Files
lammps/src/compute_reduce_chunk.cpp
2021-05-24 14:18:20 -04:00

505 lines
15 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "compute_reduce_chunk.h"
#include "arg_info.h"
#include "atom.h"
#include "compute.h"
#include "compute_chunk_atom.h"
#include "error.h"
#include "fix.h"
#include "input.h"
#include "memory.h"
#include "modify.h"
#include "update.h"
#include "variable.h"
#include <cstring>
using namespace LAMMPS_NS;
enum{SUM,MINN,MAXX};
#define BIG 1.0e20
/* ---------------------------------------------------------------------- */
ComputeReduceChunk::ComputeReduceChunk(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg),
which(nullptr), argindex(nullptr), value2index(nullptr), idchunk(nullptr), ids(nullptr),
vlocal(nullptr), vglobal(nullptr), alocal(nullptr), aglobal(nullptr), varatom(nullptr)
{
if (narg < 6) error->all(FLERR,"Illegal compute reduce/chunk command");
// ID of compute chunk/atom
idchunk = utils::strdup(arg[3]);
init_chunk();
// mode
if (strcmp(arg[4],"sum") == 0) mode = SUM;
else if (strcmp(arg[4],"min") == 0) mode = MINN;
else if (strcmp(arg[4],"max") == 0) mode = MAXX;
else error->all(FLERR,"Illegal compute reduce/chunk command");
int iarg = 5;
// expand args if any have wildcard character "*"
int expand = 0;
char **earg;
int nargnew = utils::expand_args(FLERR,narg-iarg,&arg[iarg],1,earg,lmp);
if (earg != &arg[iarg]) expand = 1;
arg = earg;
// parse values until one isn't recognized
which = new int[nargnew];
argindex = new int[nargnew];
ids = new char*[nargnew];
value2index = new int[nargnew];
for (int i=0; i < nargnew; ++i) {
which[i] = argindex[i] = value2index[i] = ArgInfo::UNKNOWN;
ids[i] = nullptr;
}
nvalues = 0;
for (iarg = 0; iarg < nargnew; iarg++) {
ArgInfo argi(arg[iarg]);
which[nvalues] = argi.get_type();
argindex[nvalues] = argi.get_index1();
ids[nvalues] = argi.copy_name();
if ((which[nvalues] == ArgInfo::UNKNOWN) || (which[nvalues] == ArgInfo::NONE)
|| (argi.get_dim() > 1))
error->all(FLERR,"Illegal compute reduce/chunk command");
nvalues++;
}
// if wildcard expansion occurred, free earg memory from expand_args()
if (expand) {
for (int i = 0; i < nargnew; i++) delete [] earg[i];
memory->sfree(earg);
}
// error check
for (int i = 0; i < nvalues; i++) {
if (which[i] == ArgInfo::COMPUTE) {
int icompute = modify->find_compute(ids[i]);
if (icompute < 0)
error->all(FLERR,"Compute ID for compute reduce/chunk does not exist");
if (!modify->compute[icompute]->peratom_flag)
error->all(FLERR,"Compute reduce/chunk compute does not "
"calculate per-atom values");
if (argindex[i] == 0 &&
modify->compute[icompute]->size_peratom_cols != 0)
error->all(FLERR,"Compute reduce/chunk compute does not "
"calculate a per-atom vector");
if (argindex[i] && modify->compute[icompute]->size_peratom_cols == 0)
error->all(FLERR,"Compute reduce/chunk compute does not "
"calculate a per-atom array");
if (argindex[i] &&
argindex[i] > modify->compute[icompute]->size_peratom_cols)
error->all(FLERR,
"Compute reduce/chunk compute array is accessed out-of-range");
} else if (which[i] == ArgInfo::FIX) {
int ifix = modify->find_fix(ids[i]);
if (ifix < 0)
error->all(FLERR,"Fix ID for compute reduce/chunk does not exist");
if (!modify->fix[ifix]->peratom_flag)
error->all(FLERR,"Compute reduce/chunk fix does not "
"calculate per-atom values");
if (argindex[i] == 0 &&
