Files
lammps/src/compute_temp_chunk.cpp

763 lines
21 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "compute_temp_chunk.h"
#include "atom.h"
#include "compute_chunk_atom.h"
#include "domain.h"
#include "error.h"
#include "force.h"
#include "memory.h"
#include "modify.h"
#include "update.h"
#include <cstring>
using namespace LAMMPS_NS;
enum { TEMP, KECOM, INTERNAL };
/* ---------------------------------------------------------------------- */
ComputeTempChunk::ComputeTempChunk(LAMMPS *lmp, int narg, char **arg) :
ComputeChunk(lmp, narg, arg), which(nullptr), id_bias(nullptr), sum(nullptr), sumall(nullptr),
count(nullptr), countall(nullptr), massproc(nullptr), masstotal(nullptr), vcm(nullptr),
vcmall(nullptr)
{
scalar_flag = vector_flag = 1;
size_vector = 6;
extscalar = 0;
extvector = 1;
tempflag = 1;
biasflag = 0;
ComputeTempChunk::init();
// optional per-chunk values
nvalues = narg - 4;
which = new int[nvalues];
nvalues = 0;
int iarg = 4;
while (iarg < narg) {
if (strcmp(arg[iarg], "temp") == 0)
which[nvalues] = TEMP;
else if (strcmp(arg[iarg], "kecom") == 0)
which[nvalues] = KECOM;
else if (strcmp(arg[iarg], "internal") == 0)
which[nvalues] = INTERNAL;
else
break;
iarg++;
nvalues++;
}
// optional args
comflag = 0;
biasflag = 0;
id_bias = nullptr;
adof = domain->dimension;
cdof = 0.0;
while (iarg < narg) {
if (strcmp(arg[iarg], "com") == 0) {
if (iarg + 2 > narg) error->all(FLERR, "Illegal compute temp/chunk command");
comflag = utils::logical(FLERR, arg[iarg + 1], false, lmp);
iarg += 2;
} else if (strcmp(arg[iarg], "bias") == 0) {
if (iarg + 2 > narg) error->all(FLERR, "Illegal compute temp/chunk command");
biasflag = 1;
id_bias = utils::strdup(arg[iarg + 1]);
iarg += 2;
} else if (strcmp(arg[iarg], "adof") == 0) {
if (iarg + 2 > narg) error->all(FLERR, "Illegal compute temp/chunk command");
adof = utils::numeric(FLERR, arg[iarg + 1], false, lmp);
iarg += 2;
} else if (strcmp(arg[iarg], "cdof") == 0) {
if (iarg + 2 > narg) error->all(FLERR, "Illegal compute temp/chunk command");
cdof = utils::numeric(FLERR, arg[iarg + 1], false, lmp);
iarg += 2;
} else
error->all(FLERR, "Illegal compute temp/chunk command");
}
// error check on bias compute
if (biasflag) {
tbias = modify->get_compute_by_id(id_bias);
if (!tbias) error->all(FLERR, "Could not find compute {} for temperature bias", id_bias);
if (tbias->tempflag == 0) error->all(FLERR, "Bias compute does not calculate temperature");
if (tbias->tempbias == 0) error->all(FLERR, "Bias compute does not calculate a velocity bias");
}
// this compute only calculates a bias, if comflag is set
// won't be two biases since comflag and biasflag cannot both be set
if (comflag && biasflag)
error->all(FLERR, "Cannot use both com and bias with compute temp/chunk");
if (comflag) tempbias = 1;
// vector data
vector = new double[size_vector];
if (nvalues) {
array_flag = 1;
size_array_cols = nvalues;
size_array_rows = 0;
size_array_rows_variable = 1;
extarray = 0;
}
ComputeTempChunk::allocate();
comstep = -1;
}
/* ---------------------------------------------------------------------- */
ComputeTempChunk::~ComputeTempChunk()
{
delete[] which;
delete[] id_bias;
delete[] vector;
memory->destroy(sum);
memory->destroy(sumall);
memory->destroy(count);
memory->destroy(countall);
memory->destroy(array);
memory->destroy(massproc);
memory->destroy(masstotal);
memory->destroy(vcm);
memory->destroy(vcmall);
}
/* ---------------------------------------------------------------------- */
void ComputeTempChunk::init()
{
ComputeChunk::init();
if (biasflag) {
