Files
lammps/src/fix_indent.cpp

866 lines
26 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Ravi Agrawal (Northwestern U)
------------------------------------------------------------------------- */
#include "fix_indent.h"
#include "atom.h"
#include "domain.h"
#include "error.h"
#include "input.h"
#include "lattice.h"
#include "math_extra.h"
#include "modify.h"
#include "respa.h"
#include "update.h"
#include "variable.h"
#include <cmath>
#include <cstring>
using namespace LAMMPS_NS;
using namespace FixConst;
enum { NONE, SPHERE, CYLINDER, PLANE, CONE };
enum { INSIDE, OUTSIDE };
/* ---------------------------------------------------------------------- */
FixIndent::FixIndent(LAMMPS *lmp, int narg, char **arg) :
Fix(lmp, narg, arg), xstr(nullptr), ystr(nullptr), zstr(nullptr), rstr(nullptr), pstr(nullptr),
rlostr(nullptr), rhistr(nullptr), lostr(nullptr), histr(nullptr)
{
if (narg < 4) utils::missing_cmd_args(FLERR, "fix indent", error);
scalar_flag = 1;
vector_flag = 1;
size_vector = 3;
energy_global_flag = 1;
global_freq = 1;
extscalar = 1;
extvector = 1;
respa_level_support = 1;
ilevel_respa = 0;
k = utils::numeric(FLERR, arg[3], false, lmp);
if (k < 0.0) error->all(FLERR, "Illegal fix indent force constant: {}", k);
k3 = k / 3.0;
// read geometry of indenter and optional args
int iarg = geometry(narg - 4, &arg[4]) + 4;
options(narg - iarg, &arg[iarg]);
// setup scaling
const double xscale{scaleflag ? domain->lattice->xlattice : 1.0};
const double yscale{scaleflag ? domain->lattice->ylattice : 1.0};
const double zscale{scaleflag ? domain->lattice->zlattice : 1.0};
// apply scaling factors to geometry
if (istyle == SPHERE || istyle == CYLINDER) {
if (!xstr) xvalue *= xscale;
if (!ystr) yvalue *= yscale;
if (!zstr) zvalue *= zscale;
if (!rstr) rvalue *= xscale;
} else if (istyle == CONE) {
if (!xstr) xvalue *= xscale;
if (!ystr) yvalue *= yscale;
if (!zstr) zvalue *= zscale;
double scaling_factor = 1.0;
switch (cdim) {
case 0:
scaling_factor = xscale;
break;
case 1:
scaling_factor = yscale;
break;
case 2:
scaling_factor = zscale;
break;
}
if (!rlostr) rlovalue *= scaling_factor;
if (!rhistr) rhivalue *= scaling_factor;
if (!lostr) lovalue *= scaling_factor;
if (!histr) hivalue *= scaling_factor;
} else if (istyle == PLANE) {
if (cdim == 0 && !pstr)
pvalue *= xscale;
else if (cdim == 1 && !pstr)
pvalue *= yscale;
else if (cdim == 2 && !pstr)
pvalue *= zscale;
} else
error->all(FLERR, "Unknown fix indent keyword: {}", istyle);
varflag = 0;
if (xstr || ystr || zstr || rstr || pstr || rlostr || rhistr || lostr || histr) varflag = 1;
indenter_flag = 0;
indenter[0] = indenter[1] = indenter[2] = indenter[3] = 0.0;
}
/* ---------------------------------------------------------------------- */
FixIndent::~FixIndent()
{
delete[] xstr;
delete[] ystr;
delete[] zstr;
delete[] rstr;
delete[] pstr;
delete[] rlostr;
delete[] rhistr;
delete[] lostr;
delete[] histr;
}
/* ---------------------------------------------------------------------- */
int FixIndent::setmask()
{
int mask = 0;
mask |= POST_FORCE;
mask |= POST_FORCE_RESPA;
mask |= MIN_POST_FORCE;
return mask;
}
/* ---------------------------------------------------------------------- */
void FixIndent::init()
{
if (xstr) {
xvar = input->variable->find(xstr);
if (xvar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", xstr);