modify->fix[ifix]->size_peratom_cols != 0)
error->all(FLERR,"Compute reduce/chunk fix does not "
"calculate a per-atom vector");
if (argindex[i] && modify->fix[ifix]->size_peratom_cols == 0)
error->all(FLERR,"Compute reduce/chunk fix does not "
"calculate a per-atom array");
if (argindex[i] && argindex[i] > modify->fix[ifix]->size_peratom_cols)
error->all(FLERR,"Compute reduce/chunk fix array is "
"accessed out-of-range");
} else if (which[i] == ArgInfo::VARIABLE) {
int ivariable = input->variable->find(ids[i]);
if (ivariable < 0)
error->all(FLERR,"Variable name for compute reduce/chunk does not exist");
if (input->variable->atomstyle(ivariable) == 0)
error->all(FLERR,"Compute reduce/chunk variable is "
"not atom-style variable");
}
}
// this compute produces either a vector or array
if (nvalues == 1) {
vector_flag = 1;
size_vector_variable = 1;
extvector = 0;
} else {
array_flag = 1;
size_array_rows_variable = 1;
size_array_cols = nvalues;
extarray = 0;
}
// setup
if (mode == SUM) initvalue = 0.0;
else if (mode == MINN) initvalue = BIG;
else if (mode == MAXX) initvalue = -BIG;
maxchunk = 0;
vlocal = vglobal = nullptr;
alocal = aglobal = nullptr;
maxatom = 0;
varatom = nullptr;
}
/* ---------------------------------------------------------------------- */
ComputeReduceChunk::~ComputeReduceChunk()
{
delete [] idchunk;
delete [] which;
delete [] argindex;
for (int m = 0; m < nvalues; m++) delete [] ids[m];
delete [] ids;
delete [] value2index;
memory->destroy(vlocal);
memory->destroy(vglobal);
memory->destroy(alocal);
memory->destroy(aglobal);
memory->destroy(varatom);
}
/* ---------------------------------------------------------------------- */
void ComputeReduceChunk::init()
{
init_chunk();
// set indices of all computes,fixes,variables
for (int m = 0; m < nvalues; m++) {
if (which[m] == ArgInfo::COMPUTE) {
int icompute = modify->find_compute(ids[m]);
if (icompute < 0)
error->all(FLERR,"Compute ID for compute reduce/chunk does not exist");
value2index[m] = icompute;
} else if (which[m] == ArgInfo::FIX) {
int ifix = modify->find_fix(ids[m]);
if (ifix < 0)
error->all(FLERR,"Fix ID for compute reduce/chunk does not exist");
value2index[m] = ifix;
} else if (which[m] == ArgInfo::VARIABLE) {
int ivariable = input->variable->find(ids[m]);
if (ivariable < 0)
error->all(FLERR,"Variable name for compute reduce/chunk does not exist");
value2index[m] = ivariable;
}
}
}
/* ---------------------------------------------------------------------- */
void ComputeReduceChunk::init_chunk()
{
int icompute = modify->find_compute(idchunk);
if (icompute < 0)
error->all(FLERR,"Chunk/atom compute does not exist for "
"compute reduce/chunk");
cchunk = (ComputeChunkAtom *) modify->compute[icompute];
if (strcmp(cchunk->style,"chunk/atom") != 0)
error->all(FLERR,"Compute reduce/chunk does not use chunk/atom compute");
}
/* ---------------------------------------------------------------------- */
void ComputeReduceChunk::compute_vector()
{
invoked_vector = update->ntimestep;
// compute chunk/atom assigns atoms to chunk IDs
// extract ichunk index vector from compute
// ichunk = 1 to Nchunk for included atoms, 0 for excluded atoms
nchunk = cchunk->setup_chunks();
cchunk->compute_ichunk();
ichunk = cchunk->ichunk;
if (!nchunk) return;
size_vector = nchunk;
if (nchunk > maxchunk) {
memory->destroy(vlocal);
memory->destroy(vglobal);
maxchunk = nchunk;
