consolidate pair-wise vs pairwise spelling
This commit is contained in:
@ -225,7 +225,7 @@ follows:
|
||||
commands in an input script.
|
||||
|
||||
- The Force class computes various forces between atoms. The Pair
|
||||
parent class is for non-bonded or pair-wise forces, which in LAMMPS
|
||||
parent class is for non-bonded or pairwise forces, which in LAMMPS
|
||||
also includes many-body forces such as the Tersoff 3-body potential if
|
||||
those are computed by walking pairwise neighbor lists. The Bond,
|
||||
Angle, Dihedral, Improper parent classes are styles for bonded
|
||||
|
||||
@ -416,7 +416,7 @@ This will most likely cause errors in kinetic fluctuations.
|
||||
not defined for the specified atom style.
|
||||
|
||||
*Molecule has bond topology but no special bond settings*
|
||||
This means the bonded atoms will not be excluded in pair-wise
|
||||
This means the bonded atoms will not be excluded in pairwise
|
||||
interactions.
|
||||
|
||||
*Molecule template for create_atoms has multiple molecules*
|
||||
|
||||
@ -106,7 +106,7 @@ individual ranks. Here is an example output for this section:
|
||||
----------
|
||||
|
||||
The third section above lists the number of owned atoms (Nlocal),
|
||||
ghost atoms (Nghost), and pair-wise neighbors stored per processor.
|
||||
ghost atoms (Nghost), and pairwise neighbors stored per processor.
|
||||
The max and min values give the spread of these values across
|
||||
processors with a 10-bin histogram showing the distribution. The total
|
||||
number of histogram counts is equal to the number of processors.
|
||||
@ -114,7 +114,7 @@ number of histogram counts is equal to the number of processors.
|
||||
----------
|
||||
|
||||
The last section gives aggregate statistics (across all processors)
|
||||
for pair-wise neighbors and special neighbors that LAMMPS keeps track
|
||||
for pairwise neighbors and special neighbors that LAMMPS keeps track
|
||||
of (see the :doc:`special_bonds <special_bonds>` command). The number
|
||||
of times neighbor lists were rebuilt is tallied, as is the number of
|
||||
potentially *dangerous* rebuilds. If atom movement triggered neighbor
|
||||
|
||||
@ -214,7 +214,7 @@ threads/task as Nt. The product of these two values should be N, i.e.
|
||||
The default for the :doc:`package kokkos <package>` command when
|
||||
running on KNL is to use "half" neighbor lists and set the Newton flag
|
||||
to "on" for both pairwise and bonded interactions. This will typically
|
||||
be best for many-body potentials. For simpler pair-wise potentials, it
|
||||
be best for many-body potentials. For simpler pairwise potentials, it
|
||||
may be faster to use a "full" neighbor list with Newton flag to "off".
|
||||
Use the "-pk kokkos" :doc:`command-line switch <Run_options>` to change
|
||||
the default :doc:`package kokkos <package>` options. See its page for
|
||||
|
||||
@ -383,7 +383,7 @@ multiple groups, its weight is the product of the weight factors.
|
||||
|
||||
This weight style is useful in combination with pair style
|
||||
:doc:`hybrid <pair_hybrid>`, e.g. when combining a more costly many-body
|
||||
potential with a fast pair-wise potential. It is also useful when
|
||||
potential with a fast pairwise potential. It is also useful when
|
||||
using :doc:`run_style respa <run_style>` where some portions of the
|
||||
system have many bonded interactions and others none. It assumes that
|
||||
the computational cost for each group remains constant over time.
|
||||
|
||||
@ -61,7 +61,7 @@ Restrictions
|
||||
This compute currently calculates the pressure tensor contributions
|
||||
for pair styles only (i.e. no bond, angle, dihedral, etc. contributions
|
||||
and in the presence of bonded interactions, the result will be incorrect
|
||||
due to exclusions for special bonds) and requires pair-wise force
|
||||
due to exclusions for special bonds) and requires pairwise force
|
||||
calculations not available for most many-body pair styles. K-space
|
||||
calculations are also excluded. Note that this pressure compute outputs
|
||||
the configurational terms only; the kinetic contribution is not included
|
||||
|
||||
@ -460,7 +460,7 @@ using *neigh/thread* *on*, a full neighbor list must also be used. Using
|
||||
is turned on by default only when there are 16K atoms or less owned by
|
||||
an MPI rank and when using a full neighbor list. Not all KOKKOS-enabled
|
||||
potentials support this keyword yet, and only thread over atoms. Many
|
||||
simple pair-wise potentials such as Lennard-Jones do support threading
|
||||
simple pairwise potentials such as Lennard-Jones do support threading
|
||||
over both atoms and neighbors.
