618 lines
25 KiB
Plaintext
618 lines
25 KiB
Plaintext
// **************************************************************************
|
||
// edpd.cu
|
||
// -------------------
|
||
// Trung Dac Nguyen (U Chicago)
|
||
//
|
||
// Device code for acceleration of the edpd pair style
|
||
//
|
||
// __________________________________________________________________________
|
||
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
||
// __________________________________________________________________________
|
||
//
|
||
// begin : September 2023
|
||
// email : ndactrung@gmail.com
|
||
// ***************************************************************************
|
||
|
||
#if defined(NV_KERNEL) || defined(USE_HIP)
|
||
#include "lal_aux_fun1.h"
|
||
#ifndef _DOUBLE_DOUBLE
|
||
_texture( pos_tex,float4);
|
||
_texture( vel_tex,float4);
|
||
#else
|
||
_texture_2d( pos_tex,int4);
|
||
_texture_2d( vel_tex,int4);
|
||
#endif
|
||
#else
|
||
#define pos_tex x_
|
||
#define vel_tex v_
|
||
#endif
|
||
|
||
#define EPSILON (numtyp)1.0e-10
|
||
|
||
//#define _USE_UNIFORM_SARU_LCG
|
||
//#define _USE_UNIFORM_SARU_TEA8
|
||
//#define _USE_GAUSSIAN_SARU_LCG
|
||
|
||
#if !defined(_USE_UNIFORM_SARU_LCG) && !defined(_USE_UNIFORM_SARU_TEA8) && !defined(_USE_GAUSSIAN_SARU_LCG)
|
||
#define _USE_UNIFORM_SARU_LCG
|
||
#endif
|
||
|
||
// References:
|
||
// 1. Y. Afshar, F. Schmid, A. Pishevar, S. Worley, Comput. Phys. Comm. 184 (2013), 1119–1128.
|
||
// 2. C. L. Phillips, J. A. Anderson, S. C. Glotzer, Comput. Phys. Comm. 230 (2011), 7191-7201.
|
||
// PRNG period = 3666320093*2^32 ~ 2^64 ~ 10^19
|
||
|
||
#define LCGA 0x4beb5d59 /* Full period 32 bit LCG */
|
||
#define LCGC 0x2600e1f7
|
||
#define oWeylPeriod 0xda879add /* Prime period 3666320093 */
|
||
#define oWeylOffset 0x8009d14b
|
||
#define TWO_N32 0.232830643653869628906250e-9f /* 2^-32 */
|
||
|
||
// specifically implemented for steps = 1; high = 1.0; low = -1.0
|
||
// returns uniformly distributed random numbers u in [-1.0;1.0]
|
||
// using the inherent LCG, then multiply u with sqrt(3) to "match"
|
||
// with a normal random distribution.
|
||
// Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12)
|
||
// Curly brackets to make variables local to the scope.
