Merge branch 'master' into new-neighbor

This commit is contained in:
Axel Kohlmeyer
2016-09-29 23:14:28 -04:00
1448 changed files with 50659 additions and 232485 deletions

4
.gitignore vendored
View File

@ -9,6 +9,8 @@
*.x
*.exe
*.dll
*.pyc
__pycache__
Obj_*
log.lammps
@ -20,6 +22,8 @@ log.cite
*.orig
*.rej
.vagrant
\#*#
.#*
.DS_Store
.DS_Store?

2
doc/.gitignore vendored
View File

@ -1 +1 @@
/html

Binary file not shown.

View File

@ -1,4 +1,6 @@
# Makefile for LAMMPS documentation
SHELL = /bin/bash
SHA1 = $(shell echo $USER-$PWD | python utils/sha1sum.py)
BUILDDIR = /tmp/lammps-docs-$(SHA1)
RSTDIR = $(BUILDDIR)/rst
@ -18,15 +20,21 @@ endif
SOURCES=$(wildcard src/*.txt)
OBJECTS=$(SOURCES:src/%.txt=$(RSTDIR)/%.rst)
.PHONY: help clean-all clean html pdf venv
.PHONY: help clean-all clean html pdf old venv
# ------------------------------------------
help:
@echo "Please use \`make <target>' where <target> is one of"
@echo " html to make HTML version of documentation using Sphinx"
@echo " pdf to make Manual.pdf"
@echo " txt2html to build txt2html tool"
@echo " clean to remove all generated RST files"
@echo " clean-all to reset the entire build environment"
@echo " html create HTML doc pages in html dir"
@echo " pdf create Manual.pdf and Developer.pdf in this dir"
@echo " old create old-style HTML doc pages in old dir"
@echo " fetch fetch HTML and PDF files from LAMMPS web site"
@echo " clean remove all intermediate RST files"
@echo " clean-all reset the entire build environment"
@echo " txt2html build txt2html tool"
# ------------------------------------------
clean-all:
rm -rf $(BUILDDIR)/* utils/txt2html/txt2html.exe
@ -34,8 +42,6 @@ clean-all:
clean:
rm -rf $(RSTDIR)
txt2html: utils/txt2html/txt2html.exe
html: $(OBJECTS)
@(\
. $(VENV)/bin/activate ;\
@ -44,20 +50,53 @@ html: $(OBJECTS)
deactivate ;\
)
-rm html/searchindex.js
-rm -rf html/_sources
@rm -rf html/_sources
@rm -rf html/PDF
@rm -rf html/USER
@cp -r src/PDF html/PDF
@cp -r src/USER html/USER
@rm -rf html/PDF/.[sg]*
@rm -rf html/USER/.[sg]*
@rm -rf html/USER/*/.[sg]*
@rm -rf html/USER/*/*.[sg]*
@echo "Build finished. The HTML pages are in doc/html."
pdf: utils/txt2html/txt2html.exe
@(\
cd src; \
../utils/txt2html/txt2html.exe -b *.txt; \
htmldoc --batch ../lammps.book; \
htmldoc --batch lammps.book; \
for s in `echo *.txt | sed -e 's,\.txt,\.html,g'` ; \
do grep -q $$s ../lammps.book || \
echo doc file $$s missing in lammps.book; done; \
do grep -q $$s lammps.book || \
echo doc file $$s missing in src/lammps.book; done; \
rm *.html; \
cd Developer; \
pdflatex developer; \
pdflatex developer; \
mv developer.pdf ../../Developer.pdf; \
)
old: utils/txt2html/txt2html.exe
@rm -rf old
@mkdir old; mkdir old/Eqs; mkdir old/JPG; mkdir old/PDF
@cd src; ../utils/txt2html/txt2html.exe -b *.txt; \
mv *.html ../old; \
cp Eqs/*.jpg ../old/Eqs; \
cp JPG/* ../old/JPG; \
cp PDF/* ../old/PDF;
fetch:
@rm -rf html_www Manual_www.pdf Developer_www.pdf
@curl -s -o Manual_www.pdf http://lammps.sandia.gov/doc/Manual.pdf
@curl -s -o Developer_www.pdf http://lammps.sandia.gov/doc/Developer.pdf
@curl -s -o lammps-doc.tar.gz http://lammps.sandia.gov/tars/lammps-doc.tar.gz
@tar xzf lammps-doc.tar.gz
@rm -f lammps-doc.tar.gz
txt2html: utils/txt2html/txt2html.exe
# ------------------------------------------
utils/txt2html/txt2html.exe: utils/txt2html/txt2html.cpp
g++ -O -Wall -o $@ $<

Binary file not shown.

96
doc/README Normal file
View File

@ -0,0 +1,96 @@
LAMMPS Documentation
Depending on how you obtained LAMMPS, this directory has 2 or 3
sub-directories and optionally 2 PDF files:
src content files for LAMMPS documentation
html HTML version of the LAMMPS manual (see html/Manual.html)
tools tools and settings for building the documentation
Manual.pdf large PDF version of entire manual
Developer.pdf small PDF with info about how LAMMPS is structured
If you downloaded LAMMPS as a tarball from the web site, all these
directories and files should be included.
If you downloaded LAMMPS from the public SVN or Git repositories, then
the HTML and PDF files are not included. Instead you need to create
them, in one of three ways:
(a) You can "fetch" the current HTML and PDF files from the LAMMPS web
site. Just type "make fetch". This should create a html_www dir and
Manual_www.pdf/Developer_www.pdf files. Note that if new LAMMPS
features have been added more recently than the date of your version,
the fetched documentation will include those changes (but your source
code will not, unless you update your local repository).
(b) You can build the HTML and PDF files yourself, by typing "make
html" followed by "make pdf". Note that the PDF make requires the
HTML files already exist. This requires various tools including
Sphinx, which the build process will attempt to download and install
on your system, if not already available. See more details below.
(c) You can genererate an older, simpler, less-fancy style of HTML
documentation by typing "make old". This will create an "old"
directory. This can be useful if (b) does not work on your box for
some reason, or you want to quickly view the HTML version of a doc
page you have created or edited yourself within the src directory.
E.g. if you are planning to submit a new feature to LAMMPS.
----------------
The generation of all documentation is managed by the Makefile in this
dir.
Options:
make html # generate HTML in html dir using Sphinx
make pdf # generate 2 PDF files (Manual.pdf,Developer.pdf)
# in this dir via htmldoc and pdflatex
make old # generate old-style HTML pages in old dir via txt2html
make fetch # fetch HTML doc pages and 2 PDF files from web site
# as a tarball and unpack into html dir and 2 PDFs
make clean # remove intermediate RST files created by HTML build
make clean-all # remove entire build folder and any cached data
----------------
Installing prerequisites for HTML build
To run the HTML documention build toolchain, Python 3 and virtualenv
have to be installed. Here are instructions for common setups:
# Ubuntu
sudo apt-get install python-virtualenv
# Fedora (up to version 21)
# Red Hat Enterprise Linux or CentOS (up to version 7.x)
sudo yum install python3-virtualenv
# Fedora (since version 22)
sudo dnf install python3-virtualenv
# MacOS X
## Python 3
Download the latest Python 3 MacOS X package from
https://www.python.org and install it. This will install both Python
3 and pip3.
## virtualenv
Once Python 3 is installed, open a Terminal and type
pip3 install virtualenv
This will install virtualenv from the Python Package Index.
----------------
Installing prerequisites for PDF build

View File

@ -1,48 +0,0 @@
# Generation of LAMMPS Documentation
The generation of all the documentation is managed by the Makefile inside the
`doc/` folder.
## Usage:
```bash
make html # generate HTML using Sphinx
make pdf # generate PDF using htmldoc
make clean # remove generated RST files
make clean-all # remove entire build folder and any cached data
```
## Installing prerequisites
To run the documention build toolchain, Python 3 and virtualenv have
to be installed. Here are instructions for common setups:
### Ubuntu
```bash
sudo apt-get install python-virtualenv
```
### Fedora (up to version 21), Red Hat Enterprise Linux or CentOS (up to version 7.x)
```bash
sudo yum install python3-virtualenv
```
### Fedora (since version 22)
```bash
sudo dnf install python3-virtualenv
```
### MacOS X
## Python 3
Download the latest Python 3 MacOS X package from https://www.python.org and install it.
This will install both Python 3 and pip3.
## virtualenv
Once Python 3 is installed, open a Terminal and type `pip3 install virtualenv`. This will
install virtualenv from the Python Package Index.

4
doc/html/.gitignore vendored
View File

@ -1,4 +0,0 @@
.buildinfo
objects.inv
searchindex.js
_sources

View File

@ -1,174 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS</H2>
<P>
LAMMPS = Large-scale Atomic/Molecular Massively Parallel Simulator</P>
<P>
This is the documentation for the LAMMPS 2001 version, written in F90,
which has been superceded by more current versions. See the <A
HREF="http://www.cs.sandia.gov/~sjplimp/lammps.html">LAMMPS WWW
Site</A> for more information.
<P>
LAMMPS is a classical molecular dynamics code designed for simulating
molecular and atomic systems on parallel computers using
spatial-decomposition techniques. It runs on any parallel platform that
supports F90 and the MPI message-passing library or on single-processor
workstations.</P>
<P>
LAMMPS 2001 is copyrighted code that is distributed freely as
open-source software under the GNU Public License (GPL). See the
LICENSE file or <A HREF="http://www.gnu.org">www.gnu.org</A> for more
details. Basically the GPL allows you as a user to use, modify, or
distribute LAMMPS however you wish, so long as any software you
distribute remains under the GPL.
<P>
Features of LAMMPS 2001 include:</P>
<UL>
<LI>
short-range pairwise Lennard-Jones and Coulombic interactions
<LI>
long-range Coulombic interactions via Ewald or PPPM (particle-mesh
Ewald)
<LI>
short-range harmonic bond potentials (bond, angle, torsion, improper)
<LI>
short-range class II (cross-term) molecular potentials
<LI>
NVE, NVT, NPT dynamics
<LI>
constraints on atoms or groups of atoms
<LI>
rRESPA long-timescale integrator
<LI>
energy minimizer (Hessian-free truncated Newton method)
</UL>
<P>
For users of LAMMPS 99, this version is written in F90 to take
advantage of dynamic memory allocation. This means the user does not
have to fiddle with parameter settings and re-compile the code so
often for different problems. This enhancment means there are new
rules for the ordering of commands in a LAMMPS input script, as well
as a few new commands to guide the memory allocator. Users should read
the beginning sections of the <A
HREF="input_commands.html">input_commands</A> file for an
explanation.</P>
<P>
More details about the code can be found <A
HREF="#_cch3_930958294">here</A>, in the HTML- or text-based
documentation. The LAMMPS Web page is at <A
HREF="http://www.cs.sandia.gov/~sjplimp/lammps.html">www.cs.sandia.gov/~sjplimp/lammps.html</A>
, which includes benchmark timings and a list of papers written using
LAMMPS results. They illustrate the kinds of scientific problems that
can be modeled with LAMMPS. These two papers describe the parallel
algorithms used in the code. Please cite these if you incorporate
LAMMPS results in your work. And if you send me citations for your
papers, I'll be pleased to add them to the LAMMPS WWW page.
</P>
<P>
S. J. Plimpton, R. Pollock, M. Stevens, &quot;Particle-Mesh Ewald and
rRESPA for Parallel Molecular Dynamics Simulations&quot;, in Proc of
the Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN, March 1997.</P>
<P>
S. J. Plimpton, "Fast Parallel Algorithms for Short-Range Molecular Dynamics", J Comp Phys, 117, 1-19 (1995).</P>
<P>
LAMMPS was originally developed as part of a 5-way CRADA collaboration
between 3 industrial partners (Cray Research, Bristol-Myers Squibb, and
Dupont) and 2 DoE laboratories (Sandia National Laboratories and
Lawrence Livermore National Laboratories).</P>
<P>
The primary author of LAMMPS is Steve Plimpton, but others have written
or worked on significant portions of the code:</P>
<UL>
<LI>
Roy Pollock (LLNL): Ewald, PPPM solvers
<LI>
Mark Stevens (Sandia): rRESPA, NPT integrators
<LI>
Eric Simon (Cray Research): class II force fields
<LI>
Todd Plantenga (Sandia): energy minimizer
<LI>
Steve Lustig (Dupont): msi2lmp tool
<LI>
Mike Peachey (Cray Research): msi2lmp tool
</UL>
<P>
Other CRADA partners involved in the design and testing of LAMMPS are </P>
<UL>
<LI>
John Carpenter (Cray Research)
<LI>
Terry Stouch (Bristol-Myers Squibb)
<LI>
Jim Belak (LLNL)
</UL>
<P>
If you have questions about LAMMPS, please contact me:
</P>
<DL>
<DT>
Steve Plimpton
<DD>
sjplimp@sandia.gov
<DD>
www.cs.sandia.gov/~sjplimp
<DD>
Sandia National Labs
<DD>
Albuquerque, NM 87185
</DL>
<HR>
<H3>
<A NAME="_cch3_930958294">More Information about LAMMPS</A></H3>
<DIR>
<LI>
<A HREF="basics.html">Basics</A>
<DIR>
<LI>
how to make, run, and test LAMMPS with the example problems
</DIR>
<LI>
<A HREF="input_commands.html">Input Commands</A>
<DIR>
<LI>
a complete listing of input commands used by LAMMPS
</DIR>
<LI>
<A HREF="data_format.html">Data Format</A>
<DIR>
<LI>
the data file format used by LAMMPS
</DIR>
<LI>
<A HREF="force_fields.html">Force Fields</A>
<DIR>
<LI>
the equations LAMMPS uses to compute force-fields
</DIR>
<LI>
<A HREF="units.html">Units</A>
<DIR>
<LI>
the input/output and internal units for LAMMPS variables
</DIR>
<LI>
<A HREF="history.html">History</A>
<DIR>
<LI>
a brief timeline of features added to LAMMPS
</DIR>
<LI>
<A HREF="deficiencies.html">Deficiencies</A>
<DIR>
<LI>
features LAMMPS does not (yet) have
</DIR>
</DIR>
</BODY>
</HTML>