memory->create(vlocal,maxchunk,"reduce/chunk:vlocal");
memory->create(vglobal,maxchunk,"reduce/chunk:vglobal");
vector = vglobal;
}
// perform local reduction of single peratom value
compute_one(0,vlocal,1);
// reduce the per-chunk values across all procs
if (mode == SUM)
MPI_Allreduce(vlocal,vglobal,nchunk,MPI_DOUBLE,MPI_SUM,world);
else if (mode == MINN)
MPI_Allreduce(vlocal,vglobal,nchunk,MPI_DOUBLE,MPI_MIN,world);
else if (mode == MAXX)
MPI_Allreduce(vlocal,vglobal,nchunk,MPI_DOUBLE,MPI_MAX,world);
}
/* ---------------------------------------------------------------------- */
void ComputeReduceChunk::compute_array()
{
invoked_array = update->ntimestep;
// compute chunk/atom assigns atoms to chunk IDs
// extract ichunk index vector from compute
// ichunk = 1 to Nchunk for included atoms, 0 for excluded atoms
nchunk = cchunk->setup_chunks();
cchunk->compute_ichunk();
ichunk = cchunk->ichunk;
if (!nchunk) return;
size_array_rows = nchunk;
if (nchunk > maxchunk) {
memory->destroy(alocal);
memory->destroy(aglobal);
maxchunk = nchunk;
memory->create(alocal,maxchunk,nvalues,"reduce/chunk:alocal");
memory->create(aglobal,maxchunk,nvalues,"reduce/chunk:aglobal");
array = aglobal;
}
// perform local reduction of all peratom values
for (int m = 0; m < nvalues; m++) compute_one(m,&alocal[0][m],nvalues);
// reduce the per-chunk values across all procs
if (mode == SUM)
MPI_Allreduce(&alocal[0][0],&aglobal[0][0],nchunk*nvalues,
MPI_DOUBLE,MPI_SUM,world);
else if (mode == MINN)
MPI_Allreduce(&alocal[0][0],&aglobal[0][0],nchunk*nvalues,
MPI_DOUBLE,MPI_MIN,world);
else if (mode == MAXX)
MPI_Allreduce(&alocal[0][0],&aglobal[0][0],nchunk*nvalues,
MPI_DOUBLE,MPI_MAX,world);
}
/* ---------------------------------------------------------------------- */
void ComputeReduceChunk::compute_one(int m, double *vchunk, int nstride)
{
// initialize per-chunk values in accumulation vector
for (int i = 0; i < nchunk; i += nstride) vchunk[i] = initvalue;
// loop over my atoms
// use peratom input and chunk ID of each atom to update vector
int *mask = atom->mask;
int nlocal = atom->nlocal;
int index = -1;
int vidx = value2index[m];
// initialization in case it has not yet been run, e.g. when
// the compute was invoked right after it has been created
if (vidx == ArgInfo::UNKNOWN) {
init();
vidx = value2index[m];
}
if (which[m] == ArgInfo::COMPUTE) {
Compute *compute = modify->compute[vidx];
if (!(compute->invoked_flag & Compute::INVOKED_PERATOM)) {
compute->compute_peratom();
compute->invoked_flag |= Compute::INVOKED_PERATOM;
}
if (argindex[m] == 0) {
double *vcompute = compute->vector_atom;
for (int i = 0; i < nlocal; i++) {
if (!(mask[i] & groupbit)) continue;
index = ichunk[i]-1;
if (index < 0) continue;
combine(vchunk[index*nstride],vcompute[i]);
}
} else {
double **acompute = compute->array_atom;
int argindexm1 = argindex[m] - 1;
for (int i = 0; i < nlocal; i++) {
if (!(mask[i] & groupbit)) continue;
index = ichunk[i]-1;
if (index < 0) continue;
combine(vchunk[index*nstride],acompute[i][argindexm1]);
}
}
// access fix fields, check if fix frequency is a match
} else if (which[m] == ArgInfo::FIX) {
Fix *fix = modify->fix[vidx];
if (update->ntimestep % fix->peratom_freq)
error->all(FLERR,"Fix used in compute reduce/chunk not "
"computed at compatible time");
if (argindex[m] == 0) {
double *vfix = fix->vector_atom;