|
||
#ifdef _USE_UNIFORM_SARU_LCG
|
||
#define SQRT3 (numtyp)1.7320508075688772935274463
|
||
#define saru(seed1, seed2, seed, timestep, randnum) { \
|
||
unsigned int seed3 = seed + timestep; \
|
||
seed3^=(seed1<<7)^(seed2>>6); \
|
||
seed2+=(seed1>>4)^(seed3>>15); \
|
||
seed1^=(seed2<<9)+(seed3<<8); \
|
||
seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \
|
||
seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \
|
||
seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \
|
||
seed2+=seed1*seed3; \
|
||
seed1+=seed3 ^ (seed2>>2); \
|
||
seed2^=((signed int)seed2)>>17; \
|
||
unsigned int state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \
|
||
unsigned int wstate = (state + seed2) ^ (((signed int)state)>>8); \
|
||
state = state + (wstate*(wstate^0xdddf97f5)); \
|
||
wstate = 0xABCB96F7 + (wstate>>1); \
|
||
state = LCGA*state + LCGC; \
|
||
wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \
|
||
unsigned int v = (state ^ (state>>26)) + wstate; \
|
||
unsigned int s = (signed int)((v^(v>>20))*0x6957f5a7); \
|
||
randnum = SQRT3*(s*TWO_N32*(numtyp)2.0-(numtyp)1.0); \
|
||
}
|
||
#endif
|
||
|
||
// specifically implemented for steps = 1; high = 1.0; low = -1.0
|
||
// returns uniformly distributed random numbers u in [-1.0;1.0] using TEA8
|
||
// then multiply u with sqrt(3) to "match" with a normal random distribution
|
||
// Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12)
|
||
#ifdef _USE_UNIFORM_SARU_TEA8
|
||
#define SQRT3 (numtyp)1.7320508075688772935274463
|
||
#define k0 0xA341316C
|
||
#define k1 0xC8013EA4
|
||
#define k2 0xAD90777D
|
||
#define k3 0x7E95761E
|
||
#define delta 0x9e3779b9
|
||
#define rounds 8
|
||
#define saru(seed1, seed2, seed, timestep, randnum) { \
|
||
unsigned int seed3 = seed + timestep; \
|
||
seed3^=(seed1<<7)^(seed2>>6); \
|
||
seed2+=(seed1>>4)^(seed3>>15); \
|
||
seed1^=(seed2<<9)+(seed3<<8); \
|
||
seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \
|
||
seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \
|
||
seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \
|
||
seed2+=seed1*seed3; \
|
||
seed1+=seed3 ^ (seed2>>2); \
|
||
seed2^=((signed int)seed2)>>17; \
|
||
unsigned int state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \
|
||
unsigned int wstate = (state + seed2) ^ (((signed int)state)>>8); \
|
||
state = state + (wstate*(wstate^0xdddf97f5)); \
|
||
wstate = 0xABCB96F7 + (wstate>>1); \
|
||
unsigned int sum = 0; \
|
||
for (int i=0; i < rounds; i++) { \
|
||
sum += delta; \
|
||
state += ((wstate<<4) + k0)^(wstate + sum)^((wstate>>5) + k1); \
|
||
wstate += ((state<<4) + k2)^(state + sum)^((state>>5) + k3); \
|
||
} \
|
||
unsigned int v = (state ^ (state>>26)) + wstate; \
|
||
unsigned int s = (signed int)((v^(v>>20))*0x6957f5a7); \
|
||
