change to checking timestep for time dumps at start of each step

This commit is contained in:
Steve Plimpton
2021-12-20 16:39:17 -07:00
parent 06c45fbe68
commit 4d31e300c6
5 changed files with 440 additions and 413 deletions

View File

@ -330,8 +330,6 @@ void Dump::write()
if (delay_flag && update->ntimestep < delaystep) return;
printf("DUMP %ld\n",update->ntimestep);
// if file per timestep, open new file
if (multifile) openfile();

View File

@ -20,6 +20,7 @@
#include "kspace.h"
#include "modify.h"
#include "pair.h"
#include "output.h"
#include "update.h"
using namespace LAMMPS_NS;
@ -115,7 +116,13 @@ void Integrate::ev_setup()
/* ----------------------------------------------------------------------
set eflag,vflag for current iteration
based on computes that need energy/virial info on this timestep
based on
(1) computes that need energy/virial info on this timestep
(2) time dumps that need unknown per-atom info on this timestep
NOTE: could not check time dumps if timestep size is not varying
see NOTE in output.cpp
also inefficient to add all per-atom eng/virial computes
but don't know which ones the dump needs
invoke matchstep() on all timestep-dependent computes to clear their arrays
eflag: set any or no bits
ENERGY_GLOBAL bit for global energy
@ -133,6 +140,10 @@ void Integrate::ev_set(bigint ntimestep)
{
int i,flag;
int tdflag = 0;
if (output->any_time_dumps)
tdflag = output->check_time_dumps(ntimestep);
flag = 0;
int eflag_global = 0;
for (i = 0; i < nelist_global; i++)
@ -143,7 +154,7 @@ void Integrate::ev_set(bigint ntimestep)
int eflag_atom = 0;
for (i = 0; i < nelist_atom; i++)
if (elist_atom[i]->matchstep(ntimestep)) flag = 1;
if (flag) eflag_atom = ENERGY_ATOM;
if (flag || (tdflag && nelist_atom)) eflag_atom = ENERGY_ATOM;
if (eflag_global) update->eflag_global = ntimestep;
if (eflag_atom) update->eflag_atom = ntimestep;
@ -159,13 +170,13 @@ void Integrate::ev_set(bigint ntimestep)
int vflag_atom = 0;
for (i = 0; i < nvlist_atom; i++)
if (vlist_atom[i]->matchstep(ntimestep)) flag = 1;
if (flag) vflag_atom = VIRIAL_ATOM;
if (flag || (tdflag && nvlist_atom)) vflag_atom = VIRIAL_ATOM;
flag = 0;
int cvflag_atom = 0;
for (i = 0; i < ncvlist_atom; i++)
if (cvlist_atom[i]->matchstep(ntimestep)) flag = 1;
if (flag) cvflag_atom = VIRIAL_CENTROID;
if (flag || (tdflag && ncvlist_atom)) cvflag_atom = VIRIAL_CENTROID;
if (vflag_global) update->vflag_global = ntimestep;
if (vflag_atom || cvflag_atom) update->vflag_atom = ntimestep;

View File

@ -133,7 +133,9 @@ void Output::init()
}
for (int i = 0; i < ndump; i++) dump[i]->init();
for (int i = 0; i < ndump; i++)
any_time_dumps = 0;
for (int i = 0; i < ndump; i++) {
if (mode_dump[i]) any_time_dumps = 1;
if ((mode_dump[i] == 0 && every_dump[i] == 0) ||
(mode_dump[i] == 1 && every_time_dump[i] == 0.0)) {
ivar_dump[i] = input->variable->find(var_dump[i]);
@ -142,6 +144,7 @@ void Output::init()
if (!input->variable->equalstyle(ivar_dump[i]))
error->all(FLERR,"Variable for dump every or delta is invalid style");
}
}
if (restart_flag_single && restart_every_single == 0) {
ivar_restart_single = input->variable->find(var_restart_single);
@ -176,9 +179,11 @@ void Output::setup(int memflag)
if (ndump && update->restrict_output == 0) {
for (int idump = 0; idump < ndump; idump++) {
// wrap dumps that invoke computes or do variable eval with clear/add
// wrap step dumps that invoke computes or do variable eval with clear/add
// see NOTE in write() about also wrapping time dumps
if (dump[idump]->clearstep || var_dump[idump])
if (mode_dump[idump] == 0 &&
(dump[idump]->clearstep || var_dump[idump]))
modify->clearstep_compute();
// write a snapshot at setup only if any of these 3 conditions hold
@ -226,7 +231,8 @@ void Output::setup(int memflag)
// if dump not written now, use addstep_compute_all()
// since don't know what computes the dump will invoke
if (dump[idump]->clearstep || var_dump[idump]) {
if (mode_dump[idump] == 0 &&
(dump[idump]->clearstep || var_dump[idump])) {
if (writeflag) modify->addstep_compute(next_dump[idump]);
else modify->addstep_compute_all(next_dump[idump]);
}
