273 lines
7.1 KiB
C++
273 lines
7.1 KiB
C++
// clang-format off
|
|
/* ----------------------------------------------------------------------
|
|
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
|
https://www.lammps.org/, Sandia National Laboratories
|
|
Steve Plimpton, sjplimp@sandia.gov
|
|
|
|
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
|
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
|
certain rights in this software. This software is distributed under
|
|
the GNU General Public License.
|
|
|
|
See the README file in the top-level LAMMPS directory.
|
|
------------------------------------------------------------------------- */
|
|
|
|
/* ----------------------------------------------------------------------
|
|
Contributing author: Axel Kohlmeyer (Temple U)
|
|
------------------------------------------------------------------------- */
|
|
|
|
#include "dihedral_quadratic_omp.h"
|
|
|
|
#include "atom.h"
|
|
#include "comm.h"
|
|
#include "force.h"
|
|
#include "math_const.h"
|
|
#include "neighbor.h"
|
|
|
|
#include <cmath>
|
|
|
|
#include "omp_compat.h"
|
|
#include "suffix.h"
|
|
using namespace LAMMPS_NS;
|
|
using namespace MathConst;
|
|
|
|
#define TOLERANCE 0.05
|
|
#define SMALL 0.001
|
|
#define SMALLER 0.00001
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
DihedralQuadraticOMP::DihedralQuadraticOMP(class LAMMPS *lmp)
|
|
: DihedralQuadratic(lmp), ThrOMP(lmp,THR_DIHEDRAL)
|
|
{
|
|
suffix_flag |= Suffix::OMP;
|
|
}
|
|
|
|
/* ---------------------------------------------------------------------- */
|
|
|
|
void DihedralQuadraticOMP::compute(int eflag, int vflag)
|
|
{
|
|
ev_init(eflag,vflag);
|
|
|
|
const int nall = atom->nlocal + atom->nghost;
|
|
const int nthreads = comm->nthreads;
|
|
const int inum = neighbor->ndihedrallist;
|
|
|
|
#if defined(_OPENMP)
|
|
#pragma omp parallel LMP_DEFAULT_NONE LMP_SHARED(eflag,vflag)
|
|
#endif
|
|
{
|
|
int ifrom, ito, tid;
|
|
|
|
loop_setup_thr(ifrom, ito, tid, inum, nthreads);
|
|
ThrData *thr = fix->get_thr(tid);
|
|
thr->timer(Timer::START);
|
|
ev_setup_thr(eflag, vflag, nall, eatom, vatom, cvatom, thr);
|
|
|
|
if (inum > 0) {
|
|
if (evflag) {
|
|
if (eflag) {
|
|
if (force->newton_bond) eval<1,1,1>(ifrom, ito, thr);
|
|
else eval<1,1,0>(ifrom, ito, thr);
|
|
} else {
|
|
if (force->newton_bond) eval<1,0,1>(ifrom, ito, thr);
|
|
else eval<1,0,0>(ifrom, ito, thr);
|
|
}
|
|
} else {
|
|
if (force->newton_bond) eval<0,0,1>(ifrom, ito, thr);
|
|
