Files
lammps/src/compute_gyration_chunk.cpp

278 lines
7.6 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "compute_gyration_chunk.h"
#include "atom.h"
#include "compute_chunk_atom.h"
#include "domain.h"
#include "error.h"
#include "memory.h"
#include <cmath>
#include <cstring>
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
ComputeGyrationChunk::ComputeGyrationChunk(LAMMPS *lmp, int narg, char **arg) :
ComputeChunk(lmp, narg, arg), massproc(nullptr), masstotal(nullptr), com(nullptr),
comall(nullptr), rg(nullptr), rgall(nullptr), rgt(nullptr), rgtall(nullptr)
{
ComputeGyrationChunk::init();
// optional args
tensor = 0;
int iarg = 4;
while (iarg < narg) {
if (strcmp(arg[iarg], "tensor") == 0) {
tensor = 1;
iarg++;
} else
error->all(FLERR, "Illegal compute gyration/chunk command");
}
if (tensor) {
array_flag = 1;
size_array_cols = 6;
size_array_rows = 0;
size_array_rows_variable = 1;
extarray = 0;
} else {
vector_flag = 1;
size_vector = 0;
size_vector_variable = 1;
extvector = 0;
}
ComputeGyrationChunk::allocate();
}
/* ---------------------------------------------------------------------- */
ComputeGyrationChunk::~ComputeGyrationChunk()
{
memory->destroy(massproc);
memory->destroy(masstotal);
memory->destroy(com);
memory->destroy(comall);
memory->destroy(rg);
memory->destroy(rgall);
memory->destroy(rgt);
memory->destroy(rgtall);
}
/* ---------------------------------------------------------------------- */
void ComputeGyrationChunk::compute_vector()
{
int i, index;
double dx, dy, dz, massone;
double unwrap[3];
ComputeChunk::compute_vector();
com_chunk();
int *ichunk = cchunk->ichunk;
for (i = 0; i < nchunk; i++) rg[i] = 0.0;
// compute Rg for each chunk
double **x = atom->x;
int *mask = atom->mask;
int *type = atom->type;
imageint *image = atom->image;
double *mass = atom->mass;
double *rmass = atom->rmass;
int nlocal = atom->nlocal;
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
domain->unmap(x[i], image[i], unwrap);
dx = unwrap[0] - comall[index][0];
dy = unwrap[1] - comall[index][1];
dz = unwrap[2] - comall[index][2];
if (rmass)
massone = rmass[i];
else
massone = mass[type[i]];
rg[index] += (dx * dx + dy * dy + dz * dz) * massone;
}
MPI_Allreduce(rg, rgall, nchunk, MPI_DOUBLE, MPI_SUM, world);
for (i = 0; i < nchunk; i++)
if (masstotal[i] > 0.0) rgall[i] = sqrt(rgall[i] / masstotal[i]);
}
/* ---------------------------------------------------------------------- */
void ComputeGyrationChunk::compute_array()
{
int i, j, index;
double dx, dy, dz, massone;
double unwrap[3];
ComputeChunk::compute_array();
com_chunk();
int *ichunk = cchunk->ichunk;
for (i = 0; i < nchunk; i++)
for (j = 0; j < 6; j++) rgt[i][j] = 0.0;
double **x = atom->x;
int *mask = atom->mask;
int *type = atom->type;
imageint *image = atom->image;
double *mass = atom->mass;
double *rmass = atom->rmass;
int nlocal = atom->nlocal;
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
domain->unmap(x[i], image[i], unwrap);
dx = unwrap[0] - comall[index][0];
dy = unwrap[1] - comall[index][1];
dz = unwrap[2] - comall[index][2];
if (rmass)
massone = rmass[i];
else
massone = mass[type[i]];
rgt[index][0] += dx * dx * massone;
rgt[index][1] += dy * dy * massone;
rgt[index][2] += dz * dz * massone;
rgt[index][3] += dx * dy * massone;
rgt[index][4] += dx * dz * massone;
rgt[index][5] += dy * dz * massone;
}
if (nchunk) MPI_Allreduce(&rgt[0][0], &rgtall[0][0], nchunk * 6, MPI_DOUBLE, MPI_SUM, world);
for (i = 0; i < nchunk; i++) {
if (masstotal[i] > 0.0) {
for (j = 0; j < 6; j++) rgtall[i][j] = rgtall[i][j] / masstotal[i];
}
}
}
/* ----------------------------------------------------------------------
calculate per-chunk COM, used by both scalar and tensor
------------------------------------------------------------------------- */
void ComputeGyrationChunk::com_chunk()
{
int index;
double massone;
double unwrap[3];
int *ichunk = cchunk->ichunk;
// zero local per-chunk values
for (int i = 0; i < nchunk; i++) {
massproc[i] = 0.0;
com[i][0] = com[i][1] = com[i][2] = 0.0;
}
// compute COM for each chunk
double **x = atom->x;
int *mask = atom->mask;
int *type = atom->type;
imageint *image = atom->image;
double *mass = atom->mass;
double *rmass = atom->rmass;
int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
index = ichunk[i] - 1;
if (index < 0) continue;
if (rmass)
massone = rmass[i];
else
massone = mass[type[i]];
domain->unmap(x[i], image[i], unwrap);
massproc[index] += massone;
com[index][0] += unwrap[0] * massone;
com[index][1] += unwrap[1] * massone;
com[index][2] += unwrap[2] * massone;
}
MPI_Allreduce(massproc, masstotal, nchunk, MPI_DOUBLE, MPI_SUM, world);
MPI_Allreduce(&com[0][0], &comall[0][0], 3 * nchunk, MPI_DOUBLE, MPI_SUM, world);
for (int i = 0; i < nchunk; i++) {
if (masstotal[i] > 0.0) {
comall[i][0] /= masstotal[i];
comall[i][1] /= masstotal[i];
comall[i][2] /= masstotal[i];
}
}
}
/* ----------------------------------------------------------------------
free and reallocate per-chunk arrays
------------------------------------------------------------------------- */
void ComputeGyrationChunk::allocate()
{
ComputeChunk::allocate();
memory->destroy(massproc);
memory->destroy(masstotal);
memory->destroy(com);
memory->destroy(comall);
memory->destroy(rg);
memory->destroy(rgall);
memory->destroy(rgt);
memory->destroy(rgtall);
maxchunk = nchunk;
memory->create(massproc, maxchunk, "gyration/chunk:massproc");
memory->create(masstotal, maxchunk, "gyration/chunk:masstotal");
memory->create(com, maxchunk, 3, "gyration/chunk:com");
memory->create(comall, maxchunk, 3, "gyration/chunk:comall");
if (tensor) {
memory->create(rgt, maxchunk, 6, "gyration/chunk:rgt");
memory->create(rgtall, maxchunk, 6, "gyration/chunk:rgtall");
array = rgtall;
} else {
memory->create(rg, maxchunk, "gyration/chunk:rg");
memory->create(rgall, maxchunk, "gyration/chunk:rgall");
vector = rgall;
}
}
/* ----------------------------------------------------------------------
memory usage of local data
------------------------------------------------------------------------- */
double ComputeGyrationChunk::memory_usage()
{
double bytes = ComputeChunk::memory_usage();
bytes += (bigint) maxchunk * 2 * sizeof(double);
bytes += (double) maxchunk * 2 * 3 * sizeof(double);
if (tensor)
bytes += (double) maxchunk * 2 * 6 * sizeof(double);
else
bytes += (double) maxchunk * 2 * sizeof(double);
return bytes;
}