for (int i = 0; i < nlocal; i++) {
if (!(mask[i] & groupbit)) continue;
index = ichunk[i]-1;
if (index < 0) continue;
combine(vchunk[index*nstride],vfix[i]);
}
} else {
double **afix = fix->array_atom;
int argindexm1 = argindex[m] - 1;
for (int i = 0; i < nlocal; i++) {
if (!(mask[i] & groupbit)) continue;
index = ichunk[i]-1;
if (index < 0) continue;
combine(vchunk[index*nstride],afix[i][argindexm1]);
}
}
// evaluate atom-style variable
} else if (which[m] == ArgInfo::VARIABLE) {
if (atom->nmax > maxatom) {
memory->destroy(varatom);
maxatom = atom->nmax;
memory->create(varatom,maxatom,"reduce/chunk:varatom");
}
input->variable->compute_atom(vidx,igroup,varatom,1,0);
for (int i = 0; i < nlocal; i++) {
if (!(mask[i] & groupbit)) continue;
index = ichunk[i]-1;
if (index < 0) continue;
combine(vchunk[index*nstride],varatom[i]);
}
}
}
/* ----------------------------------------------------------------------
combine two values according to reduction mode
------------------------------------------------------------------------- */
void ComputeReduceChunk::combine(double &one, double two)
{
if (mode == SUM) one += two;
else if (mode == MINN) {
if (two < one) one = two;
} else if (mode == MAXX) {
if (two > one) one = two;
}
}
/* ----------------------------------------------------------------------
lock methods: called by fix ave/time
these methods insure vector/array size is locked for Nfreq epoch
by passing lock info along to compute chunk/atom
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
increment lock counter
------------------------------------------------------------------------- */
void ComputeReduceChunk::lock_enable()
{
cchunk->lockcount++;
}
/* ----------------------------------------------------------------------
decrement lock counter in compute chunk/atom, if it still exists
------------------------------------------------------------------------- */
void ComputeReduceChunk::lock_disable()
{
int icompute = modify->find_compute(idchunk);
if (icompute >= 0) {
cchunk = (ComputeChunkAtom *) modify->compute[icompute];
cchunk->lockcount--;
}
}
/* ----------------------------------------------------------------------
calculate and return # of chunks = length of vector/array
------------------------------------------------------------------------- */
int ComputeReduceChunk::lock_length()
{
nchunk = cchunk->setup_chunks();
return nchunk;
}
/* ----------------------------------------------------------------------
set the lock from startstep to stopstep
------------------------------------------------------------------------- */
void ComputeReduceChunk::lock(Fix *fixptr, bigint startstep, bigint stopstep)
{
cchunk->lock(fixptr,startstep,stopstep);
}
/* ----------------------------------------------------------------------
unset the lock
------------------------------------------------------------------------- */
void ComputeReduceChunk::unlock(Fix *fixptr)
{
cchunk->unlock(fixptr);
}
/* ----------------------------------------------------------------------
memory usage of local data
------------------------------------------------------------------------- */
double ComputeReduceChunk::memory_usage()
{
double bytes = (bigint) maxatom * sizeof(double);
if (nvalues == 1) bytes += (double) maxchunk * 2 * sizeof(double);
else bytes += (double) maxchunk * nvalues * 2 * sizeof(double);
return bytes;
}