else eval<0,0,0>(ifrom, ito, thr);
|
|
}
|
|
}
|
|
thr->timer(Timer::BOND);
|
|
reduce_thr(this, eflag, vflag, thr);
|
|
} // end of omp parallel region
|
|
}
|
|
|
|
template <int EVFLAG, int EFLAG, int NEWTON_BOND>
|
|
void DihedralQuadraticOMP::eval(int nfrom, int nto, ThrData * const thr)
|
|
{
|
|
int i1,i2,i3,i4,n,type;
|
|
double vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z,vb2xm,vb2ym,vb2zm;
|
|
double edihedral,f1[3],f2[3],f3[3],f4[3];
|
|
double sb1,sb2,sb3,rb1,rb3,c0,b1mag2,b1mag,b2mag2;
|
|
double b2mag,b3mag2,b3mag,ctmp,r12c1,c1mag,r12c2;
|
|
double c2mag,sc1,sc2,s1,s12,c,p,pd,a,a11,a22;
|
|
double a33,a12,a13,a23,sx2,sy2,sz2;
|
|
double s2,cx,cy,cz,cmag,dx,phi,si,siinv,sin2;
|
|
|
|
edihedral = 0.0;
|
|
|
|
const auto * _noalias const x = (dbl3_t *) atom->x[0];
|
|
auto * _noalias const f = (dbl3_t *) thr->get_f()[0];
|
|
const int5_t * _noalias const dihedrallist = (int5_t *) neighbor->dihedrallist[0];
|
|
const int nlocal = atom->nlocal;
|
|
|
|
for (n = nfrom; n < nto; n++) {
|
|
i1 = dihedrallist[n].a;
|
|
i2 = dihedrallist[n].b;
|
|
i3 = dihedrallist[n].c;
|
|
i4 = dihedrallist[n].d;
|
|
type = dihedrallist[n].t;
|
|
|
|
// 1st bond
|
|
|
|
vb1x = x[i1].x - x[i2].x;
|
|
vb1y = x[i1].y - x[i2].y;
|
|
vb1z = x[i1].z - x[i2].z;
|
|
|
|
// 2nd bond
|
|
|
|
vb2x = x[i3].x - x[i2].x;
|
|
vb2y = x[i3].y - x[i2].y;
|
|
vb2z = x[i3].z - x[i2].z;
|
|
|
|
vb2xm = -vb2x;
|
|
vb2ym = -vb2y;
|
|
vb2zm = -vb2z;
|
|
|
|
// 3rd bond
|
|
|
|
vb3x = x[i4].x - x[i3].x;
|
|
vb3y = x[i4].y - x[i3].y;
|
|
vb3z = x[i4].z - x[i3].z;
|
|
|
|
// c0 calculation
|
|
|
|
sb1 = 1.0 / (vb1x*vb1x + vb1y*vb1y + vb1z*vb1z);
|
|
sb2 = 1.0 / (vb2x*vb2x + vb2y*vb2y + vb2z*vb2z);
|
|
sb3 = 1.0 / (vb3x*vb3x + vb3y*vb3y + vb3z*vb3z);
|
|
|
|
rb1 = sqrt(sb1);
|
|
rb3 = sqrt(sb3);
|
|
|
|
c0 = (vb1x*vb3x + vb1y*vb3y + vb1z*vb3z) * rb1*rb3;
|
|
|
|
// 1st and 2nd angle
|
|
|
|
b1mag2 = vb1x*vb1x + vb1y*vb1y + vb1z*vb1z;
|
|
b1mag = sqrt(b1mag2);
|
|
b2mag2 = vb2x*vb2x + vb2y*vb2y + vb2z*vb2z;
|
|
b2mag = sqrt(b2mag2);
|
|
b3mag2 = vb3x*vb3x + vb3y*vb3y + vb3z*vb3z;
|
|
b3mag = sqrt(b3mag2);
|
|
|
|
ctmp = vb1x*vb2x + vb1y*vb2y + vb1z*vb2z;
|
|
r12c1 = 1.0 / (b1mag*b2mag);
|
|
c1mag = ctmp * r12c1;
|
|
|
|
ctmp = vb2xm*vb3x + vb2ym*vb3y + vb2zm*vb3z;
|
|
r12c2 = 1.0 / (b2mag*b3mag);
|
|
c2mag = ctmp * r12c2;
|
|
|
|
// cos and sin of 2 angles and final c
|
|
|
|
sin2 = MAX(1.0 - c1mag*c1mag,0.0);
|
|
sc1 = sqrt(sin2);
|
|
if (sc1 < SMALL) sc1 = SMALL;
|
|
sc1 = 1.0/sc1;
