Files
lammps/src/kspace.cpp

618 lines
22 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "kspace.h"
#include "atom.h"
#include "atom_masks.h"
#include "comm.h"
#include "domain.h"
#include "error.h"
#include "force.h"
#include "memory.h"
#include "pair.h"
#include "suffix.h"
#include <cmath>
#include <cstring>
using namespace LAMMPS_NS;
static constexpr double SMALL = 0.00001;
/* ---------------------------------------------------------------------- */
KSpace::KSpace(LAMMPS *lmp) : Pointers(lmp)
{
order_allocated = 0;
energy = 0.0;
virial[0] = virial[1] = virial[2] = virial[3] = virial[4] = virial[5] = 0.0;
triclinic_support = 1;
ewaldflag = pppmflag = msmflag = dispersionflag = tip4pflag =
dipoleflag = spinflag = 0;
compute_flag = 1;
group_group_enable = 0;
stagger_flag = 0;
order = 5;
gridflag = 0;
gewaldflag = 0;
minorder = 2;
overlap_allowed = 1;
fftbench = 0;
// default to using MPI collectives for FFT/remap only on IBM BlueGene
#ifdef __bg__
collective_flag = 1;
#else
collective_flag = 0;
#endif
kewaldflag = 0;
order_6 = 5;
gridflag_6 = 0;
gewaldflag_6 = 0;
auto_disp_flag = 0;
conp_one_step = true;
slabflag = wireflag = 0;
differentiation_flag = 0;
slab_volfactor = 1;
wire_volfactor = 1;
suffix_flag = Suffix::NONE;
adjust_cutoff_flag = 1;
scalar_pressure_flag = 0;
warn_nonneutral = 1;
warn_nocharge = 1;
accuracy_absolute = -1.0;
accuracy_real_6 = -1.0;
accuracy_kspace_6 = -1.0;
neighrequest_flag = 1;
mixflag = 0;
splittol = 1.0e-6;
maxeatom = maxvatom = 0;
eatom = nullptr;
vatom = nullptr;
centroidstressflag = CENTROID_NOTAVAIL;
execution_space = Host;
datamask_read = ALL_MASK;
datamask_modify = ALL_MASK;
copymode = 0;
memory->create(gcons,7,7,"kspace:gcons");
gcons[2][0] = 15.0 / 8.0;
gcons[2][1] = -5.0 / 4.0;
gcons[2][2] = 3.0 / 8.0;
gcons[3][0] = 35.0 / 16.0;
gcons[3][1] = -35.0 / 16.0;
gcons[3][2] = 21.0 / 16.0;
gcons[3][3] = -5.0 / 16.0;
gcons[4][0] = 315.0 / 128.0;
gcons[4][1] = -105.0 / 32.0;
gcons[4][2] = 189.0 / 64.0;
gcons[4][3] = -45.0 / 32.0;
gcons[4][4] = 35.0 / 128.0;
gcons[5][0] = 693.0 / 256.0;
gcons[5][1] = -1155.0 / 256.0;
gcons[5][2] = 693.0 / 128.0;
gcons[5][3] = -495.0 / 128.0;
gcons[5][4] = 385.0 / 256.0;
gcons[5][5] = -63.0 / 256.0;
gcons[6][0] = 3003.0 / 1024.0;
gcons[6][1] = -3003.0 / 512.0;
gcons[6][2] = 9009.0 / 1024.0;
gcons[6][3] = -2145.0 / 256.0;
gcons[6][4] = 5005.0 / 1024.0;
gcons[6][5] = -819.0 / 512.0;
gcons[6][6] = 231.0 / 1024.0;
memory->create(dgcons,7,6,"kspace:dgcons");
dgcons[2][0] = -5.0 / 2.0;
dgcons[2][1] = 3.0 / 2.0;
dgcons[3][0] = -35.0 / 8.0;
dgcons[3][1] = 21.0 / 4.0;
dgcons[3][2] = -15.0 / 8.0;
dgcons[4][0] = -105.0 / 16.0;
dgcons[4][1] = 189.0 / 16.0;
dgcons[4][2] = -135.0 / 16.0;
dgcons[4][3] = 35.0 / 16.0;
dgcons[5][0] = -1155.0 / 128.0;
dgcons[5][1] = 693.0 / 32.0;
dgcons[5][2] = -1485.0 / 64.0;
dgcons[5][3] = 385.0 / 32.0;
dgcons[5][4] = -315.0 / 128.0;
dgcons[6][0] = -3003.0 / 256.0;
dgcons[6][1] = 9009.0 / 256.0;
dgcons[6][2] = -6435.0 / 128.0;
dgcons[6][3] = 5005.0 / 128.0;
dgcons[6][4] = -4095.0 / 256.0;
dgcons[6][5] = 693.0 / 256.0;
}
/* ---------------------------------------------------------------------- */
KSpace::~KSpace()
{
if (copymode) return;
