Files
lammps/src/EXTRA-PAIR/pair_lj_cubic.cpp
2025-04-01 16:19:37 +02:00

360 lines
11 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Aidan Thompson (SNL)
------------------------------------------------------------------------- */
#include "pair_lj_cubic.h"
#include "atom.h"
#include "comm.h"
#include "error.h"
#include "force.h"
#include "memory.h"
#include "neigh_list.h"
#include <cmath>
#include "pair_lj_cubic_const.h"
using namespace LAMMPS_NS;
using namespace PairLJCubicConstants;
/* ---------------------------------------------------------------------- */
PairLJCubic::PairLJCubic(LAMMPS *_lmp) : Pair(_lmp) {}
/* ---------------------------------------------------------------------- */
PairLJCubic::~PairLJCubic()
{
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
memory->destroy(cut);
memory->destroy(cut_inner);
memory->destroy(cut_inner_sq);
memory->destroy(epsilon);
memory->destroy(sigma);
memory->destroy(lj1);
memory->destroy(lj2);
memory->destroy(lj3);
memory->destroy(lj4);
}
}
/* ---------------------------------------------------------------------- */
void PairLJCubic::compute(int eflag, int vflag)
{
int i, j, ii, jj, inum, jnum, itype, jtype;
double xtmp, ytmp, ztmp, delx, dely, delz, evdwl, fpair;
double rsq, r2inv, r6inv, forcelj, factor_lj;
double r, t, rmin;
int *ilist, *jlist, *numneigh, **firstneigh;
evdwl = 0.0;
ev_init(eflag, vflag);
double **x = atom->x;
double **f = atom->f;
int *type = atom->type;
int nlocal = atom->nlocal;
double *special_lj = force->special_lj;
int newton_pair = force->newton_pair;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_lj = special_lj[sbmask(j)];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx * delx + dely * dely + delz * delz;
jtype = type[j];
if (rsq < cutsq[itype][jtype]) {
r2inv = 1.0 / rsq;
if (rsq <= cut_inner_sq[itype][jtype]) {
r6inv = r2inv * r2inv * r2inv;
forcelj = r6inv * (lj1[itype][jtype] * r6inv - lj2[itype][jtype]);
} else {
r = sqrt(rsq);
rmin = sigma[itype][jtype] * RT6TWO;
t = (r - cut_inner[itype][jtype]) / rmin;
forcelj = epsilon[itype][jtype] * (-DPHIDS + A3 * t * t / 2.0) * r / rmin;
}
fpair = factor_lj * forcelj * r2inv;
f[i][0] += delx * fpair;
f[i][1] += dely * fpair;
f[i][2] += delz * fpair;
if (newton_pair || j < nlocal) {
f[j][0] -= delx * fpair;
f[j][1] -= dely * fpair;
f[j][2] -= delz * fpair;
}
if (eflag) {
if (rsq <= cut_inner_sq[itype][jtype])
evdwl = r6inv * (lj3[itype][jtype] * r6inv - lj4[itype][jtype]);
else
evdwl = epsilon[itype][jtype] * (PHIS + DPHIDS * t - A3 * t * t * t / 6.0);
evdwl *= factor_lj;
if (evflag) ev_tally(i, j, nlocal, newton_pair, evdwl, 0.0, fpair, delx, dely, delz);
}
}
}
}
if (vflag_fdotr) virial_fdotr_compute();
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairLJCubic::allocate()
{
allocated = 1;
const int np1 = atom->ntypes + 1;
memory->create(setflag, np1, np1, "pair:setflag");
for (int i = 1; i < np1; i++)
for (int j = i; j < np1; j++) setflag[i][j] = 0;
memory->create(cutsq, np1, np1, "pair:cutsq");
memory->create(cut, np1, np1, "pair:cut");
memory->create(cut_inner, np1, np1, "pair:cut_inner");
memory->create(cut_inner_sq, np1, np1, "pair:cut_inner_sq");
memory->create(epsilon, np1, np1, "pair:epsilon");
memory->create(sigma, np1, np1, "pair:sigma");
memory->create(lj1, np1, np1, "pair:lj1");
memory->create(lj2, np1, np1, "pair:lj2");
memory->create(lj3, np1, np1, "pair:lj3");
memory->create(lj4, np1, np1, "pair:lj4");
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairLJCubic::settings(int narg, char ** /*arg*/)
{
if (narg != 0) error->all(FLERR, "Illegal pair_style command");
// NOTE: lj/cubic has no global cutoff. instead the cutoff is
// inferred from the lj parameters. so we must not reset cutoffs here.
