Files
lammps/lib/linalg/zher2k.cpp

751 lines
30 KiB
C++

/* fortran/zher2k.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* > \brief \b ZHER2K */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* Definition: */
/* =========== */
/* SUBROUTINE ZHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC) */
/* .. Scalar Arguments .. */
/* COMPLEX*16 ALPHA */
/* DOUBLE PRECISION BETA */
/* INTEGER K,LDA,LDB,LDC,N */
/* CHARACTER TRANS,UPLO */
/* .. */
/* .. Array Arguments .. */
/* COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > ZHER2K performs one of the hermitian rank 2k operations */
/* > */
/* > C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C, */
/* > */
/* > or */
/* > */
/* > C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C, */
/* > */
/* > where alpha and beta are scalars with beta real, C is an n by n */
/* > hermitian matrix and A and B are n by k matrices in the first case */
/* > and k by n matrices in the second case. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > On entry, UPLO specifies whether the upper or lower */
/* > triangular part of the array C is to be referenced as */
/* > follows: */
/* > */
/* > UPLO = 'U' or 'u' Only the upper triangular part of C */
/* > is to be referenced. */
/* > */
/* > UPLO = 'L' or 'l' Only the lower triangular part of C */
/* > is to be referenced. */
/* > \endverbatim */
/* > */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > On entry, TRANS specifies the operation to be performed as */
/* > follows: */
/* > */
/* > TRANS = 'N' or 'n' C := alpha*A*B**H + */
/* > conjg( alpha )*B*A**H + */
/* > beta*C. */
/* > */
/* > TRANS = 'C' or 'c' C := alpha*A**H*B + */
/* > conjg( alpha )*B**H*A + */
/* > beta*C. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > On entry, N specifies the order of the matrix C. N must be */
/* > at least zero. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > On entry with TRANS = 'N' or 'n', K specifies the number */
/* > of columns of the matrices A and B, and on entry with */
/* > TRANS = 'C' or 'c', K specifies the number of rows of the */
/* > matrices A and B. K must be at least zero. */
/* > \endverbatim */
/* > */
/* > \param[in] ALPHA */
/* > \verbatim */
/* > ALPHA is COMPLEX*16 . */
/* > On entry, ALPHA specifies the scalar alpha. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is COMPLEX*16 array, dimension ( LDA, ka ), where ka is */
/* > k when TRANS = 'N' or 'n', and is n otherwise. */
/* > Before entry with TRANS = 'N' or 'n', the leading n by k */
/* > part of the array A must contain the matrix A, otherwise */
/* > the leading k by n part of the array A must contain the */
/* > matrix A. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > On entry, LDA specifies the first dimension of A as declared */
/* > in the calling (sub) program. When TRANS = 'N' or 'n' */
/* > then LDA must be at least max( 1, n ), otherwise LDA must */
/* > be at least max( 1, k ). */
/* > \endverbatim */
/* > */
/* > \param[in] B */
/* > \verbatim */
/* > B is COMPLEX*16 array, dimension ( LDB, kb ), where kb is */
/* > k when TRANS = 'N' or 'n', and is n otherwise. */
/* > Before entry with TRANS = 'N' or 'n', the leading n by k */
/* > part of the array B must contain the matrix B, otherwise */
/* > the leading k by n part of the array B must contain the */
/* > matrix B. */
/* > \endverbatim */
/* > */
/* > \param[in] LDB */
/* > \verbatim */
/* > LDB is INTEGER */
/* > On entry, LDB specifies the first dimension of B as declared */