|
|
|
|
sin2 = MAX(1.0 - c2mag*c2mag,0.0);
|
|
sc2 = sqrt(sin2);
|
|
if (sc2 < SMALL) sc2 = SMALL;
|
|
sc2 = 1.0/sc2;
|
|
|
|
s1 = sc1 * sc1;
|
|
s2 = sc2 * sc2;
|
|
s12 = sc1 * sc2;
|
|
c = (c0 + c1mag*c2mag) * s12;
|
|
|
|
cx = vb1y*vb2z - vb1z*vb2y;
|
|
cy = vb1z*vb2x - vb1x*vb2z;
|
|
cz = vb1x*vb2y - vb1y*vb2x;
|
|
cmag = sqrt(cx*cx + cy*cy + cz*cz);
|
|
dx = (cx*vb3x + cy*vb3y + cz*vb3z)/cmag/b3mag;
|
|
|
|
// error check
|
|
|
|
if (c > 1.0 + TOLERANCE || c < (-1.0 - TOLERANCE))
|
|
problem(FLERR, i1, i2, i3, i4);
|
|
|
|
if (c > 1.0) c = 1.0;
|
|
if (c < -1.0) c = -1.0;
|
|
|
|
// force & energy
|
|
// p = k ( phi- phi0)^2
|
|
// pd = dp/dc
|
|
|
|
phi = acos(c);
|
|
if (dx > 0.0) phi *= -1.0;
|
|
si = sin(phi);
|
|
if (fabs(si) < SMALLER) si = SMALLER;
|
|
siinv = 1.0/si;
|
|
|
|
double dphi = phi-phi0[type];
|
|
if (dphi > MY_PI) dphi -= 2*MY_PI;
|
|
else if (dphi < -MY_PI) dphi += 2*MY_PI;
|
|
p = k[type]*dphi;
|
|
pd = - 2.0 * p * siinv;
|
|
p = p * dphi;
|
|
|
|
if (EFLAG) edihedral = p;
|
|
|
|
a = pd;
|
|
c = c * a;
|
|
s12 = s12 * a;
|
|
a11 = c*sb1*s1;
|
|
a22 = -sb2 * (2.0*c0*s12 - c*(s1+s2));
|
|
a33 = c*sb3*s2;
|
|
a12 = -r12c1 * (c1mag*c*s1 + c2mag*s12);
|
|
a13 = -rb1*rb3*s12;
|
|
a23 = r12c2 * (c2mag*c*s2 + c1mag*s12);
|
|
|
|
sx2 = a12*vb1x + a22*vb2x + a23*vb3x;
|
|
sy2 = a12*vb1y + a22*vb2y + a23*vb3y;
|
|
sz2 = a12*vb1z + a22*vb2z + a23*vb3z;
|
|
|
|
f1[0] = a11*vb1x + a12*vb2x + a13*vb3x;
|
|
f1[1] = a11*vb1y + a12*vb2y + a13*vb3y;
|
|
f1[2] = a11*vb1z + a12*vb2z + a13*vb3z;
|
|
|
|
f2[0] = -sx2 - f1[0];
|
|
f2[1] = -sy2 - f1[1];
|
|
f2[2] = -sz2 - f1[2];
|
|
|
|
f4[0] = a13*vb1x + a23*vb2x + a33*vb3x;
|
|
f4[1] = a13*vb1y + a23*vb2y + a33*vb3y;
|
|
f4[2] = a13*vb1z + a23*vb2z + a33*vb3z;
|
|
|
|
f3[0] = sx2 - f4[0];
|
|
f3[1] = sy2 - f4[1];
|
|
f3[2] = sz2 - f4[2];
|
|
|
|
// apply force to each of 4 atoms
|
|
|
|
if (NEWTON_BOND || i1 < nlocal) {
|
|
f[i1].x += f1[0];
|
|
f[i1].y += f1[1];
|
|
f[i1].z += f1[2];
|
|
}
|
|
|
|
if (NEWTON_BOND || i2 < nlocal) {
|
|
f[i2].x += f2[0];
|
|
f[i2].y += f2[1];
|
|
f[i2].z += f2[2];
|
|
}
|
|
|
|
if (NEWTON_BOND || i3 < nlocal) {
|
|
f[i3].x += f3[0];
|
|
f[i3].y += f3[1];
|
|
f[i3].z += f3[2];
|
|
}
|
|
|
|
if (NEWTON_BOND || i4 < nlocal) {
|
|
f[i4].x += f4[0];
|
|
f[i4].y += f4[1];
|
|
f[i4].z += f4[2];
|
|
}
|
|
|
|
if (EVFLAG)
|
|
ev_tally_thr(this,i1,i2,i3,i4,nlocal,NEWTON_BOND,edihedral,f1,f3,f4,
|
|
vb1x,vb1y,vb1z,vb2x,vb2y,vb2z,vb3x,vb3y,vb3z,thr);
|
|
}
|
|
}
|