randnum = SQRT3*(s*TWO_N32*(numtyp)2.0-(numtyp)1.0); \
|
||
}
|
||
#endif
|
||
|
||
// specifically implemented for steps = 1; high = 1.0; low = -1.0
|
||
// returns two uniformly distributed random numbers r1 and r2 in [-1.0;1.0],
|
||
// and uses the polar method (Marsaglia's) to transform to a normal random value
|
||
// This is used to compared with CPU DPD using RandMars::gaussian()
|
||
#ifdef _USE_GAUSSIAN_SARU_LCG
|
||
#define saru(seed1, seed2, seed, timestep, randnum) { \
|
||
unsigned int seed3 = seed + timestep; \
|
||
seed3^=(seed1<<7)^(seed2>>6); \
|
||
seed2+=(seed1>>4)^(seed3>>15); \
|
||
seed1^=(seed2<<9)+(seed3<<8); \
|
||
seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \
|
||
seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \
|
||
seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \
|
||
seed2+=seed1*seed3; \
|
||
seed1+=seed3 ^ (seed2>>2); \
|
||
seed2^=((signed int)seed2)>>17; \
|
||
unsigned int state=0x12345678; \
|
||
unsigned int wstate=12345678; \
|
||
state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \
|
||
wstate = (state + seed2) ^ (((signed int)state)>>8); \
|
||
state = state + (wstate*(wstate^0xdddf97f5)); \
|
||
wstate = 0xABCB96F7 + (wstate>>1); \
|
||
unsigned int v, s; \
|
||
numtyp r1, r2, rsq; \
|
||
while (1) { \
|
||
state = LCGA*state + LCGC; \
|
||
wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \
|
||
v = (state ^ (state>>26)) + wstate; \
|
||
s = (signed int)((v^(v>>20))*0x6957f5a7); \
|
||
r1 = s*TWO_N32*(numtyp)2.0-(numtyp)1.0; \
|
||
state = LCGA*state + LCGC; \
|
||
wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \
|
||
v = (state ^ (state>>26)) + wstate; \
|
||
s = (signed int)((v^(v>>20))*0x6957f5a7); \
|
||
r2 = s*TWO_N32*(numtyp)2.0-(numtyp)1.0; \
|
||
rsq = r1 * r1 + r2 * r2; \
|
||
if (rsq < (numtyp)1.0) break; \
|
||
} \
|
||
numtyp fac = ucl_sqrt((numtyp)-2.0*log(rsq)/rsq); \
|
||
randnum = r2*fac; \
|
||
}
|
||
#endif
|
||
|
||
#if (SHUFFLE_AVAIL == 0)
|
||
|
||
#define store_heatflux(Qi, ii, inum, tid, t_per_atom, offset, Q) \
|
||
if (t_per_atom>1) { \
|
||
simdsync(); \
|
||
simd_reduce_add1(t_per_atom, red_acc, offset, tid, Qi); \
|
||
} \
|
||
if (offset==0 && ii<inum) { \
|
||
Q[ii]=Qi; \
|
||
}
|
||
#else
|
||
#define store_heatflux(Qi, ii, inum, tid, t_per_atom, offset, Q) \
|
||
if (t_per_atom>1) { \
|
||
simd_reduce_add1(t_per_atom,Qi); \
|
||
} \
|
||
if (offset==0 && ii<inum) { \
|
||
Q[ii]=Qi; \
|
||
}
|
||
#endif
|
||
|
||
#define MIN(A,B) ((A) < (B) ? (A) : (B))
|
||
#define MAX(A,B) ((A) < (B) ? (B) : (A))
|
||
|
||
// note the change in coeff: coeff.x = a0, coeff.y = gamma, coeff.z = cut (no sigma)
|
||
|
||
__kernel void k_edpd(const __global numtyp4 *restrict x_,
|
||
const __global numtyp4 *restrict extra,
|
||
const __global numtyp4 *restrict coeff,
