Files
lammps/src/angle.cpp
2022-03-08 13:41:16 -07:00

537 lines
16 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "angle.h"
#include "atom.h"
#include "comm.h"
#include "force.h"
#include "math_const.h"
#include "suffix.h"
#include "atom_masks.h"
#include "memory.h"
#include "error.h"
using namespace LAMMPS_NS;
using namespace MathConst;
#define FOURTH 0.25
/* ---------------------------------------------------------------------- */
Angle::Angle(LAMMPS *lmp) : Pointers(lmp)
{
energy = 0.0;
virial[0] = virial[1] = virial[2] = virial[3] = virial[4] = virial[5] = 0.0;
writedata = 1;
allocated = 0;
suffix_flag = Suffix::NONE;
maxeatom = maxvatom = maxcvatom = 0;
eatom = nullptr;
vatom = nullptr;
cvatom = nullptr;
setflag = nullptr;
centroidstressflag = CENTROID_AVAIL;
execution_space = Host;
datamask_read = ALL_MASK;
datamask_modify = ALL_MASK;
copymode = 0;
}
/* ---------------------------------------------------------------------- */
Angle::~Angle()
{
if (copymode) return;
memory->destroy(eatom);
memory->destroy(vatom);
memory->destroy(cvatom);
}
/* ----------------------------------------------------------------------
check if all coeffs are set
------------------------------------------------------------------------- */
void Angle::init()
{
if (!allocated && atom->nangletypes)
error->all(FLERR,"Angle coeffs are not set");
for (int i = 1; i <= atom->nangletypes; i++)
if (setflag[i] == 0) error->all(FLERR,"All angle coeffs are not set");
init_style();
}
/* ----------------------------------------------------------------------
setup for energy, virial computation
see integrate::ev_set() for bitwise settings of eflag/vflag
set the following flags, values are otherwise set to 0:
evflag != 0 if any bits of eflag or vflag are set
eflag_global != 0 if ENERGY_GLOBAL bit of eflag set
eflag_atom != 0 if ENERGY_ATOM bit of eflag set
eflag_either != 0 if eflag_global or eflag_atom is set
vflag_global != 0 if VIRIAL_PAIR or VIRIAL_FDOTR bit of vflag set
vflag_atom != 0 if VIRIAL_ATOM bit of vflag set
vflag_atom != 0 if VIRIAL_CENTROID bit of vflag set
and centroidstressflag != CENTROID_AVAIL
cvflag_atom != 0 if VIRIAL_CENTROID bit of vflag set
and centroidstressflag = CENTROID_AVAIL
vflag_either != 0 if any of vflag_global, vflag_atom, cvflag_atom is set
------------------------------------------------------------------------- */
void Angle::ev_setup(int eflag, int vflag, int alloc)
{
int i,n;
evflag = 1;
eflag_either = eflag;
eflag_global = eflag & ENERGY_GLOBAL;
eflag_atom = eflag & ENERGY_ATOM;
vflag_global = vflag & (VIRIAL_PAIR | VIRIAL_FDOTR);
vflag_atom = vflag & VIRIAL_ATOM;
if (vflag & VIRIAL_CENTROID && centroidstressflag != CENTROID_AVAIL)
vflag_atom = 1;
cvflag_atom = 0;
if (vflag & VIRIAL_CENTROID && centroidstressflag == CENTROID_AVAIL)
cvflag_atom = 1;
vflag_either = vflag_global || vflag_atom || cvflag_atom;
// reallocate per-atom arrays if necessary
if (eflag_atom && atom->nmax > maxeatom) {
maxeatom = atom->nmax;
if (alloc) {
memory->destroy(eatom);
memory->create(eatom,comm->nthreads*maxeatom,"angle:eatom");
}
}
if (vflag_atom && atom->nmax > maxvatom) {
maxvatom = atom->nmax;
if (alloc) {
memory->destroy(vatom);
memory->create(vatom,comm->nthreads*maxvatom,6,"angle:vatom");
}
}