|
||||
|
||||
The *newton* keyword sets the Newton flags for pairwise and bonded
|
||||
|
||||
@ -119,7 +119,7 @@ name are the older, original LAMMPS implementations. They compute the
|
||||
LJ and Coulombic interactions with an energy switching function (esw,
|
||||
shown in the formula below as S(r)), which ramps the energy smoothly
|
||||
to zero between the inner and outer cutoff. This can cause
|
||||
irregularities in pair-wise forces (due to the discontinuous second
|
||||
irregularities in pairwise forces (due to the discontinuous second
|
||||
derivative of energy at the boundaries of the switching region), which
|
||||
in some cases can result in detectable artifacts in an MD simulation.
|
||||
|
||||
|
||||
@ -50,7 +50,7 @@ Style *dpd* computes a force field for dissipative particle dynamics
|
||||
|
||||
Style *dpd/tstat* invokes a DPD thermostat on pairwise interactions,
|
||||
which is equivalent to the non-conservative portion of the DPD force
|
||||
field. This pair-wise thermostat can be used in conjunction with any
|
||||
field. This pairwise thermostat can be used in conjunction with any
|
||||
:doc:`pair style <pair_style>`, and in leiu of per-particle thermostats
|
||||
like :doc:`fix langevin <fix_langevin>` or ensemble thermostats like
|
||||
Nose Hoover as implemented by :doc:`fix nvt <fix_nh>`. To use
|
||||
|
||||
@ -164,7 +164,7 @@ Following the *LJCutMelt* example, here are the two functions:
|
||||
.. note::
|
||||
|
||||
The evaluation of scripted python code will slow down the
|
||||
computation pair-wise interactions quite significantly. However, this
|
||||
computation pairwise interactions quite significantly. However, this
|
||||
can be largely worked around through using the python pair style not
|
||||
for the actual simulation, but to generate tabulated potentials on the
|
||||
fly using the :doc:`pair_write <pair_write>` command. Please see below
|
||||
|
||||
@ -154,10 +154,10 @@ accelerated styles exist.
|
||||
* :doc:`coul/wolf/cs <pair_cs>` - Coulomb via Wolf potential with core/shell adjustments
|
||||
* :doc:`dpd <pair_dpd>` - dissipative particle dynamics (DPD)
|
||||
* :doc:`dpd/ext <pair_dpd_ext>` - generalized force field for DPD
|
||||
* :doc:`dpd/ext/tstat <pair_dpd_ext>` - pair-wise DPD thermostatting with generalized force field
|
||||
* :doc:`dpd/ext/tstat <pair_dpd_ext>` - pairwise DPD thermostatting with generalized force field
|
||||
* :doc:`dpd/fdt <pair_dpd_fdt>` - DPD for constant temperature and pressure
|
||||
* :doc:`dpd/fdt/energy <pair_dpd_fdt>` - DPD for constant energy and enthalpy
|
||||
* :doc:`dpd/tstat <pair_dpd>` - pair-wise DPD thermostatting
|
||||
* :doc:`dpd/tstat <pair_dpd>` - pairwise DPD thermostatting
|
||||
* :doc:`dsmc <pair_dsmc>` - Direct Simulation Monte Carlo (DSMC)
|
||||
* :doc:`e3b <pair_e3b>` - Explicit-three body (E3B) water model
|
||||
* :doc:`drip <pair_drip>` - Dihedral-angle-corrected registry-dependent interlayer potential (DRIP)
|
||||
|
||||
@ -202,7 +202,7 @@ elements are the same. Thus the two-body parameters for Si
|
||||
interacting with C, comes from the SiCC entry. The three-body
|
||||
parameters can in principle be specific to the three elements of the
|
||||
configuration. In the literature, however, the three-body parameters
|
||||
are usually defined by simple formulas involving two sets of pair-wise
|
||||
are usually defined by simple formulas involving two sets of pairwise
|
||||
parameters, corresponding to the ij and ik pairs, where i is the
|
||||
center atom. The user must ensure that the correct combining rule is
|
||||
used to calculate the values of the three-body parameters for
|
||||
|
||||
@ -89,7 +89,7 @@ in its 3d FFTs. In this scenario, splitting your P total processors
|
||||
into 2 subsets of processors, P1 in the first partition and P2 in the
|
||||
second partition, can enable your simulation to run faster. This is
|
||||
because the long-range forces in PPPM can be calculated at the same
|
||||
time as pair-wise and bonded forces are being calculated, and the FFTs
|
||||
time as pairwise and bonded forces are being calculated, and the FFTs
|
||||
can actually speed up when running on fewer processors.
|
||||
|
||||
To use this style, you must define 2 partitions where P1 is a multiple
|
||||
|
||||
Reference in New Issue
Block a user