|
||
const __global numtyp4 *restrict coeff2,
|
||
const __global numtyp *restrict mass,
|
||
const __global numtyp4 *restrict sc,
|
||
const __global numtyp4 *restrict kc,
|
||
const int lj_types,
|
||
const __global numtyp *restrict sp_lj,
|
||
const __global numtyp *restrict sp_sqrt,
|
||
const __global int * dev_nbor,
|
||
const __global int * dev_packed,
|
||
__global acctyp3 *restrict ans,
|
||
__global acctyp *restrict engv,
|
||
__global acctyp *restrict Q,
|
||
const int eflag, const int vflag,
|
||
const int power_flag, const int kappa_flag,
|
||
const int inum, const int nbor_pitch,
|
||
const __global numtyp4 *restrict v_,
|
||
const __global numtyp *restrict cutsq,
|
||
const numtyp dtinvsqrt, const int seed,
|
||
const int timestep, const int t_per_atom) {
|
||
int tid, ii, offset;
|
||
atom_info(t_per_atom,ii,tid,offset);
|
||
|
||
int n_stride;
|
||
local_allocate_store_pair();
|
||
|
||
acctyp3 f;
|
||
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
|
||
acctyp energy, virial[6];
|
||
if (EVFLAG) {
|
||
energy=(acctyp)0;
|
||
for (int i=0; i<6; i++) virial[i]=(acctyp)0;
|
||
}
|
||
acctyp Qi = (acctyp)0;
|
||
|
||
if (ii<inum) {
|
||
int i, numj, nbor, nbor_end;
|
||
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
|
||
n_stride,nbor_end,nbor);
|
||
|
||
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
|
||
int itype=ix.w;
|
||
numtyp mass_itype = mass[itype];
|
||
numtyp4 iv; fetch4(iv,i,vel_tex); //v_[i];
|
||
int itag=iv.w;
|
||
|
||
const numtyp4 Tcvi = extra[i];
|
||
numtyp Ti = Tcvi.x;
|
||
numtyp cvi = Tcvi.y;
|
||
|
||
numtyp factor_dpd;
|
||
for ( ; nbor<nbor_end; nbor+=n_stride) {
|
||
ucl_prefetch(dev_packed+nbor+n_stride);
|
||
|
||
int j=dev_packed[nbor];
|
||
factor_dpd = sp_lj[sbmask(j)];
|
||
j &= NEIGHMASK;
|
||
|
||
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
|
||
int jtype=jx.w;
|
||
numtyp4 jv; fetch4(jv,j,vel_tex); //v_[j];
|
||
int jtag=jv.w;
|
||
|
||
// Compute r12
|
||
numtyp delx = ix.x-jx.x;
|
||
numtyp dely = ix.y-jx.y;
|
||
numtyp delz = ix.z-jx.z;
|
||
numtyp rsq = delx*delx+dely*dely+delz*delz;
|
||
|
||
int mtype=itype*lj_types+jtype;
|
||
if (rsq<cutsq[mtype]) {
|
||
numtyp r=ucl_sqrt(rsq);
|
||
if (r < EPSILON) continue;
|
||
|
||
numtyp rinv=ucl_recip(r);
|
||
numtyp delvx = iv.x - jv.x;
|
||
numtyp delvy = iv.y - jv.y;
|
||
numtyp delvz = iv.z - jv.z;
|
||
numtyp dot = delx*delvx + dely*delvy + delz*delvz;
|
||
numtyp vijeij = dot*rinv;
|
||
|
||
const numtyp coeffx=coeff[mtype].x; // a0[itype][jtype]
|
||
const numtyp coeffy=coeff[mtype].y; // gamma[itype][jtype]
|
||
const numtyp coeffz=coeff[mtype].z; // cut[itype][jtype]
|
||
|
||
const numtyp4 Tcvj = extra[j];
|
||
numtyp Tj = Tcvj.x;
|
||
numtyp cvj = Tcvj.y;
|
||
|
||
unsigned int tag1=itag, tag2=jtag;