View File

@ -1,224 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
Basics of Using LAMMPS</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation.</P>
<UL>
<LI>
<A HREF="#_cch3_931273040">Distribution</A>
<LI>
<A HREF="#_cch3_930327142">Making LAMMPS</A>
<LI>
<A HREF="#_cch3_930327155">Running LAMMPS</A>
<LI>
<A HREF="#_cch3_930759879">Examples</A>
<LI>
<A HREF="#_cch3_931282515">Other Tools</A>
<LI>
<A HREF="#_cch3_931282000">Extending LAMMPS</A>
</UL>
<HR>
<H3>
<A NAME="_cch3_931273040">Distribution</A></H3>
<P>
When you unzip/untar the LAMMPS distribution you should have several
directories: </P>
<UL>
<LI>
src = source files for LAMMPS
<LI>
doc = HTML documentation
<LI>
examples = sample problems with inputs and outputs
<LI>
tools = serial program for creating and massaging LAMMPS data files
<LI>
converters = msi2lmp, lmp2arc, amber = codes & scripts for converting
between MSI/Discover, AMBER, and LAMMPS formats
</UL>
<HR>
<H3>
<A NAME="_cch3_930327142">Making LAMMPS</A></H3>
<P>
The src directory contains the F90 and C source files for LAMMPS as
well as several sample Makefiles for different machines. To make LAMMPS
for a specfic machine, you simply type</P>
<P>
make machine</P>
<P>
from within the src directoy. E.g. "make sgi" or "make t3e". This
should create an executable such as lmp_sgi or lmp_t3e. For optimal
performance you'll want to use a good F90 compiler to make LAMMPS; on
Linux boxes I've been told the Leahy F90 compiler is a good choice.
(If you don't have an F90 compiler, I can give you an older F77-based
version of LAMMPS 99, but you'll lose the dynamic memory and some
other new features in LAMMPS 2001.)</P>
<P>
In the src directory, there is one top-level Makefile and several
low-level machine-specific files named Makefile.xxx where xxx = the
machine name. If a low-level Makefile exists for your platform, you do
not need to edit the top-level Makefile. However you should check the
system-specific section of the low-level Makefile to insure the
various paths are correct for your environment. If a low-level
Makefile does not exist for your platform, you will need to add a
suitable target to the top-level Makefile. You will also need to
create a new low-level Makefile using one of the existing ones as a
template. If you wish to make LAMMPS for a single-processor
workstation that doesn't have an installed MPI library, you can
specify the "serial" target which uses a directory of MPI stubs to
link against - e.g. &quot;make serial&quot;. You will need to make the
stub library (type &quot;make&quot; in STUBS directory) for your
workstation before doing this.</P>
<P>
Note that the two-level Makefile system allows you to make LAMMPS for
multiple platforms. Each target creates its own object directory for
separate storage of its *.o files.</P>
<P>
There are a few compiler switches of interest which can be specified
in the low-level Makefiles. If you use a F90FLAGS switch of -DSYNC
then synchronization calls will be made before the timing routines in
integrate.f. This may slow down the code slightly, but will make the
individual timings reported at the end of a run more accurate. The
F90FLAGS setting of -DSENDRECV will use MPI_Sendrecv calls for data
exchange between processors instead of MPI_Irecv, MPI_Send,
MPI_Wait. Sendrecv is often slower, but on some platforms can be
faster, so it is worth trying, particularly if your communication
timings seem slow.</P>
<P>
The CCFLAGS setting in the low-level Makefiles requires a FFT setting,
for example -DFFT_SGI or -DFFT_T3E. This is for inclusion of the
appropriate machine-specific native 1-d FFT libraries on various
platforms. Currently, the supported machines and switches (used in
fft_3d.c) are FFT_SGI, FFT_DEC, FFT_INTEL, FFT_T3E, and FFT_FFTW. The
latter is a publicly available portable FFT library, <A
HREF="http://www.fftw.org">FFTW</A>, which you can install on any
machine. If none of these options is suitable for your machine, please
contact me, and we'll discuss how to add the capability to call your
machine's native FFT library. You can also use FFT_NONE if you have no
need to use the PPPM option in LAMMPS.</P>
<P>
For Linux and T3E compilation, there is a also a CCFLAGS setting for KLUDGE
needed (see Makefile.linux and Makefile.t3e). This is to enable F90 to
call C with appropriate underscores added to C function names.
<HR>
<H3>
<A NAME="_cch3_930327155">Running LAMMPS</A></H3>
<P>
LAMMPS is run by redirecting a text file (script) of input commands into it.</P>
<P>
lmp_sgi &lt; in.lj</P>
<P>
lmp_t3e &lt; in.lj</P>
<P>
The script file contains commands that specify the parameters for the
simulation as well as to read other necessary files such as a data file
that describes the initial atom positions, molecular topology, and
force-field parameters. The <A HREF="input_commands.html">input_commands</A>
page describes all the possible commands that can be used. The <A
HREF="data_format.html">data_format</A> page describes the format of
the data file. </P>
<P>
LAMMPS can be run on any number of processors, including a single
processor. In principle you should get identical answers on any number
of processors and on any machine. In practice, numerical round-off can
cause slight differences and eventual divergence of dynamical
trajectories. </P>
<P>
When LAMMPS runs, it estimates the array sizes it should allocate based
on the problem you are simulating and the number of processors you
are running on. If you run out of physical memory, you will get a F90
allocation error and the code should hang or crash. The only thing you
can do about this is run on more processors or run a smaller problem. If
you get an error message to the screen about &quot;boosting&quot;
something, it means LAMMPS under-estimated the size needed for one (or
more) data arrays. The &quot;extra memory&quot; command can be used in
the input script to augment these sizes at run time. A few arrays are
hard-wired to sizes that should be sufficient for most users. These are
specified with parameter settings in the global.f file. If you get a
message to &quot;boost&quot; one of these parameters you will have to
change it and re-compile LAMMPS.</P>
<P>
Some LAMMPS errors are detected at setup; others like neighbor list
overflow may not occur until the middle of a run. Except for F90
allocation errors which may cause the code to hang (with an error
message) since only one processor may incur the error, LAMMPS should
always print a message to the screen and exit gracefully when it
encounters a fatal error. If the code ever crashes or hangs without
spitting out an error message first, it's probably a bug, so let me
know about it. Of course this applies to algorithmic or parallelism
issues, not to physics mistakes, like specifying too big a timestep or
putting 2 atoms on top of each other! One exception is that different
MPI implementations handle buffering of messages differently. If the
code hangs without an error message, it may be that you need to
specify an MPI setting or two (usually via an environment variable) to
enable buffering or boost the sizes of messages that can be
buffered.</P>
<HR>
<H3>
<A NAME="_cch3_930759879">Examples</A></H3>
<P>
There are several directories of sample problems in the examples
directory. All of them use an input file (in.*) of commands and a data
file (data.*) of initial atomic coordinates and produce one or more
output files. Sample outputs on different machines and numbers of
processors are included to compare your answers to. See the README
file in the examples sub-directory for more information on what LAMMPS
features the examples illustrate.</P>
<P>
(1) lj = atomic simulations of Lennard-Jones systems.
<P>
(2) class2 = phenyalanine molecule using the DISCOVER cff95 class 2
force field.
<P>
(3) lc = liquid crystal molecules with various Coulombic options and
periodicity settings.
<P>
(4) flow = 2d flow of Lennard-Jones atoms in a channel using various
constraint options.
<P>
(5) polymer = bead-spring polymer models with one or two chain types.
</P>
<HR>
<H3>
<A NAME="_cch3_931282515">Other Tools</A></H3>
<P>
The converters directory has source code and scripts for tools that
perform input/output file conversions between MSI Discover, AMBER, and
LAMMPS formats. See the README files for the individual tools for
additional information.
<P>
The tools directory has several serial programs that create and
massage LAMMPS data files.
<P>
(1) setup_chain.f = create a data file of polymer bead-spring chains
<P>
(2) setup_lj.f = create a data file of an atomic LJ mixture of species
<P>
(3) setup_flow_2d.f = create a 2d data file of LJ particles with walls for
a flow simulation
<P>
(4) replicate.c = replicate or scale an existing data file into a new one
<P>
(5) peek_restart.f = print-out info from a binary LAMMPS restart file
<P>
(6) restart2data.f = convert a binary LAMMPS restart file into a text data file
<P>
See the comments at the top of each source file for information on how
to use the tool.
<HR>
<H3>
<A NAME="_cch3_931282000">Extending LAMMPS</A></H3>
<P>
User-written routines can be compiled and linked with LAMMPS, then
invoked with the "diagnostic" command as LAMMPS runs. These routines
can be used for on-the-fly diagnostics or a variety of other purposes.
The examples/lc directory shows an example of using the diagnostic
command with the in.lc.big.fixes input script. A sample diagnostic
routine is given there also: diagnostic_temp_molecules.f.
</BODY>
</HTML>