/* > in the calling (sub) program. When TRANS = 'N' or 'n' */
/* > then LDB must be at least max( 1, n ), otherwise LDB must */
/* > be at least max( 1, k ). */
/* > Unchanged on exit. */
/* > \endverbatim */
/* > */
/* > \param[in] BETA */
/* > \verbatim */
/* > BETA is DOUBLE PRECISION . */
/* > On entry, BETA specifies the scalar beta. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C */
/* > \verbatim */
/* > C is COMPLEX*16 array, dimension ( LDC, N ) */
/* > Before entry with UPLO = 'U' or 'u', the leading n by n */
/* > upper triangular part of the array C must contain the upper */
/* > triangular part of the hermitian matrix and the strictly */
/* > lower triangular part of C is not referenced. On exit, the */
/* > upper triangular part of the array C is overwritten by the */
/* > upper triangular part of the updated matrix. */
/* > Before entry with UPLO = 'L' or 'l', the leading n by n */
/* > lower triangular part of the array C must contain the lower */
/* > triangular part of the hermitian matrix and the strictly */
/* > upper triangular part of C is not referenced. On exit, the */
/* > lower triangular part of the array C is overwritten by the */
/* > lower triangular part of the updated matrix. */
/* > Note that the imaginary parts of the diagonal elements need */
/* > not be set, they are assumed to be zero, and on exit they */
/* > are set to zero. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > On entry, LDC specifies the first dimension of C as declared */
/* > in the calling (sub) program. LDC must be at least */
/* > max( 1, n ). */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup complex16_blas_level3 */
/* > \par Further Details: */
/* ===================== */
/* > */
/* > \verbatim */
/* > */
/* > Level 3 Blas routine. */
/* > */
/* > -- Written on 8-February-1989. */
/* > Jack Dongarra, Argonne National Laboratory. */
/* > Iain Duff, AERE Harwell. */
/* > Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/* > Sven Hammarling, Numerical Algorithms Group Ltd. */
/* > */
/* > -- Modified 8-Nov-93 to set C(J,J) to DBLE( C(J,J) ) when BETA = 1. */
/* > Ed Anderson, Cray Research Inc. */
/* > \endverbatim */
/* > */
/* ===================================================================== */
/* Subroutine */ int zher2k_(char *uplo, char *trans, integer *n, integer *k,
doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex *
b, integer *ldb, doublereal *beta, doublecomplex *c__, integer *ldc,
ftnlen uplo_len, ftnlen trans_len)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
i__3, i__4, i__5, i__6, i__7;
doublereal d__1;
doublecomplex z__1, z__2, z__3, z__4, z__5, z__6;
/* Builtin functions */
void d_lmp_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j, l, info;
doublecomplex temp1, temp2;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer nrowa;
logical upper;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* -- Reference BLAS level3 routine -- */
/* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Parameters .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
/* Function Body */
if (lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1)) {
nrowa = *n;
} else {
nrowa = *k;
}
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
info = 0;
if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (! lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
(char *)"C", (ftnlen)1, (ftnlen)1)) {
info = 2;
} else if (*n < 0) {
info = 3;
} else if (*k < 0) {
info = 4;
} else if (*lda < max(1,nrowa)) {
