Files
lammps/src/USER-SDPD/pair_sdpd_taitwater_isothermal.cpp
2018-10-30 17:40:00 +03:30

322 lines
10 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author:
Morteza Jalalvand (IASBS) jalalvand.m AT gmail.com
references: Espanol and Revenga, Phys Rev E 67, 026705 (2003)
------------------------------------------------------------------------- */
#include <math.h>
#include <stdlib.h>
#include "pair_sdpd_taitwater_isothermal.h"
#include "atom.h"
#include "force.h"
#include "comm.h"
#include "neigh_list.h"
#include "memory.h"
#include "error.h"
#include "domain.h"
#include "update.h"
#ifndef USE_ZEST
#include "random_mars.h"
#endif
using namespace LAMMPS_NS;
static const double sqrt_2_inv = std::sqrt(0.5);
/* ---------------------------------------------------------------------- */
PairSDPDTaitwaterIsothermal::PairSDPDTaitwaterIsothermal (LAMMPS *lmp)
: Pair (lmp) {
restartinfo = 0;
}
/* ---------------------------------------------------------------------- */
PairSDPDTaitwaterIsothermal::~PairSDPDTaitwaterIsothermal () {
if (allocated) {
memory->destroy (setflag);
memory->destroy (cutsq);
memory->destroy (cut);
memory->destroy (rho0);
memory->destroy (soundspeed);
memory->destroy (B);
}
}
/* ---------------------------------------------------------------------- */
void PairSDPDTaitwaterIsothermal::compute (int eflag, int vflag) {
int i, j, ii, jj, inum, jnum, itype, jtype;
double xtmp, ytmp, ztmp, delx, dely, delz, fpair;
int *ilist, *jlist, *numneigh, **firstneigh;
double vxtmp, vytmp, vztmp, imass, jmass, fi, fj, fvisc;
double h, ih, ihsq, velx, vely, velz;
double rsq, tmp, wfd, delVdotDelR, deltaE;
double prefactor, wiener[3][3], f_random[3];
if (eflag || vflag) ev_setup (eflag, vflag);
else evflag = vflag_fdotr = 0;
double **v = atom->vest;
double **x = atom->x;
double **f = atom->f;
double *rho = atom->rho;
double *mass = atom->mass;
double *de = atom->de;
double *drho = atom->drho;
int *type = atom->type;
int nlocal = atom->nlocal;
int newton_pair = force->newton_pair;
int dimension = domain->dimension;
double dtinv = 1.0 / update->dt;
double kBoltzmann = force->boltz;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
vxtmp = v[i][0];
vytmp = v[i][1];
vztmp = v[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
imass = mass[itype];
// compute pressure of atom i with Tait EOS
tmp = rho[i] / rho0[itype];
fi = tmp * tmp * tmp;
fi = B[itype] * (fi * fi * tmp - 1.0) / (rho[i] * rho[i]);
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx * delx + dely * dely + delz * delz;
jtype = type[j];
jmass = mass[jtype];
if (rsq < cutsq[itype][jtype]) {
h = cut[itype][jtype];
ih = 1.0 / h;
ihsq = ih * ih;
double r = sqrt (rsq);
wfd = h - r;
if (dimension == 3) {
// Lucy Kernel, 3d
// Note that wfd, the derivative of the weight function with respect to r,
// is lacking a factor of r.
// The missing factor of r is recovered by
// (1) using delV . delX instead of delV . (delX/r) and
// (2) using f[i][0] += delx * fpair instead of f[i][0] += (delx/r) * fpair
wfd = -25.066903536973515383e0 * wfd * wfd * ihsq * ihsq * ihsq * ih;
} else {
// Lucy Kernel, 2d
wfd = -19.098593171027440292e0 * wfd * wfd * ihsq * ihsq * ihsq;
}
// compute pressure of atom j with Tait EOS
tmp = rho[j] / rho0[jtype];
fj = tmp * tmp * tmp;
fj = B[jtype] * (fj * fj * tmp - 1.0) / (rho[j] * rho[j]);
velx=vxtmp - v[j][0];
vely=vytmp - v[j][1];
velz=vztmp - v[j][2];
// dot product of velocity delta and distance vector
delVdotDelR = delx * velx + dely * vely + delz * velz;
// Espanol Viscosity (Espanol, 2003)
fvisc = (5. / 3.) * viscosity * imass * jmass * wfd / (rho[i]*rho[j]);
// total pair force
fpair = -imass * jmass * (fi + fj) * wfd;
// random force calculation
// independent increments of a Wiener process matrix
#ifdef USE_ZEST
wiener[0][0] = gaussian (generator);
wiener[1][1] = gaussian (generator);
wiener[2][2] = gaussian (generator);
wiener[0][1] = wiener[1][0] = sqrt_2_inv * gaussian (generator);
wiener[0][2] = wiener[2][0] = sqrt_2_inv * gaussian (generator);
wiener[1][2] = wiener[2][1] = sqrt_2_inv * gaussian (generator);
#else
wiener[0][0] = random->gaussian ();
wiener[1][1] = random->gaussian ();
wiener[2][2] = random->gaussian ();