@ -239,413 +245,435 @@ void Output::setup(int memflag)
} else next_dump_any = update->laststep + 1;
// do not write restart files at start of run
// set next_restart values to multiple of every or variable value
// wrap variable eval with clear/add
// if no restarts, set next_restart to last+1 so will not influence next
// do not write restart files at start of run
// set next_restart values to multiple of every or variable value
// wrap variable eval with clear/add
// if no restarts, set next_restart to last+1 so will not influence next
if (restart_flag && update->restrict_output == 0) {
if (restart_flag_single) {
if (restart_every_single)
next_restart_single =
(ntimestep/restart_every_single)*restart_every_single +
restart_every_single;
else {
bigint nextrestart = static_cast<bigint>
(input->variable->compute_equal(ivar_restart_single));
if (nextrestart <= ntimestep)
error->all(FLERR,"Restart variable returned a bad timestep");
next_restart_single = nextrestart;
}
} else next_restart_single = update->laststep + 1;
if (restart_flag_double) {
if (restart_every_double)
next_restart_double =
(ntimestep/restart_every_double)*restart_every_double +
restart_every_double;
else {
bigint nextrestart = static_cast<bigint>
(input->variable->compute_equal(ivar_restart_double));
if (nextrestart <= ntimestep)
error->all(FLERR,"Restart variable returned a bad timestep");
next_restart_double = nextrestart;
}
} else next_restart_double = update->laststep + 1;
next_restart = MIN(next_restart_single,next_restart_double);
} else next_restart = update->laststep + 1;
if (restart_flag && update->restrict_output == 0) {
if (restart_flag_single) {
if (restart_every_single)
next_restart_single =
(ntimestep/restart_every_single)*restart_every_single +
restart_every_single;
else {
bigint nextrestart = static_cast<bigint>
(input->variable->compute_equal(ivar_restart_single));
if (nextrestart <= ntimestep)
error->all(FLERR,"Restart variable returned a bad timestep");
next_restart_single = nextrestart;
}
} else next_restart_single = update->laststep + 1;
if (restart_flag_double) {
if (restart_every_double)
next_restart_double =
(ntimestep/restart_every_double)*restart_every_double +
restart_every_double;
else {
bigint nextrestart = static_cast<bigint>
(input->variable->compute_equal(ivar_restart_double));
if (nextrestart <= ntimestep)
error->all(FLERR,"Restart variable returned a bad timestep");
next_restart_double = nextrestart;
}
} else next_restart_double = update->laststep + 1;
next_restart = MIN(next_restart_single,next_restart_double);
} else next_restart = update->laststep + 1;
// print memory usage unless being called between multiple runs
// print memory usage unless being called between multiple runs
if (memflag) memory_usage();
if (memflag) memory_usage();
// set next_thermo to multiple of every or variable eval if var defined
// insure thermo output on last step of run
// thermo may invoke computes so wrap with clear/add
// set next_thermo to multiple of every or variable eval if var defined
// insure thermo output on last step of run
// thermo may invoke computes so wrap with clear/add
modify->clearstep_compute();
modify->clearstep_compute();
thermo->header();
thermo->compute(0);
last_thermo = ntimestep;
thermo->header();
thermo->compute(0);
last_thermo = ntimestep;
if (var_thermo) {
next_thermo = static_cast<bigint>
(input->variable->compute_equal(ivar_thermo));
if (next_thermo <= ntimestep)
error->all(FLERR,"Thermo every variable returned a bad timestep");
} else if (thermo_every) {
next_thermo = (ntimestep/thermo_every)*thermo_every + thermo_every;
next_thermo = MIN(next_thermo,update->laststep);
} else next_thermo = update->laststep;
if (var_thermo) {
next_thermo = static_cast<bigint>
(input->variable->compute_equal(ivar_thermo));
if (next_thermo <= ntimestep)
error->all(FLERR,"Thermo every variable returned a bad timestep");
} else if (thermo_every) {
next_thermo = (ntimestep/thermo_every)*thermo_every + thermo_every;
next_thermo = MIN(next_thermo,update->laststep);
} else next_thermo = update->laststep;
modify->addstep_compute(next_thermo);
modify->addstep_compute(next_thermo);
