; j < n; j++) {
alpha[i][j] = utils::numeric(FLERR,arg[3+3*j],false,lmp);
width[i][j] = utils::numeric(FLERR,arg[4+3*j],false,lmp);
theta0[i][j] = utils::numeric(FLERR,arg[5+3*j],false,lmp)* MY_PI / 180.0;
setflag[i] = 1;
}
count++;
}
if (count == 0) error->all(FLERR,"Incorrect args for angle coefficients");
}
/* ---------------------------------------------------------------------- */
double AngleGaussian::equilibrium_angle(int i)
{
return theta0[i][0];
}
/* ----------------------------------------------------------------------
proc 0 writes out coeffs to restart file
------------------------------------------------------------------------- */
void AngleGaussian::write_restart(FILE *fp)
{
fwrite(&angle_temperature[1],sizeof(double),atom->nangletypes,fp);
fwrite(&nterms[1],sizeof(int),atom->nangletypes,fp);
for (int i = 1; i <= atom->nangletypes; i++) {
fwrite(alpha[i],sizeof(double),nterms[i],fp);
fwrite(width[i],sizeof(double),nterms[i],fp);
fwrite(theta0[i],sizeof(double),nterms[i],fp);
}
}
/* ----------------------------------------------------------------------
proc 0 reads coeffs from restart file, bcasts them
------------------------------------------------------------------------- */
void AngleGaussian::read_restart(FILE *fp)
{
allocate();
if (comm->me == 0) {
utils::sfread(FLERR,&angle_temperature[1],sizeof(double),atom->nangletypes,fp,nullptr,error);
utils::sfread(FLERR,&nterms[1],sizeof(int),atom->nangletypes,fp,nullptr,error);
}
MPI_Bcast(&angle_temperature[1],atom->nangletypes,MPI_DOUBLE,0,world);
MPI_Bcast(&nterms[1],atom->nangletypes,MPI_INT,0,world);
// allocate
for (int i = 1; i <= atom->nangletypes; i++) {
alpha[i] = new double [nterms[i]];
width[i] = new double [nterms[i]];
theta0[i] = new double [nterms[i]];
}
if (comm->me == 0) {
for (int i = 1; i <= atom->nangletypes; i++) {
utils::sfread(FLERR,alpha[i],sizeof(double),nterms[i],fp,nullptr,error);
utils::sfread(FLERR,width[i],sizeof(double),nterms[i],fp,nullptr,error);
utils::sfread(FLERR,theta0[i],sizeof(double),nterms[i],fp,nullptr,error);
}
}
for (int i = 1; i <= atom->nangletypes; i++) {
MPI_Bcast(alpha[i],nterms[i],MPI_DOUBLE,0,world);
MPI_Bcast(width[i],nterms[i],MPI_DOUBLE,0,world);
MPI_Bcast(theta0[i],nterms[i],MPI_DOUBLE,0,world);
}
for (int i = 1; i <= atom->nangletypes; i++) setflag[i] = 1;
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void AngleGaussian::write_data(FILE *fp)
{
for (int i = 1; i <= atom->nangletypes; i++) {
fprintf(fp,"%d %g %d",i,angle_temperature[i],nterms[i]);
for (int j = 0; j < nterms[i]; j++) {
fprintf(fp," %g %g %g",alpha[i][j],width[i][j],(theta0[i][j]/MY_PI)*180.0);
}
fprintf(fp, "\n");
}
}
/* ---------------------------------------------------------------------- */
double AngleGaussian::single(int type, int i1, int i2, int i3)
{
double **x = atom->x;
double delx1 = x[i1][0] - x[i2][0];
double dely1 = x[i1][1] - x[i2][1];
double delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(delx1,dely1,delz1);
double r1 = sqrt(delx1*delx1 + dely1*dely1 + delz1*delz1);
double delx2 = x[i3][0] - x[i2][0];
double dely2 = x[i3][1] - x[i2][1];
double delz2 = x[i3][2] - x[i2][2];
domain->minimum_image(delx2,dely2,delz2);
double r2 = sqrt(delx2*delx2 + dely2*dely2 + delz2*delz2);
double c = delx1*delx2 + dely1*dely2 + delz1*delz2;
c /= r1*r2;
if (c > 1.0) c = 1.0;
if (c < -1.0) c = -1.0;
double theta = acos(c) ;
double sum_g_i = 0.0;
for (int i = 0; i < nterms[type]; i++) {
double dtheta = theta - theta0[type][i];
double prefactor = (alpha[type][i]/(width[type][i]*sqrt(MY_PI2)));
double exponent = -2*dtheta*dtheta/(width[type][i]*width[type][i]);
double g_i = prefactor*exp(exponent);
sum_g_i += g_i;
}
if (sum_g_i < SMALL) sum_g_i = SMALL;
return -(force->boltz*angle_temperature[type])*log(sum_g_i);
}