202 lines
5.3 KiB
C++
202 lines
5.3 KiB
C++
// clang-format off
|
|
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Axel Kohlmeyer (Temple U)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "omp_compat.h"
|
|
#include "angle_cosine_periodic_omp.h"
|
|
#include <cmath>
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "force.h"
|
|
#include "neighbor.h"
|
|
|
|
#include "math_special.h"
|
|
|
|
#include "suffix.h"
|
|
using namespace LAMMPS_NS;
|
|
using namespace MathSpecial;
|
|
|
|
#define SMALL 0.001
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
AngleCosinePeriodicOMP::AngleCosinePeriodicOMP(class LAMMPS *lmp)
|
|
: AngleCosinePeriodic(lmp), ThrOMP(lmp,THR_ANGLE)
|
|
{
|
|
suffix_flag |= Suffix::OMP;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void AngleCosinePeriodicOMP::compute(int eflag, int vflag)
|
|
{
|
|
ev_init(eflag,vflag);
|
|
|
|
const int nall = atom->nlocal + atom->nghost;
|
|
const int nthreads = comm->nthreads;
|
|
const int inum = neighbor->nanglelist;
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel LMP_DEFAULT_NONE LMP_SHARED(eflag,vflag)
|
|
#endif
|
|
{
|
|
int ifrom, ito, tid;
|
|
|
|
loop_setup_thr(ifrom, ito, tid, inum, nthreads);
|
|
ThrData *thr = fix->get_thr(tid);
|
|
thr->timer(Timer::START);
|
|
ev_setup_thr(eflag, vflag, nall, eatom, vatom, cvatom, thr);
|
|
|
|
if (inum > 0) {
|
|
if (evflag) {
|
|
if (eflag) {
|
|
if (force->newton_bond) eval<1,1,1>(ifrom, ito, thr);
|
|
else eval<1,1,0>(ifrom, ito, thr);
|
|
} else {
|
|
if (force->newton_bond) eval<1,0,1>(ifrom, ito, thr);
|
|
else eval<1,0,0>(ifrom, ito, thr);
|
|
}
|
|
} else {
|
|
if (force->newton_bond) eval<0,0,1>(ifrom, ito, thr);
|
|
else eval<0,0,0>(ifrom, ito, thr);
|
|
}
|
|
}
|
|
thr->timer(Timer::BOND);
|
|
reduce_thr(this, eflag, vflag, thr);
|
|
} // end of omp parallel region
|
|
}
|
|
|
|
template <int EVFLAG, int EFLAG, int NEWTON_BOND>
|
|
void AngleCosinePeriodicOMP::eval(int nfrom, int nto, ThrData * const thr)
|
|
{
|
|
int i,i1,i2,i3,n,m,type,b_factor;
|
|
double delx1,dely1,delz1,delx2,dely2,delz2;
|
|
double eangle,f1[3],f3[3];
|
|
double rsq1,rsq2,r1,r2,c,a,a11,a12,a22;
|
|
double tn,tn_1,tn_2,un,un_1,un_2;
|
|
|
|
const auto * _noalias const x = (dbl3_t *) atom->x[0];
|
|
auto * _noalias const f = (dbl3_t *) thr->get_f()[0];
|
|
const int4_t * _noalias const anglelist = (int4_t *) neighbor->anglelist[0];
|
|
const int nlocal = atom->nlocal;
|
|
eangle = 0.0;
|
|
|
|
for (n = nfrom; n < nto; n++) {
|
|
i1 = anglelist[n].a;
|
|
i2 = anglelist[n].b;
|
|
i3 = anglelist[n].c;
|
|
type = anglelist[n].t;
|
|
|
|
// 1st bond
|
|
|
|
delx1 = x[i1].x - x[i2].x;
|
|
dely1 = x[i1].y - x[i2].y;
|
|
delz1 = x[i1].z - x[i2].z;
|
|
|
|
rsq1 = delx1*delx1 + dely1*dely1 + delz1*delz1;
|
|
r1 = sqrt(rsq1);
|
|
|
|
// 2nd bond
|
|
|
|
delx2 = x[i3].x - x[i2].x;
|
|
dely2 = x[i3].y - x[i2].y;
|
|
delz2 = x[i3].z - x[i2].z;
|
|
|
|
rsq2 = delx2*delx2 + dely2*dely2 + delz2*delz2;
|
|
r2 = sqrt(rsq2);
|
|
|
|
// c = cosine of angle
|
|
|
|
c = delx1*delx2 + dely1*dely2 + delz1*delz2;
|
|
c /= r1*r2;
|
|
if (c > 1.0) c = 1.0;
|
|
if (c < -1.0) c = -1.0;
|
|
|
|
m = multiplicity[type];
|
|
b_factor = b[type];
|
|
|
|
// cos(n*x) = Tn(cos(x))
|
|
// Tn(x) = Chebyshev polynomials of the first kind: T_0 = 1, T_1 = x, ...