if (!input->variable->equalstyle(xvar))
error->all(FLERR, "Variable {} for fix indent is invalid style", xstr);
}
if (ystr) {
yvar = input->variable->find(ystr);
if (yvar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", ystr);
if (!input->variable->equalstyle(yvar))
error->all(FLERR, "Variable {} for fix indent is invalid style", ystr);
}
if (zstr) {
zvar = input->variable->find(zstr);
if (zvar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", zstr);
if (!input->variable->equalstyle(zvar))
error->all(FLERR, "Variable {} for fix indent is invalid style", zstr);
}
if (rstr) {
rvar = input->variable->find(rstr);
if (rvar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", rstr);
if (!input->variable->equalstyle(rvar))
error->all(FLERR, "Variable {} for fix indent is invalid style", rstr);
}
if (pstr) {
pvar = input->variable->find(pstr);
if (pvar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", pstr);
if (!input->variable->equalstyle(pvar))
error->all(FLERR, "Variable {} for fix indent is invalid style", pstr);
}
if (rlostr) {
rlovar = input->variable->find(rlostr);
if (rlovar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", rlostr);
if (!input->variable->equalstyle(rlovar))
error->all(FLERR, "Variable {} for fix indent is invalid style", rlostr);
}
if (rhistr) {
rhivar = input->variable->find(rhistr);
if (rhivar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", rhistr);
if (!input->variable->equalstyle(rhivar))
error->all(FLERR, "Variable {} for fix indent is invalid style", rhistr);
}
if (lostr) {
lovar = input->variable->find(lostr);
if (lovar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", lostr);
if (!input->variable->equalstyle(lovar))
error->all(FLERR, "Variable {} for fix indent is invalid style", lostr);
}
if (histr) {
hivar = input->variable->find(histr);
if (hivar < 0) error->all(FLERR, "Variable {} for fix indent does not exist", histr);
if (!input->variable->equalstyle(hivar))
error->all(FLERR, "Variable {} for fix indent is invalid style", histr);
}
if (utils::strmatch(update->integrate_style, "^respa")) {
ilevel_respa = (dynamic_cast<Respa *>(update->integrate))->nlevels - 1;
if (respa_level >= 0) ilevel_respa = MIN(respa_level, ilevel_respa);
}
}
/* ---------------------------------------------------------------------- */
void FixIndent::setup(int vflag)
{
if (utils::strmatch(update->integrate_style, "^verlet"))
post_force(vflag);
else {
(dynamic_cast<Respa *>(update->integrate))->copy_flevel_f(ilevel_respa);
post_force_respa(vflag, ilevel_respa, 0);
(dynamic_cast<Respa *>(update->integrate))->copy_f_flevel(ilevel_respa);
}
}
/* ---------------------------------------------------------------------- */
void FixIndent::min_setup(int vflag)
{
post_force(vflag);
}
/* ---------------------------------------------------------------------- */
void FixIndent::post_force(int /*vflag*/)
{
// indenter values, 0 = energy, 1-3 = force components
// wrap variable evaluations with clear/add
if (varflag) modify->clearstep_compute();
indenter_flag = 0;
indenter[0] = indenter[1] = indenter[2] = indenter[3] = 0.0;
// ctr = current indenter centerz
double ctr[3] = {xvalue, yvalue, zvalue};
if (xstr) ctr[0] = input->variable->compute_equal(xvar);
if (ystr) ctr[1] = input->variable->compute_equal(yvar);