memory->destroy(eatom);
memory->destroy(vatom);
memory->destroy(gcons);
memory->destroy(dgcons);
}
/* ----------------------------------------------------------------------
calculate this in init() so that units are finalized
------------------------------------------------------------------------- */
void KSpace::two_charge()
{
two_charge_force = force->qqr2e *
(force->qelectron * force->qelectron) /
(force->angstrom * force->angstrom);
}
/* ---------------------------------------------------------------------- */
void KSpace::triclinic_check()
{
if (domain->triclinic && triclinic_support != 1)
error->all(FLERR,"KSpace style does not yet support triclinic geometries");
}
/* ---------------------------------------------------------------------- */
void KSpace::compute_dummy(int eflag, int vflag)
{
ev_init(eflag,vflag);
}
/* ----------------------------------------------------------------------
check that pair style is compatible with long-range solver
------------------------------------------------------------------------- */
void KSpace::pair_check()
{
if (force->pair == nullptr)
error->all(FLERR,"KSpace solver requires a pair style");
if (ewaldflag && !force->pair->ewaldflag)
error->all(FLERR,"KSpace style is incompatible with Pair style");
if (pppmflag && !force->pair->pppmflag)
error->all(FLERR,"KSpace style is incompatible with Pair style");
if (msmflag && !force->pair->msmflag)
error->all(FLERR,"KSpace style is incompatible with Pair style");
if (dispersionflag && !force->pair->dispersionflag)
error->all(FLERR,"KSpace style is incompatible with Pair style");
if (dipoleflag && !force->pair->dipoleflag)
error->all(FLERR,"KSpace style is incompatible with Pair style");
if (spinflag && !force->pair->spinflag)
error->all(FLERR,"KSpace style is incompatible with Pair style");
if (tip4pflag && !force->pair->tip4pflag)
error->all(FLERR,"KSpace style is incompatible with Pair style");
if (force->pair->dispersionflag && !dispersionflag)
error->all(FLERR,"KSpace style is incompatible with Pair style");
if (force->pair->tip4pflag && !tip4pflag)
error->all(FLERR,"KSpace style is incompatible with Pair style");
}
/* ----------------------------------------------------------------------
setup for energy, virial computation
see integrate::ev_set() for bitwise settings of eflag/vflag
set the following flags, values are otherwise set to 0:
evflag != 0 if any bits of eflag or vflag are set
eflag_global != 0 if ENERGY_GLOBAL bit of eflag set
eflag_atom != 0 if ENERGY_ATOM bit of eflag set
eflag_either != 0 if eflag_global or eflag_atom is set
vflag_global != 0 if VIRIAL_PAIR or VIRIAL_FDOTR bit of vflag set
vflag_atom != 0 if VIRIAL_ATOM bit of vflag set
no current support for centroid stress
vflag_either != 0 if vflag_global or vflag_atom is set
evflag_atom != 0 if eflag_atom or vflag_atom is set
------------------------------------------------------------------------- */
void KSpace::ev_setup(int eflag, int vflag, int alloc)
{
int i,n;
evflag = 1;
eflag_either = eflag;
eflag_global = eflag & ENERGY_GLOBAL;
eflag_atom = eflag & ENERGY_ATOM;
vflag_either = vflag;
vflag_global = vflag & (VIRIAL_PAIR | VIRIAL_FDOTR);