tbias = modify->get_compute_by_id(id_bias);
if (!tbias) error->all(FLERR, "Could not find compute ID {} for temperature bias", id_bias);
}
}
/* ---------------------------------------------------------------------- */
double ComputeTempChunk::compute_scalar()
{
int i, index;
invoked_scalar = update->ntimestep;
// calculate chunk assignments,
// since only atoms in chunks contribute to global temperature
// compute chunk/atom assigns atoms to chunk IDs
// extract ichunk index vector from compute
// ichunk = 1 to Nchunk for included atoms, 0 for excluded atoms
nchunk = cchunk->setup_chunks();
cchunk->compute_ichunk();
int *ichunk = cchunk->ichunk;
if (nchunk > maxchunk) allocate();
// remove velocity bias
if (biasflag) {
if (tbias->invoked_scalar != update->ntimestep) tbias->compute_scalar();
tbias->remove_bias_all();
}
// calculate COM velocity for each chunk
// won't be invoked with bias also removed = 2 biases
if (comflag && comstep != update->ntimestep) vcm_compute();
// calculate global temperature, optionally removing COM velocity
double **v = atom->v;
double *mass = atom->mass;
double *rmass = atom->rmass;
int *type = atom->type;
int *mask = atom->mask;
int nlocal = atom->nlocal;
double t = 0.0;
int mycount = 0;
if (!comflag) {
if (rmass) {
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
t += (v[i][0] * v[i][0] + v[i][1] * v[i][1] + v[i][2] * v[i][2]) * rmass[i];
mycount++;
}
} else {
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
t += (v[i][0] * v[i][0] + v[i][1] * v[i][1] + v[i][2] * v[i][2]) * mass[type[i]];
mycount++;
}
}
} else {
double vx, vy, vz;
if (rmass) {
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
vx = v[i][0] - vcmall[index][0];
vy = v[i][1] - vcmall[index][1];
vz = v[i][2] - vcmall[index][2];
t += (vx * vx + vy * vy + vz * vz) * rmass[i];
mycount++;
}
} else {
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
vx = v[i][0] - vcmall[index][0];
vy = v[i][1] - vcmall[index][1];
vz = v[i][2] - vcmall[index][2];
t += (vx * vx + vy * vy + vz * vz) * mass[type[i]];
mycount++;
}
}
}
// restore velocity bias
if (biasflag) tbias->restore_bias_all();
// final temperature
MPI_Allreduce(&t, &scalar, 1, MPI_DOUBLE, MPI_SUM, world);
double rcount = mycount;
double allcount;
MPI_Allreduce(&rcount, &allcount, 1, MPI_DOUBLE, MPI_SUM, world);
double dof = nchunk * cdof + adof * allcount;
double tfactor = 0.0;
if (dof > 0.0) tfactor = force->mvv2e / (dof * force->boltz);
if (dof < 0.0 && allcount > 0.0) error->all(FLERR, "Temperature compute degrees of freedom < 0");
scalar *= tfactor;
return scalar;
}
/* ---------------------------------------------------------------------- */
void ComputeTempChunk::compute_vector()
{
int i, index;
ComputeChunk::compute_vector();
int *ichunk = cchunk->ichunk;
// remove velocity bias
if (biasflag) {
if (tbias->invoked_scalar != update->ntimestep) tbias->compute_scalar();
tbias->remove_bias_all();
}
// calculate COM velocity for each chunk
// won't be invoked with bias also removed = 2 biases
if (comflag && comstep != update->ntimestep) vcm_compute();
// calculate KE tensor, optionally removing COM velocity
double **v = atom->v;
double *mass = atom->mass;
double *rmass = atom->rmass;
int *type = atom->type;
int *mask = atom->mask;
int nlocal = atom->nlocal;
double massone, t[6];
for (i = 0; i < 6; i++) t[i] = 0.0;
if (!comflag) {
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
if (rmass)
massone = rmass[i];
else
massone = mass[type[i]];
t[0] += massone * v[i][0] * v[i][0];
t[1] += massone * v[i][1] * v[i][1];