// next = next timestep any output will be done
// next = next timestep any output will be done
next = MIN(next_dump_any,next_restart);
next = MIN(next,next_thermo);
}
next = MIN(next_dump_any,next_restart);
next = MIN(next,next_thermo);
}
/* ----------------------------------------------------------------------
perform all output for this timestep
only perform output if next matches current step and last output doesn't
do dump/restart before thermo so thermo CPU time will include them
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
perform all output for this timestep
only perform output if next matches current step and last output doesn't
do dump/restart before thermo so thermo CPU time will include them
------------------------------------------------------------------------- */
void Output::write(bigint ntimestep)
void Output::write(bigint ntimestep)
{
// perform dump if its next_dump = current ntimestep
// but not if it was already written on this step
// set next_dump and also next_time_dump for mode_dump = 1
// set next_dump_any to smallest next_dump
// wrap step dumps that invoke computes or do variable eval with clear/add
// NOTE:
// could wrap time dumps as well, if timestep size did not vary
// if wrap when timestep size varies frequently,
// then can do many unneeded addstep() --> inefficient
// hard to know if timestep varies, since run every could change it
// can't remove an uneeded addstep from a compute, b/c don't know
// what other command may have added it
int writeflag;
if (next_dump_any == ntimestep) {
for (int idump = 0; idump < ndump; idump++) {
if (next_dump[idump] == ntimestep) {
if (last_dump[idump] == ntimestep) continue;
if (mode_dump[idump] == 0 &&
(dump[idump]->clearstep || var_dump[idump]))
modify->clearstep_compute();
// perform dump
// reset next_dump and next_time_dump, 1 arg for write()
dump[idump]->write();
last_dump[idump] = ntimestep;
calculate_next_dump(1,idump,ntimestep);
if (mode_dump[idump] == 0 &&
(dump[idump]->clearstep || var_dump[idump]))
modify->addstep_compute(next_dump[idump]);
}
if (idump) next_dump_any = MIN(next_dump_any,next_dump[idump]);
else next_dump_any = next_dump[0];
}
}
// next_restart does not force output on last step of run
// for toggle = 0, replace "*" with current timestep in restart filename
// next restart variable may invoke computes so wrap with clear/add
if (next_restart == ntimestep) {
if (next_restart_single == ntimestep) {
std::string file = restart1;
std::size_t found = file.find('*');
if (found != std::string::npos)
file.replace(found,1,fmt::format("{}",update->ntimestep));
if (last_restart != ntimestep) restart->write(file);
if (restart_every_single) next_restart_single += restart_every_single;
else {
modify->clearstep_compute();
bigint nextrestart = static_cast<bigint>
(input->variable->compute_equal(ivar_restart_single));
if (nextrestart <= ntimestep)
error->all(FLERR,"Restart variable returned a bad timestep");
next_restart_single = nextrestart;
modify->addstep_compute(next_restart_single);
}
}
if (next_restart_double == ntimestep) {
if (last_restart != ntimestep) {
if (restart_toggle == 0) {
restart->write(restart2a);
restart_toggle = 1;
} else {
restart->write(restart2b);
restart_toggle = 0;
}
}
if (restart_every_double) next_restart_double += restart_every_double;
else {
modify->clearstep_compute();
bigint nextrestart = static_cast<bigint>
(input->variable->compute_equal(ivar_restart_double));
if (nextrestart <= ntimestep)
error->all(FLERR,"Restart variable returned a bad timestep");
next_restart_double = nextrestart;
modify->addstep_compute(next_restart_double);
}
}
last_restart = ntimestep;
next_restart = MIN(next_restart_single,next_restart_double);
}
// insure next_thermo forces output on last step of run
// thermo may invoke computes so wrap with clear/add
if (next_thermo == ntimestep) {
modify->clearstep_compute();
if (last_thermo != ntimestep) thermo->compute(1);
last_thermo = ntimestep;
if (var_thermo) {
next_thermo = static_cast<bigint>
(input->variable->compute_equal(ivar_thermo));
if (next_thermo <= ntimestep)