if (cvflag_atom && atom->nmax > maxcvatom) {
maxcvatom = atom->nmax;
if (alloc) {
memory->destroy(cvatom);
memory->create(cvatom,comm->nthreads*maxcvatom,9,"angle:cvatom");
}
}
// zero accumulators
if (eflag_global) energy = 0.0;
if (vflag_global) for (i = 0; i < 6; i++) virial[i] = 0.0;
if (eflag_atom && alloc) {
n = atom->nlocal;
if (force->newton_bond) n += atom->nghost;
for (i = 0; i < n; i++) eatom[i] = 0.0;
}
if (vflag_atom && alloc) {
n = atom->nlocal;
if (force->newton_bond) n += atom->nghost;
for (i = 0; i < n; i++) {
vatom[i][0] = 0.0;
vatom[i][1] = 0.0;
vatom[i][2] = 0.0;
vatom[i][3] = 0.0;
vatom[i][4] = 0.0;
vatom[i][5] = 0.0;
}
}
if (cvflag_atom && alloc) {
n = atom->nlocal;
if (force->newton_bond) n += atom->nghost;
for (i = 0; i < n; i++) {
cvatom[i][0] = 0.0;
cvatom[i][1] = 0.0;
cvatom[i][2] = 0.0;
cvatom[i][3] = 0.0;
cvatom[i][4] = 0.0;
cvatom[i][5] = 0.0;
cvatom[i][6] = 0.0;
cvatom[i][7] = 0.0;
cvatom[i][8] = 0.0;
cvatom[i][9] = 0.0;
}
}
}
/* ----------------------------------------------------------------------
tally energy and virial into global and per-atom accumulators
virial = r1F1 + r2F2 + r3F3 = (r1-r2) F1 + (r3-r2) F3 = del1*f1 + del2*f3
called by standard 3-body angles
------------------------------------------------------------------------- */
void Angle::ev_tally(int i, int j, int k, int nlocal, int newton_bond,
double eangle, double *f1, double *f3,
double delx1, double dely1, double delz1,
double delx2, double dely2, double delz2)
{
double eanglethird,v[6];
if (eflag_either) {
if (eflag_global) {
if (newton_bond) energy += eangle;
else {
eanglethird = THIRD*eangle;
if (i < nlocal) energy += eanglethird;
if (j < nlocal) energy += eanglethird;
if (k < nlocal) energy += eanglethird;
}
}
if (eflag_atom) {
eanglethird = THIRD*eangle;
if (newton_bond || i < nlocal) eatom[i] += eanglethird;
if (newton_bond || j < nlocal) eatom[j] += eanglethird;
if (newton_bond || k < nlocal) eatom[k] += eanglethird;
}
}
if (vflag_either) {
v[0] = delx1*f1[0] + delx2*f3[0];
v[1] = dely1*f1[1] + dely2*f3[1];
v[2] = delz1*f1[2] + delz2*f3[2];
v[3] = delx1*f1[1] + delx2*f3[1];
v[4] = delx1*f1[2] + delx2*f3[2];
v[5] = dely1*f1[2] + dely2*f3[2];
if (vflag_global) {
if (newton_bond) {
virial[0] += v[0];
virial[1] += v[1];
virial[2] += v[2];
virial[3] += v[3];
virial[4] += v[4];
virial[5] += v[5];
} else {
double prefactor = 0.0;
if (i < nlocal) prefactor += 1.0;
if (j < nlocal) prefactor += 1.0;
if (k < nlocal) prefactor += 1.0;
virial[0] += prefactor*THIRD*v[0];
virial[1] += prefactor*THIRD*v[1];
virial[2] += prefactor*THIRD*v[2];
virial[3] += prefactor*THIRD*v[3];
virial[4] += prefactor*THIRD*v[4];
virial[5] += prefactor*THIRD*v[5];
}
}
if (vflag_atom) {
if (newton_bond || i < nlocal) {
vatom[i][0] += THIRD*v[0];
vatom[i][1] += THIRD*v[1];
vatom[i][2] += THIRD*v[2];
vatom[i][3] += THIRD*v[3];
vatom[i][4] += THIRD*v[4];
vatom[i][5] += THIRD*v[5];
}
if (newton_bond || j < nlocal) {
vatom[j][0] += THIRD*v[0];
vatom[j][1] += THIRD*v[1];
vatom[j][2] += THIRD*v[2];
vatom[j][3] += THIRD*v[3];
vatom[j][4] += THIRD*v[4];
vatom[j][5] += THIRD*v[5];
}
if (newton_bond || k < nlocal) {
vatom[k][0] += THIRD*v[0];
vatom[k][1] += THIRD*v[1];
vatom[k][2] += THIRD*v[2];
vatom[k][3] += THIRD*v[3];
vatom[k][4] += THIRD*v[4];
vatom[k][5] += THIRD*v[5];