vflag_atom = vflag & VIRIAL_ATOM;
if (eflag_atom || vflag_atom) evflag_atom = 1;
else evflag_atom = 0;
// reallocate per-atom arrays if necessary
if (eflag_atom && atom->nmax > maxeatom) {
maxeatom = atom->nmax;
if (alloc) {
memory->destroy(eatom);
memory->create(eatom,maxeatom,"kspace:eatom");
}
}
if (vflag_atom && atom->nmax > maxvatom) {
maxvatom = atom->nmax;
if (alloc) {
memory->destroy(vatom);
memory->create(vatom,maxvatom,6,"kspace:vatom");
}
}
// zero accumulators
if (eflag_global) energy = 0.0;
if (vflag_global) for (i = 0; i < 6; i++) virial[i] = 0.0;
if (eflag_atom && alloc) {
n = atom->nlocal;
if (tip4pflag) n += atom->nghost;
for (i = 0; i < n; i++) eatom[i] = 0.0;
}
if (vflag_atom && alloc) {
n = atom->nlocal;
if (tip4pflag) n += atom->nghost;
for (i = 0; i < n; i++) {
vatom[i][0] = 0.0;
vatom[i][1] = 0.0;
vatom[i][2] = 0.0;
vatom[i][3] = 0.0;
vatom[i][4] = 0.0;
vatom[i][5] = 0.0;
}
}
}
/* ----------------------------------------------------------------------
compute qsum,qsqsum,q2 and give error/warning if not charge neutral
called initially, when particle count changes, when charges are changed
------------------------------------------------------------------------- */
void KSpace::qsum_qsq(int warning_flag)
{
const double * const q = atom->q;
const int nlocal = atom->nlocal;
double qsum_local(0.0), qsqsum_local(0.0);
#if defined(_OPENMP)
#pragma omp parallel for default(shared) reduction(+:qsum_local,qsqsum_local)
#endif
for (int i = 0; i < nlocal; i++) {
qsum_local += q[i];
qsqsum_local += q[i]*q[i];
}
MPI_Allreduce(&qsum_local,&qsum,1,MPI_DOUBLE,MPI_SUM,world);
MPI_Allreduce(&qsqsum_local,&qsqsum,1,MPI_DOUBLE,MPI_SUM,world);
if ((qsqsum == 0.0) && (comm->me == 0) && warn_nocharge && warning_flag) {
error->warning(FLERR,"Using kspace solver on system with no charge");
warn_nocharge = 0;
}
q2 = qsqsum * force->qqrd2e;
// not yet sure of the correction needed for non-neutral systems
// so issue warning or error
if (fabs(qsum) > SMALL) {
std::string message = fmt::format("System is not charge neutral, net charge = {:.8}{}",
qsum, utils::errorurl(29));
if (!warn_nonneutral) error->all(FLERR,message);
if (warn_nonneutral == 1 && comm->me == 0) error->warning(FLERR,message);
warn_nonneutral = 2;
}
}
/* ----------------------------------------------------------------------
estimate the accuracy of the short-range coulomb tables
------------------------------------------------------------------------- */
double KSpace::estimate_table_accuracy(double q2_over_sqrt, double spr)
{
double table_accuracy = 0.0;
int nctb = force->pair->ncoultablebits;
if (comm->me == 0) {
if (nctb)
error->message(FLERR," using {}-bit tables for long-range coulomb",nctb);
else
error->message(FLERR," using polynomial approximation for long-range coulomb");
}
if (nctb) {
double empirical_precision[17];
empirical_precision[6] = 6.99E-03;
empirical_precision[7] = 1.78E-03;
empirical_precision[8] = 4.72E-04;
empirical_precision[9] = 1.17E-04;
empirical_precision[10] = 2.95E-05;
empirical_precision[11] = 7.41E-06;
empirical_precision[12] = 1.76E-06;
empirical_precision[13] = 9.28E-07;
empirical_precision[14] = 7.46E-07;