if (zstr) ctr[2] = input->variable->compute_equal(zvar);
double **x = atom->x;
double **f = atom->f;
int *mask = atom->mask;
int nlocal = atom->nlocal;
double delx, dely, delz, r, dr, fmag, fx, fy, fz;
// spherical indenter
if (istyle == SPHERE) {
// remap indenter center into periodic box
domain->remap(ctr);
double radius = rstr ? input->variable->compute_equal(rvar) : rvalue;
if (radius < 0.0) error->all(FLERR, "Illegal fix indent sphere radius: {}", radius);
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
delx = x[i][0] - ctr[0];
dely = x[i][1] - ctr[1];
delz = x[i][2] - ctr[2];
domain->minimum_image(delx, dely, delz);
r = sqrt(delx * delx + dely * dely + delz * delz);
if (side == OUTSIDE) {
dr = r - radius;
fmag = k * dr * dr;
} else {
dr = radius - r;
fmag = -k * dr * dr;
}
if (dr >= 0.0) continue;
fx = delx * fmag / r;
fy = dely * fmag / r;
fz = delz * fmag / r;
f[i][0] += fx;
f[i][1] += fy;
f[i][2] += fz;
indenter[0] -= k3 * dr * dr * dr;
indenter[1] -= fx;
indenter[2] -= fy;
indenter[3] -= fz;
}
// cylindrical indenter
} else if (istyle == CYLINDER) {
// ctr = current indenter axis
// remap into periodic box
// 3rd coord is just near box for remap(), since isn't used
ctr[cdim] = domain->boxlo[cdim];
domain->remap(ctr);
double radius{rstr ? input->variable->compute_equal(rvar) : rvalue};
if (radius < 0.0) error->all(FLERR, "Illegal fix indent cylinder radius: {}", radius);
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
double del[3] = {x[i][0] - ctr[0], x[i][1] - ctr[1], x[i][2] - ctr[2]};
del[cdim] = 0;
domain->minimum_image(del[0], del[1], del[2]);
r = sqrt(del[0] * del[0] + del[1] * del[1] + del[2] * del[2]);
if (side == OUTSIDE) {
dr = r - radius;
fmag = k * dr * dr;
} else {
dr = radius - r;
fmag = -k * dr * dr;
}
if (dr >= 0.0) continue;
fx = del[0] * fmag / r;
fy = del[1] * fmag / r;
fz = del[2] * fmag / r;
f[i][0] += fx;
f[i][1] += fy;
f[i][2] += fz;
indenter[0] -= k3 * dr * dr * dr;
indenter[1] -= fx;
indenter[2] -= fy;
indenter[3] -= fz;
}
// conical indenter
} else if (istyle == CONE) {
double radiuslo{rlostr ? input->variable->compute_equal(rlovar) : rlovalue};
if (radiuslo < 0.0) error->all(FLERR, "Illegal fix indent cone lower radius: {}", radiuslo);
double radiushi{rhistr ? input->variable->compute_equal(rhivar) : rhivalue};
if (radiushi < 0.0) error->all(FLERR, "Illegal fix indent cone high radius: {}", radiushi);
double initial_lo{lostr ? input->variable->compute_equal(lovar) : lovalue};
double initial_hi{histr ? input->variable->compute_equal(hivar) : hivalue};
ctr[cdim] = 0.5 * (initial_hi + initial_lo);
domain->remap(ctr);
double hi = ctr[cdim] + 0.5 * (initial_hi - initial_lo);
double lo = ctr[cdim] - 0.5 * (initial_hi - initial_lo);
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
delx = x[i][0] - ctr[0];
dely = x[i][1] - ctr[1];
delz = x[i][2] - ctr[2];
domain->minimum_image(delx, dely, delz);
double x0[3] = {delx + ctr[0], dely + ctr[1], delz + ctr[2]};
r = sqrt(delx * delx + dely * dely + delz * delz);
// check if particle is inside or outside the cone
bool point_inside_cone = PointInsideCone(cdim, ctr, lo, hi, radiuslo, radiushi, x0);
if (side == INSIDE && point_inside_cone) continue;
if (side == OUTSIDE && !point_inside_cone) continue;
// find the distance between the point and the cone
if (point_inside_cone) {