|
||
if (tag1 > tag2) {
|
||
tag1 = jtag; tag2 = itag;
|
||
}
|
||
|
||
numtyp randnum = (numtyp)0.0;
|
||
saru(tag1, tag2, seed, timestep, randnum);
|
||
|
||
numtyp T_ij=(numtyp)0.5*(Ti+Tj);
|
||
numtyp4 T_pow;
|
||
T_pow.x = T_ij - (numtyp)1.0;
|
||
T_pow.y = T_pow.x*T_pow.x;
|
||
T_pow.z = T_pow.x*T_pow.y;
|
||
T_pow.w = T_pow.x*T_pow.z;
|
||
|
||
numtyp coeff2x = coeff2[mtype].x; //power[itype][jtype]
|
||
numtyp coeff2y = coeff2[mtype].y; //kappa[itype][jtype]
|
||
numtyp coeff2z = coeff2[mtype].z; //powerT[itype][jtype]
|
||
numtyp coeff2w = coeff2[mtype].w; //cutT[itype][jtype]
|
||
numtyp power_d = coeff2x;
|
||
if (power_flag) {
|
||
numtyp factor = (numtyp)1.0;
|
||
factor += sc[mtype].x*T_pow.x + sc[mtype].y*T_pow.y +
|
||
sc[mtype].z*T_pow.z + sc[mtype].w*T_pow.w;
|
||
power_d *= factor;
|
||
}
|
||
|
||
power_d = MAX((numtyp)0.01,power_d);
|
||
numtyp wc = (numtyp)1.0 - r/coeffz; // cut[itype][jtype]
|
||
wc = MAX((numtyp)0.0,MIN((numtyp)1.0,wc));
|
||
numtyp wr = ucl_pow(wc, (numtyp)0.5*power_d);
|
||
|
||
numtyp kboltz = (numtyp)1.0;
|
||
numtyp GammaIJ = coeffy; // gamma[itype][jtype]
|
||
numtyp SigmaIJ = (numtyp)4.0*GammaIJ*kboltz*Ti*Tj/(Ti+Tj);
|
||
SigmaIJ = ucl_sqrt(SigmaIJ);
|
||
|
||
numtyp force = coeffx*T_ij*wc; // a0[itype][jtype]
|
||
force -= GammaIJ *wr*wr *dot*rinv;
|
||
force += SigmaIJ * wr *randnum * dtinvsqrt;
|
||
force *= factor_dpd*rinv;
|
||
|
||
f.x+=delx*force;
|
||
f.y+=dely*force;
|
||
f.z+=delz*force;
|
||
|
||
// heat transfer
|
||
|
||
if (r < coeff2w) {
|
||
numtyp wrT = (numtyp)1.0 - r/coeff2w;
|
||
wrT = MAX((numtyp)0.0,MIN((numtyp)1.0,wrT));
|
||
wrT = ucl_pow(wrT, (numtyp)0.5*coeff2z); // powerT[itype][jtype]
|
||
numtyp randnumT = (numtyp)0;
|
||
saru(tag1, tag2, seed+tag1+tag2, timestep, randnumT); // randomT->gaussian();
|
||
randnumT = MAX((numtyp)-5.0,MIN(randnum,(numtyp)5.0));
|
||
|
||
numtyp kappaT = coeff2y; // kappa[itype][jtype]
|
||
if (kappa_flag) {
|
||
numtyp factor = (numtyp)1.0;
|
||
factor += kc[mtype].x*T_pow.x + kc[mtype].y*T_pow.y +
|
||
kc[mtype].z*T_pow.z + kc[mtype].w*T_pow.w;
|
||
kappaT *= factor;
|
||
}
|
||
|
||
numtyp kij = cvi*cvj*kappaT * T_ij*T_ij;
|
||
numtyp alphaij = ucl_sqrt((numtyp)2.0*kboltz*kij);
|
||
|
||
numtyp dQc = kij * wrT*wrT * (Tj - Ti)/(Ti*Tj);
|
||
numtyp dQd = wr*wr*( GammaIJ * vijeij*vijeij - SigmaIJ*SigmaIJ/mass_itype ) - SigmaIJ * wr *vijeij *randnum;
|
||
dQd /= (cvi+cvj);
|
||
numtyp dQr = alphaij * wrT * dtinvsqrt * randnumT;
|
||
Qi += (dQc + dQd + dQr );
|
||
}
|
||
|
||
if (EVFLAG && eflag) {
|
||
numtyp e = (numtyp)0.5*coeffx*T_ij*coeffz * wc*wc;
|
||
energy+=factor_dpd*e;
|
||
}
|
||
if (EVFLAG && vflag) {
|
||
virial[0] += delx*delx*force;
|
||
virial[1] += dely*dely*force;
|
||
virial[2] += delz*delz*force;
|
||
virial[3] += delx*dely*force;