wiener[0][1] = wiener[1][0] = sqrt_2_inv * random->gaussian ();
wiener[0][2] = wiener[2][0] = sqrt_2_inv * random->gaussian ();
wiener[1][2] = wiener[2][1] = sqrt_2_inv * random->gaussian ();
#endif
prefactor = sqrt (-4. * kBoltzmann*temperature * fvisc * dtinv) / r;
f_random[0] = prefactor * (wiener[0][0]*delx + wiener[0][1]*dely + wiener[0][2]*delz);
f_random[1] = prefactor * (wiener[1][0]*delx + wiener[1][1]*dely + wiener[1][2]*delz);
f_random[2] = prefactor * (wiener[2][0]*delx + wiener[2][1]*dely + wiener[2][2]*delz);
f[i][0] += delx * fpair + (velx + delx * delVdotDelR / rsq) * fvisc + f_random[0];
f[i][1] += dely * fpair + (vely + dely * delVdotDelR / rsq) * fvisc + f_random[1];
f[i][2] += delz * fpair + (velz + delz * delVdotDelR / rsq) * fvisc + f_random[2];
// and change in density
drho[i] += jmass * delVdotDelR * wfd;
if (newton_pair || j < nlocal) {
f[j][0] -= delx * fpair + (velx + delx * delVdotDelR / rsq) * fvisc + f_random[0];
f[j][1] -= dely * fpair + (vely + dely * delVdotDelR / rsq) * fvisc + f_random[1];
f[j][2] -= delz * fpair + (velz + delz * delVdotDelR / rsq) * fvisc + f_random[2];
drho[j] += imass * delVdotDelR * wfd;
}
if (evflag)
ev_tally (i, j, nlocal, newton_pair, 0.0, 0.0, fpair, delx, dely, delz);
}
}
}
if (vflag_fdotr) virial_fdotr_compute ();
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairSDPDTaitwaterIsothermal::allocate () {
allocated = 1;
int n = atom->ntypes;
memory->create (setflag, n + 1, n + 1, "pair:setflag");
for (int i = 1; i <= n; i++)
for (int j = i; j <= n; j++)
setflag[i][j] = 0;
memory->create (cutsq, n + 1, n + 1, "pair:cutsq");
memory->create (rho0, n + 1, "pair:rho0");
memory->create (soundspeed, n + 1, "pair:soundspeed");
memory->create (B, n + 1, "pair:B");
memory->create (cut, n + 1, n + 1, "pair:cut");
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairSDPDTaitwaterIsothermal::settings (int narg, char **arg) {
if (narg != 2 && narg != 3) error->all (FLERR, "Illegal number of setting "
"arguments for pair_style sdpd/taitwater/morris/isothermal");
temperature = force->numeric (FLERR, arg[0]);
viscosity = force->numeric (FLERR, arg[1]);
if (temperature <= 0) error->all (FLERR, "Temperature must be positive");
if (viscosity <= 0) error->all (FLERR, "Viscosity must be positive");
// seed is immune to underflow/overflow because it is unsigned
seed = comm->nprocs + comm->me + atom->nlocal;
if (narg == 3) seed += force->inumeric (FLERR, arg[2]);
#ifdef USE_ZEST
generator.seed (seed);
#else
random = new RanMars (lmp, seed);
#endif
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void PairSDPDTaitwaterIsothermal::coeff (int narg, char **arg) {
if (narg != 5) error->all (FLERR, "Incorrect args for pair_style "
"sph/taitwater/morris coefficients");
if (!allocated) allocate();
int ilo, ihi, jlo, jhi;
force->bounds (FLERR, arg[0], atom->ntypes, ilo, ihi);
force->bounds (FLERR, arg[1], atom->ntypes, jlo, jhi);
double rho0_one = force->numeric (FLERR,arg[2]);
double soundspeed_one = force->numeric (FLERR,arg[3]);
double cut_one = force->numeric (FLERR,arg[4]);
double B_one = soundspeed_one * soundspeed_one * rho0_one / 7.0;
if (rho0_one <= 0) error->all (FLERR, "Density must be positive");
if (soundspeed_one <= 0) error->all (FLERR, "Sound speed must be positive");
if (cut_one <= 0) error->all (FLERR, "Cutoff must be positive");
int count = 0;
for (int i = ilo; i <= ihi; i++) {
rho0[i] = rho0_one;
soundspeed[i] = soundspeed_one;
B[i] = B_one;
for (int j = MAX(jlo,i); j <= jhi; j++) {
cut[i][j] = cut_one;
setflag[i][j] = 1;
count++;
}
}
if (count == 0)
error->all(FLERR,"Incorrect args for pair coefficients");
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairSDPDTaitwaterIsothermal::init_one (int i, int j) {
if (setflag[i][j] == 0)
error->all(FLERR,"Not all pair sph/taitwater/morris coeffs are not set");
cut[j][i] = cut[i][j];
return cut[i][j];
}
/* ---------------------------------------------------------------------- */
double PairSDPDTaitwaterIsothermal::single (int /*i*/, int /*j*/, int /*itype*/,
int /*jtype*/, double /*rsq*/, double /*factor_coul*/,
double /*factor_lj*/, double &fforce) {
fforce = 0.0;
return 0.0;
}