error->all(FLERR,"Thermo every variable returned a bad timestep");
} else if (thermo_every) next_thermo += thermo_every;
else next_thermo = update->laststep;
next_thermo = MIN(next_thermo,update->laststep);
modify->addstep_compute(next_thermo);
}
// next = next timestep any output will be done
next = MIN(next_dump_any,next_restart);
next = MIN(next,next_thermo);
}
/* ----------------------------------------------------------------------
force a snapshot to be written for all dumps
called from PRD and TAD
------------------------------------------------------------------------- */
void Output::write_dump(bigint ntimestep)
{
for (int idump = 0; idump < ndump; idump++) {
dump[idump]->write();
last_dump[idump] = ntimestep;
}
}
/* ----------------------------------------------------------------------
calculate when next dump occurs for Dump instance idump
operates in one of two modes, based on mode_dump flag
for timestep mode, set next_dump
for simulation time mode, set next_time_dump and next_dump
which flag depends on caller
0 = from setup() at start of run
1 = from write() during run each time a dump file is written
2 = from reset_dt() called from fix dt/reset when it changes timestep size
------------------------------------------------------------------------- */
void Output::calculate_next_dump(int which, int idump, bigint ntimestep)
{
// dump mode is by timestep
// just set next_dump
if (mode_dump[idump] == 0) {
if (every_dump[idump]) {
// which = 0: nextdump = next multiple of every_dump
// which = 1: increment nextdump by every_dump
if (which == 0)
next_dump[idump] =
(ntimestep/every_dump[idump])*every_dump[idump] + every_dump[idump];
else if (which == 1)
next_dump[idump] += every_dump[idump];
} else {
next_dump[idump] = static_cast<bigint>
(input->variable->compute_equal(ivar_dump[idump]));
if (next_dump[idump] <= ntimestep)
error->all(FLERR,"Dump every variable returned a bad timestep");
}
// dump mode is by simulation time
// set next_time_dump and next_dump
} else {
bigint nextdump;
double nexttime;
double tcurrent = update->atime +
(ntimestep - update->atimestep) * update->dt;
if (every_time_dump[idump] > 0.0) {
// which = 0: nexttime = next multiple of every_time_dump
// which = 1: increment nexttime by every_time_dump
// which = 2: no change to previous nexttime (only timestep has changed)
if (which == 0)
nexttime = static_cast<bigint> (tcurrent/every_time_dump[idump]) *
every_time_dump[idump] + every_time_dump[idump];
else if (which == 1)
nexttime = next_time_dump[idump] + every_time_dump[idump];
else if (which == 2)
nexttime = next_time_dump[idump];
nextdump = ntimestep +
static_cast<bigint> ((nexttime - tcurrent - EPSDT*update->dt) /
update->dt) + 1;
// if delta is too small to reach next timestep, use multiple of delta
if (nextdump == ntimestep) {
double tnext = update->atime +
(ntimestep+1 - update->atimestep) * update->dt;
int multiple = static_cast<int>
((tnext - nexttime) / every_time_dump[idump]);
nexttime = nexttime + (multiple+1)*every_time_dump[idump];
nextdump = ntimestep +
static_cast<bigint> ((nexttime - tcurrent - EPSDT*update->dt) /
update->dt) + 1;
}
} else {
// do not re-evaulate variable for which = 2, leave nexttime as-is
// unless next_time_dump < 0.0, which means variable never yet evaluated
if (which < 2 || next_time_dump[idump] < 0.0) {
nexttime = input->variable->compute_equal(ivar_dump[idump]);
} else
nexttime = next_time_dump[idump];
if (nexttime <= tcurrent)
error->all(FLERR,"Dump every/time variable returned a bad time");
nextdump = ntimestep +
static_cast<bigint> ((nexttime - tcurrent - EPSDT*update->dt) /
update->dt) + 1;
if (nextdump <= ntimestep)
error->all(FLERR,"Dump every/time variable too small for next timestep");
}
next_time_dump[idump] = nexttime;
next_dump[idump] = nextdump;
}
}
/* ---------------------------------------------------------------------- */
int Output::check_time_dumps(bigint ntimestep)
{
// perform dump if its next_dump = current ntimestep
// but not if it was already written on this step
// set next_dump and also next_time_dump for mode_dump = 1
// set next_dump_any to smallest next_dump