t[2] += massone * v[i][2] * v[i][2];
t[3] += massone * v[i][0] * v[i][1];
t[4] += massone * v[i][0] * v[i][2];
t[5] += massone * v[i][1] * v[i][2];
}
} else {
double vx, vy, vz;
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
if (rmass)
massone = rmass[i];
else
massone = mass[type[i]];
vx = v[i][0] - vcmall[index][0];
vy = v[i][1] - vcmall[index][1];
vz = v[i][2] - vcmall[index][2];
t[0] += massone * vx * vx;
t[1] += massone * vy * vy;
t[2] += massone * vz * vz;
t[3] += massone * vx * vy;
t[4] += massone * vx * vz;
t[5] += massone * vy * vz;
}
}
// restore velocity bias
if (biasflag) tbias->restore_bias_all();
// final KE
MPI_Allreduce(t, vector, 6, MPI_DOUBLE, MPI_SUM, world);
for (i = 0; i < 6; i++) vector[i] *= force->mvv2e;
}
/* ---------------------------------------------------------------------- */
void ComputeTempChunk::compute_array()
{
ComputeChunk::compute_array();
// remove velocity bias
if (biasflag) {
if (tbias->invoked_scalar != update->ntimestep) tbias->compute_scalar();
tbias->remove_bias_all();
}
// calculate COM velocity for each chunk whether comflag set or not
// needed by some values even if comflag not set
// important to do this after velocity bias is removed
// otherwise per-chunk values that use both v and vcm will be inconsistent
if (comstep != update->ntimestep) vcm_compute();
// compute each value
for (int i = 0; i < nvalues; i++) {
if (which[i] == TEMP)
temperature(i);
else if (which[i] == KECOM)
kecom(i);
else if (which[i] == INTERNAL)
internal(i);
}
// restore velocity bias
if (biasflag) tbias->restore_bias_all();
}
/* ----------------------------------------------------------------------
calculate velocity of COM for each chunk
------------------------------------------------------------------------- */
void ComputeTempChunk::vcm_compute()
{
int i, index;
double massone;
// avoid re-computing VCM more than once per step
comstep = update->ntimestep;
int *ichunk = cchunk->ichunk;
for (i = 0; i < nchunk; i++) {
vcm[i][0] = vcm[i][1] = vcm[i][2] = 0.0;
massproc[i] = 0.0;
}
double **v = atom->v;
int *mask = atom->mask;
int *type = atom->type;
double *mass = atom->mass;
double *rmass = atom->rmass;
int nlocal = atom->nlocal;
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
if (rmass)
massone = rmass[i];
else
massone = mass[type[i]];
vcm[index][0] += v[i][0] * massone;
vcm[index][1] += v[i][1] * massone;
vcm[index][2] += v[i][2] * massone;
massproc[index] += massone;
}
MPI_Allreduce(&vcm[0][0], &vcmall[0][0], 3 * nchunk, MPI_DOUBLE, MPI_SUM, world);
MPI_Allreduce(massproc, masstotal, nchunk, MPI_DOUBLE, MPI_SUM, world);
for (i = 0; i < nchunk; i++) {
if (masstotal[i] > 0.0) {
vcmall[i][0] /= masstotal[i];
vcmall[i][1] /= masstotal[i];
vcmall[i][2] /= masstotal[i];
} else {
vcmall[i][0] = vcmall[i][1] = vcmall[i][2] = 0.0;
}
}
}
/* ----------------------------------------------------------------------
temperature of each chunk
------------------------------------------------------------------------- */
void ComputeTempChunk::temperature(int icol)
{
int i, index;
int *ichunk = cchunk->ichunk;
// zero local per-chunk values
for (i = 0; i < nchunk; i++) {
count[i] = 0;
sum[i] = 0.0;
}
// per-chunk temperature, option for removing COM velocity
double **v = atom->v;
double *mass = atom->mass;
double *rmass = atom->rmass;
int *mask = atom->mask;
int *type = atom->type;
int nlocal = atom->nlocal;
if (!comflag) {
if (rmass) {
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
sum[index] += (v[i][0] * v[i][0] + v[i][1] * v[i][1] + v[i][2] * v[i][2]) * rmass[i];