}
}
}
// per-atom centroid virial
if (cvflag_atom) {
// r0 = (r1+r2+r3)/3
// rij = ri-rj
// total virial = r10*f1 + r20*f2 + r30*f3
// del1: r12
// del2: r32
if (newton_bond || i < nlocal) {
double a1[3];
// a1 = r10 = (2*r12 - r32)/3
a1[0] = THIRD*(2*delx1-delx2);
a1[1] = THIRD*(2*dely1-dely2);
a1[2] = THIRD*(2*delz1-delz2);
cvatom[i][0] += a1[0]*f1[0];
cvatom[i][1] += a1[1]*f1[1];
cvatom[i][2] += a1[2]*f1[2];
cvatom[i][3] += a1[0]*f1[1];
cvatom[i][4] += a1[0]*f1[2];
cvatom[i][5] += a1[1]*f1[2];
cvatom[i][6] += a1[1]*f1[0];
cvatom[i][7] += a1[2]*f1[0];
cvatom[i][8] += a1[2]*f1[1];
}
if (newton_bond || j < nlocal) {
double a2[3];
double f2[3];
// a2 = r20 = ( -r12 - r32)/3
a2[0] = THIRD*(-delx1-delx2);
a2[1] = THIRD*(-dely1-dely2);
a2[2] = THIRD*(-delz1-delz2);
f2[0] = - f1[0] - f3[0];
f2[1] = - f1[1] - f3[1];
f2[2] = - f1[2] - f3[2];
cvatom[j][0] += a2[0]*f2[0];
cvatom[j][1] += a2[1]*f2[1];
cvatom[j][2] += a2[2]*f2[2];
cvatom[j][3] += a2[0]*f2[1];
cvatom[j][4] += a2[0]*f2[2];
cvatom[j][5] += a2[1]*f2[2];
cvatom[j][6] += a2[1]*f2[0];
cvatom[j][7] += a2[2]*f2[0];
cvatom[j][8] += a2[2]*f2[1];
}
if (newton_bond || k < nlocal) {
double a3[3];
// a3 = r30 = ( -r12 + 2*r32)/3
a3[0] = THIRD*(-delx1+2*delx2);
a3[1] = THIRD*(-dely1+2*dely2);
a3[2] = THIRD*(-delz1+2*delz2);
cvatom[k][0] += a3[0]*f3[0];
cvatom[k][1] += a3[1]*f3[1];
cvatom[k][2] += a3[2]*f3[2];
cvatom[k][3] += a3[0]*f3[1];
cvatom[k][4] += a3[0]*f3[2];
cvatom[k][5] += a3[1]*f3[2];
cvatom[k][6] += a3[1]*f3[0];
cvatom[k][7] += a3[2]*f3[0];
cvatom[k][8] += a3[2]*f3[1];
}
}
}
/* ----------------------------------------------------------------------
tally energy and virial into global and per-atom accumulators
virial = r1F1 + r2F2 + r3F3 + r4F4
called by AngleAmoeba for its 4-body angle term
------------------------------------------------------------------------- */
void Angle::ev_tally4(int i, int j, int k, int m, int nlocal, int newton_bond,
double eangle,
double *f1, double *f2, double *f3, double *f4)
{
double eanglefourth,v[6];
if (eflag_either) {
if (eflag_global) {
if (newton_bond) energy += eangle;
else {
eanglefourth = FOURTH*eangle;
if (i < nlocal) energy += eanglefourth;
if (j < nlocal) energy += eanglefourth;
if (k < nlocal) energy += eanglefourth;
}
}
if (eflag_atom) {
eanglefourth = FOURTH*eangle;
if (newton_bond || i < nlocal) eatom[i] += eanglefourth;
if (newton_bond || j < nlocal) eatom[j] += eanglefourth;
if (newton_bond || k < nlocal) eatom[k] += eanglefourth;
if (newton_bond || m < nlocal) eatom[m] += eanglefourth;
}
}
if (vflag_either) {
double **x = atom->x;
v[0] = x[i][0]*f1[0] + x[j][0]*f2[0] + x[k][0]*f3[0] + x[m][0]*f4[0];
v[1] = x[i][1]*f1[1] + x[j][1]*f2[1] + x[k][1]*f3[1] + x[m][1]*f4[1];
v[2] = x[i][2]*f1[2] + x[j][2]*f2[2] + x[k][2]*f3[2] + x[m][2]*f4[2];
v[3] = x[i][0]*f1[1] + x[j][0]*f2[1] + x[k][0]*f3[1] + x[m][0]*f4[1];
v[4] = x[i][0]*f1[2] + x[j][0]*f2[2] + x[k][0]*f3[2] + x[m][0]*f4[2];
v[5] = x[i][1]*f1[2] + x[j][1]*f2[2] + x[k][1]*f3[2] + x[m][1]*f4[2];
if (vflag_global) {
if (newton_bond) {
virial[0] += v[0];
virial[1] += v[1];
virial[2] += v[2];
virial[3] += v[3];
virial[4] += v[4];
virial[5] += v[5];
} else {
double prefactor = 0.0;
if (i < nlocal) prefactor += 1.0;
if (j < nlocal) prefactor += 1.0;