View File

@ -1,250 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS Data Format</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation</P>
<P>
This file describes the format of the data file read into LAMMPS with
the &quot;read data&quot; command. The data file contains basic
information about the size of the problem to be run, the initial atomic
coordinates, molecular topology, and (optionally) force-field
coefficients. It will be easiest to understand this file if you read it
while looking at a sample data file from the examples.</P>
<P>
This page has 2 sections:</P>
<UL>
<LI>
<A HREF="#_cch3_930958962">Rules for formatting the Data File</A>
<LI>
<A HREF="#_cch3_930958969">Sample file with Annotations</A>
</UL>
<HR>
<H3>
<A NAME="_cch3_930958962">Rules for formatting the Data File: </A></H3>
<P>
Blank lines are important. After the header section, new entries are
separated by blank lines. </P>
<P>
Indentation and space between words/numbers on one line is not
important except that keywords (e.g. Masses, Bond Coeffs) must be
left-justified and capitalized as shown. </P>
<P>
The header section (thru box bounds) must appear first in the file, the
remaining entries (Masses, various Coeffs, Atoms, Bonds, etc) can come
in any order. </P>
<P>
These entries must be in the file: header section, Masses, Atoms. </P>
<P>
These entries must be in the file if there are a non-zero number of
them: Bonds, Angles, Dihedrals, Impropers. Force field coefficients
can be specified in the input script, so do not have to appear in the
data file. The one exception to this is class 2 force field
coefficients which can only be specified in the data file.
<P>
The Nonbond Coeffs entry contains one line for each atom type. These
are the coefficients for an interaction between 2 atoms of the same
type. The cross-type coeffs are computed by the appropriate class I or
class II mixing rules, or can be specified explicitly using the
&quot;nonbond coeff&quot; command in the input command script. See the <A
HREF="force_fields.html">force_fields</A> page for more information. </P>
<P>
In the Atoms entry, the atoms can be in any order so long as there are
N entries. The 1st number on the line is the atom-tag (number from 1 to
N) which is used to identify the atom throughout the simulation. The
molecule-tag is a second identifier which is attached to the atom; it
can be 0, or a counter for the molecule the atom is part of, or any
other number you wish. The q value is the charge of the atom in
electron units (e.g. +1 for a proton). The xyz values are the initial
position of the atom. For 2-d simulations specify z as 0.0.</P>
<P>
The final 3 nx,ny,nz values on a line of the Atoms entry are optional.
LAMMPS only reads them if the &quot;true flag&quot; command is
specified in the input command script. Otherwise they are initialized
to 0 by LAMMPS. Their meaning, for each dimension, is that
&quot;n&quot; box-lengths are added to xyz to get the atom's
&quot;true&quot; un-remapped position. This can be useful in pre- or
post-processing to enable the unwrapping of long-chained molecules
which wind thru the periodic box one or more times. The value of
&quot;n&quot; can be positive, negative, or zero. For 2-d simulations
specify nz as 0. </P>
<P>
Atom velocities are initialized to 0.0 if there is no Velocities entry.
In the Velocities entry, the atoms can be in any order so long as there
are N entries. The 1st number on the line is the atom-tag (number from
1 to N) which is used to identify the atom which the given velocity
will be assigned to.</P>
<P>
Entries for Velocities, Bonds, Angles, Dihedrals, Impropers must appear
in the file after an Atoms entry.</P>
<P>
For simulations with periodic boundary conditions, xyz coords are
remapped into the periodic box (from as far away as needed), so the
initial coordinates need not be inside the box. The nx,ny,nz values
(as read in or as set to zero by LAMMPS) are appropriately adjusted by
this remapping. </P>
<P>
The number of coefficients specified on each line of coefficient
entries (Nonbond Coeffs, Bond Coeffs, etc) depends on the
&quot;style&quot; of interaction. This must be specified in the input
command script before the "read data" command is issued, unless the
default is used. See the <A
HREF="input_commands.html">input_commands</A> page for a description
of the various style options. The <A HREF="input_commands.html">input_commands</A>
and <A HREF="force_fields.html">force_fields</A> pages explain the
meaning and valid values for each of the coefficients. </P>
<HR>
<H3>
<A NAME="_cch3_930958969">Sample file with Annotations</A></H3>
<P>
Here is a sample file with annotations in parenthesis and lengthy
sections replaced by dots (...). Note that the blank lines are
important in this example.</P>
<PRE>
LAMMPS Description (1st line of file)
100 atoms (this must be the 3rd line, 1st 2 lines are ignored)
95 bonds (# of bonds to be simulated)
50 angles (include these lines even if number = 0)
30 dihedrals
20 impropers
5 atom types (# of nonbond atom types)
10 bond types (# of bond types = sets of bond coefficients)
18 angle types
20 dihedral types (do not include a bond,angle,dihedral,improper type
2 improper types line if number of bonds,angles,etc is 0)
-0.5 0.5 xlo xhi (for periodic systems this is box size,
-0.5 0.5 ylo yhi for non-periodic it is min/max extent of atoms)
-0.5 0.5 zlo zhi (do not include this line for 2-d simulations)
Masses
1 mass
...
N mass (N = # of atom types)
Nonbond Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of atom types)
Bond Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of bond types)
Angle Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of angle types)
Dihedral Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
Improper Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of improper types)
BondBond Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of angle types)
BondAngle Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of angle types)
MiddleBondTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
EndBondTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
AngleTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
AngleAngleTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
BondBond13 Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
AngleAngle Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of improper types)
Atoms
1 molecule-tag atom-type q x y z nx ny nz (nx,ny,nz are optional -
... see &quot;true flag&quot; input command)
...
N molecule-tag atom-type q x y z nx ny nz (N = # of atoms)
Velocities
1 vx vy vz
...
...
N vx vy vz (N = # of atoms)
Bonds
1 bond-type atom-1 atom-2
...
N bond-type atom-1 atom-2 (N = # of bonds)
Angles
1 angle-type atom-1 atom-2 atom-3 (atom-2 is the center atom in angle)
...
N angle-type atom-1 atom-2 atom-3 (N = # of angles)
Dihedrals
1 dihedral-type atom-1 atom-2 atom-3 atom-4 (atoms 2-3 form central bond)
...
N dihedral-type atom-1 atom-2 atom-3 atom-4 (N = # of dihedrals)
Impropers
1 improper-type atom-1 atom-2 atom-3 atom-4 (atom-2 is central atom)
...
N improper-type atom-1 atom-2 atom-3 atom-4 (N = # of impropers)
</PRE>
</BODY>
</HTML>

View File

@ -1,42 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS Deficiencies</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation.</P>
<P>
This is a brief list of features lacking in the current version of
LAMMPS. Some of these deficiencies are because of lack of
time/interest; others are just hard!</P>
<UL>
<LI>
The calculation of pressure does not include a long-range Van der Waals
correction. This would be a constant for constant volume simulations
but is a source of error for constant pressure simulations where
the box-size varies dynamically.
<LI>
The smoothed Coulomb style cannot be used with class 2 force fields.
<LI>
The minimizer does not work with constant pressure conditions, nor
for some kinds of fixes (constraints).
<LI>
No support for non-rectilinear boxes (e.g. Parinello-Rahman
pressure control).
<LI>
SHAKE fixes cannot be combined with rREPSA.
<LI>
In the current F90 version of LAMMPS, Ewald computations are 2x slower
on some machines than they were in the earlier F77 version. This is
probably because of F90 compiler treatment of allocatable arrays. This
slowdown is not an issue with PPPM, which is more commonly used anyway.
<LI>
LAMMPS uses a spatial-decomposition of the simulation domain, but no
other load-balancing -- thus some geometries or density fluctuations can
lead to load imbalance on a parallel machine.
</UL>
</BODY>
</HTML>

