Merge pull request #3213 from akohlmey/gpu-remove-legacy

Remove support for CUDA toolkits before version 8 and GPUs older than Kepler
This commit is contained in:
Axel Kohlmeyer
2022-04-13 15:10:17 -04:00
committed by GitHub
13 changed files with 78 additions and 254 deletions

View File

@ -80,14 +80,14 @@ if(GPU_API STREQUAL "CUDA")
# --arch translates directly instead of JIT, so this should be for the preferred or most common architecture
set(GPU_CUDA_GENCODE "-arch=${GPU_ARCH}")
# apply the following to build "fat" CUDA binaries only for known CUDA toolkits
if(CUDA_VERSION VERSION_GREATER_EQUAL "12.0")
message(WARNING "Untested CUDA Toolkit version. Use at your own risk")
# apply the following to build "fat" CUDA binaries only for known CUDA toolkits since version 8.0
# only the Kepler achitecture and beyond is supported
if(CUDA_VERSION VERSION_LESS 8.0)
message(FATAL_ERROR "CUDA Toolkit version 8.0 or later is required")
elseif(CUDA_VERSION VERSION_GREATER_EQUAL "12.0")
message(WARNING "Untested CUDA Toolkit version ${CUDA_VERSION}. Use at your own risk")
set(GPU_CUDA_GENCODE "-arch=all")
else()
# Fermi (GPU Arch 2.x) is supported by CUDA 3.2 to CUDA 8.0
if((CUDA_VERSION VERSION_GREATER_EQUAL "3.2") AND (CUDA_VERSION VERSION_LESS "9.0"))
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_20,code=[sm_20,compute_20] ")
endif()
# Kepler (GPU Arch 3.0) is supported by CUDA 5 to CUDA 10.2
if((CUDA_VERSION VERSION_GREATER_EQUAL "5.0") AND (CUDA_VERSION VERSION_LESS "11.0"))
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_30,code=[sm_30,compute_30] ")
@ -120,6 +120,14 @@ if(GPU_API STREQUAL "CUDA")
if(CUDA_VERSION VERSION_GREATER_EQUAL "11.1")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_86,code=[sm_86,compute_86]")
endif()
# Hopper (GPU Arch 9.0) is supported by CUDA 12.0? and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "12.0")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_90,code=[sm_90,compute_90]")
endif()
# # Lovelace (GPU Arch 9.x) is supported by CUDA 12.0? and later
#if(CUDA_VERSION VERSION_GREATER_EQUAL "12.0")
# string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_9x,code=[sm_9x,compute_9x]")
#endif()
endif()
cuda_compile_fatbin(GPU_GEN_OBJS ${GPU_LIB_CU} OPTIONS ${CUDA_REQUEST_PIC}
@ -257,43 +265,47 @@ elseif(GPU_API STREQUAL "HIP")
find_package(CUDA REQUIRED)
set(HIP_ARCH "sm_50" CACHE STRING "HIP primary CUDA architecture (e.g. sm_60)")
# build arch/gencode commands for nvcc based on CUDA toolkit version and use choice
# --arch translates directly instead of JIT, so this should be for the preferred or most common architecture
set(HIP_CUDA_GENCODE "-arch=${HIP_ARCH}")
# Fermi (GPU Arch 2.x) is supported by CUDA 3.2 to CUDA 8.0
if((CUDA_VERSION VERSION_GREATER_EQUAL "3.2") AND (CUDA_VERSION VERSION_LESS "9.0"))
string(APPEND HIP_CUDA_GENCODE " -gencode arch=compute_20,code=[sm_20,compute_20]")
endif()
# Kepler (GPU Arch 3.0) is supported by CUDA 5 to CUDA 10.2
if((CUDA_VERSION VERSION_GREATER_EQUAL "5.0") AND (CUDA_VERSION VERSION_LESS "11.0"))
string(APPEND HIP_CUDA_GENCODE " -gencode arch=compute_30,code=[sm_30,compute_30]")
endif()
# Kepler (GPU Arch 3.5) is supported by CUDA 5 to CUDA 11.0
if((CUDA_VERSION VERSION_GREATER_EQUAL "5.0") AND (CUDA_VERSION VERSION_LESS "12.0"))
string(APPEND HIP_CUDA_GENCODE " -gencode arch=compute_35,code=[sm_35,compute_35]")
endif()