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void PairLJCubic::coeff(int narg, char **arg)
{
if (narg != 4) error->all(FLERR, "Incorrect args for pair coefficients" + utils::errorurl(21));
if (!allocated) allocate();
int ilo, ihi, jlo, jhi;
utils::bounds(FLERR, arg[0], 1, atom->ntypes, ilo, ihi, error);
utils::bounds(FLERR, arg[1], 1, atom->ntypes, jlo, jhi, error);
double epsilon_one = utils::numeric(FLERR, arg[2], false, lmp);
double sigma_one = utils::numeric(FLERR, arg[3], false, lmp);
double rmin = sigma_one * RT6TWO;
int count = 0;
for (int i = ilo; i <= ihi; i++) {
for (int j = MAX(jlo, i); j <= jhi; j++) {
epsilon[i][j] = epsilon_one;
sigma[i][j] = sigma_one;
cut_inner[i][j] = rmin * SS;
cut[i][j] = rmin * SM;
setflag[i][j] = 1;
count++;
}
}
if (count == 0) error->all(FLERR, "Incorrect args for pair coefficients" + utils::errorurl(21));
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairLJCubic::init_one(int i, int j)
{
if (setflag[i][j] == 0) {
epsilon[i][j] = mix_energy(epsilon[i][i], epsilon[j][j], sigma[i][i], sigma[j][j]);
sigma[i][j] = mix_distance(sigma[i][i], sigma[j][j]);
cut_inner[i][j] = mix_distance(cut_inner[i][i], cut_inner[j][j]);
cut[i][j] = mix_distance(cut[i][i], cut[j][j]);
}
cut_inner_sq[i][j] = cut_inner[i][j] * cut_inner[i][j];
lj1[i][j] = 48.0 * epsilon[i][j] * pow(sigma[i][j], 12.0);
lj2[i][j] = 24.0 * epsilon[i][j] * pow(sigma[i][j], 6.0);
lj3[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j], 12.0);
lj4[i][j] = 4.0 * epsilon[i][j] * pow(sigma[i][j], 6.0);
cut_inner[j][i] = cut_inner[i][j];
cut_inner_sq[j][i] = cut_inner_sq[i][j];
epsilon[j][i] = epsilon[i][j];
sigma[j][i] = sigma[i][j];
lj1[j][i] = lj1[i][j];
lj2[j][i] = lj2[i][j];
lj3[j][i] = lj3[i][j];
lj4[j][i] = lj4[i][j];
return cut[i][j];
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairLJCubic::write_restart(FILE *fp)
{
write_restart_settings(fp);
int i, j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
fwrite(&setflag[i][j], sizeof(int), 1, fp);
if (setflag[i][j]) {
fwrite(&epsilon[i][j], sizeof(double), 1, fp);
fwrite(&sigma[i][j], sizeof(double), 1, fp);
fwrite(&cut_inner[i][j], sizeof(double), 1, fp);
fwrite(&cut[i][j], sizeof(double), 1, fp);
}
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairLJCubic::read_restart(FILE *fp)
{
read_restart_settings(fp);
allocate();
int i, j;
int me = comm->me;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
if (me == 0) utils::sfread(FLERR, &setflag[i][j], sizeof(int), 1, fp, nullptr, error);
MPI_Bcast(&setflag[i][j], 1, MPI_INT, 0, world);
if (setflag[i][j]) {
if (me == 0) {
utils::sfread(FLERR, &epsilon[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &sigma[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &cut_inner[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &cut[i][j], sizeof(double), 1, fp, nullptr, error);
}
MPI_Bcast(&epsilon[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&sigma[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&cut_inner[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&cut[i][j], 1, MPI_DOUBLE, 0, world);
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairLJCubic::write_restart_settings(FILE *fp)
{
fwrite(&mix_flag, sizeof(int), 1, fp);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairLJCubic::read_restart_settings(FILE *fp)
{
int me = comm->me;
if (me == 0) { utils::sfread(FLERR, &mix_flag, sizeof(int), 1, fp, nullptr, error); }
MPI_Bcast(&mix_flag, 1, MPI_INT, 0, world);
}
/* ---------------------------------------------------------------------- */
double PairLJCubic::single(int /*i*/, int /*j*/, int itype, int jtype, double rsq,
double /*factor_coul*/, double factor_lj, double &fforce)
{
double r2inv, r6inv, forcelj, philj;
double r, t;
double rmin;
// this is a truncated potential with an implicit cutoff
if (rsq >= cutsq[itype][jtype]) {
fforce = 0.0;
return 0.0;
}
r2inv = 1.0 / rsq;
if (rsq <= cut_inner_sq[itype][jtype]) {
r6inv = r2inv * r2inv * r2inv;
forcelj = r6inv * (lj1[itype][jtype] * r6inv - lj2[itype][jtype]);
} else {
r = sqrt(rsq);
rmin = sigma[itype][jtype] * RT6TWO;
t = (r - cut_inner[itype][jtype]) / rmin;
forcelj = epsilon[itype][jtype] * (-DPHIDS + A3 * t * t / 2.0) * r / rmin;
}
fforce = factor_lj * forcelj * r2inv;
if (rsq <= cut_inner_sq[itype][jtype])
philj = r6inv * (lj3[itype][jtype] * r6inv - lj4[itype][jtype]);
else
philj = epsilon[itype][jtype] * (PHIS + DPHIDS * t - A3 * t * t * t / 6.0);
return factor_lj * philj;
}
/* ---------------------------------------------------------------------- */
void *PairLJCubic::extract(const char *str, int &dim)
{
dim = 2;
if (strcmp(str, "epsilon") == 0) return (void *) epsilon;
if (strcmp(str, "sigma") == 0) return (void *) sigma;
return nullptr;
}