DistanceInteriorPoint(cdim, ctr, lo, hi, radiuslo, radiushi, x0[0], x0[1], x0[2]);
} else {
DistanceExteriorPoint(cdim, ctr, lo, hi, radiuslo, radiushi, x0[0], x0[1], x0[2]);
}
// compute the force from the center of the cone
// this is different from how it is done in fix wall/region
dr = sqrt(x0[0] * x0[0] + x0[1] * x0[1] + x0[2] * x0[2]);
int force_sign = {point_inside_cone ? 1 : -1};
fmag = force_sign * k * dr * dr;
fx = delx * fmag / r;
fy = dely * fmag / r;
fz = delz * fmag / r;
f[i][0] += fx;
f[i][1] += fy;
f[i][2] += fz;
indenter[0] -= k3 * dr * dr * dr;
indenter[1] -= fx;
indenter[2] -= fy;
indenter[3] -= fz;
}
}
// planar indenter
} else {
// plane = current plane position
double plane{pstr ? input->variable->compute_equal(pvar) : pvalue};
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
dr = planeside * (plane - x[i][cdim]);
if (dr >= 0.0) continue;
fmag = -planeside * k * dr * dr;
f[i][cdim] += fmag;
indenter[0] -= k3 * dr * dr * dr;
indenter[cdim + 1] -= fmag;
}
}
if (varflag) modify->addstep_compute(update->ntimestep + 1);
}
/* ---------------------------------------------------------------------- */
void FixIndent::post_force_respa(int vflag, int ilevel, int /*iloop*/)
{
if (ilevel == ilevel_respa) post_force(vflag);
}
/* ---------------------------------------------------------------------- */
void FixIndent::min_post_force(int vflag)
{
post_force(vflag);
}
/* ----------------------------------------------------------------------
energy of indenter interaction
------------------------------------------------------------------------- */
double FixIndent::compute_scalar()
{
// only sum across procs one time
if (indenter_flag == 0) {
MPI_Allreduce(indenter, indenter_all, 4, MPI_DOUBLE, MPI_SUM, world);
indenter_flag = 1;
}
return indenter_all[0];
}
/* ----------------------------------------------------------------------
components of force on indenter
------------------------------------------------------------------------- */
double FixIndent::compute_vector(int n)
{
// only sum across procs one time
if (indenter_flag == 0) {
MPI_Allreduce(indenter, indenter_all, 4, MPI_DOUBLE, MPI_SUM, world);
indenter_flag = 1;
}
return indenter_all[n + 1];
}
/* ----------------------------------------------------------------------
parse input args for geometry of indenter
------------------------------------------------------------------------- */
int FixIndent::geometry(int narg, char **arg)
{
if (narg < 0) utils::missing_cmd_args(FLERR, "fix indent", error);
istyle = NONE;
xstr = ystr = zstr = rstr = pstr = nullptr;
xvalue = yvalue = zvalue = rvalue = pvalue = 0.0;
// sphere
if (strcmp(arg[0], "sphere") == 0) {
if (istyle != NONE) error->all(FLERR, "Fix indent requires a single geometry keyword");
if (5 > narg) utils::missing_cmd_args(FLERR, "fix indent sphere", error);
if (utils::strmatch(arg[1], "^v_")) {
xstr = utils::strdup(arg[1] + 2);
} else
xvalue = utils::numeric(FLERR, arg[1], false, lmp);
if (utils::strmatch(arg[2], "^v_")) {
ystr = utils::strdup(arg[2] + 2);
} else
yvalue = utils::numeric(FLERR, arg[2], false, lmp);
if (utils::strmatch(arg[3], "^v_")) {
zstr = utils::strdup(arg[3] + 2);
} else
zvalue = utils::numeric(FLERR, arg[3], false, lmp);
if (utils::strmatch(arg[4], "^v_")) {
rstr = utils::strdup(arg[4] + 2);
} else
rvalue = utils::numeric(FLERR, arg[4], false, lmp);