# Maxwell (GPU Arch 5.x) is supported by CUDA 6 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "6.0")
string(APPEND HIP_CUDA_GENCODE " -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52]")
endif()
# Pascal (GPU Arch 6.x) is supported by CUDA 8 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "8.0")
string(APPEND HIP_CUDA_GENCODE " -gencode arch=compute_60,code=[sm_60,compute_60] -gencode arch=compute_61,code=[sm_61,compute_61]")
endif()
# Volta (GPU Arch 7.0) is supported by CUDA 9 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "9.0")
string(APPEND HIP_CUDA_GENCODE " -gencode arch=compute_70,code=[sm_70,compute_70]")
endif()
# Turing (GPU Arch 7.5) is supported by CUDA 10 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "10.0")
string(APPEND HIP_CUDA_GENCODE " -gencode arch=compute_75,code=[sm_75,compute_75]")
endif()
# Ampere (GPU Arch 8.0) is supported by CUDA 11 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "11.0")
string(APPEND HIP_CUDA_GENCODE " -gencode arch=compute_80,code=[sm_80,compute_80]")
endif()
if(CUDA_VERSION VERSION_GREATER_EQUAL "12.0")
message(WARNING "Unsupported CUDA version. Use at your own risk.")
if(CUDA_VERSION VERSION_LESS 8.0)
message(FATAL_ERROR "CUDA Toolkit version 8.0 or later is required")
elseif(CUDA_VERSION VERSION_GREATER_EQUAL "12.0")
message(WARNING "Untested CUDA Toolkit version ${CUDA_VERSION}. Use at your own risk")
set(HIP_CUDA_GENCODE "-arch=all")
else()
# build arch/gencode commands for nvcc based on CUDA toolkit version and use choice
# --arch translates directly instead of JIT, so this should be for the preferred or most common architecture
set(HIP_CUDA_GENCODE "-arch=${HIP_ARCH}")
# Kepler (GPU Arch 3.0) is supported by CUDA 5 to CUDA 10.2
if((CUDA_VERSION VERSION_GREATER_EQUAL "5.0") AND (CUDA_VERSION VERSION_LESS "11.0"))
string(APPEND HIP_CUDA_GENCODE " -gencode arch=compute_30,code=[sm_30,compute_30]")
endif()
# Kepler (GPU Arch 3.5) is supported by CUDA 5 to CUDA 11.0
if((CUDA_VERSION VERSION_GREATER_EQUAL "5.0") AND (CUDA_VERSION VERSION_LESS "12.0"))
string(APPEND HIP_CUDA_GENCODE " -gencode arch=compute_35,code=[sm_35,compute_35]")
endif()
# Maxwell (GPU Arch 5.x) is supported by CUDA 6 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "6.0")
string(APPEND HIP_CUDA_GENCODE " -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52]")
endif()
# Pascal (GPU Arch 6.x) is supported by CUDA 8 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "8.0")
string(APPEND HIP_CUDA_GENCODE " -gencode arch=compute_60,code=[sm_60,compute_60] -gencode arch=compute_61,code=[sm_61,compute_61]")
endif()
# Volta (GPU Arch 7.0) is supported by CUDA 9 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "9.0")
string(APPEND HIP_CUDA_GENCODE " -gencode arch=compute_70,code=[sm_70,compute_70]")
endif()
# Turing (GPU Arch 7.5) is supported by CUDA 10 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "10.0")
string(APPEND HIP_CUDA_GENCODE " -gencode arch=compute_75,code=[sm_75,compute_75]")
endif()
# Ampere (GPU Arch 8.0) is supported by CUDA 11 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "11.0")
string(APPEND HIP_CUDA_GENCODE " -gencode arch=compute_80,code=[sm_80,compute_80]")
endif()
# Hopper (GPU Arch 9.0) is supported by CUDA 12.0? and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "12.0")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_90,code=[sm_90,compute_90]")
endif()
endif()
endif()