// wrap dumps that invoke computes or do variable eval with clear/add
int nowflag = 0;
for (int i = 0; i < ndump; i++)
if (mode_dump[i] && next_dump[i] == ntimestep) nowflag = 1;
int writeflag;
if (next_dump_any == ntimestep) {
for (int idump = 0; idump < ndump; idump++) {
if (next_dump[idump] == ntimestep) {
if (last_dump[idump] == ntimestep) continue;
if (dump[idump]->clearstep || var_dump[idump])
modify->clearstep_compute();
// perform dump
// reset next_dump and next_time_dump, 1 arg for write()
dump[idump]->write();
last_dump[idump] = ntimestep;
calculate_next_dump(1,idump,ntimestep);
if (dump[idump]->clearstep || var_dump[idump])
modify->addstep_compute(next_dump[idump]);
}
if (idump) next_dump_any = MIN(next_dump_any,next_dump[idump]);
else next_dump_any = next_dump[0];
}
}
// next_restart does not force output on last step of run
// for toggle = 0, replace "*" with current timestep in restart filename
// next restart variable may invoke computes so wrap with clear/add
if (next_restart == ntimestep) {
if (next_restart_single == ntimestep) {
std::string file = restart1;
std::size_t found = file.find('*');
if (found != std::string::npos)
file.replace(found,1,fmt::format("{}",update->ntimestep));
if (last_restart != ntimestep) restart->write(file);
if (restart_every_single) next_restart_single += restart_every_single;
else {
modify->clearstep_compute();
bigint nextrestart = static_cast<bigint>
(input->variable->compute_equal(ivar_restart_single));
if (nextrestart <= ntimestep)
error->all(FLERR,"Restart variable returned a bad timestep");
next_restart_single = nextrestart;
modify->addstep_compute(next_restart_single);
}
}
if (next_restart_double == ntimestep) {
if (last_restart != ntimestep) {
if (restart_toggle == 0) {
restart->write(restart2a);
restart_toggle = 1;
} else {
restart->write(restart2b);
restart_toggle = 0;
}
}
if (restart_every_double) next_restart_double += restart_every_double;
else {
modify->clearstep_compute();
bigint nextrestart = static_cast<bigint>
(input->variable->compute_equal(ivar_restart_double));
if (nextrestart <= ntimestep)
error->all(FLERR,"Restart variable returned a bad timestep");
next_restart_double = nextrestart;
modify->addstep_compute(next_restart_double);
}
}
last_restart = ntimestep;
next_restart = MIN(next_restart_single,next_restart_double);
}
// insure next_thermo forces output on last step of run
// thermo may invoke computes so wrap with clear/add
if (next_thermo == ntimestep) {
modify->clearstep_compute();
if (last_thermo != ntimestep) thermo->compute(1);
last_thermo = ntimestep;
if (var_thermo) {
next_thermo = static_cast<bigint>
(input->variable->compute_equal(ivar_thermo));
if (next_thermo <= ntimestep)
error->all(FLERR,"Thermo every variable returned a bad timestep");
} else if (thermo_every) next_thermo += thermo_every;
else next_thermo = update->laststep;
next_thermo = MIN(next_thermo,update->laststep);
modify->addstep_compute(next_thermo);
}
// next = next timestep any output will be done
next = MIN(next_dump_any,next_restart);
next = MIN(next,next_thermo);
return nowflag;
}
/* ----------------------------------------------------------------------
force a snapshot to be written for all dumps
called from PRD and TAD
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
force restart file(s) to be written
called from PRD and TAD
------------------------------------------------------------------------- */
void Output::write_dump(bigint ntimestep)
{
for (int idump = 0; idump < ndump; idump++) {
dump[idump]->write();
last_dump[idump] = ntimestep;
}
}
void Output::write_restart(bigint ntimestep)
{
if (restart_flag_single) {
std::string file = restart1;
std::size_t found = file.find('*');
if (found != std::string::npos)
file.replace(found,1,fmt::format("{}",update->ntimestep));
restart->write(file);
}
if (restart_flag_double) {
if (restart_toggle == 0) {
restart->write(restart2a);
restart_toggle = 1;
} else {
restart->write(restart2b);
restart_toggle = 0;
}
}
last_restart = ntimestep;
}
/* ----------------------------------------------------------------------
timestep is being changed, called by update->reset_timestep()
