Files
lammps/lib/linalg/dgetrf2.cpp
2022-12-28 13:18:38 -05:00

332 lines
8.8 KiB
C++

/* static/dgetrf2.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static doublereal c_b13 = 1.;
static doublereal c_b16 = -1.;
/* > \brief \b DGETRF2 */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* Definition: */
/* =========== */
/* RECURSIVE SUBROUTINE DGETRF2( M, N, A, LDA, IPIV, INFO ) */
/* .. Scalar Arguments .. */
/* INTEGER INFO, LDA, M, N */
/* .. */
/* .. Array Arguments .. */
/* INTEGER IPIV( * ) */
/* DOUBLE PRECISION A( LDA, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DGETRF2 computes an LU factorization of a general M-by-N matrix A */
/* > using partial pivoting with row interchanges. */
/* > */
/* > The factorization has the form */
/* > A = P * L * U */
/* > where P is a permutation matrix, L is lower triangular with unit */
/* > diagonal elements (lower trapezoidal if m > n), and U is upper */
/* > triangular (upper trapezoidal if m < n). */
/* > */
/* > This is the recursive version of the algorithm. It divides */
/* > the matrix into four submatrices: */
/* > */
/* > [ A11 | A12 ] where A11 is n1 by n1 and A22 is n2 by n2 */
/* > A = [ -----|----- ] with n1 = min(m,n)/2 */
/* > [ A21 | A22 ] n2 = n-n1 */
/* > */
/* > [ A11 ] */
/* > The subroutine calls itself to factor [ --- ], */
/* > [ A12 ] */
/* > [ A12 ] */
/* > do the swaps on [ --- ], solve A12, update A22, */
/* > [ A22 ] */
/* > */
/* > then calls itself to factor A22 and do the swaps on A21. */
/* > */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix A. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the M-by-N matrix to be factored. */
/* > On exit, the factors L and U from the factorization */
/* > A = P*L*U; the unit diagonal elements of L are not stored. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] IPIV */
/* > \verbatim */
/* > IPIV is INTEGER array, dimension (min(M,N)) */
/* > The pivot indices; for 1 <= i <= min(M,N), row i of the */
/* > matrix was interchanged with row IPIV(i). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, U(i,i) is exactly zero. The factorization */
/* > has been completed, but the factor U is exactly */
/* > singular, and division by zero will occur if it is used */
/* > to solve a system of equations. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup doubleGEcomputational */
/* ===================================================================== */
/* Subroutine */ int dgetrf2_(integer *m, integer *n, doublereal *a, integer *
lda, integer *ipiv, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
doublereal d__1;
/* Local variables */
integer i__, n1, n2;
doublereal temp;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *), dgemm_(char *, char *, integer *, integer *, integer *
, doublereal *, doublereal *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *, ftnlen, ftnlen);
integer iinfo;
doublereal sfmin;
extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
integer *, integer *, doublereal *, doublereal *, integer *,
doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen);
extern doublereal dlamch_(char *, ftnlen);
extern integer idamax_(integer *, doublereal *, integer *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), dlaswp_(
integer *, doublereal *, integer *, integer *, integer *, integer
*, integer *);
/* -- LAPACK computational routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--ipiv;
/* Function Body */
*info = 0;
if (*m < 0) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*m)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"DGETRF2", &i__1, (ftnlen)7);
return 0;
}
/* Quick return if possible */
if (*m == 0 || *n == 0) {
return 0;
}
if (*m == 1) {
/* Use unblocked code for one row case */
/* Just need to handle IPIV and INFO */
ipiv[1] = 1;
if (a[a_dim1 + 1] == 0.) {
*info = 1;
}
} else if (*n == 1) {
/* Use unblocked code for one column case */
/* Compute machine safe minimum */
sfmin = dlamch_((char *)"S", (ftnlen)1);
/* Find pivot and test for singularity */
i__ = idamax_(m, &a[a_dim1 + 1], &c__1);
ipiv[1] = i__;
if (a[i__ + a_dim1] != 0.) {
/* Apply the interchange */
if (i__ != 1) {
temp = a[a_dim1 + 1];
a[a_dim1 + 1] = a[i__ + a_dim1];
a[i__ + a_dim1] = temp;
}
/* Compute elements 2:M of the column */
if ((d__1 = a[a_dim1 + 1], abs(d__1)) >= sfmin) {
i__1 = *m - 1;
d__1 = 1. / a[a_dim1 + 1];
dscal_(&i__1, &d__1, &a[a_dim1 + 2], &c__1);
} else {
i__1 = *m - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
a[i__ + 1 + a_dim1] /= a[a_dim1 + 1];
/* L10: */
}
}
} else {
*info = 1;
}
} else {
/* Use recursive code */
n1 = min(*m,*n) / 2;
n2 = *n - n1;
/* [ A11 ] */
/* Factor [ --- ] */
/* [ A21 ] */
dgetrf2_(m, &n1, &a[a_offset], lda, &ipiv[1], &iinfo);
if (*info == 0 && iinfo > 0) {
*info = iinfo;
}
/* [ A12 ] */
/* Apply interchanges to [ --- ] */
/* [ A22 ] */
dlaswp_(&n2, &a[(n1 + 1) * a_dim1 + 1], lda, &c__1, &n1, &ipiv[1], &
c__1);
/* Solve A12 */
dtrsm_((char *)"L", (char *)"L", (char *)"N", (char *)"U", &n1, &n2, &c_b13, &a[a_offset], lda, &a[(
n1 + 1) * a_dim1 + 1], lda, (ftnlen)1, (ftnlen)1, (ftnlen)1, (
ftnlen)1);
/* Update A22 */
i__1 = *m - n1;
dgemm_((char *)"N", (char *)"N", &i__1, &n2, &n1, &c_b16, &a[n1 + 1 + a_dim1], lda, &
a[(n1 + 1) * a_dim1 + 1], lda, &c_b13, &a[n1 + 1 + (n1 + 1) *
a_dim1], lda, (ftnlen)1, (ftnlen)1);
/* Factor A22 */
i__1 = *m - n1;
dgetrf2_(&i__1, &n2, &a[n1 + 1 + (n1 + 1) * a_dim1], lda, &ipiv[n1 +
1], &iinfo);
/* Adjust INFO and the pivot indices */
if (*info == 0 && iinfo > 0) {
*info = iinfo + n1;
}
i__1 = min(*m,*n);
for (i__ = n1 + 1; i__ <= i__1; ++i__) {
ipiv[i__] += n1;
/* L20: */
}
/* Apply interchanges to A21 */
i__1 = n1 + 1;
i__2 = min(*m,*n);
dlaswp_(&n1, &a[a_dim1 + 1], lda, &i__1, &i__2, &ipiv[1], &c__1);
}
return 0;
/* End of DGETRF2 */
} /* dgetrf2_ */
#ifdef __cplusplus
}
#endif