View File

@ -1,681 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS Force Fields</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation</P>
<P>
This file outlines the force-field formulas used in LAMMPS. Read this
file in conjunction with the <A HREF="data_format.html">data_format</A>
and <A HREF="units.html">units</A> files.</P>
<P>
The sections of this page are as follows:</P>
<UL>
<LI>
<A HREF="#_cch3_930957465">Nonbond Coulomb</A>
<LI>
<A HREF="#_cch3_930957471">Nonbond Lennard-Jones</A>
<LI>
<A HREF="#_cch3_930957478">Mixing Rules for Lennard-Jones</A>
<LI>
<A HREF="#_cch3_930957482">Bonds</A>
<LI>
<A HREF="#_cch3_930957488">Angles</A>
<LI>
<A HREF="#_cch3_930957509">Dihedrals</A>
<LI>
<A HREF="#_cch3_930957513">Impropers</A>
<LI>
<A HREF="#_cch3_930957527">Class 2 Force Field</A>
</UL>
<HR>
<H3>
<A NAME="_cch3_930957465">Nonbond Coulomb</A></H3>
<P>
Whatever Coulomb style is specified in the input command file, the
short-range Coulombic interactions are computed by this formula,
modified by an appropriate smoother for the smooth, Ewald, PPPM,
charmm, and debye styles.</P>
<PRE>
E = C q1 q2 / (epsilon * r)
r = distance (computed by LAMMPS)
C = hardwired constant to convert to energy units
q1,q2 = charge of each atom in electron units (proton = +1),
specified in &quot;Atoms&quot; entry in data file
epsilon = dielectric constant (vacuum = 1.0),
set by user in input command file
</PRE>
For the debye style, the smoother is exp(-kappa*r) where kappa is an
input parameter.
<HR>
<H3>
<A NAME="_cch3_930957471">Nonbond Lennard-Jones </A></H3>
<P>
The style of nonbond potential is specified in the input command file. </P>
<H4>
(1) lj/cutoff </H4>
<PRE>
E = 4 epsilon [ (sigma/r)^12 - (sigma/r)^6 ]
standard Lennard Jones potential
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
2 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<H4>
(2) lj/switch </H4>
<PRE>
E = 4 epsilon [ (sigma/r)^12 - (sigma/r)^6 ] for r &lt; r_inner
= spline fit for r_inner &lt; r &lt; cutoff
= 0 for r &gt; cutoff
switching function (spline fit) is applied to standard LJ
within a switching region (from r_inner to cutoff) so that
energy and force go smoothly to zero
spline coefficients are computed by LAMMPS
so that at inner cutoff (r_inner) the potential, force,
and 1st-derivative of force are all continuous,
and at outer cutoff (cutoff) the potential and force
both go to zero
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
2 coeffs are listed in data file or set in input script
2 cutoffs (r_inner and cutoff) are set in input script
</PRE>
<H4>
(3) lj/shift </H4>
<PRE>
E = 4 epsilon [ (sigma/(r - delta))^12 - (sigma/(r - delta))^6 ]
same as lj/cutoff except that r is shifted by delta
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
coeff3 = delta (distance)
3 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<H4>
(4) soft </H4>
<PRE>
E = A * [ 1 + cos( pi * r / cutoff ) ]
useful for pushing apart overlapping atoms by ramping A over time
r = distance (computed by LAMMPS)
coeff1 = prefactor A at start of run (energy)
coeff2 = prefactor A at end of run (energy)
2 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<H4>
(5) class2/cutoff </H4>
<PRE>
E = epsilon [ 2 (sigma/r)^9 - 3 (sigma/r)^6 ]
used with class2 bonded force field
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
2 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<H4>
6) lj/charmm </H4>
<PRE>
E = 4 epsilon [ (sigma/r)^12 - (sigma/r)^6 ] for r &lt; r_inner
= switch * E for r_inner &lt; r &lt; cutoff
= 0 for r &gt; cutoff
where
switch = [(cutoff^2 - r^2)^2 * (cutoff^2 + 2*r^2 - 3*r_inner)] /
[(cutoff^2 - r_inner^2)^3]
switching function is applied to standard LJ
within a switching region (from r_inner to cutoff) so that
energy and force go smoothly to zero
switching function causes that at inner cutoff (r_inner)
the potential and force are continuous,
and at outer cutoff (cutoff) the potential and force
both go to zero
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
coeff3 = epsilon for 1-4 interactions (energy)
coeff4 = sigma for 1-4 interactions (distance)
4 coeffs are listed in data file or set in input script
2 cutoffs (r_inner and cutoff) are set in input script
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957478">Mixing Rules for Lennard-Jones</A></H3>
<P>
The coefficients for each nonbond style are input in either the data
file by the &quot;read data&quot; command or in the input script using
the &quot;nonbond coeff&quot; command. In the former case, only one set
of coefficients is input for each atom type. The cross-type coeffs are
computed using one of three possible mixing rules: </P>
<PRE>
geometric: epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = sqrt(sigma_i * sigma_j)
arithmetic: epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = (sigma_i + sigma_j) / 2
sixthpower: epsilon_ij =
(2 * sqrt(epsilon_i*epsilon_j) * sigma_i^3 * sigma_j^3) /
(sigma_i^6 + sigma_j^6)
sigma_ij= ((sigma_i**6 + sigma_j**6) / 2) ^ (1/6)
</PRE>
<P>
The default mixing rule for nonbond styles lj/cutoff, lj/switch,
lj/shift, and soft is &quot;geometric&quot;. The default for nonbond
style class2/cutoff is &quot;sixthpower&quot;. </P>
<P>
The default can be overridden using the &quot;mixing style&quot;
command. Two exceptions to this are for the nonbond style soft, for
which only an epsilon prefactor is input. This is always mixed
geometrically. Also, for nonbond style lj/shift, the delta
coefficient is always mixed using the rule </P>
<UL>
<LI>
delta_ij = (delta_i + delta_j) / 2
</UL>
<HR>
<H3>
<A NAME="_cch3_930957482">Bonds</A></H3>
<P>
The style of bond potential is specified in the input command file.</P>
<H4>
(1) harmonic </H4>
<PRE>
E = K (r - r0)^2
standard harmonic spring
r = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2) (the usual 1/2 is included in the K)
coeff2 = r0 (distance)
2 coeffs are listed in data file or set in input script
</PRE>
<H4>
(2) FENE/standard </H4>
<PRE>
E = -0.5 K R0^2 * ln[1 - (r/R0)^2] +
4 epsilon [(sigma/r)^12 - (sigma/r)^6] + epsilon
finite extensible nonlinear elastic (FENE) potential for
polymer bead-spring models
see Kremer, Grest, J Chem Phys, 92, p 5057 (1990)
r = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2)
coeff2 = R0 (distance)
coeff3 = epsilon (energy)
coeff4 = sigma (distance)
1st term is attraction, 2nd term is repulsion (shifted LJ)
1st term extends to R0
2nd term only extends to the minimum of the LJ potential,
a cutoff distance computed by LAMMPS (2^(1/6) * sigma)
4 coeffs are listed in data file or set in input script
</PRE>
<H4>
(3) FENE/shift </H4>
<PRE>
E = -0.5 K R0^2 * ln[1 - ((r - delta)/R0)^2] +
4 epsilon [(sigma/(r - delta))^12 - (sigma/(r - delta))^6] + epsilon
same as FENE/standard expect that r is shifted by delta
r = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2)
coeff2 = R0 (distance)
coeff3 = epsilon (energy)
coeff4 = sigma (distance)
coeff5 = delta (distance)
1st term is attraction, 2nd term is repulsion (shifted LJ)
1st term extends to R0
2nd term only extends to the minimum of the LJ potential,
a cutoff distance computed by LAMMPS (2^(1/6) * sigma + delta)
5 coeffs are listed in data file or set in input script
</PRE>
<H4>
(4) nonlinear </H4>
<PRE>
E = epsilon (r - r0)^2 / [ lamda^2 - (r - r0)^2 ]
non-harmonic spring of equilibrium length r0
with finite extension of lamda
see Rector, Van Swol, Henderson, Molecular Physics, 82, p 1009 (1994)
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = r0 (distance)
coeff3 = lamda (distance)
3 coeffs are listed in data file or set in input script
</PRE>
<H4>
(5) class2 </H4>
<PRE>
E = K2 (r - r0)^2 + K3 (r - r0)^3 + K4 (r - r0)^4
r = distance (computed by LAMMPS)
coeff1 = r0 (distance)
coeff2 = K2 (energy/distance^2)
coeff3 = K3 (energy/distance^3)
coeff4 = K4 (energy/distance^4)
4 coeffs are listed in data file - cannot be set in input script
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957488">Angles </A></H3>
<P>
The style of angle potential is specified in the input command file. </P>
<H4>
(1) harmonic </H4>
<PRE>
E = K (theta - theta0)^2
theta = radians (computed by LAMMPS)
coeff1 = K (energy/radian^2) (the usual 1/2 is included in the K)
coeff2 = theta0 (degrees) (converted to radians within LAMMPS)
2 coeffs are listed in data file or set in input script
</PRE>
<H4>
(2) class2 </H4>
<PRE>
E = K2 (theta - theta0)^2 + K3 (theta - theta0)^3 +
K4 (theta - theta0)^4
theta = radians (computed by LAMMPS)
coeff1 = theta0 (degrees) (converted to radians within LAMMPS)
coeff2 = K2 (energy/radian^2)
coeff3 = K3 (energy/radian^3)
coeff4 = K4 (energy/radian^4)
4 coeffs are listed in data file - cannot be set in input script
</PRE>
<H4>
(3) charmm </H4>
<PRE>
(harmonic + Urey-Bradley)
E = K (theta - theta0)^2 + K_UB (r_13 - r_UB)^2
theta = radians (computed by LAMMPS)
r_13 = distance (computed by LAMMPS)
coeff1 = K (energy/radian^2) (the usual 1/2 is included in the K)
coeff2 = theta0 (degrees) (converted to radians within LAMMPS)
coeff3 = K_UB (energy/distance^2)
coeff4 = r_UB (distance)
4 coeffs are listed in data file or set in input script
</PRE>
<H4>
(4) cosine </H4>
<PRE>
E = K (1 + cos(theta))
theta = radians (computed by LAMMPS)
coeff1 = K (energy)
1 coeff is listed in data file or set in input script
</PRE>
<H3>
<A NAME="_cch3_930957509">Dihedrals </A></H3>
<P>
The style of dihedral potential is specified in the input command
file. IMPORTANT NOTE for all these dihedral styles: in the LAMMPS
force field the trans position = 180 degrees, while in some force
fields trans = 0 degrees. </P>
<H4>
(1) harmonic </H4>
<PRE>
E = K [1 + d * cos (n*phi) ]
phi = radians (computed by LAMMPS)
coeff1 = K (energy)
coeff2 = d (+1 or -1)
coeff3 = n (1,2,3,4,6)
Additional cautions when comparing to other force fields:
some force fields reverse the sign convention on d so that
E = K [1 - d * cos(n*phi)]
some force fields divide/multiply K by the number of multiple
torsions that contain the j-k bond in an i-j-k-l torsion
some force fields let n be positive or negative which
corresponds to d = 1,-1
3 coeffs are listed in data file or set in input script
</PRE>
<H4>
(2) class2 </H4>
<PRE>
E = SUM(n=1,3) { K_n [ 1 - cos( n*Phi - Phi0_n ) ] }
phi = radians (computed by LAMMPS)
coeff1 = K_1 (energy)
coeff2 = Phi0_1 (degrees) (converted to radians within LAMMPS)
coeff3 = K_2 (energy)
coeff4 = Phi0_2 (degrees) (converted to radians within LAMMPS)
coeff5 = K_3 (energy)
coeff6 = Phi0_3 (degrees) (converted to radians within LAMMPS)
6 coeffs are listed in data file - cannot be set in input script
</PRE>
<H4>
(3) multiharmonic </H4>
<PRE>
E = SUM(n=1,5) { A_n * cos(Phi)^(n-1) }
phi = radians (computed by LAMMPS)
coeff1 = A_1
coeff2 = A_2
coeff3 = A_3
coeff4 = A_4
coeff5 = A_5
5 coeffs are listed in data file or set in input script
</PRE>
<H4>
(4) charmm </H4>
<PRE>
(harmonic + 1-4 interactions)
E = K [1 + cos (n*phi + d) ]
phi = radians (computed by LAMMPS)
coeff1 = K (energy)
coeff2 = n (1,2,3,4,6)
coeff3 = d (0 or 180 degrees) (converted to radians within LAMMPS)
coeff4 = weighting factor to turn on/off 1-4 neighbor nonbond interactions
coeff4 weight values are from 0.0 to 1.0 and are used to multiply the
energy and force interaction (both Coulombic and LJ) between the 2 atoms
weight of 0.0 means no interaction
weight of 1.0 means full interaction
must be used with the special bonds charmm command
"special bonds 0 0 0") which shuts off the uniform special bonds and
allows pair-specific special bonds for the 1-4 interactions to be
defined in the data file
LAMMPS assumes that all 1-4 interaction distances, which are
generally less than 6 Angstroms, are less than the smallest of the
inner LJ and Coulombic cutoffs, which are generally at least 8
Angstroms.
4 coeffs are listed in data file or set in input script
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957513">Impropers</A></H3>
<P>
The style of improper potential is specified in the input command file. </P>
<H4>
(1) harmonic </H4>
<PRE>
E = K (chi - chi0)^2
chi = radians (computed by LAMMPS)
coeff1 = K (energy/radian^2) (the usual 1/2 is included in the K)
coeff2 = chi0 (degrees) (converted to radians within LAMMPS)
2 coeffs are listed in data file or set in input script
</PRE>
<H4>
(2) cvff </H4>
<PRE>
E = K [1 + d * cos (n*chi) ]
chi = radians (computed by LAMMPS)
coeff1 = K (energy)
coeff2 = d (+1 or -1)
coeff3 = n (0,1,2,3,4,6)
3 coeffs are listed in data file or set in input script
</PRE>
<H4>
(3) class2 </H4>
<PRE>
same formula, coeffs, and meaning as &quot;harmonic&quot; except that LAMMPS
averages all 3 angle-contributions to chi
in class 2 this is called a Wilson out-of-plane interaction
2 coeffs are listed in data file - cannot be set in input script
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957527">Class 2 Force Field</A></H3>
<P>
If class 2 force fields are selected in the input command file,
additional cross terms are computed as part of the force field. All
class 2 coefficients must be set in the data file; they cannot be set
in the input script.</P>
<H4>
Bond-Bond (computed within class 2 angles) </H4>
<PRE>
E = K (r - r0) * (r' - r0')
r,r' = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2)
coeff2 = r0 (distance)
coeff3 = r0' (distance)
3 coeffs are input in data file
</PRE>
<H4>
Bond-Angle (computed within class 2 angles for each of 2 bonds) </H4>
<PRE>
E = K_n (r - r0_n) * (theta - theta0)
r = distance (computed by LAMMPS)
theta = radians (computed by LAMMPS)
coeff1 = K_1 (energy/distance-radians)
coeff2 = K_2 (energy/distance-radians)
coeff3 = r0_1 (distance)
coeff4 = r0_2 (distance)
Note: theta0 is known from angle coeffs so don't need it specified here
4 coeffs are listed in data file
</PRE>
<H4>
Middle-Bond-Torsion (computed within class 2 dihedral) </H4>
<PRE>
E = (r - r0) * [ F1*cos(phi) + F2*cos(2*phi) + F3*cos(3*phi) ]
r = distance (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = F1 (energy/distance)
coeff2 = F2 (energy/distance)
coeff3 = F3 (energy/distance)
coeff4 = r0 (distance)
4 coeffs are listed in data file
</PRE>
<H4>
End-Bond-Torsion (computed within class 2 dihedral for each of 2 bonds) </H4>
<PRE>
E = (r - r0_n) * [ F1_n*cos(phi) + F2_n*cos(2*phi) + F3_n*cos(3*phi) ]
r = distance (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = F1_1 (energy/distance)
coeff2 = F2_1 (energy/distance)
coeff3 = F3_1 (energy/distance)
coeff4 = F1_2 (energy/distance)
coeff5 = F2_3 (energy/distance)
coeff6 = F3_3 (energy/distance)
coeff7 = r0_1 (distance)
coeff8 = r0_2 (distance)
8 coeffs are listed in data file
</PRE>
<H4>
Angle-Torsion (computed within class 2 dihedral for each of 2 angles) </H4>
<PRE>
E = (theta - theta0) * [ F1_n*cos(phi) + F2_n*cos(2*phi) + F3_n*cos(3*phi) ]
theta = radians (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = F1_1 (energy/radians)
coeff2 = F2_1 (energy/radians)
coeff3 = F3_1 (energy/radians)
coeff4 = F1_2 (energy/radians)
coeff5 = F2_3 (energy/radians)
coeff6 = F3_3 (energy/radians)
coeff7 = theta0_1 (degrees) (converted to radians within LAMMPS)
coeff8 = theta0_2 (degrees) (converted to radians within LAMMPS)
8 coeffs are listed in data file
</PRE>
<H4>
Angle-Angle-Torsion (computed within class 2 dihedral) </H4>
<PRE>
E = K (theta - theta0) * (theta' - theta0') * (phi - phi0)
theta,theta' = radians (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = K (energy/radians^3)
coeff2 = theta0 (degrees) (converted to radians within LAMMPS)
coeff3 = theta0' (degrees) (converted to radians within LAMMPS)
Note: phi0 is known from dihedral coeffs so don't need it specified here
3 coeffs are listed in data file
</PRE>
<H4>
Bond-Bond-13-Torsion (computed within class 2 dihedral) </H4>
<PRE>
E = K * (r1 - r10)*(r3 - r30)
r1,r3 = bond lengths of bonds 1 and 3 (computed by LAMMPS)
coeff1 = K (energy/distance^2)
coeff2 = r10 (distance) = equilibrium bond length for bond 1
coeff3 = r30 (distance) = equilibrium bond length for bond 3
K is only non-zero for aromatic rings
3 coeffs are listed in data file
</PRE>
<H4>
Angle-Angle (computed within class 2 improper for each of 3 pairs of
angles) </H4>
<PRE>
E = K_n (theta - theta0_n) * (theta' - theta0_n')
theta,theta' = radians (computed by LAMMPS)
coeff1 = K_1 (energy/radians^2)
coeff2 = K_2 (energy/radians^2)
coeff3 = K_3 (energy/radians^2)
coeff4 = theta0_1 (degrees) (converted to radians within LAMMPS)
coeff5 = theta0_2 (degrees) (converted to radians within LAMMPS)
coeff6 = theta0_3 (degrees) (converted to radians within LAMMPS)
6 coeffs are listed in data file
</PRE>
</BODY>
</HTML>