for dumps, require that no dump is "active"
meaning that a snapshot has already been output
reset next output values for restart and thermo
reset to smallest value >= new timestep
if next timestep set by variable evaluation,
eval for ntimestep-1, so current ntimestep can be returned if needed
no guarantee that variable can be evaluated for ntimestep-1
e.g. if it depends on computes, but live with that rare case for now
------------------------------------------------------------------------- */
void Output::reset_timestep(bigint ntimestep)
{
next_dump_any = MAXBIGINT;
for (int idump = 0; idump < ndump; idump++)
if (last_dump[idump] >= 0)
error->all(FLERR,
"Cannot reset timestep with active dump - must undump first");
if (restart_flag_single) {
if (restart_every_single) {
next_restart_single =
(ntimestep/restart_every_single)*restart_every_single;
if (next_restart_single < ntimestep)
next_restart_single += restart_every_single;
} else {
modify->clearstep_compute();
update->ntimestep--;
bigint nextrestart = static_cast<bigint>
(input->variable->compute_equal(ivar_restart_single));
if (nextrestart < ntimestep)
error->all(FLERR,"Restart variable returned a bad timestep");
update->ntimestep++;
next_restart_single = nextrestart;
modify->addstep_compute(next_restart_single);
}
} else next_restart_single = update->laststep + 1;
if (restart_flag_double) {
if (restart_every_double) {
next_restart_double =
(ntimestep/restart_every_double)*restart_every_double;
if (next_restart_double < ntimestep)
next_restart_double += restart_every_double;
} else {
modify->clearstep_compute();
update->ntimestep--;
bigint nextrestart = static_cast<bigint>
(input->variable->compute_equal(ivar_restart_double));
if (nextrestart < ntimestep)
error->all(FLERR,"Restart variable returned a bad timestep");
update->ntimestep++;
next_restart_double = nextrestart;
modify->addstep_compute(next_restart_double);
}
} else next_restart_double = update->laststep + 1;
next_restart = MIN(next_restart_single,next_restart_double);
if (var_thermo) {
modify->clearstep_compute();
update->ntimestep--;
next_thermo = static_cast<bigint>
(input->variable->compute_equal(ivar_thermo));
if (next_thermo < ntimestep)
error->all(FLERR,"Thermo_modify every variable returned a bad timestep");
update->ntimestep++;
next_thermo = MIN(next_thermo,update->laststep);
modify->addstep_compute(next_thermo);
} else if (thermo_every) {
next_thermo = (ntimestep/thermo_every)*thermo_every;
if (next_thermo < ntimestep) next_thermo += thermo_every;
next_thermo = MIN(next_thermo,update->laststep);
} else next_thermo = update->laststep;
next = MIN(next_dump_any,next_restart);
next = MIN(next,next_thermo);
}
/* ----------------------------------------------------------------------
calculate when next dump occurs for Dump instance idump
operates in one of two modes, based on mode_dump flag
for timestep mode, set next_dump
for simulation time mode, set next_time_dump and next_dump
which flag depends on caller
0 = from setup() at start of run
1 = from write() during run each time a dump file is written
2 = from reset_dt() called from fix dt/reset when it changes timestep size
------------------------------------------------------------------------- */
void Output::calculate_next_dump(int which, int idump, bigint ntimestep)
{
// dump mode is by timestep
// just set next_dump
if (mode_dump[idump] == 0) {
if (every_dump[idump]) {
// which = 0: nextdump = next multiple of every_dump
// which = 1: increment nextdump by every_dump
if (which == 0)
next_dump[idump] =
(ntimestep/every_dump[idump])*every_dump[idump] + every_dump[idump];
else if (which == 1)
next_dump[idump] += every_dump[idump];
} else {
next_dump[idump] = static_cast<bigint>
(input->variable->compute_equal(ivar_dump[idump]));
if (next_dump[idump] <= ntimestep)
error->all(FLERR,"Dump every variable returned a bad timestep");
}
// dump mode is by simulation time
// set next_time_dump and next_dump
} else {
bigint nextdump;
double nexttime;
double tcurrent = update->atime +
(ntimestep - update->atimestep) * update->dt;