empirical_precision[15] = 7.32E-07;
empirical_precision[16] = 7.30E-07;
if (nctb <= 6) table_accuracy = empirical_precision[6];
else if (nctb <= 16) table_accuracy = empirical_precision[nctb];
else table_accuracy = empirical_precision[16];
table_accuracy *= q2_over_sqrt;
if ((table_accuracy > spr) && (comm->me == 0))
error->warning(FLERR,"For better accuracy use 'pair_modify table 0'");
}
return table_accuracy;
}
/* ----------------------------------------------------------------------
convert box coords vector to transposed triclinic lamda (0-1) coords
vector, lamda = [(H^-1)^T] * v, does not preserve vector magnitude
v and lamda can point to same 3-vector
------------------------------------------------------------------------- */
void KSpace::x2lamdaT(double *v, double *lamda)
{
double *h_inv = domain->h_inv;
double lamda_tmp[3];
lamda_tmp[0] = h_inv[0]*v[0];
lamda_tmp[1] = h_inv[5]*v[0] + h_inv[1]*v[1];
lamda_tmp[2] = h_inv[4]*v[0] + h_inv[3]*v[1] + h_inv[2]*v[2];
lamda[0] = lamda_tmp[0];
lamda[1] = lamda_tmp[1];
lamda[2] = lamda_tmp[2];
}
/* ----------------------------------------------------------------------
convert lamda (0-1) coords vector to transposed box coords vector
lamda = (H^T) * v, does not preserve vector magnitude
v and lamda can point to same 3-vector
------------------------------------------------------------------------- */
void KSpace::lamda2xT(double *lamda, double *v)
{
double h[6];
h[0] = domain->h[0];
h[1] = domain->h[1];
h[2] = domain->h[2];
h[3] = fabs(domain->h[3]);
h[4] = fabs(domain->h[4]);
h[5] = fabs(domain->h[5]);
double v_tmp[3];
v_tmp[0] = h[0]*lamda[0];
v_tmp[1] = h[5]*lamda[0] + h[1]*lamda[1];
v_tmp[2] = h[4]*lamda[0] + h[3]*lamda[1] + h[2]*lamda[2];
v[0] = v_tmp[0];
v[1] = v_tmp[1];
v[2] = v_tmp[2];
}
/* ----------------------------------------------------------------------
convert triclinic lamda (0-1) coords vector to box coords vector
v = H * lamda, does not preserve vector magnitude
lamda and v can point to same 3-vector
------------------------------------------------------------------------- */
void KSpace::lamda2xvector(double *lamda, double *v)
{
double *h = domain->h;
v[0] = h[0]*lamda[0] + h[5]*lamda[1] + h[4]*lamda[2];
v[1] = h[1]*lamda[1] + h[3]*lamda[2];
v[2] = h[2]*lamda[2];
}
/* ----------------------------------------------------------------------
modify parameters of the KSpace style
------------------------------------------------------------------------- */
void KSpace::modify_params(int narg, char **arg)
{
int iarg = 0;
while (iarg < narg) {
if (strcmp(arg[iarg],"mesh") == 0) {
if (iarg+4 > narg) error->all(FLERR,"Illegal kspace_modify command");
nx_pppm = nx_msm_max = utils::inumeric(FLERR,arg[iarg+1],false,lmp);
ny_pppm = ny_msm_max = utils::inumeric(FLERR,arg[iarg+2],false,lmp);
nz_pppm = nz_msm_max = utils::inumeric(FLERR,arg[iarg+3],false,lmp);
if (nx_pppm == 0 && ny_pppm == 0 && nz_pppm == 0)
gridflag = 0;
else if (nx_pppm <= 0 || ny_pppm <= 0 || nz_pppm <= 0)
error->all(FLERR,"Kspace_modify mesh parameters must be all "
"zero or all positive");
else gridflag = 1;
iarg += 4;
} else if (strcmp(arg[iarg],"mesh/disp") == 0) {