istyle = SPHERE;
return 5;
}
// cylinder
if (strcmp(arg[0], "cylinder") == 0) {
if (istyle != NONE) error->all(FLERR, "Fix indent requires a single geometry keyword");
if (5 > narg) utils::missing_cmd_args(FLERR, "fix indent cylinder", error);
if (strcmp(arg[1], "x") == 0) {
cdim = 0;
if (utils::strmatch(arg[2], "^v_")) {
ystr = utils::strdup(arg[2] + 2);
} else
yvalue = utils::numeric(FLERR, arg[2], false, lmp);
if (utils::strmatch(arg[3], "^v_")) {
zstr = utils::strdup(arg[3] + 2);
} else
zvalue = utils::numeric(FLERR, arg[3], false, lmp);
} else if (strcmp(arg[1], "y") == 0) {
cdim = 1;
if (utils::strmatch(arg[2], "^v_")) {
xstr = utils::strdup(arg[2] + 2);
} else
xvalue = utils::numeric(FLERR, arg[2], false, lmp);
if (utils::strmatch(arg[3], "^v_")) {
zstr = utils::strdup(arg[3] + 2);
} else
zvalue = utils::numeric(FLERR, arg[3], false, lmp);
} else if (strcmp(arg[1], "z") == 0) {
cdim = 2;
if (utils::strmatch(arg[2], "^v_")) {
xstr = utils::strdup(arg[2] + 2);
} else
xvalue = utils::numeric(FLERR, arg[2], false, lmp);
if (utils::strmatch(arg[3], "^v_")) {
ystr = utils::strdup(arg[3] + 2);
} else
yvalue = utils::numeric(FLERR, arg[3], false, lmp);
} else
error->all(FLERR, "Unknown fix indent cylinder argument: {}", arg[1]);
if (utils::strmatch(arg[4], "^v_")) {
rstr = utils::strdup(arg[4] + 2);
} else
rvalue = utils::numeric(FLERR, arg[4], false, lmp);
istyle = CYLINDER;
return 5;
}
// cone
if (strcmp(arg[0], "cone") == 0) {
if (istyle != NONE) error->all(FLERR, "Fix indent requires a single geometry keyword");
if (8 > narg) utils::missing_cmd_args(FLERR, "fix indent cone", error);
if (strcmp(arg[1], "x") == 0) {
cdim = 0;
if (utils::strmatch(arg[2], "^v_")) {
ystr = utils::strdup(arg[2] + 2);
} else
yvalue = utils::numeric(FLERR, arg[2], false, lmp);
if (utils::strmatch(arg[3], "^v_")) {
zstr = utils::strdup(arg[3] + 2);
} else
zvalue = utils::numeric(FLERR, arg[3], false, lmp);
} else if (strcmp(arg[1], "y") == 0) {
cdim = 1;
if (utils::strmatch(arg[2], "^v_")) {
xstr = utils::strdup(arg[2] + 2);
} else
xvalue = utils::numeric(FLERR, arg[2], false, lmp);
if (utils::strmatch(arg[3], "^v_")) {
zstr = utils::strdup(arg[3] + 2);
} else
zvalue = utils::numeric(FLERR, arg[3], false, lmp);
} else if (strcmp(arg[1], "z") == 0) {
cdim = 2;
if (utils::strmatch(arg[2], "^v_")) {
xstr = utils::strdup(arg[2] + 2);
} else
xvalue = utils::numeric(FLERR, arg[2], false, lmp);
if (utils::strmatch(arg[3], "^v_")) {
ystr = utils::strdup(arg[3] + 2);
} else
yvalue = utils::numeric(FLERR, arg[3], false, lmp);
} else
error->all(FLERR, "Unknown fix indent cone argument: {}", arg[1]);
if (utils::strmatch(arg[4], "^v_")) {
rlostr = utils::strdup(arg[4] + 2);
} else
rlovalue = utils::numeric(FLERR, arg[4], false, lmp);
if (utils::strmatch(arg[5], "^v_")) {
rhistr = utils::strdup(arg[5] + 2);
} else
rhivalue = utils::numeric(FLERR, arg[5], false, lmp);
if (utils::strmatch(arg[6], "^v_")) {
lostr = utils::strdup(arg[6] + 2);
} else
lovalue = utils::numeric(FLERR, arg[6], false, lmp);
if (utils::strmatch(arg[7], "^v_")) {
histr = utils::strdup(arg[7] + 2);
} else
hivalue = utils::numeric(FLERR, arg[7], false, lmp);
istyle = CONE;
return 8;
}
// plane
if (strcmp(arg[0], "plane") == 0) {
if (istyle != NONE) error->all(FLERR, "Fix indent requires a single geometry keyword");