count[index]++;
}
} else {
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
sum[index] += (v[i][0] * v[i][0] + v[i][1] * v[i][1] + v[i][2] * v[i][2]) * mass[type[i]];
count[index]++;
}
}
} else {
double vx, vy, vz;
if (rmass) {
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
vx = v[i][0] - vcmall[index][0];
vy = v[i][1] - vcmall[index][1];
vz = v[i][2] - vcmall[index][2];
sum[index] += (vx * vx + vy * vy + vz * vz) * rmass[i];
count[index]++;
}
} else {
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
vx = v[i][0] - vcmall[index][0];
vy = v[i][1] - vcmall[index][1];
vz = v[i][2] - vcmall[index][2];
sum[index] += (vx * vx + vy * vy + vz * vz) * mass[type[i]];
count[index]++;
}
}
}
// sum across procs
MPI_Allreduce(sum, sumall, nchunk, MPI_DOUBLE, MPI_SUM, world);
MPI_Allreduce(count, countall, nchunk, MPI_INT, MPI_SUM, world);
// normalize temperatures by per-chunk DOF
double dof, tfactor;
double mvv2e = force->mvv2e;
double boltz = force->boltz;
for (i = 0; i < nchunk; i++) {
dof = cdof + adof * countall[i];
if (dof > 0.0)
tfactor = mvv2e / (dof * boltz);
else
tfactor = 0.0;
array[i][icol] = tfactor * sumall[i];
}
}
/* ----------------------------------------------------------------------
KE of entire chunk moving at VCM
------------------------------------------------------------------------- */
void ComputeTempChunk::kecom(int icol)
{
int index;
int *ichunk = cchunk->ichunk;
// zero local per-chunk values
for (int i = 0; i < nchunk; i++) sum[i] = 0.0;
// per-chunk COM KE
double *mass = atom->mass;
double *rmass = atom->rmass;
int *mask = atom->mask;
int *type = atom->type;
int nlocal = atom->nlocal;
double vx, vy, vz;
if (rmass) {
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
vx = vcmall[index][0];
vy = vcmall[index][1];
vz = vcmall[index][2];
sum[index] += (vx * vx + vy * vy + vz * vz) * rmass[i];
}
} else {
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
vx = vcmall[index][0];
vy = vcmall[index][1];
vz = vcmall[index][2];
sum[index] += (vx * vx + vy * vy + vz * vz) * mass[type[i]];
}
}
// sum across procs
MPI_Allreduce(sum, sumall, nchunk, MPI_DOUBLE, MPI_SUM, world);
double mvv2e = force->mvv2e;
for (int i = 0; i < nchunk; i++) array[i][icol] = 0.5 * mvv2e * sumall[i];
}
/* ----------------------------------------------------------------------
internal KE of each chunk around its VCM
computed using per-atom velocities with chunk VCM subtracted off
------------------------------------------------------------------------- */
void ComputeTempChunk::internal(int icol)
{
int index;
int *ichunk = cchunk->ichunk;
// zero local per-chunk values
for (int i = 0; i < nchunk; i++) sum[i] = 0.0;
// per-chunk internal KE
double **v = atom->v;
double *mass = atom->mass;
double *rmass = atom->rmass;
int *mask = atom->mask;
int *type = atom->type;
int nlocal = atom->nlocal;
double vx, vy, vz;
if (rmass) {
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
vx = v[i][0] - vcmall[index][0];
vy = v[i][1] - vcmall[index][1];
vz = v[i][2] - vcmall[index][2];
sum[index] += (vx * vx + vy * vy + vz * vz) * rmass[i];
}
} else {
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
vx = v[i][0] - vcmall[index][0];
vy = v[i][1] - vcmall[index][1];
vz = v[i][2] - vcmall[index][2];
sum[index] += (vx * vx + vy * vy + vz * vz) * mass[type[i]];
}
}
// sum across procs
MPI_Allreduce(sum, sumall, nchunk, MPI_DOUBLE, MPI_SUM, world);
double mvv2e = force->mvv2e;
for (int i = 0; i < nchunk; i++) array[i][icol] = 0.5 * mvv2e * sumall[i];
}