View File

@ -1,205 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
History of LAMMPS</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation.</P>
<P>
This is a brief history of features added to each version of LAMMPS.</P>
<HR>
<H3>
LAMMPS 2001 - November 2001</H3>
<UL>
<LI>
F90 + MPI version of code
<LI>
dynamic memory, no param.h file settings to twiddle, see "extra memory"
command
<LI>
changed required ordering of some input script commands (see discussion in
<A HREF="input_commands.html">input_commands</A>) file
<LI>
new commands: "extra memory", "maximum cutoff", "restart version",
"angle coeff", "dihedral coeff", "improper coeff",
"volume control", "slab volume", "rotation zero"
<LI>
changed meaning or syntax of commands:
"special bonds", "fix style rescale", "fix style hoover/drag",
"temp control rescale", "press control", "restart"
<LI>
deleted commands: "log file", "press_x control" (and y,z)
<LI>
better match to CHARMM force fields via "nonbond style lj/charmm",
"coulomb style charmm/switch", "angle style charmm", dihedral style charmm"
(due to Mark Stevens and Paul Crozier)
<LI>
changed "special bonds" default to 0.0 weighting on 1-4 interactions for
CHARMM compatibility, added "special bonds amber" option for AMBER
compatibility
<LI>
ghost atoms and new treatment of periodic boundary conditions,
this allows for cutoffs &gt; box-size and faster neighbor binning,
binned neighbor list construction is now the default as it is almost
always faster
<LI>
perform blocked-input from data and restart files, faster for many MPI
implementations (due to Mathias Puetz)
<LI>
added Velocities option to data file to initialize each atom's
velocity (see <A HREF="data_format.html">data_format</A> file)
<LI>
pressure control was decoupled from temperature control, so that
constant NPH simulations can be run (not just NPT), temperature
controls such as rescale or Langevin can now be used with constant P
simulations (due to Mark Stevens)
<LI>
temperature rescaling (either in "temp control" or "fix style rescale")
has an added fractional parameter which allows it to be applied
in a lightweight or heavy-handed way to induce the desired temperature
<LI>
got rid of crib.html file, see global.f for documentation of all
variables
<LI>
2-d slab Ewald and PPPM option, (see "slab volume" in
<A HREF="input_commands.html">input commands</A>) (due to Paul Crozier)
<LI>
new multiharmonic dihedral and cvff improper force-field options
(due to Mathias Puetz)
<LI>
SHAKE constraint for small clusters of atoms, see "fix style shake"
and "assign fix bondtype" commands
<LI>
added option to output restart files with timestep stamp or to toggle
between 2 files, see "restart" command
<LI>
tools for converting to/from other MD program formats:
msi2lmp (updated by John Carpenter),
lmp2arc (due to John Carpenter),
amber2lammps & dump2trj (Python scripts due to Keir Novik)
<LI>
tools for creating and massaging LAMMPS data and restart files:
setup_lj, setup_flow_2d, setup_chain, peek_restart, restart2data,
replicate
</UL>
<HR>
<H3>
LAMMPS 99 - June 99 </H3>
<UL>
<LI>
all-MPI version of code (F77 + C + MPI) for maximum portablility
<LI>
only one PPPM choice now, the better of the two earlier ones
<LI>
PPPM uses portable FFTs and data remapping routines, written in C w/
MPI, can now use non-power-of-2 processors and grid sizes
<LI>
auto-mapping of simulation box to processors
<LI>
removed a few unused/unneeded commands (bdump, log file, id string,
limit)
<LI>
changed syntax of some commands for simplicity &amp; consistency (see <A
HREF="input_commands.html">input commands</A>)
<LI>
changed method of calling/writing user diagnostic routines to be
simpler
<LI>
documentation in HTML format
</UL>
<HR>
<H3>
Version 5.0 - Oct 1997 </H3>
<UL>
<LI>
final version of class II force fields (due to Eric Simon)
<LI>
new formulation of NVE, NVT, NPT and rRESPA integrators (due to
Mark Stevens)
<LI>
new version of msi2lmp pre-processing tool, does not require DISCOVER
to run, only DISCOVER force field files (due to Steve Lustig)
<LI>
energy minimizer, Hessian-free truncated Newton method
(due to Todd Plantenga)
<LI>
new pressure controllers and constraints (due to Mark Stevens)
<LI>
replicate tool for generating new data files from old ones
</UL>
<HR ALIGN="LEFT">
<H3>
Version 4.0 - March 1997 </H3>
<UL>
<LI>
1st version of class II force fields (due to Eric Simon)
<LI>
new, faster PPPM solver (newpppm, due to Roy Pollock)
<LI>
rRESPA (due to Mark Stevens)
<LI>
new data file format
<LI>
new constraints, diagnostics
<LI>
msi2lmp pre-processing tool (due to Steve Lustig)
</UL>
<HR>
<H3>
Version 3.0 - March 1996 </H3>
<UL>
<LI>
more general force-field formulation
<LI>
atom/group constraints
<LI>
LJ units and bond potentials
<LI>
smoothed LJ potential option
<LI>
Langevin thermostat
<LI>
Newton's 3rd law option
<LI>
hook for user-supplied diagnostic routines
</UL>
<HR>
<H3>
Version 2.0 - October 1995 </H3>
<UL>
<LI>
bug fix of velocity initialization which caused drift
<LI>
PPPM for long-range Coulombic (due to Roy Pollock)
<LI>
constant NPT (due to Mark Stevens)
</UL>
<HR>
<H3>
Version 1.1 - February 1995 </H3>
<UL>
<LI>
Ewald for long-range Coulombic (due to Roy Pollock)
<LI>
full Newton's 3rd law (doubled communication)
<LI>
dumping of atom positions and velocities
<LI>
restart files
</UL>
<HR>
<H3>
Version 1.0 - January 1995 </H3>
<UL>
<LI>
short-range bonded and non-bonded forces
<LI>
partial Newton's 3rd law
<LI>
velocity-Verlet integrator
</UL>
</BODY>
</HTML>

File diff suppressed because it is too large Load Diff

View File

@ -1,119 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS Units</H2>
<P>
<A HREF="README.html">Return</A> to top-level LAMMPS documentation.</P>
<P>
This file describes the units associated with many of the key variables
and equations used inside the LAMMPS code. Units used for input command
parameters are described in the input_commands file. The input command
&quot;units&quot; selects between conventional and Lennard-Jones units.
See the force_fields file for more information on units for the force
field parameters that are input from data files or input scripts. </P>
<P>
Conventional units: </P>
<UL>
<LI>
distance = Angstroms
<LI>
time = femtoseconds
<LI>
mass = grams/mole
<LI>
temperature = degrees K
<LI>
pressure = atmospheres
<LI>
energy = Kcal/mole
<LI>
velocity = Angstroms/femtosecond
<LI>
force = grams/mole * Angstroms/femtosecond^2
<LI>
charge = +/- 1.0 is proton/electron
</UL>
<P>
LJ reduced units: </P>
<UL>
<LI>
distance = sigmas
<LI>
time = reduced LJ tau
<LI>
mass = ratio to unitless 1.0
<LI>
temperature = reduced LJ temp
<LI>
pressure = reduced LJ pressure
<LI>
energy = epsilons
<LI>
velocity = sigmas/tau
<LI>
force = reduced LJ force (sigmas/tau^2)
<LI>
charge = ratio to unitless 1.0
</UL>
<HR>
<P>
This listing of variables assumes conventional units; to convert to LJ
reduced units, simply substitute the appropriate term from the list
above. E.g. x is in sigmas in LJ units. Per-mole in any of the units
simply means for 6.023 x 10^23 atoms.</P>
<P>
</P>
<PRE>
Meaning Variable Units
positions x Angstroms
velocities v Angstroms / click (see below)
forces f Kcal / (mole - Angstrom)
masses mass gram / mole
charges q electron units (-1 for an electron)
(1 e.u. = 1.602 x 10^-19 coul)
time --- clicks (1 click = 48.88821 fmsec)
timestep dt clicks
input timestep dt_in fmsec
time convert dtfactor 48.88821 fmsec / click
temperature t_current degrees K
t_start
t_stop
input damping t_freq_in inverse fmsec
internal temp t_freq inverse clicks
damping
dielec const dielectric 1.0 (unitless)
Boltmann const boltz 0.001987191 Kcal / (mole - degree K)
virial virial[xyz] Kcal/mole = r dot F
pressure factor pfactor 68589.796 (convert internal to atmospheres)
internal p_current Kcal / (mole - Angs^3)
pressure p_start
p_stop
input press p_start_in atmospheres
p_stop_in
output press log file atmospheres
input damping p_freq_in inverse time
internal press p_freq inverse clicks
damping
pot eng e_potential Kcal/mole
kin eng e_kinetic Kcal/mole
eng convert efactor 332.0636 (Kcal - Ang) / (q^2 - mole)
(convert Coulomb eng to Kcal/mole)
LJ coeffs lja,ljb Kcal-Angs^(6,12)/mole
bond various see force_fields file
parameters 2,3,4-body
terms
</PRE>
</BODY>
</HTML>