if (iarg+4 > narg) error->all(FLERR,"Illegal kspace_modify command");
nx_pppm_6 = utils::inumeric(FLERR,arg[iarg+1],false,lmp);
ny_pppm_6 = utils::inumeric(FLERR,arg[iarg+2],false,lmp);
nz_pppm_6 = utils::inumeric(FLERR,arg[iarg+3],false,lmp);
if (nx_pppm_6 == 0 && ny_pppm_6 == 0 && nz_pppm_6 == 0)
gridflag_6 = 0;
else if (nx_pppm_6 <= 0 || ny_pppm_6 <= 0 || nz_pppm_6 == 0)
error->all(FLERR,"Kspace_modify mesh/disp parameters must be all zero or all positive");
else gridflag_6 = 1;
iarg += 4;
} else if (strcmp(arg[iarg],"order") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
order = utils::inumeric(FLERR,arg[iarg+1],false,lmp);
iarg += 2;
} else if (strcmp(arg[iarg],"order/disp") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
order_6 = utils::inumeric(FLERR,arg[iarg+1],false,lmp);
iarg += 2;
} else if (strcmp(arg[iarg],"minorder") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
minorder = utils::inumeric(FLERR,arg[iarg+1],false,lmp);
if (minorder < 2) error->all(FLERR,"Illegal kspace_modify command");
iarg += 2;
} else if (strcmp(arg[iarg],"overlap") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
overlap_allowed = utils::logical(FLERR,arg[iarg+1],false,lmp);
iarg += 2;
} else if (strcmp(arg[iarg],"force") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
accuracy_absolute = utils::numeric(FLERR,arg[iarg+1],false,lmp);
iarg += 2;
} else if (strcmp(arg[iarg],"gewald") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
g_ewald = utils::numeric(FLERR,arg[iarg+1],false,lmp);
if (g_ewald == 0.0) gewaldflag = 0;
else gewaldflag = 1;
iarg += 2;
} else if (strcmp(arg[iarg],"gewald/disp") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
g_ewald_6 = utils::numeric(FLERR,arg[iarg+1],false,lmp);
if (g_ewald_6 == 0.0) gewaldflag_6 = 0;
else gewaldflag_6 = 1;
iarg += 2;
} else if (strcmp(arg[iarg],"slab") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
if (strcmp(arg[iarg+1],"nozforce") == 0) {
slabflag = 2;
} else if (strcmp(arg[iarg+1],"ew2d") == 0) {
slabflag = 3;
} else {
slabflag = 1;
slab_volfactor = utils::numeric(FLERR,arg[iarg+1],false,lmp);
if (slab_volfactor <= 1.0)
error->all(FLERR,"Bad kspace_modify slab parameter");
if (slab_volfactor < 2.0 && comm->me == 0)
error->warning(FLERR,"Kspace_modify slab param < 2.0 may "
"cause unphysical behavior");
}
iarg += 2;
} else if (strcmp(arg[iarg],"wire") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
if (strcmp(arg[iarg+1],"noxyforce") == 0) {
wireflag = 2;
} else {
wireflag = 1;
wire_volfactor = utils::numeric(FLERR,arg[iarg+1],false,lmp);
if (wire_volfactor <= 1.0)
error->all(FLERR,"Bad kspace_modify slab parameter");
if (wire_volfactor < 2.0 && comm->me == 0)
error->warning(FLERR,"Kspace_modify slab param < 2.0 may "
"cause unphysical behavior");
}
warn_nonneutral = 0; // can't use wire correction with non-neutral system
iarg += 2;
}
else if (strcmp(arg[iarg], "amat") == 0) {
if (iarg + 2 > narg) error->all(FLERR, "Illegal kspace_modify command");
if (!pppmflag) error->all(FLERR, "Illegal kspace_modify command 'amat'"
"available for pppm/conp, only");
if (strcmp(arg[iarg + 1], "twostep") == 0) {
conp_one_step = false;
} else if (strcmp(arg[iarg + 1], "onestep") == 0) {
