Files
lammps/lib/linalg/zgemm.cpp

764 lines
28 KiB
C++

/* fortran/zgemm.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* > \brief \b ZGEMM */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* Definition: */
/* =========== */
/* SUBROUTINE ZGEMM(TRANSA,TRANSB,M,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) */
/* .. Scalar Arguments .. */
/* COMPLEX*16 ALPHA,BETA */
/* INTEGER K,LDA,LDB,LDC,M,N */
/* CHARACTER TRANSA,TRANSB */
/* .. */
/* .. Array Arguments .. */
/* COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZGEMM performs one of the matrix-matrix operations */
/* > */
/* > C := alpha*op( A )*op( B ) + beta*C, */
/* > */
/* > where op( X ) is one of */
/* > */
/* > op( X ) = X or op( X ) = X**T or op( X ) = X**H, */
/* > */
/* > alpha and beta are scalars, and A, B and C are matrices, with op( A ) */
/* > an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] TRANSA */
/* > \verbatim */
/* > TRANSA is CHARACTER*1 */
/* > On entry, TRANSA specifies the form of op( A ) to be used in */
/* > the matrix multiplication as follows: */
/* > */
/* > TRANSA = 'N' or 'n', op( A ) = A. */
/* > */
/* > TRANSA = 'T' or 't', op( A ) = A**T. */
/* > */
/* > TRANSA = 'C' or 'c', op( A ) = A**H. */
/* > \endverbatim */
/* > */
/* > \param[in] TRANSB */
/* > \verbatim */
/* > TRANSB is CHARACTER*1 */
/* > On entry, TRANSB specifies the form of op( B ) to be used in */
/* > the matrix multiplication as follows: */
/* > */
/* > TRANSB = 'N' or 'n', op( B ) = B. */
/* > */
/* > TRANSB = 'T' or 't', op( B ) = B**T. */
/* > */
/* > TRANSB = 'C' or 'c', op( B ) = B**H. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > On entry, M specifies the number of rows of the matrix */
/* > op( A ) and of the matrix C. M must be at least zero. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > On entry, N specifies the number of columns of the matrix */
/* > op( B ) and the number of columns of the matrix C. N must be */
/* > at least zero. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > On entry, K specifies the number of columns of the matrix */
/* > op( A ) and the number of rows of the matrix op( B ). K must */
/* > be at least zero. */
/* > \endverbatim */
/* > */
/* > \param[in] ALPHA */
/* > \verbatim */
/* > ALPHA is COMPLEX*16 */
/* > On entry, ALPHA specifies the scalar alpha. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is */
/* > k when TRANSA = 'N' or 'n', and is m otherwise. */
/* > Before entry with TRANSA = 'N' or 'n', the leading m by k */
/* > part of the array A must contain the matrix A, otherwise */
/* > the leading k by m part of the array A must contain the */
/* > matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > On entry, LDA specifies the first dimension of A as declared */
/* > in the calling (sub) program. When TRANSA = 'N' or 'n' then */
/* > LDA must be at least max( 1, m ), otherwise LDA must be at */
/* > least max( 1, k ). */
/* > \endverbatim */
/* > */
/* > \param[in] B */
/* > \verbatim */
/* > B is COMPLEX*16 array, dimension ( LDB, kb ), where kb is */
/* > n when TRANSB = 'N' or 'n', and is k otherwise. */
/* > Before entry with TRANSB = 'N' or 'n', the leading k by n */
/* > part of the array B must contain the matrix B, otherwise */
/* > the leading n by k part of the array B must contain the */
/* > matrix B. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > On entry, LDB specifies the first dimension of B as declared */
/* > in the calling (sub) program. When TRANSB = 'N' or 'n' then */
/* > LDB must be at least max( 1, k ), otherwise LDB must be at */
/* > least max( 1, n ). */
/* > \endverbatim */
/* > */
/* > \param[in] BETA */
/* > \verbatim */
/* > BETA is COMPLEX*16 */
/* > On entry, BETA specifies the scalar beta. When BETA is */
/* > supplied as zero then C need not be set on input. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C */
/* > \verbatim */
/* > C is COMPLEX*16 array, dimension ( LDC, N ) */
/* > Before entry, the leading m by n part of the array C must */
/* > contain the matrix C, except when beta is zero, in which */
/* > case C need not be set on entry. */
/* > On exit, the array C is overwritten by the m by n matrix */
/* > ( alpha*op( A )*op( B ) + beta*C ). */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > On entry, LDC specifies the first dimension of C as declared */
/* > in the calling (sub) program. LDC must be at least */
/* > max( 1, m ). */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup complex16_blas_level3 */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > Level 3 Blas routine. */
/* > */
/* > -- Written on 8-February-1989. */
/* > Jack Dongarra, Argonne National Laboratory. */
/* > Iain Duff, AERE Harwell. */
/* > Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/* > Sven Hammarling, Numerical Algorithms Group Ltd. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int zgemm_(char *transa, char *transb, integer *m, integer *
n, integer *k, doublecomplex *alpha, doublecomplex *a, integer *lda,