View File

@ -1,161 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS</H2>
<P>
LAMMPS = Large-scale Atomic/Molecular Massively Parallel Simulator</P>
<P>
This is the documentation for the LAMMPS 99 version, written in F77,
which has been superceded by more current versions. See the <A
HREF="http://www.cs.sandia.gov/~sjplimp/lammps.html">LAMMPS WWW
Site</A> for more information.
<P>
LAMMPS is a classical molecular dynamics code designed for simulating
molecular and atomic systems on parallel computers using
spatial-decomposition techniques. It runs on any parallel platform that
supports the MPI message-passing library or on single-processor
workstations.</P>
<P>
LAMMPS 99 is copyrighted code that is distributed freely as
open-source software under the GNU Public License (GPL). See the
LICENSE file or <A HREF="http://www.gnu.org">www.gnu.org</A> for more
details. Basically the GPL allows you as a user to use, modify, or
distribute LAMMPS however you wish, so long as any software you
distribute remains under the GPL.
<P>
Features of LAMMPS 99 include:</P>
<UL>
<LI>
short-range pairwise Lennard-Jones and Coulombic interactions
<LI>
long-range Coulombic interactions via Ewald or PPPM (particle-mesh
Ewald)
<LI>
short-range harmonic bond potentials (bond, angle, torsion, improper)
<LI>
short-range class II (cross-term) molecular potentials
<LI>
NVE, NVT, NPT dynamics
<LI>
constraints on atoms or groups of atoms
<LI>
rRESPA long-timescale integrator
<LI>
energy minimizer (Hessian-free truncated Newton method)
</UL>
<P>
More details about the code can be found <A HREF="#_cch3_930958294">here</A>,
in the HTML-based documentation. There is also a conference paper
describing the parallel algorithms used in the code:</P>
<P>
S. J. Plimpton, R. Pollock, M. Stevens, &quot;Particle-Mesh Ewald and
rRESPA for Parallel Molecular Dynamics Simulations&quot;, in Proc of
the Eighth SIAM Conference on Parallel Processing for Scientific
Computing, Minneapolis, MN, March 1997.</P>
<P>
LAMMPS was originally developed as part of a 5-way CRADA collaboration
between 3 industrial partners (Cray Research, Bristol-Myers Squibb, and
Dupont) and 2 DoE laboratories (Sandia National Laboratories and
Lawrence Livermore National Laboratories).</P>
<P>
The primary author of LAMMPS is Steve Plimpton, but others have written
or worked on significant portions of the code:</P>
<UL>
<LI>
Roy Pollock (LLNL): Ewald, PPPM solvers
<LI>
Mark Stevens (Sandia): rRESPA, NPT integrators
<LI>
Eric Simon (Cray Research): class II force fields
<LI>
Todd Plantenga (Sandia): energy minimizer
<LI>
Steve Lustig (Dupont): msi2lmp tool
<LI>
Mike Peachey (Cray Research): msi2lmp tool
</UL>
<P>
Other CRADA partners involved in the design and testing of LAMMPS are </P>
<UL>
<LI>
John Carpenter (Cray Research)
<LI>
Terry Stouch (Bristol-Myers Squibb)
<LI>
Jim Belak (LLNL)
</UL>
<P>
LAMMPS is copyrighted code that is distributed freely as open-source
software under the GNU Public License (GPL). See the LICENSE file or
<A HREF="http://www.gnu.org">www.gnu.org</A> for more details.
Basically the GPL allows you as a user to use, modify, or distribute
LAMMPS however you wish, so long as any software you distribute
remains under the GPL.
<P>
If you have questions about LAMMPS, please contact me:
</P>
<DL>
<DT>
Steve Plimpton
<DD>
sjplimp@sandia.gov
<DD>
www.cs.sandia.gov/~sjplimp
<DD>
Sandia National Labs
<DD>
Albuquerque, NM 87185
</DL>
<HR>
<H3>
<A NAME="_cch3_930958294">More Information about LAMMPS</A></H3>
<DIR>
<LI>
<A HREF="basics.html">Basics</A>
<DIR>
<LI>
how to make, run, and test LAMMPS with the example problems
</DIR>
<LI>
<A HREF="input_commands.html">Input Commands</A>
<DIR>
<LI>
a complete listing of input commands used by LAMMPS
</DIR>
<LI>
<A HREF="data_format.html">Data Format</A>
<DIR>
<LI>
the data file format used by LAMMPS
</DIR>
<LI>
<A HREF="force_fields.html">Force Fields</A>
<DIR>
<LI>
the equations LAMMPS uses to compute force-fields
</DIR>
<LI>
<A HREF="units.html">Units</A>
<DIR>
<LI>
the input/output and internal units for LAMMPS variables
</DIR>
<LI>
<A HREF="crib.html">Crib</A>
<DIR>
<LI>
a one-line description of the variables used in LAMMPS
</DIR>
<LI>
<A HREF="history.html">History</A>
<DIR>
<LI>
a brief timeline of features added to LAMMPS
</DIR>
</DIR>
</BODY>
</HTML>

View File

@ -1,207 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
Basics of Using LAMMPS</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation.</P>
<UL>
<LI>
<A HREF="#_cch3_931273040">Distribution</A>
<LI>
<A HREF="#_cch3_930327142">Making LAMMPS</A>
<LI>
<A HREF="#_cch3_930327155">Running LAMMPS</A>
<LI>
<A HREF="#_cch3_930759879">Examples</A>
<LI>
<A HREF="#_cch3_931282515">Other Tools</A>
</UL>
<HR>
<H3>
<A NAME="_cch3_931273040">Distribution</A></H3>
<P>
When you unzip/untar the LAMMPS distribution you should have 5
directories: </P>
<UL>
<LI>
src = source files for LAMMPS
<LI>
doc = HTML documentation
<LI>
examples = sample problems with inputs and outputs
<LI>
msi2lmp = tool for converting files from DISCOVER to LAMMPS format
(this requires that you have DISCOVER force field files)
<LI>
tools = serial program for replicating data files
</UL>
<HR>
<H3>
<A NAME="_cch3_930327142">Making LAMMPS</A></H3>
<P>
The src directory contains the F77 and C source files for LAMMPS as
well as several sample Makefiles for different machines. To make LAMMPS
for a specfic machine, you simply type</P>
<P>
make machine</P>
<P>
from within the src directoy. E.g. &quot;make sgi&quot; or &quot;make
t3e&quot;. This should create an executable named lmp_sgi or lmp_t3e.</P>
<P>
In the src directory, there is one top-level Makefile and several
low-level machine-specific files named Makefile.xxx where xxx = the
machine name. If a low-level Makefile exists for your platform, you do
not need to edit the top-level Makefile. However you should check the
system-specific section of the low-level Makefile to make sure the
various paths are correct for your environment. If a low-level Makefile
does not exist for your platform, you will need to add a suitable
target to the top-level Makefile. You will also need to create a new
low-level Makefile using one of the existing ones as a template. If you
wish to make LAMMPS for a single-processor workstation that doesn't
have an installed MPI library, you can specify the serial target which
uses a directory of MPI stubs to link against - e.g. &quot;make
serial&quot;. You will need to make the stub library (see STUBS
directory) on your workstation before doing this.</P>
<P>
Note that the two-level Makefile system allows you to make LAMMPS for
multiple platforms. Each target creates its own object directory for
separate storage of its *.o files.</P>
<P>
There are a couple compiler switches of interest which can be specified
in the low-level Makefiles. If you use a F77FLAGS switch of -DSYNC then
synchronization calls will be made before the timing routines in
integrate.f. This may slow down the code slightly, but will make the
reported timings at the end of a run more accurate. The CCFLAGS setting
in the low-level Makefiles requires a FFT setting, for example
-DFFT_SGI or -DFFT_T3E. This is for inclusion of the appropriate
machine-specific native 1-d FFT libraries on various platforms.
Currently, the supported machines and switches (used in fft_3d.c) are
FFT_SGI, FFT_DEC, FFT_INTEL, FFT_T3E, and FFT_FFTW. The latter is a
publicly available portable FFT library, <A HREF="http://www.fftw.org">FFTW</A>,
which you can install on any machine. If none of these options is
suitable for your machine, please contact me, and we'll discuss how to
add the capability to call your machine's native FFT library.</P>
<HR>
<H3>
<A NAME="_cch3_930327155">Running LAMMPS</A></H3>
<P>
LAMMPS is run by redirecting a file of input commands into it.</P>
<P>
lmp_sgi &lt; in.lj</P>
<P>
lmp_t3e &lt; in.lj</P>
<P>
The input file contains commands that specify the parameters for the
simulation as well as read other necessary files such as a data file
that describes the initial atom positions, molecular topology, and
force-field parameters. The <A HREF="input_commands.html">input_commands</A>
page describes all the possible commands that can be used. The <A
HREF="data_format.html">data_format</A> page describes the format of
the data file. </P>
<P>
LAMMPS can be run on any number of processors, including a single
processor. In principle you should get identical answers on any number
of processors and on any machine. In practice, numerical round-off can
cause slight differences and eventual divergence of dynamical
trajectories. </P>
<P>
When LAMMPS runs, if you get an error message to the screen about
&quot;boosting&quot; something, it means one (or more) data arrays are
not allocated large enough. Some of these errors are detected at setup,
others like neighbor list overflow may not occur until the middle of a
run. When the latter happens the program will either gracefully stop
(if all processors incurred the same error) or hang (with an error
message). Unfortunately in the current version of LAMMPS which uses
static memory allocation, changing the array size(s) requires you to
edit the appropriate line(s) in the param.h file and recompile the code.</P>
<P>
I've tried to be careful about detecting memory-overflow errors in
LAMMPS. If the code ever crashes or hangs without spitting out an error
message first, it's probably a bug, so let me know about it. Of course
this applies to problems due to algorithmic or parallelism issues, not
to physics mistkaes, like specifying too big a timestep or putting 2
atoms on top of each other! One exception is that different MPI
implementations handle buffering of messages differently. If the code
hangs without an error message, it may be that you need to specify an
MPI setting or two (usually via an environment variable) to enable
buffering or boost the sizes of messages that can be buffered. </P>
<HR>
<H3>
<A NAME="_cch3_930759879">Examples</A></H3>
<P>
There are several sample problems in the examples directory. All of
them use an input file (in.*) of commands and a data file (data.*) of
initial atomic coordinates and produce one or more output files. The
*.xxx.P files are outputs on P processors on a particular machine which
you can compare your answers to.</P>
<P>
(1) lj</P>
<P>
Simple atomic simulations of Lennard-Jones atoms of 1 or 3 species with
various ensembles -- NVE, NVT, NPT.</P>
<P>
(2) charge</P>
<P>
A few timestep simulation of a box of charged atoms for testing the
Coulombic options -- cutoff, Ewald, particle-mesh Ewald (PPPM).</P>
<P>
(3) class2</P>
<P>
A simple test run of phenyalanine using DISCOVER cff95 class II force
fields.</P>
<P>
(4) min</P>
<P>
An energy minimization of a transcription protein.</P>
<P>
(5) lc</P>
<P>
Small (250 atom) and large (6750 atom) simulations of liquid crystal
molecules with various Coulombic options and periodicity settings. The
large-system date file was created by using the &quot;replicate&quot;
tool on the small-system data file.</P>
<P>
(6) flow</P>
<P>
2-d flow of Lennard-Jones atoms in a channel using various contraint
options.</P>
<P>
(7) polymer</P>
<P>
Simulations of bead-spring polymer models with one chain type and two
chain types (different size monomers). The two-chain system also has
freely diffusing monomers. This illustrates use of the setup_chain
program in the tools directory and also how to use soft potentials to
untangle the initial configurations.</P>
<HR>
<H3>
<A NAME="_cch3_931282515">Other Tools</A></H3>
<P>
The msi2lmp directory has source code for a tool that converts MSI
Discover files to LAMMPS input data files. This tool requires you to
have the Discover force-field description files in order to convert
those parameters to LAMMPS parameters. See the README file in the
msi2lmp directory for additional information.</P>
<P>
The tools directory has a C file called replicate.c which is useful for
generating new LAMMPS data files from existing ones - e.g. scaling the
atom coordinates, replicating the system to make a larger one, etc. See
the comments at the top of replicate.c for instructions on how to use
it.</P>
<P>
The tools directory has a F77 program called setup_lj (compile and link
with print.c) which can be used to generate a 3-d box of Lennard Jones
atoms (one or more atom types) like those used in examples/lj.</P>
<P>
The tools directory also has a F77 program called setup_chain.f
(compile and link with print.c) which can be used to generate random
initial polymer configurations for bead-spring models like those used
in examples/polymer. It uses an input polymer definition file (see
examples/polymer for two sample def files) that specfies how many
chains of what length, a random number seed, etc.</P>
</BODY>
</HTML>