/* ----------------------------------------------------------------------
bias methods: called by thermostats
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
remove velocity bias from atom I to leave thermal velocity
------------------------------------------------------------------------- */
void ComputeTempChunk::remove_bias(int i, double *v)
{
int index = cchunk->ichunk[i] - 1;
if (index < 0) return;
v[0] -= vcmall[index][0];
v[1] -= vcmall[index][1];
v[2] -= vcmall[index][2];
}
/* ----------------------------------------------------------------------
remove velocity bias from all atoms to leave thermal velocity
------------------------------------------------------------------------- */
void ComputeTempChunk::remove_bias_all()
{
int index;
int *ichunk = cchunk->ichunk;
double **v = atom->v;
int *mask = atom->mask;
int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
v[i][0] -= vcmall[index][0];
v[i][1] -= vcmall[index][1];
v[i][2] -= vcmall[index][2];
}
}
/* ----------------------------------------------------------------------
add back in velocity bias to atom I removed by remove_bias()
assume remove_bias() was previously called
------------------------------------------------------------------------- */
void ComputeTempChunk::restore_bias(int i, double *v)
{
int index = cchunk->ichunk[i] - 1;
if (index < 0) return;
v[0] += vcmall[index][0];
v[1] += vcmall[index][1];
v[2] += vcmall[index][2];
}
/* ----------------------------------------------------------------------
add back in velocity bias to all atoms removed by remove_bias_all()
assume remove_bias_all() was previously called
------------------------------------------------------------------------- */
void ComputeTempChunk::restore_bias_all()
{
int index;
int *ichunk = cchunk->ichunk;
double **v = atom->v;
int *mask = atom->mask;
int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
v[i][0] += vcmall[index][0];
v[i][1] += vcmall[index][1];
v[i][2] += vcmall[index][2];
}
}
/* ----------------------------------------------------------------------
free and reallocate per-chunk arrays
------------------------------------------------------------------------- */
void ComputeTempChunk::allocate()
{
ComputeChunk::allocate();
memory->destroy(sum);
memory->destroy(sumall);
memory->destroy(count);
memory->destroy(countall);
memory->destroy(array);
maxchunk = nchunk;
memory->create(sum, maxchunk, "temp/chunk:sum");
memory->create(sumall, maxchunk, "temp/chunk:sumall");
memory->create(count, maxchunk, "temp/chunk:count");
memory->create(countall, maxchunk, "temp/chunk:countall");
memory->create(array, maxchunk, nvalues, "temp/chunk:array");
if (comflag || nvalues) {
memory->destroy(massproc);
memory->destroy(masstotal);
memory->destroy(vcm);
memory->destroy(vcmall);
memory->create(massproc, maxchunk, "vcm/chunk:massproc");
memory->create(masstotal, maxchunk, "vcm/chunk:masstotal");
memory->create(vcm, maxchunk, 3, "vcm/chunk:vcm");
memory->create(vcmall, maxchunk, 3, "vcm/chunk:vcmall");
}
}
/* ----------------------------------------------------------------------
memory usage of local data
------------------------------------------------------------------------- */
double ComputeTempChunk::memory_usage()
{
double bytes = (double) maxchunk * 2 * sizeof(double) + ComputeChunk::memory_usage();
bytes += (double) maxchunk * 2 * sizeof(int);
bytes += (double) maxchunk * nvalues * sizeof(double);
if (comflag || nvalues) {
bytes += (double) maxchunk * 2 * sizeof(double);
bytes += (double) maxchunk * 2 * 3 * sizeof(double);
}
return bytes;
}