info = 7;
} else if (*ldb < max(1,nrowa)) {
info = 9;
} else if (*ldc < max(1,*n)) {
info = 12;
}
if (info != 0) {
xerbla_((char *)"ZHER2K", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || (alpha->r == 0. && alpha->i == 0. || *k == 0) && *beta ==
1.) {
return 0;
}
/* And when alpha.eq.zero. */
if (alpha->r == 0. && alpha->i == 0.) {
if (upper) {
if (*beta == 0.) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0., c__[i__3].i = 0.;
/* L10: */
}
/* L20: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
i__4].i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L30: */
}
i__2 = j + j * c_dim1;
i__3 = j + j * c_dim1;
d__1 = *beta * c__[i__3].r;
c__[i__2].r = d__1, c__[i__2].i = 0.;
/* L40: */
}
}
} else {
if (*beta == 0.) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0., c__[i__3].i = 0.;
/* L50: */
}
/* L60: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j + j * c_dim1;
i__3 = j + j * c_dim1;
d__1 = *beta * c__[i__3].r;
c__[i__2].r = d__1, c__[i__2].i = 0.;
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
i__4].i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L70: */
}
/* L80: */
}
}
}
return 0;
}
/* Start the operations. */
if (lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1)) {
/* Form C := alpha*A*B**H + conjg( alpha )*B*A**H + */
/* C. */
if (upper) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (*beta == 0.) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0., c__[i__3].i = 0.;
/* L90: */
}
} else if (*beta != 1.) {
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
i__4].i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L100: */
}
i__2 = j + j * c_dim1;
i__3 = j + j * c_dim1;
d__1 = *beta * c__[i__3].r;
c__[i__2].r = d__1, c__[i__2].i = 0.;
} else {
i__2 = j + j * c_dim1;
i__3 = j + j * c_dim1;
d__1 = c__[i__3].r;
c__[i__2].r = d__1, c__[i__2].i = 0.;
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
i__3 = j + l * a_dim1;
i__4 = j + l * b_dim1;
if (a[i__3].r != 0. || a[i__3].i != 0. || (b[i__4].r !=
0. || b[i__4].i != 0.)) {
d_lmp_cnjg(&z__2, &b[j + l * b_dim1]);
z__1.r = alpha->r * z__2.r - alpha->i * z__2.i,
z__1.i = alpha->r * z__2.i + alpha->i *
z__2.r;
temp1.r = z__1.r, temp1.i = z__1.i;
i__3 = j + l * a_dim1;
z__2.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
z__2.i = alpha->r * a[i__3].i + alpha->i * a[
i__3].r;
d_lmp_cnjg(&z__1, &z__2);
temp2.r = z__1.r, temp2.i = z__1.i;
i__3 = j - 1;
for (i__ = 1; i__ <= i__3; ++i__) {
i__4 = i__ + j * c_dim1;
i__5 = i__ + j * c_dim1;
i__6 = i__ + l * a_dim1;
z__3.r = a[i__6].r * temp1.r - a[i__6].i *
temp1.i, z__3.i = a[i__6].r * temp1.i + a[
i__6].i * temp1.r;
z__2.r = c__[i__5].r + z__3.r, z__2.i = c__[i__5]
.i + z__3.i;
i__7 = i__ + l * b_dim1;
z__4.r = b[i__7].r * temp2.r - b[i__7].i *
temp2.i, z__4.i = b[i__7].r * temp2.i + b[
i__7].i * temp2.r;
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i +
z__4.i;
c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
/* L110: */
}
i__3 = j + j * c_dim1;
i__4 = j + j * c_dim1;
i__5 = j + l * a_dim1;
z__2.r = a[i__5].r * temp1.r - a[i__5].i * temp1.i,
z__2.i = a[i__5].r * temp1.i + a[i__5].i *
temp1.r;
i__6 = j + l * b_dim1;
z__3.r = b[i__6].r * temp2.r - b[i__6].i * temp2.i,
z__3.i = b[i__6].r * temp2.i + b[i__6].i *
temp2.r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
d__1 = c__[i__4].r + z__1.r;
c__[i__3].r = d__1, c__[i__3].i = 0.;
}
/* L120: */
}
/* L130: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (*beta == 0.) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0., c__[i__3].i = 0.;