doublecomplex *b, integer *ldb, doublecomplex *beta, doublecomplex *
c__, integer *ldc, ftnlen transa_len, ftnlen transb_len)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
i__3, i__4, i__5, i__6;
doublecomplex z__1, z__2, z__3, z__4;
/* Builtin functions */
void d_lmp_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j, l, info;
logical nota, notb;
doublecomplex temp;
logical conja, conjb;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer nrowa, nrowb;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* -- Reference BLAS level3 routine -- */
/* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Parameters .. */
/* .. */
/* Set NOTA and NOTB as true if A and B respectively are not */
/* conjugated or transposed, set CONJA and CONJB as true if A and */
/* B respectively are to be transposed but not conjugated and set */
/* NROWA and NROWB as the number of rows of A and B respectively. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
/* Function Body */
nota = lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1);
notb = lsame_(transb, (char *)"N", (ftnlen)1, (ftnlen)1);
conja = lsame_(transa, (char *)"C", (ftnlen)1, (ftnlen)1);
conjb = lsame_(transb, (char *)"C", (ftnlen)1, (ftnlen)1);
if (nota) {
nrowa = *m;
} else {
nrowa = *k;
}
if (notb) {
nrowb = *k;
} else {
nrowb = *n;
}
/* Test the input parameters. */
info = 0;
if (! nota && ! conja && ! lsame_(transa, (char *)"T", (ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (! notb && ! conjb && ! lsame_(transb, (char *)"T", (ftnlen)1, (ftnlen)
1)) {
info = 2;
} else if (*m < 0) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*k < 0) {
info = 5;
} else if (*lda < max(1,nrowa)) {
info = 8;
} else if (*ldb < max(1,nrowb)) {
info = 10;
} else if (*ldc < max(1,*m)) {
info = 13;
}
if (info != 0) {
xerbla_((char *)"ZGEMM ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*m == 0 || *n == 0 || (alpha->r == 0. && alpha->i == 0. || *k == 0) &&
(beta->r == 1. && beta->i == 0.)) {
return 0;
}
/* And when alpha.eq.zero. */
if (alpha->r == 0. && alpha->i == 0.) {
if (beta->r == 0. && beta->i == 0.) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0., c__[i__3].i = 0.;
/* L10: */
}
/* L20: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i,
z__1.i = beta->r * c__[i__4].i + beta->i * c__[
i__4].r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L30: */
}
/* L40: */
}
}
return 0;
}
/* Start the operations. */
if (notb) {
if (nota) {
/* Form C := alpha*A*B + beta*C. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (beta->r == 0. && beta->i == 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0., c__[i__3].i = 0.;
/* L50: */
}
} else if (beta->r != 1. || beta->i != 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__1.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L60: */
}
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
i__3 = l + j * b_dim1;
z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
z__1.i = alpha->r * b[i__3].i + alpha->i * b[i__3]
.r;
temp.r = z__1.r, temp.i = z__1.i;
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
i__4 = i__ + j * c_dim1;
i__5 = i__ + j * c_dim1;
i__6 = i__ + l * a_dim1;
z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
z__2.i = temp.r * a[i__6].i + temp.i * a[i__6]
.r;
z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5].i +
z__2.i;
c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
/* L70: */
}
/* L80: */
}
/* L90: */
}
} else if (conja) {
/* Form C := alpha*A**H*B + beta*C. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0., temp.i = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
d_lmp_cnjg(&z__3, &a[l + i__ * a_dim1]);
i__4 = l + j * b_dim1;
z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i,
z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4]
.r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L100: */
}
if (beta->r == 0. && beta->i == 0.) {
i__3 = i__ + j * c_dim1;
z__1.r = alpha->r * temp.r - alpha->i * temp.i,
z__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
} else {
i__3 = i__ + j * c_dim1;
z__2.r = alpha->r * temp.r - alpha->i * temp.i,
z__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
}
/* L110: */
}
/* L120: */
}
} else {
/* Form C := alpha*A**T*B + beta*C */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0., temp.i = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
i__4 = l + i__ * a_dim1;
i__5 = l + j * b_dim1;
z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
.i, z__2.i = a[i__4].r * b[i__5].i + a[i__4]
.i * b[i__5].r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L130: */
}
if (beta->r == 0. && beta->i == 0.) {
i__3 = i__ + j * c_dim1;
z__1.r = alpha->r * temp.r - alpha->i * temp.i,
z__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
} else {
i__3 = i__ + j * c_dim1;
z__2.r = alpha->r * temp.r - alpha->i * temp.i,
z__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
}
/* L140: */
}
/* L150: */
}
}
} else if (nota) {
if (conjb) {