View File

@ -1,629 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
Crib File</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation.</P>
<P>
This file contains one-line descriptions of the key variables and
parameters used in LAMMPS. The variables are listed by their data type:</P>
<UL>
<LI>
<A HREF="#_cch3_930764945">Parameters</A>
<LI>
<A HREF="#_cch3_930764951">Arrays (real</A>)
<LI>
<A HREF="#_cch3_930764957">Arrays (integer)</A>
<LI>
<A HREF="#_cch3_930764964">Variables (real)</A>
<LI>
<A HREF="#_cch3_930764969">Variables (integer)</A>
<LI>
<A HREF="#_cch3_930764974">Variables (character)</A>
</UL>
<P>
Note: this file is somewhat out-of-date for LAMMPS 99.</P>
<HR>
<H3>
<A NAME="_cch3_930764945">Parameters: </A></H3>
<UL>
<LI>
maxown = max # of local owned atoms
<LI>
maxother = max # of local nearby atoms
<LI>
maxtotal = max # of total atoms in simulation
<LI>
maxtype = max # of atom types
<LI>
maxbond = max # of bonds to compute on one procesor
<LI>
maxangle = max # of angles to compute on one processor
<LI>
maxdihed = max # of dihedrals to compute on one processor
<LI>
maximpro = max # of impropers to compute on one processor
<LI>
maxbondper = max # of bonds of one atom
<LI>
maxangleper = max # of angles of one atom
<LI>
maxdihedper = max # of dihedrals of one atom
<LI>
maximproper = max # of impropers of one atom
<LI>
maxbondtype = max # of bond types
<LI>
maxangletype = max # of angle types
<LI>
maxdihedtype = max # of dihedral types
<LI>
maximprotype = max # of improper types
<LI>
maxexch = max # of atoms in exchange buffer
<LI>
maxsend = max # of atoms to send to all neighbors in all swaps
<LI>
maxsendone = max # of atoms to send in one swap
<LI>
maxswap = max # of swaps to do at each timestep
<LI>
maxneigh = max # of neighbors per owned atom
<LI>
maxsneigh = max # of special neighbors of one atom
<LI>
maxbin = max # of local neighbor bins
<LI>
maxfix = max # of defined constraints + 1
<LI>
maxdiag = max # of diagnostic routines
<LI>
maxgrid = max size of PPPM grid with ghosts on one processor
<LI>
maxfft = max size of PPPM FFT grid on one processor
<LI>
maxperatom = max # of data items stored/comm/output per atom
<LI>
maxatom = maxown + maxother = total # of own and nearby atoms
<LI>
maxexchtot = maxexch * (maxperatom + maxsneigh + 3*maxbondper +
4*maxangleper + 5*maxdihedper + 5*maximproper) = total data volume for
all exchanged atoms
<LI>
maxrestot = maxown * (maxperatom - 3 + 3*maxbondper + 4*maxangleper +
5*maxdihedper + 5*maximproper)+1 = total data volume for all buffered
restart atoms
<LI>
maxsendspec = 2 * maxsneigh * maxown total data volume for sending
special requests
<LI>
maxrecvspec = maxsneigh + 1 total data volume for receiving a list of
specials
</UL>
<HR>
<H3>
<A NAME="_cch3_930764951">Arrays (real): </A></H3>
<UL>
<LI>
anglecoeff(2,maxangletype) = angle coeffs for each angle type
<LI>
bondcoeff(5,maxbondtype) = bond coeffs for each bond type
<LI>
boundhi(maxswap) = hi slab boundary on atom positions for each swap
send
<LI>
boundlo(maxswap) = lo slab boundary on atom positions for each swap
send
<LI>
buf1(maxexchtot) = comm buffer for sending exchange atoms
<LI>
buf2(2*maxexchtot) = comm buffer for 2 recv of exchange atoms
<LI>
buf3(3*maxsendone) = comm buffer for sending one set of swap atom
positions
<LI>
buf4(8*maxown) = comm buffer for output
<LI>
buf5(maxrestot) = comm buffer for restart atoms
<LI>
buf6(maxsendone) = comm buffer for sending one set of swap charges
<LI>
cutforcesq(maxtype,maxtype) = force cutoff squared for atom pair
(LJ/Coul)
<LI>
cutljsq(maxtype,maxtype) = LJ cutoff squared for atom pairs
<LI>
cutljinner(maxtype,maxtype) = inner LJ cutoff for switched LJ
<LI>
cutljinnersq(maxtype,maxtype) = inner LJ cutoff squared for switched LJ
<LI>
cutneighsq(maxtype,maxtype) = neigh cutoff squared for atom pair
(LJ/Coul + skin)
<LI>
diagparams(6,maxdiag) = parameters to pass into a diagnostic routine
<LI>
dihedcoeff(3,maxdihedtype) = dihedral coeffs for each dihedral type
<LI>
f(3,maxown) = forces on own atoms
<LI>
fixcoeff(8,maxfix) = constraint coeffs for each constraint
<LI>
fixstore(5*maxfix) = accumulated quantities for each constraint
<LI>
improcoeff(2,maximprotype) = improper coeffs for each improper type
<LI>
lj12345(maxtype,maxtype) = pre-computed LJ coeffs for use in energy and
force
<LI>
ljsw01234(maxtype,maxtype) = pre-computed switched LJ coeffs for eng
and force
<LI>
mass(maxtype) = mass of each atom type
<LI>
noncoeff1234(maxtype,maxtype) = nonbond coeffs input for atom pairs
<LI>
offset(maxtype,maxtype) = LJ potential offsets at cutoff for energy
calc
<LI>
q(maxatom) = charge of own and nearby atoms (electron units)
<LI>
v(3,maxown) = velocity of owned atoms
<LI>
x(3,maxatom) = positions of own and nearby atoms
<LI>
xhold(3,maxown) = positions of own atoms at last reneighboring
</UL>
<HR>
<H3>
<A NAME="_cch3_930764957">Arrays (integer): </A></H3>
<UL>
<LI>
angleatom123(maxangleper,maxown) = angle atoms for angles of owned
atoms
<LI>
anglelist(4,maxangle) = atoms and type of each angle to compute locally
<LI>
angletype(maxangleper,maxown) = angle type for angles of owned atoms
<LI>
bin(maxatom) = linked list pointers from one atom to next in bin
<LI>
binpnt(maxbin) = pointer to 1st atom in each bin
<LI>
bondatom12(maxbondper,maxown) = bond atoms for bonds of owned atoms
<LI>
bondlist(3,maxbond) = atoms and type of each bond to compute locally
<LI>
bondtype(maxbondper,maxown) = bond type for bonds of owned atoms
<LI>
bondtypeflag(maxbondtype) = flag for whether bond coeffs are set
<LI>
diagfileflag(maxdiag) = whether a file has been specified for a diag
routine
<LI>
diagfreq(maxdiag) = call a diagnostic routine every this many steps
<LI>
diagnparams(maxdiag) = # of parameters specified for a diagnostic
routine
<LI>
diagstyle(maxdiag) = whether a diagnostic has been set 0/1
<LI>
dihedatom1234(maxdihedper,maxown) = dihed atoms for diheds of owned
atoms
<LI>
dihedlist(5,maxdihed) = atoms and type of each dihedral to compute
locally
<LI>
dihedtype(maxdihedper,maxown) = dihed type for diheds of owned atoms
<LI>
fix(maxown) = constraint assignments for each owned atom
<LI>
fixflag(3,maxfix) = 0/1 flags for various fix styles
<LI>
fixptr(maxfix) = how many values are accumulated for each constraint
<LI>
fixstyle(maxfix) = style of each constraint
<LI>
ibuf1(maxsendone) = comm buffer for sending one set of swap atom tags
<LI>
ibuf2(maxsendone) = comm buffer for sending one set of swap atom types
<LI>
ibuf3(maxspec) = comm buffer for sending special requests
<LI>
ibuf4(maxspec) = comm buffer for receiving special lists
<LI>
improatom1234(maximproper,maxown) = impro atoms for impros of owned
atoms
<LI>
improlist(5,maximpro) = atoms and type of each improper to compute
locally
<LI>
improtype(maximproper,maxown) = impro type for impros of owned atoms
<LI>
list(maxown) = linked list of local atoms (last one -&gt; maxown+1)
<LI>
localptr(0:maxtotal) = ptr from global atom to local array (0 if don't
have)
<LI>
molecule(maxown) = molecule id # each owned atom is in
<LI>
nlist(maxown*maxneigh+maxneigh) = neighbor lists of own atoms
<LI>
nliststart(maxown) = pointer to where neighbor list for this atom
starts
<LI>
nliststop(maxown) = pointer to where neighbor list for this atom stops
<LI>
nontypeflag(maxtype,maxtype) = flag for whether nonbond coeffs are set
<LI>
nrlist(maxswap+1) = prt to where received other atoms start for each
swap
<LI>
nslist(maxswap+1) = pointer to where swap list starts for each swap
<LI>
numangle(maxown) = # of angles of each owned atom
<LI>
numbond(maxown) = # of 1st neighbors bonded to each owned atom
<LI>
num2bond(maxown) = # of 2nd neighbors for each owned atom
<LI>
num3bond(maxown) = # of 3rd neighbors for each owned atom
<LI>
numdihed(maxown) = # of dihedrals of each owned atom
<LI>
numimpro(maxown) = # of impropers of each owned atom
<LI>
rpart(maxswap) = node # of who to recv from for each swap
<LI>
slist(maxsend) = send list of atoms to send out in all swaps
<LI>
spart(maxswap) = node # of who to send to for each swap
<LI>
specbond(maxsneigh,maxown) = special bond neighbors of each owned atom
<LI>
tag(maxatom) = global id # of own and nearby atoms
<LI>
true(maxown) = which periodic box atom is truly in for all 3 dims
<LI>
type(maxatom) = type # of own and nearby atoms
<LI>
typecheck(maxtype) = consistency check for all existing atom types
<LI>
typechecktmp(maxtype) = summing array for atom type consistency check
<LI>
velflag(maxown) = whether velocity for each atom has been created
</UL>
<HR>
<H3>
<A NAME="_cch3_930764964">Variables (real): </A></H3>
<UL>
<LI>
binsize[xyz] = size of global neighbor bins in each dimension
<LI>
boltz = Boltzmann factor
<LI>
border(2,3) = lo/hi boundaries of my sub-box in each dimension
<LI>
coulpre = Coulombic force prefactor
<LI>
createregion(6) = bounding box for atoms to create temperature for
<LI>