View File

@ -141,8 +141,6 @@ CMake build
:code:`GPU_ARCH` settings for different GPU hardware is as follows:
* sm_12 or sm_13 for GT200 (supported by CUDA 3.2 until CUDA 6.5)
* sm_20 or sm_21 for Fermi (supported by CUDA 3.2 until CUDA 7.5)
* sm_30 for Kepler (supported since CUDA 5 and until CUDA 10.x)
* sm_35 or sm_37 for Kepler (supported since CUDA 5 and until CUDA 11.x)
* sm_50 or sm_52 for Maxwell (supported since CUDA 6)
@ -160,6 +158,12 @@ Thus the GPU_ARCH setting is merely an optimization, to have code for
the preferred GPU architecture directly included rather than having to wait
for the JIT compiler of the CUDA driver to translate it.
When compiling for CUDA or HIP with CUDA, version 8.0 or later of the CUDA toolkit
is required and a GPU architecture of Kepler or later, which must *also* be
supported by the CUDA toolkit in use **and** the CUDA driver in use.
When compiling for OpenCL, OpenCL version 1.2 or later is required and the
GPU must be supported by the GPU driver and OpenCL runtime bundled with the driver.
When building with CMake, you **must NOT** build the GPU library in ``lib/gpu``
using the traditional build procedure. CMake will detect files generated by that
process and will terminate with an error and a suggestion for how to remove them.

View File

@ -13,14 +13,6 @@ endif
NVCC = nvcc
# obsolete hardware. not supported by current drivers anymore.
#CUDA_ARCH = -arch=sm_13
#CUDA_ARCH = -arch=sm_10 -DCUDA_PRE_THREE
# Fermi hardware
#CUDA_ARCH = -arch=sm_20
#CUDA_ARCH = -arch=sm_21
# Kepler hardware
#CUDA_ARCH = -arch=sm_30
#CUDA_ARCH = -arch=sm_32
@ -45,6 +37,9 @@ CUDA_ARCH = -arch=sm_50
#CUDA_ARCH = -arch=sm_80
#CUDA_ARCH = -arch=sm_86
# Hopper hardware
#CUDA_ARCH = -arch=sm_90
CUDA_CODE = -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52] \
-gencode arch=compute_60,code=[sm_60,compute_60] -gencode arch=compute_61,code=[sm_61,compute_61] \
-gencode arch=compute_70,code=[sm_70,compute_70] -gencode arch=compute_75,code=[sm_75,compute_75] \

View File

@ -171,7 +171,13 @@ NOTE: when compiling with CMake, all of the considerations listed below
are considered within the CMake configuration process, so no separate
compilation of the gpu library is required. Also this will build in support
for all compute architecture that are supported by the CUDA toolkit version
used to build the gpu library.
used to build the gpu library. A similar setup is possible using
Makefile.linux_multi after adjusting the settings for the CUDA toolkit in use.
Only CUDA toolkit version 8.0 and later and only GPU architecture 3.0
(aka Kepler) and later are supported by this version of LAMMPS. If you want
to use older hard- or software you have to compile for OpenCL or use an older
version of LAMMPS.
If you do not want to use a fat binary, that supports multiple CUDA
architectures, the CUDA_ARCH must be set to match the GPU architecture. This
@ -225,7 +231,8 @@ If GERYON_NUMA_FISSION is defined at build time, LAMMPS will consider separate
NUMA nodes on GPUs or accelerators as separate devices. For example, a 2-socket
CPU would appear as two separate devices for OpenCL (and LAMMPS would require
two MPI processes to use both sockets with the GPU library - each with its
own device ID as output by ocl_get_devices).
own device ID as output by ocl_get_devices). OpenCL version 1.2 or later is
required.
For a debug build, use "-DUCL_DEBUG -DGERYON_KERNEL_DUMP" and remove
"-DUCL_NO_EXIT" and "-DMPI_GERYON" from the build options.