if (4 > narg) utils::missing_cmd_args(FLERR, "fix indent plane", error);
if (strcmp(arg[1], "x") == 0)
cdim = 0;
else if (strcmp(arg[1], "y") == 0)
cdim = 1;
else if (strcmp(arg[1], "z") == 0)
cdim = 2;
else
error->all(FLERR, "Unknown fix indent plane argument: {}", arg[1]);
if (utils::strmatch(arg[2], "^v_")) {
pstr = utils::strdup(arg[2] + 2);
} else
pvalue = utils::numeric(FLERR, arg[2], false, lmp);
if (strcmp(arg[3], "lo") == 0)
planeside = -1;
else if (strcmp(arg[3], "hi") == 0)
planeside = 1;
else
error->all(FLERR, "Unknown fix indent plane argument: {}", arg[3]);
istyle = PLANE;
return 4;
}
// invalid istyle arg
error->all(FLERR, "Unknown fix indent argument: {}", arg[0]);
return 0;
}
/* ----------------------------------------------------------------------
parse optional input args
------------------------------------------------------------------------- */
void FixIndent::options(int narg, char **arg)
{
scaleflag = 1;
side = OUTSIDE;
int iarg = 0;
while (iarg < narg) {
if (strcmp(arg[iarg], "units") == 0) {
if (iarg + 2 > narg) utils::missing_cmd_args(FLERR, "fix indent units", error);
if (strcmp(arg[iarg + 1], "box") == 0)
scaleflag = 0;
else if (strcmp(arg[iarg + 1], "lattice") == 0)
scaleflag = 1;
else
error->all(FLERR, "Unknown fix indent units argument: {}", arg[iarg + 1]);
iarg += 2;
} else if (strcmp(arg[iarg], "side") == 0) {
if (iarg + 2 > narg) utils::missing_cmd_args(FLERR, "fix indent side", error);
if (strcmp(arg[iarg + 1], "in") == 0)
side = INSIDE;
else if (strcmp(arg[iarg + 1], "out") == 0)
side = OUTSIDE;
else
error->all(FLERR, "Unknown fix indent side argument: {}", arg[iarg + 1]);
iarg += 2;
} else
error->all(FLERR, "Unknown fix indent argument: {}", arg[iarg]);
}
}
/* ----------------------------------------------------------------------
determines if a point is inside (true) or outside (false) of a cone
------------------------------------------------------------------------- */
bool FixIndent::PointInsideCone(int dir, double *center, double lo, double hi, double rlo,
double rhi, double *x)
{
if ((x[dir] > hi) || (x[dir] < lo)) return false;
double del[3] = {x[0] - center[0], x[1] - center[1], x[2] - center[2]};
del[dir] = 0.0;
double dist = sqrt(del[0] * del[0] + del[1] * del[1] + del[2] * del[2]);
double currentradius = rlo + (x[dir] - lo) * (rhi - rlo) / (hi - lo);
if (dist > currentradius) return false;
return true;
}
/* ----------------------------------------------------------------------
distance between an exterior point and a cone
------------------------------------------------------------------------- */
void FixIndent::DistanceExteriorPoint(int dir, double *center, double lo, double hi, double rlo,
double rhi, double &x, double &y, double &z)
{
double xp[3], nearest[3], corner1[3], corner2[3];
double point[3] = {x, y, z};
double del[3] = {x - center[0], y - center[1], z - center[2]};
del[dir] = 0.0;
double r = sqrt(del[0] * del[0] + del[1] * del[1] + del[2] * del[2]);
corner1[0] = center[0] + del[0] * rlo / r;
corner1[1] = center[1] + del[1] * rlo / r;
corner1[2] = center[2] + del[2] * rlo / r;
corner1[dir] = lo;
corner2[0] = center[0] + del[0] * rhi / r;
corner2[1] = center[1] + del[1] * rhi / r;
corner2[2] = center[2] + del[2] * rhi / r;
corner2[dir] = hi;
double corner3[3] = {center[0], center[1], center[2]};
corner3[dir] = lo;