if (k < nlocal) prefactor += 1.0;
if (m < nlocal) prefactor += 1.0;
virial[0] += prefactor*FOURTH*v[0];
virial[1] += prefactor*FOURTH*v[1];
virial[2] += prefactor*FOURTH*v[2];
virial[3] += prefactor*FOURTH*v[3];
virial[4] += prefactor*FOURTH*v[4];
virial[5] += prefactor*FOURTH*v[5];
}
}
if (vflag_atom) {
if (newton_bond || i < nlocal) {
vatom[i][0] += FOURTH*v[0];
vatom[i][1] += FOURTH*v[1];
vatom[i][2] += FOURTH*v[2];
vatom[i][3] += FOURTH*v[3];
vatom[i][4] += FOURTH*v[4];
vatom[i][5] += FOURTH*v[5];
}
if (newton_bond || j < nlocal) {
vatom[j][0] += FOURTH*v[0];
vatom[j][1] += FOURTH*v[1];
vatom[j][2] += FOURTH*v[2];
vatom[j][3] += FOURTH*v[3];
vatom[j][4] += FOURTH*v[4];
vatom[j][5] += FOURTH*v[5];
}
if (newton_bond || k < nlocal) {
vatom[k][0] += FOURTH*v[0];
vatom[k][1] += FOURTH*v[1];
vatom[k][2] += FOURTH*v[2];
vatom[k][3] += FOURTH*v[3];
vatom[k][4] += FOURTH*v[4];
vatom[k][5] += FOURTH*v[5];
}
if (newton_bond || m < nlocal) {
vatom[m][0] += FOURTH*v[0];
vatom[m][1] += FOURTH*v[1];
vatom[m][2] += FOURTH*v[2];
vatom[m][3] += FOURTH*v[3];
vatom[m][4] += FOURTH*v[4];
vatom[m][5] += FOURTH*v[5];
}
}
}
}
/* ----------------------------------------------------------------------
tally energy and virial into global and per-atom accumulators
called by AngleAmoeba for its 2-body Urey-Bradley H-H bond term
identical to Bond:ev_tally()
------------------------------------------------------------------------- */
void Angle::ev_tally2(int i, int j, int nlocal, int newton_bond,
double ebond, double fbond,
double delx, double dely, double delz)
{
double ebondhalf,v[6];
if (eflag_either) {
if (eflag_global) {
if (newton_bond) energy += ebond;
else {
ebondhalf = 0.5*ebond;
if (i < nlocal) energy += ebondhalf;
if (j < nlocal) energy += ebondhalf;
}
}
if (eflag_atom) {
ebondhalf = 0.5*ebond;
if (newton_bond || i < nlocal) eatom[i] += ebondhalf;
if (newton_bond || j < nlocal) eatom[j] += ebondhalf;
}
}
if (vflag_either) {
v[0] = delx*delx*fbond;
v[1] = dely*dely*fbond;
v[2] = delz*delz*fbond;
v[3] = delx*dely*fbond;
v[4] = delx*delz*fbond;
v[5] = dely*delz*fbond;
if (vflag_global) {
if (newton_bond) {
virial[0] += v[0];
virial[1] += v[1];
virial[2] += v[2];
virial[3] += v[3];
virial[4] += v[4];
virial[5] += v[5];
} else {
if (i < nlocal) {
virial[0] += 0.5*v[0];
virial[1] += 0.5*v[1];
virial[2] += 0.5*v[2];
virial[3] += 0.5*v[3];
virial[4] += 0.5*v[4];
virial[5] += 0.5*v[5];
}
if (j < nlocal) {
virial[0] += 0.5*v[0];
virial[1] += 0.5*v[1];
virial[2] += 0.5*v[2];
virial[3] += 0.5*v[3];
virial[4] += 0.5*v[4];
virial[5] += 0.5*v[5];
}
}
}
if (vflag_atom) {
if (newton_bond || i < nlocal) {
vatom[i][0] += 0.5*v[0];
vatom[i][1] += 0.5*v[1];
vatom[i][2] += 0.5*v[2];
vatom[i][3] += 0.5*v[3];
vatom[i][4] += 0.5*v[4];
vatom[i][5] += 0.5*v[5];
}
if (newton_bond || j < nlocal) {
vatom[j][0] += 0.5*v[0];
vatom[j][1] += 0.5*v[1];
vatom[j][2] += 0.5*v[2];
vatom[j][3] += 0.5*v[3];
vatom[j][4] += 0.5*v[4];
vatom[j][5] += 0.5*v[5];
}
}
}
}
/* ---------------------------------------------------------------------- */
double Angle::memory_usage()
{
double bytes = (double)comm->nthreads*maxeatom * sizeof(double);
bytes += (double)comm->nthreads*maxvatom*6 * sizeof(double);
bytes += (double)comm->nthreads*maxcvatom*9 * sizeof(double);
return bytes;
}