|
||
virial[4] += delx*delz*force;
|
||
virial[5] += dely*delz*force;
|
||
}
|
||
}
|
||
} // for nbor
|
||
} // if ii
|
||
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
|
||
ans,engv);
|
||
store_heatflux(Qi,ii,inum,tid,t_per_atom,offset,Q);
|
||
}
|
||
|
||
__kernel void k_edpd_fast(const __global numtyp4 *restrict x_,
|
||
const __global numtyp4 *restrict extra,
|
||
const __global numtyp4 *restrict coeff_in,
|
||
const __global numtyp4 *restrict coeff2_in,
|
||
const __global numtyp *restrict mass,
|
||
const __global numtyp4 *restrict sc_in,
|
||
const __global numtyp4 *restrict kc_in,
|
||
const __global numtyp *restrict sp_lj_in,
|
||
const __global numtyp *restrict sp_sqrt_in,
|
||
const __global int * dev_nbor,
|
||
const __global int * dev_packed,
|
||
__global acctyp3 *restrict ans,
|
||
__global acctyp *restrict engv,
|
||
__global acctyp *restrict Q,
|
||
const int eflag, const int vflag,
|
||
const int power_flag, const int kappa_flag,
|
||
const int inum, const int nbor_pitch,
|
||
const __global numtyp4 *restrict v_,
|
||
const __global numtyp *restrict cutsq,
|
||
const numtyp dtinvsqrt, const int seed,
|
||
const int timestep, const int t_per_atom) {
|
||
int tid, ii, offset;
|
||
atom_info(t_per_atom,ii,tid,offset);
|
||
|
||
#ifndef ONETYPE
|
||
__local numtyp4 coeff[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
|
||
__local numtyp4 coeff2[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
|
||
__local numtyp4 sc[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
|
||
__local numtyp4 kc[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
|
||
__local numtyp sp_lj[4];
|
||
if (tid<4) {
|
||
sp_lj[tid]=sp_lj_in[tid];
|
||
}
|
||
if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
|
||
coeff[tid]=coeff_in[tid];
|
||
coeff2[tid]=coeff2_in[tid];
|
||
sc[tid]=sc_in[tid];
|
||
kc[tid]=kc_in[tid];
|
||
}
|
||
__syncthreads();
|
||
#else
|
||
const numtyp coeffx=coeff_in[ONETYPE].x; // a0[itype][jtype]
|
||
const numtyp coeffy=coeff_in[ONETYPE].y; // gamma[itype][jtype]
|
||
const numtyp coeffz=coeff_in[ONETYPE].z; // cut[itype][jtype]
|
||
const numtyp coeff2x=coeff2_in[ONETYPE].x; // power[itype][jtype]
|
||
const numtyp coeff2y=coeff2_in[ONETYPE].y; // kappa[itype][jtype]
|
||
const numtyp coeff2z=coeff2_in[ONETYPE].z; // powerT[itype][jtype]
|
||
const numtyp coeff2w=coeff2_in[ONETYPE].w; // cutT[itype][jtype]
|
||
const numtyp cutsq_p=cutsq[ONETYPE];
|
||
const numtyp scx=sc_in[ONETYPE].x;
|
||
const numtyp scy=sc_in[ONETYPE].y;
|
||
const numtyp scz=sc_in[ONETYPE].z;
|
||
const numtyp scw=sc_in[ONETYPE].w;
|
||
const numtyp kcx=kc_in[ONETYPE].x;
|
||
const numtyp kcy=kc_in[ONETYPE].y;
|
||
const numtyp kcz=kc_in[ONETYPE].z;
|
||
const numtyp kcw=kc_in[ONETYPE].w;
|
||
#endif
|
||
|
||
int n_stride;