View File

@ -379,18 +379,9 @@ UCL_Device::UCL_Device() {
prop.regsPerBlock = hip_prop.regsPerBlock;
prop.clockRate = hip_prop.clockRate;
prop.computeMode = hip_prop.computeMode;
//CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.memPitch, CU_DEVICE_ATTRIBUTE_MAX_PITCH, dev));
//CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.textureAlign, CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT, dev));
//#if CUDA_VERSION >= 2020
//CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.kernelExecTimeoutEnabled, CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT,dev));
CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.integrated, hipDeviceAttributeIntegrated, dev));
//CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.canMapHostMemory, CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, dev));
//#endif
//#if CUDA_VERSION >= 3010
prop.concurrentKernels = hip_prop.concurrentKernels;
//CU_SAFE_CALL_NS(hipDeviceGetAttribute(&prop.ECCEnabled, CU_DEVICE_ATTRIBUTE_ECC_ENABLED, dev));
//#endif
_properties.push_back(prop);
}
@ -447,13 +438,11 @@ void UCL_Device::clear() {
// List all devices along with all properties
void UCL_Device::print_all(std::ostream &out) {
//#if CUDA_VERSION >= 2020
int driver_version;
hipDriverGetVersion(&driver_version);
out << "Driver Version: "
<< driver_version/1000 << "." << driver_version%100
<< std::endl;
//#endif
if (num_devices() == 0)
out << "There is no device supporting HIP\n";
@ -470,12 +459,10 @@ void UCL_Device::print_all(std::ostream &out) {
out << "No\n";
out << " Total amount of global memory: "
<< gigabytes(i) << " GB\n";
//#if CUDA_VERSION >= 2000
out << " Number of compute units/multiprocessors: "
<< _properties[i].multiProcessorCount << std::endl;
out << " Number of cores: "
<< cores(i) << std::endl;
//#endif
out << " Total amount of constant memory: "
<< _properties[i].totalConstantMemory << " bytes\n";
out << " Total amount of local/shared memory per block: "
@ -494,58 +481,29 @@ void UCL_Device::print_all(std::ostream &out) {
<< _properties[i].maxGridSize[0] << " x "
<< _properties[i].maxGridSize[1] << " x "
<< _properties[i].maxGridSize[2] << std::endl;
//out << " Maximum memory pitch: "
// << max_pitch(i) << " bytes\n";
//out << " Texture alignment: "
// << _properties[i].textureAlign << " bytes\n";
out << " Clock rate: "
<< clock_rate(i) << " GHz\n";
//#if CUDA_VERSION >= 2020
//out << " Run time limit on kernels: ";
//if (_properties[i].kernelExecTimeoutEnabled)
// out << "Yes\n";
//else
// out << "No\n";
out << " Integrated: ";
if (_properties[i].integrated)
out << "Yes\n";
else
out << "No\n";
//out << " Support host page-locked memory mapping: ";
//if (_properties[i].canMapHostMemory)
// out << "Yes\n";
//else
// out << "No\n";
out << " Compute mode: ";
if (_properties[i].computeMode == hipComputeModeDefault)
out << "Default\n"; // multiple threads can use device
//#if CUDA_VERSION >= 8000
// else if (_properties[i].computeMode == hipComputeModeExclusiveProcess)
//#else
else if (_properties[i].computeMode == hipComputeModeExclusive)
//#endif
out << "Exclusive\n"; // only thread can use device
else if (_properties[i].computeMode == hipComputeModeProhibited)
out << "Prohibited\n"; // no thread can use device
//#if CUDART_VERSION >= 4000
else if (_properties[i].computeMode == hipComputeModeExclusiveProcess)
out << "Exclusive Process\n"; // multiple threads 1 process
//#endif
else
out << "Unknown\n";
//#endif
//#if CUDA_VERSION >= 3010
out << " Concurrent kernel execution: ";
if (_properties[i].concurrentKernels)
out << "Yes\n";
else
out << "No\n";
//out << " Device has ECC support enabled: ";
//if (_properties[i].ECCEnabled)
// out << "Yes\n";
//else
// out << "No\n";
//#endif
}
}

View File

@ -5,11 +5,7 @@
#include <cassert>
#include <hip/hip_runtime.h>
//#if CUDA_VERSION >= 3020
#define CUDA_INT_TYPE size_t
//#else
//#define CUDA_INT_TYPE unsigned
//#endif
#ifdef MPI_GERYON
#include "mpi.h"

View File

@ -71,9 +71,6 @@ class UCL_Texture {
/// Make a texture reference available to kernel
inline void allow(UCL_Kernel &) {
//#if CUDA_VERSION < 4000
//CU_SAFE_CALL(cuParamSetTexRef(kernel._kernel, CU_PARAM_TR_DEFAULT, _tex));
//#endif
}
private:

View File

@ -320,6 +320,9 @@ class UCL_Device {
// Grabs the properties for all devices
UCL_Device::UCL_Device() {
#if CUDA_VERSION < 8000
#error CUDA Toolkit version 8 or later required
#endif
CU_SAFE_CALL_NS(cuInit(0));
CU_SAFE_CALL_NS(cuDeviceGetCount(&_num_devices));
for (int i=0; i<_num_devices; ++i) {
@ -358,16 +361,12 @@ UCL_Device::UCL_Device() {
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.clockRate, CU_DEVICE_ATTRIBUTE_CLOCK_RATE, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.textureAlign, CU_DEVICE_ATTRIBUTE_TEXTURE_ALIGNMENT, dev));
#if CUDA_VERSION >= 2020
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.kernelExecTimeoutEnabled, CU_DEVICE_ATTRIBUTE_KERNEL_EXEC_TIMEOUT,dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.integrated, CU_DEVICE_ATTRIBUTE_INTEGRATED, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.canMapHostMemory, CU_DEVICE_ATTRIBUTE_CAN_MAP_HOST_MEMORY, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.computeMode, CU_DEVICE_ATTRIBUTE_COMPUTE_MODE,dev));
#endif
#if CUDA_VERSION >= 3010
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.concurrentKernels, CU_DEVICE_ATTRIBUTE_CONCURRENT_KERNELS, dev));
CU_SAFE_CALL_NS(cuDeviceGetAttribute(&prop.ECCEnabled, CU_DEVICE_ATTRIBUTE_ECC_ENABLED, dev));
#endif
_properties.push_back(prop);
}
@ -415,13 +414,10 @@ void UCL_Device::clear() {
// List all devices along with all properties
void UCL_Device::print_all(std::ostream &out) {
#if CUDA_VERSION >= 2020
int driver_version;
cuDriverGetVersion(&driver_version);
out << "CUDA Driver Version: "
<< driver_version/1000 << "." << driver_version%100
<< std::endl;
#endif
<< driver_version/1000 << "." << driver_version%100 << std::endl;
if (num_devices() == 0)
out << "There is no device supporting CUDA\n";
@ -438,12 +434,10 @@ void UCL_Device::print_all(std::ostream &out) {
out << "No\n";
out << " Total amount of global memory: "
<< gigabytes(i) << " GB\n";
#if CUDA_VERSION >= 2000
out << " Number of compute units/multiprocessors: "
<< _properties[i].multiProcessorCount << std::endl;
out << " Number of cores: "
<< cores(i) << std::endl;
#endif
out << " Total amount of constant memory: "
<< _properties[i].totalConstantMemory << " bytes\n";
out << " Total amount of local/shared memory per block: "
@ -468,7 +462,6 @@ void UCL_Device::print_all(std::ostream &out) {
<< _properties[i].textureAlign << " bytes\n";
out << " Clock rate: "
<< clock_rate(i) << " GHz\n";
#if CUDA_VERSION >= 2020
out << " Run time limit on kernels: ";
if (_properties[i].kernelExecTimeoutEnabled)
out << "Yes\n";
@ -487,22 +480,14 @@ void UCL_Device::print_all(std::ostream &out) {
out << " Compute mode: ";
if (_properties[i].computeMode == CU_COMPUTEMODE_DEFAULT)
out << "Default\n"; // multiple threads can use device
#if CUDA_VERSION >= 8000
else if (_properties[i].computeMode == CU_COMPUTEMODE_EXCLUSIVE_PROCESS)
#else
else if (_properties[i].computeMode == CU_COMPUTEMODE_EXCLUSIVE)
#endif
out << "Exclusive\n"; // only thread can use device
else if (_properties[i].computeMode == CU_COMPUTEMODE_PROHIBITED)
out << "Prohibited\n"; // no thread can use device
#if CUDART_VERSION >= 4000
else if (_properties[i].computeMode == CU_COMPUTEMODE_EXCLUSIVE_PROCESS)
out << "Exclusive Process\n"; // multiple threads 1 process
#endif
else
out << "Unknown\n";
#endif
#if CUDA_VERSION >= 3010
out << " Concurrent kernel execution: ";
if (_properties[i].concurrentKernels)
out << "Yes\n";
@ -513,7 +498,6 @@ void UCL_Device::print_all(std::ostream &out) {
out << "Yes\n";
else
out << "No\n";
#endif
}
}