conp_one_step = true;
} else {
error->all(FLERR, "Illegal kspace_modify command");
}
iarg += 2;
} else if (strcmp(arg[iarg],"compute") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
compute_flag = utils::logical(FLERR,arg[iarg+1],false,lmp);
iarg += 2;
} else if (strcmp(arg[iarg],"fftbench") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
fftbench = utils::logical(FLERR,arg[iarg+1],false,lmp);
iarg += 2;
} else if (strcmp(arg[iarg],"collective") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
collective_flag = utils::logical(FLERR,arg[iarg+1],false,lmp);
iarg += 2;
} else if (strcmp(arg[iarg],"diff") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
if (strcmp(arg[iarg+1],"ad") == 0) differentiation_flag = 1;
else if (strcmp(arg[iarg+1],"ik") == 0) differentiation_flag = 0;
else error->all(FLERR, "Illegal kspace_modify command");
iarg += 2;
} else if (strcmp(arg[iarg],"cutoff/adjust") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
adjust_cutoff_flag = utils::logical(FLERR,arg[iarg+1],false,lmp);
iarg += 2;
} else if (strcmp(arg[iarg],"kmax/ewald") == 0) {
if (iarg+4 > narg) error->all(FLERR,"Illegal kspace_modify command");
kx_ewald = utils::inumeric(FLERR,arg[iarg+1],false,lmp);
ky_ewald = utils::inumeric(FLERR,arg[iarg+2],false,lmp);
kz_ewald = utils::inumeric(FLERR,arg[iarg+3],false,lmp);
if (kx_ewald < 0 || ky_ewald < 0 || kz_ewald < 0)
error->all(FLERR,"Bad kspace_modify kmax/ewald parameter");
if (kx_ewald > 0 && ky_ewald > 0 && kz_ewald > 0)
kewaldflag = 1;
else
kewaldflag = 0;
iarg += 4;
} else if (strcmp(arg[iarg],"mix/disp") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
if (strcmp(arg[iarg+1],"pair") == 0) mixflag = 0;
else if (strcmp(arg[iarg+1],"geom") == 0) mixflag = 1;
else if (strcmp(arg[iarg+1],"none") == 0) mixflag = 2;
else error->all(FLERR,"Illegal kspace_modify command");
iarg += 2;
} else if (strcmp(arg[iarg],"force/disp/real") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
accuracy_real_6 = utils::numeric(FLERR,arg[iarg+1],false,lmp);
iarg += 2;
} else if (strcmp(arg[iarg],"force/disp/kspace") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
accuracy_kspace_6 = utils::numeric(FLERR,arg[iarg+1],false,lmp);
iarg += 2;
} else if (strcmp(arg[iarg],"eigtol") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
splittol = utils::numeric(FLERR,arg[iarg+1],false,lmp);
if (splittol >= 1.0)
error->all(FLERR,"Kspace_modify eigtol must be smaller than one");
iarg += 2;
} else if (strcmp(arg[iarg],"pressure/scalar") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
scalar_pressure_flag = utils::logical(FLERR,arg[iarg+1],false,lmp);
iarg += 2;
} else if (strcmp(arg[iarg],"disp/auto") == 0) {
if (iarg+2 > narg) error->all(FLERR,"Illegal kspace_modify command");
auto_disp_flag = utils::logical(FLERR,arg[iarg+1],false,lmp);
iarg += 2;
} else {
int n = modify_param(narg-iarg,&arg[iarg]);
if (n == 0) error->all(FLERR,"Illegal kspace_modify command");
iarg += n;
}
}
}
/* ---------------------------------------------------------------------- */
void *KSpace::extract(const char *str)
{
if (strcmp(str,"scale") == 0) return (void *) &scale;
return nullptr;
}