/* Form C := alpha*A*B**H + beta*C. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (beta->r == 0. && beta->i == 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0., c__[i__3].i = 0.;
/* L160: */
}
} else if (beta->r != 1. || beta->i != 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__1.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L170: */
}
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
d_lmp_cnjg(&z__2, &b[j + l * b_dim1]);
z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
alpha->r * z__2.i + alpha->i * z__2.r;
temp.r = z__1.r, temp.i = z__1.i;
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
i__4 = i__ + j * c_dim1;
i__5 = i__ + j * c_dim1;
i__6 = i__ + l * a_dim1;
z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
z__2.i = temp.r * a[i__6].i + temp.i * a[i__6]
.r;
z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5].i +
z__2.i;
c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
/* L180: */
}
/* L190: */
}
/* L200: */
}
} else {
/* Form C := alpha*A*B**T + beta*C */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (beta->r == 0. && beta->i == 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0., c__[i__3].i = 0.;
/* L210: */
}
} else if (beta->r != 1. || beta->i != 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__1.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L220: */
}
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
i__3 = j + l * b_dim1;
z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
z__1.i = alpha->r * b[i__3].i + alpha->i * b[i__3]
.r;
temp.r = z__1.r, temp.i = z__1.i;
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
i__4 = i__ + j * c_dim1;
i__5 = i__ + j * c_dim1;
i__6 = i__ + l * a_dim1;
z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
z__2.i = temp.r * a[i__6].i + temp.i * a[i__6]
.r;
z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5].i +
z__2.i;
c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
/* L230: */
}
/* L240: */
}
/* L250: */
}
}
} else if (conja) {
if (conjb) {
/* Form C := alpha*A**H*B**H + beta*C. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0., temp.i = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
d_lmp_cnjg(&z__3, &a[l + i__ * a_dim1]);
d_lmp_cnjg(&z__4, &b[j + l * b_dim1]);
z__2.r = z__3.r * z__4.r - z__3.i * z__4.i, z__2.i =
z__3.r * z__4.i + z__3.i * z__4.r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L260: */
}
if (beta->r == 0. && beta->i == 0.) {
i__3 = i__ + j * c_dim1;
z__1.r = alpha->r * temp.r - alpha->i * temp.i,
z__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
} else {
i__3 = i__ + j * c_dim1;
z__2.r = alpha->r * temp.r - alpha->i * temp.i,
z__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
}
/* L270: */
}
/* L280: */
}
} else {
/* Form C := alpha*A**H*B**T + beta*C */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0., temp.i = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
d_lmp_cnjg(&z__3, &a[l + i__ * a_dim1]);
i__4 = j + l * b_dim1;
z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i,
z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4]
.r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L290: */
}
if (beta->r == 0. && beta->i == 0.) {
i__3 = i__ + j * c_dim1;
z__1.r = alpha->r * temp.r - alpha->i * temp.i,
z__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
} else {
i__3 = i__ + j * c_dim1;
z__2.r = alpha->r * temp.r - alpha->i * temp.i,
z__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
}
/* L300: */
}
/* L310: */
}
}
} else {
if (conjb) {
/* Form C := alpha*A**T*B**H + beta*C */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0., temp.i = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
i__4 = l + i__ * a_dim1;
d_lmp_cnjg(&z__3, &b[j + l * b_dim1]);
z__2.r = a[i__4].r * z__3.r - a[i__4].i * z__3.i,
z__2.i = a[i__4].r * z__3.i + a[i__4].i *
z__3.r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L320: */
}
if (beta->r == 0. && beta->i == 0.) {
i__3 = i__ + j * c_dim1;
z__1.r = alpha->r * temp.r - alpha->i * temp.i,
z__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
} else {
i__3 = i__ + j * c_dim1;
z__2.r = alpha->r * temp.r - alpha->i * temp.i,
z__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
}
/* L330: */
}
/* L340: */
}
} else {
/* Form C := alpha*A**T*B**T + beta*C */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0., temp.i = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
i__4 = l + i__ * a_dim1;
i__5 = j + l * b_dim1;
z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
.i, z__2.i = a[i__4].r * b[i__5].i + a[i__4]
.i * b[i__5].r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L350: */
}
if (beta->r == 0. && beta->i == 0.) {
i__3 = i__ + j * c_dim1;
z__1.r = alpha->r * temp.r - alpha->i * temp.i,
z__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
} else {
i__3 = i__ + j * c_dim1;
z__2.r = alpha->r * temp.r - alpha->i * temp.i,
z__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
}
/* L360: */
}
/* L370: */
}
}
}
return 0;
/* End of ZGEMM */
} /* zgemm_ */
#ifdef __cplusplus
}
#endif