|
||
local_allocate_store_pair();
|
||
|
||
acctyp3 f;
|
||
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
|
||
acctyp energy, virial[6];
|
||
if (EVFLAG) {
|
||
energy=(acctyp)0;
|
||
for (int i=0; i<6; i++) virial[i]=(acctyp)0;
|
||
}
|
||
acctyp Qi = (acctyp)0;
|
||
|
||
if (ii<inum) {
|
||
int i, numj, nbor, nbor_end;
|
||
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
|
||
n_stride,nbor_end,nbor);
|
||
|
||
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
|
||
int iw=ix.w;
|
||
numtyp mass_itype = mass[iw];
|
||
#ifndef ONETYPE
|
||
int itype=fast_mul((int)MAX_SHARED_TYPES,iw);
|
||
#endif
|
||
numtyp4 iv; fetch4(iv,i,vel_tex); //v_[i];
|
||
int itag=iv.w;
|
||
|
||
const numtyp4 Tcvi = extra[i];
|
||
numtyp Ti = Tcvi.x;
|
||
numtyp cvi = Tcvi.y;
|
||
|
||
#ifndef ONETYPE
|
||
numtyp factor_dpd;
|
||
#endif
|
||
for ( ; nbor<nbor_end; nbor+=n_stride) {
|
||
ucl_prefetch(dev_packed+nbor+n_stride);
|
||
|
||
int j=dev_packed[nbor];
|
||
#ifndef ONETYPE
|
||
factor_dpd = sp_lj[sbmask(j)];
|
||
j &= NEIGHMASK;
|
||
#endif
|
||
|
||
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
|
||
#ifndef ONETYPE
|
||
int mtype=itype+jx.w;
|
||
const numtyp cutsq_p=cutsq[mtype];
|
||
#endif
|
||
numtyp4 jv; fetch4(jv,j,vel_tex); //v_[j];
|
||
int jtag=jv.w;
|
||
|
||
// Compute r12
|
||
numtyp delx = ix.x-jx.x;
|
||
numtyp dely = ix.y-jx.y;
|
||
numtyp delz = ix.z-jx.z;
|
||
numtyp rsq = delx*delx+dely*dely+delz*delz;
|
||
|
||
if (rsq<cutsq_p) {
|
||
numtyp r=ucl_sqrt(rsq);
|
||
if (r < EPSILON) continue;
|
||
|
||
numtyp rinv=ucl_recip(r);
|
||
numtyp delvx = iv.x - jv.x;
|
||
numtyp delvy = iv.y - jv.y;
|
||
numtyp delvz = iv.z - jv.z;
|
||
numtyp dot = delx*delvx + dely*delvy + delz*delvz;
|
||
numtyp vijeij = dot*rinv;
|
||
|
||
#ifndef ONETYPE
|
||
const numtyp coeffx=coeff[mtype].x; // a0[itype][jtype]
|
||
const numtyp coeffy=coeff[mtype].y; // gamma[itype][jtype]
|
||
const numtyp coeffz=coeff[mtype].z; // cut[itype][jtype]
|
||
const numtyp coeff2x=coeff2[mtype].x; // power[itype][jtype]
|
||
const numtyp coeff2y=coeff2[mtype].y; // kappa[itype][jtype]
|
||
const numtyp coeff2z=coeff2[mtype].z; // powerT[itype][jtype]
|
||
const numtyp coeff2w=coeff2[mtype].w; // cutT[itype][jtype]
|
||
const numtyp scx = sc[mtype].x;
|
||
const numtyp scy = sc[mtype].y;
|
||
const numtyp scz = sc[mtype].z;
|
||
const numtyp scw = sc[mtype].w;
|
||
const numtyp kcx = kc[mtype].x;
|
||
const numtyp kcy = kc[mtype].y;
|
||
const numtyp kcz = kc[mtype].z;
|
||
const numtyp kcw = kc[mtype].w;
|
||
#endif
|
||
|
||
const numtyp4 Tcvj = extra[j];
|
||
numtyp Tj = Tcvj.x;
|
||
numtyp cvj = Tcvj.y;
|
||
|
||
unsigned int tag1=itag, tag2=jtag;
|
||
if (tag1 > tag2) {
|
||
tag1 = jtag; tag2 = itag;
|
||
}
|
||
numtyp randnum = (numtyp)0.0;
|
||