if (every_time_dump[idump] > 0.0) {
// which = 0: nexttime = next multiple of every_time_dump
// which = 1: increment nexttime by every_time_dump
// which = 2: no change to previous nexttime (only timestep has changed)
if (which == 0)
nexttime = static_cast<bigint> (tcurrent/every_time_dump[idump]) *
every_time_dump[idump] + every_time_dump[idump];
else if (which == 1)
nexttime = next_time_dump[idump] + every_time_dump[idump];
else if (which == 2)
nexttime = next_time_dump[idump];
nextdump = ntimestep +
static_cast<bigint> ((nexttime - tcurrent - EPSDT*update->dt) /
update->dt) + 1;
// if delta is too small to reach next timestep, use multiple of delta
if (nextdump == ntimestep) {
double tnext = update->atime +
(ntimestep+1 - update->atimestep) * update->dt;
int multiple = static_cast<int>
((tnext - nexttime) / every_time_dump[idump]);
nexttime = nexttime + (multiple+1)*every_time_dump[idump];
nextdump = ntimestep +
static_cast<bigint> ((nexttime - tcurrent - EPSDT*update->dt) /
update->dt) + 1;
}
} else {
// do not re-evaulate variable for which = 2, leave nexttime as-is
// unless next_time_dump < 0.0, which means variable never yet evaluated
if (which < 2 || next_time_dump[idump] < 0.0) {
nexttime = input->variable->compute_equal(ivar_dump[idump]);
} else
nexttime = next_time_dump[idump];
if (nexttime <= tcurrent)
error->all(FLERR,"Dump every/time variable returned a bad time");
nextdump = ntimestep +
static_cast<bigint> ((nexttime - tcurrent - EPSDT*update->dt) /
update->dt) + 1;
if (nextdump <= ntimestep)
error->all(FLERR,"Dump every/time variable too small for next timestep");
}
next_time_dump[idump] = nexttime;
next_dump[idump] = nextdump;
}
}
/* ----------------------------------------------------------------------
force restart file(s) to be written
called from PRD and TAD
------------------------------------------------------------------------- */
void Output::write_restart(bigint ntimestep)
{
if (restart_flag_single) {
std::string file = restart1;
std::size_t found = file.find('*');
if (found != std::string::npos)
file.replace(found,1,fmt::format("{}",update->ntimestep));
restart->write(file);
}
if (restart_flag_double) {
if (restart_toggle == 0) {
restart->write(restart2a);
restart_toggle = 1;
} else {
restart->write(restart2b);
restart_toggle = 0;
}
}
last_restart = ntimestep;
}
/* ----------------------------------------------------------------------
timestep is being changed, called by update->reset_timestep()
for dumps, require that no dump is "active"
meaning that a snapshot has already been output
reset next output values restart and thermo output
reset to smallest value >= new timestep
if next timestep set by variable evaluation,
eval for ntimestep-1, so current ntimestep can be returned if needed
no guarantee that variable can be evaluated for ntimestep-1
e.g. if it depends on computes, but live with that rare case for now
------------------------------------------------------------------------- */
void Output::reset_timestep(bigint ntimestep)
{
next_dump_any = MAXBIGINT;
for (int idump = 0; idump < ndump; idump++)
if (last_dump[idump] >= 0)
error->all(FLERR,
"Cannot reset timestep with active dump - must undump first");
if (restart_flag_single) {
if (restart_every_single) {
next_restart_single =
(ntimestep/restart_every_single)*restart_every_single;
if (next_restart_single < ntimestep)
next_restart_single += restart_every_single;
} else {
modify->clearstep_compute();
update->ntimestep--;
bigint nextrestart = static_cast<bigint>
(input->variable->compute_equal(ivar_restart_single));
if (nextrestart < ntimestep)
error->all(FLERR,"Restart variable returned a bad timestep");
update->ntimestep++;
next_restart_single = nextrestart;
modify->addstep_compute(next_restart_single);
}
} else next_restart_single = update->laststep + 1;
if (restart_flag_double) {
if (restart_every_double) {
next_restart_double =
(ntimestep/restart_every_double)*restart_every_double;
if (next_restart_double < ntimestep)
next_restart_double += restart_every_double;
} else {
modify->clearstep_compute();
update->ntimestep--;
bigint nextrestart = static_cast<bigint>