View File

@ -165,17 +165,11 @@ class UCL_Program {
class UCL_Kernel {
public:
UCL_Kernel() : _dimensions(1), _num_args(0) {
#if CUDA_VERSION < 4000
_param_size=0;
#endif
_num_blocks[0]=0;
}
UCL_Kernel(UCL_Program &program, const char *function) :
_dimensions(1), _num_args(0) {
#if CUDA_VERSION < 4000
_param_size=0;
#endif
_num_blocks[0]=0;
set_function(program,function);
_cq=program._cq;
@ -211,11 +205,7 @@ class UCL_Kernel {
if (index==_num_args)
add_arg(arg);
else if (index<_num_args)
#if CUDA_VERSION >= 4000
_kernel_args[index]=arg;
#else
CU_SAFE_CALL(cuParamSetv(_kernel, _offsets[index], arg, sizeof(dtype)));
#endif
else
assert(0==1); // Must add kernel parameters in sequential order
}
@ -242,15 +232,7 @@ class UCL_Kernel {
/// Add a kernel argument.
inline void add_arg(const CUdeviceptr* const arg) {
#if CUDA_VERSION >= 4000
_kernel_args[_num_args]=(void *)arg;
#else
void* ptr = (void*)(size_t)(*arg);
_param_size = (_param_size + __alignof(ptr) - 1) & ~(__alignof(ptr) - 1);
CU_SAFE_CALL(cuParamSetv(_kernel, _param_size, &ptr, sizeof(ptr)));
_offsets.push_back(_param_size);
_param_size+=sizeof(ptr);
#endif
_num_args++;
if (_num_args>UCL_MAX_KERNEL_ARGS) assert(0==1);
}
@ -258,14 +240,7 @@ class UCL_Kernel {
/// Add a kernel argument.
template <class dtype>
inline void add_arg(const dtype* const arg) {
#if CUDA_VERSION >= 4000
_kernel_args[_num_args]=const_cast<dtype *>(arg);
#else
_param_size = (_param_size+__alignof(dtype)-1) & ~(__alignof(dtype)-1);
CU_SAFE_CALL(cuParamSetv(_kernel,_param_size,(void*)arg,sizeof(dtype)));
_offsets.push_back(_param_size);
_param_size+=sizeof(dtype);
#endif
_num_args++;
if (_num_args>UCL_MAX_KERNEL_ARGS) assert(0==1);
}
@ -298,13 +273,9 @@ class UCL_Kernel {
_num_blocks[0]=num_blocks;
_num_blocks[1]=1;
_num_blocks[2]=1;
#if CUDA_VERSION >= 4000
_block_size[0]=block_size;
_block_size[1]=1;
_block_size[2]=1;
#else
CU_SAFE_CALL(cuFuncSetBlockShape(_kernel,block_size,1,1));
#endif
}
/// Set the number of thread blocks and the number of threads in each block
@ -323,13 +294,9 @@ class UCL_Kernel {
_num_blocks[0]=num_blocks_x;
_num_blocks[1]=num_blocks_y;
_num_blocks[2]=1;
#if CUDA_VERSION >= 4000
_block_size[0]=block_size_x;
_block_size[1]=block_size_y;
_block_size[2]=1;
#else
CU_SAFE_CALL(cuFuncSetBlockShape(_kernel,block_size_x,block_size_y,1));
#endif
}
/// Set the number of thread blocks and the number of threads in each block
@ -350,14 +317,9 @@ class UCL_Kernel {
_num_blocks[0]=num_blocks_x;
_num_blocks[1]=num_blocks_y;
_num_blocks[2]=1;
#if CUDA_VERSION >= 4000
_block_size[0]=block_size_x;
_block_size[1]=block_size_y;
_block_size[2]=block_size_z;
#else
CU_SAFE_CALL(cuFuncSetBlockShape(_kernel,block_size_x,block_size_y,
block_size_z));
#endif
}
/// Set the number of thread blocks and the number of threads in each block
@ -373,23 +335,14 @@ class UCL_Kernel {
/// Run the kernel in the default command queue
inline void run() {
#if CUDA_VERSION >= 4000
CU_SAFE_CALL(cuLaunchKernel(_kernel,_num_blocks[0],_num_blocks[1],
_num_blocks[2],_block_size[0],_block_size[1],
_block_size[2],0,_cq,_kernel_args,nullptr));
#else
CU_SAFE_CALL(cuParamSetSize(_kernel,_param_size));
CU_SAFE_CALL(cuLaunchGridAsync(_kernel,_num_blocks[0],_num_blocks[1],_cq));
#endif
}
/// Clear any arguments associated with the kernel
inline void clear_args() {
_num_args=0;
#if CUDA_VERSION < 4000
_offsets.clear();
_param_size=0;
#endif
}
/// Return the default command queue/stream associated with this data
@ -406,13 +359,8 @@ class UCL_Kernel {
unsigned _num_args;
friend class UCL_Texture;
#if CUDA_VERSION >= 4000
unsigned _block_size[3];
void * _kernel_args[UCL_MAX_KERNEL_ARGS];
#else
std::vector<unsigned> _offsets;
unsigned _param_size;
#endif
};
} // namespace