saru(tag1, tag2, seed, timestep, randnum);
|
||
|
||
numtyp T_ij=(numtyp)0.5*(Ti+Tj);
|
||
numtyp4 T_pow;
|
||
T_pow.x = T_ij - (numtyp)1.0;
|
||
T_pow.y = T_pow.x*T_pow.x;
|
||
T_pow.z = T_pow.x*T_pow.y;
|
||
T_pow.w = T_pow.x*T_pow.z;
|
||
|
||
numtyp power_d = coeff2x; // power[itype][jtype]
|
||
if (power_flag) {
|
||
numtyp factor = (numtyp)1.0;
|
||
factor += scx*T_pow.x + scy*T_pow.y + scz*T_pow.z + scw*T_pow.w;
|
||
power_d *= factor;
|
||
}
|
||
|
||
power_d = MAX((numtyp)0.01,power_d);
|
||
numtyp wc = (numtyp)1.0 - r/coeffz; // cut[itype][jtype]
|
||
wc = MAX((numtyp)0.0,MIN((numtyp)1.0,wc));
|
||
numtyp wr = ucl_pow((numtyp)wc, (numtyp)0.5*power_d);
|
||
|
||
numtyp kboltz = (numtyp)1.0;
|
||
numtyp GammaIJ = coeffy; // gamma[itype][jtype]
|
||
numtyp SigmaIJ = (numtyp)4.0*GammaIJ*kboltz*Ti*Tj/(Ti+Tj);
|
||
SigmaIJ = ucl_sqrt(SigmaIJ);
|
||
|
||
numtyp force = coeffx*T_ij*wc; // a0[itype][jtype]
|
||
force -= GammaIJ *wr*wr *dot*rinv;
|
||
force += SigmaIJ* wr *randnum * dtinvsqrt;
|
||
#ifndef ONETYPE
|
||
force *= factor_dpd*rinv;
|
||
#else
|
||
force *= rinv;
|
||
#endif
|
||
|
||
f.x+=delx*force;
|
||
f.y+=dely*force;
|
||
f.z+=delz*force;
|
||
|
||
// heat transfer
|
||
|
||
if (r < coeff2w) {
|
||
numtyp wrT = (numtyp)1.0 - r/coeff2w;
|
||
wrT = MAX((numtyp)0.0,MIN((numtyp)1.0,wrT));
|
||
wrT = ucl_pow(wrT, (numtyp)0.5*coeff2z); // powerT[itype][jtype]
|
||
numtyp randnumT = (numtyp)0;
|
||
saru(tag1, tag2, seed+tag1+tag2, timestep, randnumT); // randomT->gaussian();
|
||
randnumT = MAX((numtyp)-5.0,MIN(randnum,(numtyp)5.0));
|
||
|
||
numtyp kappaT = coeff2y; // kappa[itype][jtype]
|
||
if (kappa_flag) {
|
||
numtyp factor = (numtyp)1.0;
|
||
factor += kcx*T_pow.x + kcy*T_pow.y + kcz*T_pow.z + kcw*T_pow.w;
|
||
kappaT *= factor;
|
||
}
|
||
|
||
numtyp kij = cvi*cvj*kappaT * T_ij*T_ij;
|
||
numtyp alphaij = ucl_sqrt((numtyp)2.0*kboltz*kij);
|
||
|
||
numtyp dQc = kij * wrT*wrT * (Tj - Ti )/(Ti*Tj);
|
||
numtyp dQd = wr*wr*( GammaIJ * vijeij*vijeij - SigmaIJ*SigmaIJ/mass_itype ) - SigmaIJ * wr *vijeij *randnum;
|
||
dQd /= (cvi+cvj);
|
||
numtyp dQr = alphaij * wrT * dtinvsqrt * randnumT;
|
||
Qi += (dQc + dQd + dQr );
|
||
}
|
||
|
||
if (EVFLAG && eflag) {
|
||
numtyp e = (numtyp)0.5*coeffx*T_ij*coeffz * wc*wc;
|
||
#ifndef ONETYPE
|
||
energy+=factor_dpd*e;
|
||
#else
|
||
energy+=e;
|
||
#endif
|
||
}
|
||
if (EVFLAG && vflag) {
|
||
virial[0] += delx*delx*force;
|
||
virial[1] += dely*dely*force;
|
||
virial[2] += delz*delz*force;
|
||
virial[3] += delx*dely*force;
|
||
virial[4] += delx*delz*force;
|
||
virial[5] += dely*delz*force;
|
||
}
|
||
|
||
}
|
||
} // for nbor
|
||
} // if ii
|
||
|
||
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag, ans,engv);
|
||
store_heatflux(Qi,ii,inum,tid,t_per_atom,offset,Q);
|
||
}
|
||
|