/* L140: */
}
} else if (*beta != 1.) {
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__1.r = *beta * c__[i__4].r, z__1.i = *beta * c__[
i__4].i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L150: */
}
i__2 = j + j * c_dim1;
i__3 = j + j * c_dim1;
d__1 = *beta * c__[i__3].r;
c__[i__2].r = d__1, c__[i__2].i = 0.;
} else {
i__2 = j + j * c_dim1;
i__3 = j + j * c_dim1;
d__1 = c__[i__3].r;
c__[i__2].r = d__1, c__[i__2].i = 0.;
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
i__3 = j + l * a_dim1;
i__4 = j + l * b_dim1;
if (a[i__3].r != 0. || a[i__3].i != 0. || (b[i__4].r !=
0. || b[i__4].i != 0.)) {
d_lmp_cnjg(&z__2, &b[j + l * b_dim1]);
z__1.r = alpha->r * z__2.r - alpha->i * z__2.i,
z__1.i = alpha->r * z__2.i + alpha->i *
z__2.r;
temp1.r = z__1.r, temp1.i = z__1.i;
i__3 = j + l * a_dim1;
z__2.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
z__2.i = alpha->r * a[i__3].i + alpha->i * a[
i__3].r;
d_lmp_cnjg(&z__1, &z__2);
temp2.r = z__1.r, temp2.i = z__1.i;
i__3 = *n;
for (i__ = j + 1; i__ <= i__3; ++i__) {
i__4 = i__ + j * c_dim1;
i__5 = i__ + j * c_dim1;
i__6 = i__ + l * a_dim1;
z__3.r = a[i__6].r * temp1.r - a[i__6].i *
temp1.i, z__3.i = a[i__6].r * temp1.i + a[
i__6].i * temp1.r;
z__2.r = c__[i__5].r + z__3.r, z__2.i = c__[i__5]
.i + z__3.i;
i__7 = i__ + l * b_dim1;
z__4.r = b[i__7].r * temp2.r - b[i__7].i *
temp2.i, z__4.i = b[i__7].r * temp2.i + b[
i__7].i * temp2.r;
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i +
z__4.i;
c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
/* L160: */
}
i__3 = j + j * c_dim1;
i__4 = j + j * c_dim1;
i__5 = j + l * a_dim1;
z__2.r = a[i__5].r * temp1.r - a[i__5].i * temp1.i,
z__2.i = a[i__5].r * temp1.i + a[i__5].i *
temp1.r;
i__6 = j + l * b_dim1;
z__3.r = b[i__6].r * temp2.r - b[i__6].i * temp2.i,
z__3.i = b[i__6].r * temp2.i + b[i__6].i *
temp2.r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
d__1 = c__[i__4].r + z__1.r;
c__[i__3].r = d__1, c__[i__3].i = 0.;
}
/* L170: */
}
/* L180: */
}
}
} else {
/* Form C := alpha*A**H*B + conjg( alpha )*B**H*A + */
/* C. */
if (upper) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
temp1.r = 0., temp1.i = 0.;
temp2.r = 0., temp2.i = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
d_lmp_cnjg(&z__3, &a[l + i__ * a_dim1]);
i__4 = l + j * b_dim1;
z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i,
z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4]
.r;
z__1.r = temp1.r + z__2.r, z__1.i = temp1.i + z__2.i;
temp1.r = z__1.r, temp1.i = z__1.i;
d_lmp_cnjg(&z__3, &b[l + i__ * b_dim1]);
i__4 = l + j * a_dim1;
z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i,
z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4]
.r;
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
temp2.r = z__1.r, temp2.i = z__1.i;
/* L190: */
}
if (i__ == j) {
if (*beta == 0.) {
i__3 = j + j * c_dim1;
z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
z__2.i = alpha->r * temp1.i + alpha->i *
temp1.r;
d_lmp_cnjg(&z__4, alpha);
z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
z__3.i = z__4.r * temp2.i + z__4.i *
temp2.r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
z__3.i;
d__1 = z__1.r;
c__[i__3].r = d__1, c__[i__3].i = 0.;
} else {
i__3 = j + j * c_dim1;
i__4 = j + j * c_dim1;
z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
z__2.i = alpha->r * temp1.i + alpha->i *
temp1.r;
d_lmp_cnjg(&z__4, alpha);
z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
z__3.i = z__4.r * temp2.i + z__4.i *