double corner4[3] = {center[0], center[1], center[2]};
corner4[dir] = hi;
// initialize distance to a big number
double distsq = 1.0e20;
// check the first triangle
point_on_line_segment(corner1, corner2, point, xp);
distsq = closest(point, xp, nearest, distsq);
// check the second triangle
point_on_line_segment(corner1, corner3, point, xp);
distsq = closest(point, xp, nearest, distsq);
// check the third triangle
point_on_line_segment(corner2, corner4, point, xp);
distsq = closest(point, xp, nearest, distsq);
x -= nearest[0];
y -= nearest[1];
z -= nearest[2];
return;
}
/* ----------------------------------------------------------------------
distance between an interior point and a cone
------------------------------------------------------------------------- */
void FixIndent::DistanceInteriorPoint(int dir, double *center, double lo, double hi, double rlo,
double rhi, double &x, double &y, double &z)
{
double r, dist_disk, dist_surf;
double surflo[3], surfhi[3], xs[3];
double initial_point[3] = {x, y, z};
double point[3] = {0.0, 0.0, 0.0};
// initial check with the two disks
if ((initial_point[dir] - lo) < (hi - initial_point[dir])) {
dist_disk = (initial_point[dir] - lo) * (initial_point[dir] - lo);
point[dir] = initial_point[dir] - lo;
} else {
dist_disk = (hi - initial_point[dir]) * (hi - initial_point[dir]);
point[dir] = initial_point[dir] - hi;
}
// check with the points in the conical surface
double del[3] = {x - center[0], y - center[1], z - center[2]};
del[dir] = 0.0;
r = sqrt(del[0] * del[0] + del[1] * del[1] + del[2] * del[2]);
surflo[0] = center[0] + del[0] * rlo / r;
surflo[1] = center[1] + del[1] * rlo / r;
surflo[2] = center[2] + del[2] * rlo / r;
surflo[dir] = lo;
surfhi[0] = center[0] + del[0] * rhi / r;
surfhi[1] = center[1] + del[1] * rhi / r;
surfhi[2] = center[2] + del[2] * rhi / r;
surfhi[dir] = hi;
point_on_line_segment(surflo, surfhi, initial_point, xs);
double dx[3] = {initial_point[0] - xs[0], initial_point[1] - xs[1], initial_point[2] - xs[2]};
dist_surf = dx[0] * dx[0] + dx[1] * dx[1] + dx[2] * dx[2];
if (dist_surf < dist_disk) {
x = dx[0];
y = dx[1];
z = dx[2];
} else {
x = point[0];
y = point[1];
z = point[2];
}
return;
}
/* ----------------------------------------------------------------------
helper function extracted from region.cpp
------------------------------------------------------------------------- */
void FixIndent::point_on_line_segment(double *a, double *b, double *c, double *d)
{
double ba[3], ca[3];
MathExtra::sub3(b, a, ba);
MathExtra::sub3(c, a, ca);
double t = MathExtra::dot3(ca, ba) / MathExtra::dot3(ba, ba);
if (t <= 0.0) {
d[0] = a[0];
d[1] = a[1];
d[2] = a[2];
} else if (t >= 1.0) {
d[0] = b[0];
d[1] = b[1];
d[2] = b[2];
} else {
d[0] = a[0] + t * ba[0];
d[1] = a[1] + t * ba[1];
d[2] = a[2] + t * ba[2];
}
}
/* ----------------------------------------------------------------------
helper function extracted from region_cone.cpp
------------------------------------------------------------------------- */
double FixIndent::closest(double *x, double *near, double *nearest, double dsq)
{
double dx = x[0] - near[0];
double dy = x[1] - near[1];
double dz = x[2] - near[2];
double rsq = dx * dx + dy * dy + dz * dz;
if (rsq >= dsq) return dsq;
nearest[0] = near[0];
nearest[1] = near[1];
nearest[2] = near[2];
return rsq;
}