(input->variable->compute_equal(ivar_restart_double));
if (nextrestart < ntimestep)
error->all(FLERR,"Restart variable returned a bad timestep");
update->ntimestep++;
next_restart_double = nextrestart;
modify->addstep_compute(next_restart_double);
}
} else next_restart_double = update->laststep + 1;
next_restart = MIN(next_restart_single,next_restart_double);
if (var_thermo) {
modify->clearstep_compute();
update->ntimestep--;
next_thermo = static_cast<bigint>
(input->variable->compute_equal(ivar_thermo));
if (next_thermo < ntimestep)
error->all(FLERR,"Thermo_modify every variable returned a bad timestep");
update->ntimestep++;
next_thermo = MIN(next_thermo,update->laststep);
modify->addstep_compute(next_thermo);
} else if (thermo_every) {
next_thermo = (ntimestep/thermo_every)*thermo_every;
if (next_thermo < ntimestep) next_thermo += thermo_every;
next_thermo = MIN(next_thermo,update->laststep);
} else next_thermo = update->laststep;
next = MIN(next_dump_any,next_restart);
next = MIN(next,next_thermo);
}
/* ----------------------------------------------------------------------
timestep size is being changed, called by fix dt/reset (at end of step)
timestep size is being changed
reset next output values for dumps which have mode_dump=1
called by fix dt/reset (at end of step)
or called by timestep command via run every (also at end of step)
------------------------------------------------------------------------- */
void Output::reset_dt()
@ -659,21 +687,10 @@ void Output::reset_dt()
// reset next_dump but do not change next_time_dump, 2 arg for reset_dt()
// do not invoke for a dump already scheduled for this step
// use compute_all() b/c don't know what computes will be needed
// since timestep change affects next step
if (next_dump[idump] != ntimestep) {
calculate_next_dump(2,idump,update->ntimestep);
// NOTE: think I should not do this here
// for time dumps, calc_next_dump should calc the next timestep
// as one less and not add it to computes
// then on that step, write() should not actually write the dump
// but trigger it on next step and addstep_compute_all for that step
// b/c when write() is called, the next-step timestep is set
// unless run every timestep is invoked in-between!
//if (dump[idump]->clearstep || var_dump[idump])
// modify->addstep_compute_all(next_dump[idump]);
}
}
@ -684,6 +701,7 @@ void Output::reset_dt()
next = MIN(next,next_thermo);
}
/* ----------------------------------------------------------------------
add a Dump to list of Dumps
------------------------------------------------------------------------- */

View File

@ -36,6 +36,7 @@ class Output : protected Pointers {
int ndump; // # of Dumps defined
int max_dump; // max size of Dump list
bigint next_dump_any; // next timestep for any Dump
int any_time_dumps; // 1 if any time dump defined
int *mode_dump; // 0/1 if write every N timesteps or Delta in sim time
int *every_dump; // dump every N timesteps, 0 if variable
double *every_time_dump; // dump every Delta of sim time, 0.0 if variable
@ -75,13 +76,14 @@ class Output : protected Pointers {
void write(bigint); // output for current timestep
void write_dump(bigint); // force output of dump snapshots
void write_restart(bigint); // force output of a restart file
void reset_timestep(bigint); // reset output which depeneds on timestep
void reset_dt(); // reset output which depends on dt
void reset_timestep(bigint); // reset output which depends on timestep
void reset_dt(); // reset output which depends on timestep size
void add_dump(int, char **); // add a Dump to Dump list
void modify_dump(int, char **); // modify a Dump
void delete_dump(char *); // delete a Dump from Dump list
int find_dump(const char *); // find a Dump ID
int check_time_dumps(bigint); // check if any time dump is output now
void set_thermo(int, char **); // set thermo output freqquency
void create_thermo(int, char **); // create a thermo style

View File

@ -252,8 +252,6 @@ void Verlet::run(int n)
ntimestep = ++update->ntimestep;
ev_set(ntimestep);
printf("VERLET %ld: %d %d\n",ntimestep,eflag,vflag);
// initial time integration
timer->stamp();