View File

@ -5,11 +5,7 @@
#include <cassert>
#include <cuda.h>
#if CUDA_VERSION >= 3020
#define CUDA_INT_TYPE size_t
#else
#define CUDA_INT_TYPE unsigned
#endif
#ifdef MPI_GERYON
#include "mpi.h"

View File

@ -69,9 +69,6 @@ class UCL_Texture {
/// Make a texture reference available to kernel
inline void allow(UCL_Kernel &kernel) {
#if CUDA_VERSION < 4000
CU_SAFE_CALL(cuParamSetTexRef(kernel._kernel, CU_PARAM_TR_DEFAULT, _tex));
#endif
}
private:

View File

@ -25,21 +25,8 @@
#ifndef UCL_NV_KERNEL_H
#define UCL_NV_KERNEL_H
#if (__CUDA_ARCH__ < 200)
#define mul24 __mul24
#define MEM_THREADS 16
#else
#define mul24(X,Y) (X)*(Y)
#define MEM_THREADS 32
#endif
#ifdef CUDA_PRE_THREE
struct __builtin_align__(16) _double4
{
double x, y, z, w;
};
typedef struct _double4 double4;
#endif
#define GLOBAL_ID_X threadIdx.x+mul24(blockIdx.x,blockDim.x)
#define GLOBAL_ID_Y threadIdx.y+mul24(blockIdx.y,blockDim.y)

View File

@ -58,49 +58,6 @@
#define MAX_BIO_SHARED_TYPES 128
#define PPPM_MAX_SPLINE 8
// -------------------------------------------------------------------------
// LEGACY DEVICE CONFIGURATION
// -------------------------------------------------------------------------
#ifdef __CUDA_ARCH__
#if (__CUDA_ARCH__ < 200)
#undef CONFIG_ID
#define CONFIG_ID 101
#define MEM_THREADS 16
#undef THREADS_PER_ATOM
#define THREADS_PER_ATOM 1
#undef THREADS_PER_CHARGE
#define THREADS_PER_CHARGE 16
#undef BLOCK_PAIR
#define BLOCK_PAIR 64
#undef BLOCK_BIO_PAIR
#define BLOCK_BIO_PAIR 64
#undef BLOCK_NBOR_BUILD
#define BLOCK_NBOR_BUILD 64
#undef MAX_SHARED_TYPES
#define MAX_SHARED_TYPES 8
#undef SHUFFLE_AVAIL
#define SHUFFLE_AVAIL 0
#elseif (__CUDA_ARCH__ < 300)
#undef CONFIG_ID
#define CONFIG_ID 102
#undef BLOCK_PAIR
#define BLOCK_PAIR 128
#undef BLOCK_BIO_PAIR
#define BLOCK_BIO_PAIR 128
#undef MAX_SHARED_TYPES
#define MAX_SHARED_TYPES 8
#undef SHUFFLE_AVAIL
#define SHUFFLE_AVAIL 0
#endif
#endif
// -------------------------------------------------------------------------
// KERNEL MACROS
// -------------------------------------------------------------------------
@ -111,12 +68,6 @@
#define fast_mul(X,Y) (X)*(Y)
#ifdef __CUDA_ARCH__
#if (__CUDA_ARCH__ < 200)
#define fast_mul __mul24
#endif
#endif
#define EVFLAG 1
#define NOUNROLL
#define GLOBAL_ID_X threadIdx.x+fast_mul(blockIdx.x,blockDim.x)
@ -220,14 +171,6 @@
// KERNEL MACROS - MATH
// -------------------------------------------------------------------------
#ifdef CUDA_PRE_THREE
struct __builtin_align__(16) _double4
{
double x, y, z, w;
};
typedef struct _double4 double4;
#endif
#ifdef _DOUBLE_DOUBLE
#define ucl_exp exp