Files
lammps/lib/linalg/dgesv.cpp
2022-12-28 13:18:38 -05:00

218 lines
6.5 KiB
C++

/* fortran/dgesv.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* > \brief <b> DGESV computes the solution to system of linear equations A * X = B for GE matrices</b> */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DGESV + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesv.f
"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesv.f
"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesv.f
"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DGESV( N, NRHS, A, LDA, IPIV, B, LDB, INFO ) */
/* .. Scalar Arguments .. */
/* INTEGER INFO, LDA, LDB, N, NRHS */
/* .. */
/* .. Array Arguments .. */
/* INTEGER IPIV( * ) */
/* DOUBLE PRECISION A( LDA, * ), B( LDB, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DGESV computes the solution to a real system of linear equations */
/* > A * X = B, */
/* > where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */
/* > */
/* > The LU decomposition with partial pivoting and row interchanges is */
/* > used to factor A as */
/* > A = P * L * U, */
/* > where P is a permutation matrix, L is unit lower triangular, and U is */
/* > upper triangular. The factored form of A is then used to solve the */
/* > system of equations A * X = B. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of linear equations, i.e., the order of the */
/* > matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] NRHS */
/* > \verbatim */
/* > NRHS is INTEGER */
/* > The number of right hand sides, i.e., the number of columns */
/* > of the matrix B. NRHS >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the N-by-N coefficient matrix A. */
/* > On exit, the factors L and U from the factorization */
/* > A = P*L*U; the unit diagonal elements of L are not stored. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (N) */
/* > The pivot indices that define the permutation matrix P; */
/* > row i of the matrix was interchanged with row IPIV(i). */
/* > \endverbatim */
/* > */
/* > \param[in,out] B */
/* > \verbatim */
/* > B is DOUBLE PRECISION array, dimension (LDB,NRHS) */
/* > On entry, the N-by-NRHS matrix of right hand side matrix B. */
/* > On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > The leading dimension of the array B. LDB >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, U(i,i) is exactly zero. The factorization */
/* > has been completed, but the factor U is exactly */
/* > singular, so the solution could not be computed. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup doubleGEsolve */
/* ===================================================================== */
/* Subroutine */ int dgesv_(integer *n, integer *nrhs, doublereal *a, integer
*lda, integer *ipiv, doublereal *b, integer *ldb, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1;
/* Local variables */
extern /* Subroutine */ int dgetrf_(integer *, integer *, doublereal *,
integer *, integer *, integer *), xerbla_(char *, integer *,
ftnlen), dgetrs_(char *, integer *, integer *, doublereal *,
integer *, integer *, doublereal *, integer *, integer *, ftnlen);
/* -- LAPACK driver routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--ipiv;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
*info = 0;
if (*n < 0) {
*info = -1;
} else if (*nrhs < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -4;
} else if (*ldb < max(1,*n)) {
*info = -7;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"DGESV ", &i__1, (ftnlen)6);
return 0;
}
/* Compute the LU factorization of A. */
dgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info);
if (*info == 0) {
/* Solve the system A*X = B, overwriting B with X. */
dgetrs_((char *)"No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &b[
b_offset], ldb, info, (ftnlen)12);
}
return 0;
/* End of DGESV */
} /* dgesv_ */
#ifdef __cplusplus
}
#endif