temp2.r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
z__3.i;
d__1 = *beta * c__[i__4].r + z__1.r;
c__[i__3].r = d__1, c__[i__3].i = 0.;
}
} else {
if (*beta == 0.) {
i__3 = i__ + j * c_dim1;
z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
z__2.i = alpha->r * temp1.i + alpha->i *
temp1.r;
d_lmp_cnjg(&z__4, alpha);
z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
z__3.i = z__4.r * temp2.i + z__4.i *
temp2.r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
} else {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__3.r = *beta * c__[i__4].r, z__3.i = *beta *
c__[i__4].i;
z__4.r = alpha->r * temp1.r - alpha->i * temp1.i,
z__4.i = alpha->r * temp1.i + alpha->i *
temp1.r;
z__2.r = z__3.r + z__4.r, z__2.i = z__3.i +
z__4.i;
d_lmp_cnjg(&z__6, alpha);
z__5.r = z__6.r * temp2.r - z__6.i * temp2.i,
z__5.i = z__6.r * temp2.i + z__6.i *
temp2.r;
z__1.r = z__2.r + z__5.r, z__1.i = z__2.i +
z__5.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
}
}
/* L200: */
}
/* L210: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
temp1.r = 0., temp1.i = 0.;
temp2.r = 0., temp2.i = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
d_lmp_cnjg(&z__3, &a[l + i__ * a_dim1]);
i__4 = l + j * b_dim1;
z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i,
z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4]
.r;
z__1.r = temp1.r + z__2.r, z__1.i = temp1.i + z__2.i;
temp1.r = z__1.r, temp1.i = z__1.i;
d_lmp_cnjg(&z__3, &b[l + i__ * b_dim1]);
i__4 = l + j * a_dim1;
z__2.r = z__3.r * a[i__4].r - z__3.i * a[i__4].i,
z__2.i = z__3.r * a[i__4].i + z__3.i * a[i__4]
.r;
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
temp2.r = z__1.r, temp2.i = z__1.i;
/* L220: */
}
if (i__ == j) {
if (*beta == 0.) {
i__3 = j + j * c_dim1;
z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
z__2.i = alpha->r * temp1.i + alpha->i *
temp1.r;
d_lmp_cnjg(&z__4, alpha);
z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
z__3.i = z__4.r * temp2.i + z__4.i *
temp2.r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
z__3.i;
d__1 = z__1.r;
c__[i__3].r = d__1, c__[i__3].i = 0.;
} else {
i__3 = j + j * c_dim1;
i__4 = j + j * c_dim1;
z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
z__2.i = alpha->r * temp1.i + alpha->i *
temp1.r;
d_lmp_cnjg(&z__4, alpha);
z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
z__3.i = z__4.r * temp2.i + z__4.i *
temp2.r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
z__3.i;
d__1 = *beta * c__[i__4].r + z__1.r;
c__[i__3].r = d__1, c__[i__3].i = 0.;
}
} else {
if (*beta == 0.) {
i__3 = i__ + j * c_dim1;
z__2.r = alpha->r * temp1.r - alpha->i * temp1.i,
z__2.i = alpha->r * temp1.i + alpha->i *
temp1.r;
d_lmp_cnjg(&z__4, alpha);
z__3.r = z__4.r * temp2.r - z__4.i * temp2.i,
z__3.i = z__4.r * temp2.i + z__4.i *
temp2.r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i +
z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
} else {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__3.r = *beta * c__[i__4].r, z__3.i = *beta *
c__[i__4].i;
z__4.r = alpha->r * temp1.r - alpha->i * temp1.i,
z__4.i = alpha->r * temp1.i + alpha->i *
temp1.r;
z__2.r = z__3.r + z__4.r, z__2.i = z__3.i +
z__4.i;
d_lmp_cnjg(&z__6, alpha);
z__5.r = z__6.r * temp2.r - z__6.i * temp2.i,
z__5.i = z__6.r * temp2.i + z__6.i *
temp2.r;
z__1.r = z__2.r + z__5.r, z__1.i = z__2.i +
z__5.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
}
}
/* L230: */
}
/* L240: */
}
}
}
return 0;
/* End of ZHER2K */
} /* zher2k_ */
#ifdef __cplusplus
}
#endif