|
|
// recurrence relationship:
|
|
// Tn(x) = 2*x*T[n-1](x) - T[n-2](x) where T[-1](x) = 0
|
|
// also, dTn(x)/dx = n*U[n-1](x)
|
|
// where Un(x) = 2*x*U[n-1](x) - U[n-2](x) and U[-1](x) = 0
|
|
// finally need to handle special case for n = 1
|
|
|
|
tn = 1.0;
|
|
tn_1 = 1.0;
|
|
tn_2 = 0.0;
|
|
un = 1.0;
|
|
un_1 = 2.0;
|
|
un_2 = 0.0;
|
|
|
|
// force & energy
|
|
|
|
tn_2 = c;
|
|
for (i = 1; i <= m; i++) {
|
|
tn = 2*c*tn_1 - tn_2;
|
|
tn_2 = tn_1;
|
|
tn_1 = tn;
|
|
}
|
|
|
|
for (i = 2; i <= m; i++) {
|
|
un = 2*c*un_1 - un_2;
|
|
un_2 = un_1;
|
|
un_1 = un;
|
|
}
|
|
tn = b_factor*powsign(m)*tn;
|
|
un = b_factor*powsign(m)*m*un;
|
|
|
|
if (EFLAG) eangle = 2*k[type]*(1.0 - tn);
|
|
|
|
a = -k[type]*un;
|
|
a11 = a*c / rsq1;
|
|
a12 = -a / (r1*r2);
|
|
a22 = a*c / rsq2;
|
|
|
|
f1[0] = a11*delx1 + a12*delx2;
|
|
f1[1] = a11*dely1 + a12*dely2;
|
|
f1[2] = a11*delz1 + a12*delz2;
|
|
f3[0] = a22*delx2 + a12*delx1;
|
|
f3[1] = a22*dely2 + a12*dely1;
|
|
f3[2] = a22*delz2 + a12*delz1;
|
|
|
|
// apply force to each of 3 atoms
|
|
|
|
if (NEWTON_BOND || i1 < nlocal) {
|
|
f[i1].x += f1[0];
|
|
f[i1].y += f1[1];
|
|
f[i1].z += f1[2];
|
|
}
|
|
|
|
if (NEWTON_BOND || i2 < nlocal) {
|
|
f[i2].x -= f1[0] + f3[0];
|
|
f[i2].y -= f1[1] + f3[1];
|
|
f[i2].z -= f1[2] + f3[2];
|
|
}
|
|
|
|
if (NEWTON_BOND || i3 < nlocal) {
|
|
f[i3].x += f3[0];
|
|
f[i3].y += f3[1];
|
|
f[i3].z += f3[2];
|
|
}
|
|
|
|
if (EVFLAG) ev_tally_thr(this,i1,i2,i3,nlocal,NEWTON_BOND,eangle,f1,f3,
|
|
delx1,dely1,delz1,delx2,dely2,delz2,thr);
|
|
}
|
|
}
|