createvec(3) = initial velocity for create temp atoms
<LI>
cutcoul = input force cutoff for Coulombic interactions
<LI>
cutcoulsq = Coul cutoff squared for all atom pairs
<LI>
cutforce = max force cutoff for all atom pairs (LJ/Coul)
<LI>
cutlj = input global (default) LJ cutoff for all atom pairs
<LI>
cutljinterior = global inner LJ cutoff for switched LJ
<LI>
cutneigh = max neighbor cutoff for all atom pairs (LJ/Coul + skin)
<LI>
dielectric = dielectric constant
<LI>
dt = timestep
<LI>
dtfactor = timestep conversion factor from input to program units
<LI>
dthalf = timestep / 2
<LI>
efactor = energy conversion factor from Coulombic to Kcals
<LI>
e_angle = energy in angles
<LI>
e_bond = energy in bonds
<LI>
e_coul = energy in nonbond Coulombic
<LI>
e_dihedral = energy in dihedrals
<LI>
e_improper = energy in impropers
<LI>
e_total = total energy
<LI>
e_vdwl = energy in nonbond LJ
<LI>
fixregion(6) = bounding box for atoms to assign to a constraint
<LI>
skin = distance between force and neighbor cutoffs
<LI>
special(3) = weight factors for special neighbors
<LI>
triggersq = squared distance to trigger neighbor list rebuild
<LI>
two16 = 2 ^ (1/6) constant for use in FENE bond potentials
<LI>
t_create = requested initialization temp
<LI>
t_current = current temp returned from temp routine
<LI>
t_nph = default temp for constant NPH
<LI>
t_start = target temp at beginning of run
<LI>
t_stop = target temp at end of run
<LI>
t_window = control temp within this window
<LI>
time_angle = angle time
<LI>
time_bond = bond time
<LI>
time_comm = communication time
<LI>
time_current = current time
<LI>
time_dihedral = dihedral time
<LI>
time_exch = exchange time
<LI>
time_improper = improper time
<LI>
time_io = i/o time
<LI>
time_loop = time for integration loop
<LI>
time_neigh1 = neighboring time in nonbond
<LI>
time_neigh2 = neighboring time in bonds
<LI>
time_nonbond = nonbond force time
<LI>
time_other = other miscellaneous time
<LI>
time_total = total run time of entire simulation
<LI>
x[yz]mc = box size minus force cutoff for PBC checks
<LI>
x[yz]ms box size minus neighbor list cutoff for PBC checks
<LI>
x[yz]boundlo = lower global box boundary in each dimension
<LI>
x[yz]boundhi = upper global box boundary in each dimension
<LI>
x[yz]prd = global box size in each dimension
</UL>
<HR>
<H3>
<A NAME="_cch3_930764969">Variables (integer): </A></H3>
<UL>
<LI>
atompnt = pointer to 1st atom in my list
<LI>
bondstyle = style of bond computation
<LI>
boxflag = flag if box has been remapped (non-PBC)
<LI>
coulstyle = style of Coulomb interaction
<LI>
creategroup = kind of atom group to create temp for
<LI>
createstyle = style of temp creation
<LI>
createtypehi = upper range of atom types to create temp for
<LI>
createtypelo = lower range of atom types to create temp for
<LI>
dumpfileflag = has dump file been opened or not (1/0)
<LI>
dumpflag = dump atoms to file every this many steps (0 = never)
<LI>
dumpforcefileflag = has dump force file been opened or not (1/0)
<LI>
dumpforceflag = dump forces to file every this many steps (0 = never)
<LI>
dumpvelfileflag = has dump velocity file been opened or not (1/0)
<LI>
dumpvelflag = dump vels to file every this many steps (0 = never)
<LI>
fixatom = assign atom/molecule with this tag to a constraint
<LI>
fixgroup = kind of atom group to assign to a constraint
<LI>
fixnum = total # of accumulated values for all constraints
<LI>
fixtype = assign group of atoms of this type to a constraint
<LI>
fixwhich = which constraint a atom group is to be assigned to
<LI>
freepnt = pointer to 1st free space in list (last one -&gt; 0)
<LI>
idimension = dimension of problem (2-d or 3-d)
<LI>
iseed = RNG seed for generating initial velocities
<LI>
itime = current timestep loop counter in integrator
<LI>
iversion = version number of restart files (for backward compat)
<LI>
max_angle = most angles I ever have to compute
<LI>
max_angleper = most angles ever attached to any atom
<LI>
max_bond = most bonds I ever have to compute
<LI>
max_bondper = most bonds ever attached to any atom
<LI>
max_dihed = most diheds I ever have to compute
<LI>
max_dihedper = most diheds ever attached to any atom
<LI>
max_exch = most atoms ever leaving my box (in one dimension)
<LI>
max_impro = most impros I ever have to compute
<LI>
max_improper = most impros ever attached to any atom
<LI>
max_nlocal = most atoms I ever owned
<LI>
max_neigh = most neighbors ever stored in neighbor list
<LI>
max_nother = most nearby atoms I ever stored
<LI>
max_slist = biggest size swap list ever reached
<LI>
max_swap = most atoms ever sent in one swap
<LI>
mbin[xyz] = # of bins in my box with nearby atoms included
<LI>
mbin[xyz]lo = global bin indices (offset) at corner of extended box
<LI>
me(3) = which box I am (0 - pgrid-1) in each dimension
<LI>
mixflag = whether mixing style has been set or not
<LI>
mixstyle = style of mixing for nonbond coeffs (arith,geom,sixth)
<LI>
mpart(2,3)= node # of neighbor processor in each dimension
<LI>
nanglelocal = local # of angless to compute
<LI>
nangles = total # of angles
<LI>
nangletypes = total # of angle types
<LI>
natoms = total # of atoms
<LI>
nbin[xyz] # of global neighbor bins in each dimension
<LI>
nbondlocal = local # of bonds to compute
<LI>
nbonds = total # of bonds
<LI>
nbondtypes = total # of bond types
<LI>
ndanger = # of neighbor rebuilds triggered by 1st check
<LI>
ndiags = # of user-specified diagnostic routines
<LI>
ndihedlocal = local # of dihedrals to compute
<LI>
ndihedrals = total # of diheds
<LI>
ndihedtypes = total # of dihedral types
<LI>
need(3) how many processors I need neighbors from in each dim
<LI>
neighago = how many timesteps ago neighboring was done
<LI>
neighdelay = delay neighbor list build for this many steps
<LI>
neighfreq = build neighbor list every this many steps
<LI>
neighstyle = neighboring by (0) N^2 or (1) binning method
<LI>
neightop = last used position in neighbor list (nlist)
<LI>
neightrigger = always (0) do neighbor list or trigger (1) on atom move
<LI>
newton = flag for kind of Newton's 3rd law used (0,1,2,3)
<LI>
newton_bond = Newton's 3rd is not used (0) or (1) used for bonds
<LI>
newton_nonbond = Newton's 3rd is not used (0) or (1) used for nonbonds
<LI>
nfixes = # of constraints
<LI>
nimprolocal = local # of impropers to compute
<LI>
nimpropers = total # of impros
<LI>
nimprotypes = total # of improper types
<LI>
nlocal = # of atoms I currently own
<LI>
nother = # of nearby atoms I currently store
<LI>
node = my node #
<LI>
nonstyle = style on nonbond computation
<LI>
nprocs = total # of processors
<LI>
nsteps = # of timesteps to simulate
<LI>
nswap = # of swaps at each timestep
<LI>
ntimestep = current global timestep
<LI>
ntypes = total # of atom types
<LI>
numneigh = number of times reneighboring is done
<LI>
offsetflag = whether to include energy offset in LJ energy calc
<LI>
peratom = # of values/atom not including bond info
<LI>
perflagx[yz] = flag for periodic (0) or non-periodic (1) BC
<LI>
pgrid(3) = # of processors in each dimension
<LI>
readflag = whether atom input file has been read or not (1/0)
<LI>
restartfileflag = which restart file to open next (0/1)
<LI>
restartflag = write restart file every this many steps (0=never)
<LI>
t_every = rescale/replace temp every this many steps
<LI>
tempflag = constant temperature style flag
<LI>
thermoflag = print thermo info every this many steps (0 = never)
<LI>
thermostyle = style of thermo output (0 = full, 1 = reduced)
<LI>
trueflag = whether to dump remapped or true atom positions
<LI>
units = flag for real vs reduced LJ units
</UL>
<HR>
<H3>
<A NAME="_cch3_930764974">Variables (character): </A></H3>
<UL>
<LI>
datafile = file to read atom and connectivity info from
<LI>
diagfile(maxdiag) = files to print user-specified diagnostics to
<LI>
diagname(maxdiag) = name of a user-specified diagnostic routine
<LI>
dumpfile = file to dump atom info to
<LI>
dumpforcefile = file to dump force info to
<LI>
dumpvelfile = file to dump velocity info to
<LI>
restart_in = file to read restart info from
<LI>
restart_out[12] = files to write restart info to
</UL>
<P>
</P>
</BODY>
</HTML>

View File

@ -1,239 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS Data Format</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation</P>
<P>
This file describes the format of the data file read into LAMMPS with
the &quot;read data&quot; command. The data file contains basic
information about the size of the problem to be run, the initial atomic
coordinates, molecular topology, and (optionally) force-field
coefficients. It will be easiest to understand this file if you read it
while looking at a sample data file from the examples.</P>
<P>
This page has 2 sections:</P>
<UL>
<LI>
<A HREF="#_cch3_930958962">Rules for formatting the Data File</A>
<LI>
<A HREF="#_cch3_930958969">Sample file with Annotations</A>
</UL>
<HR>
<H3>
<A NAME="_cch3_930958962">Rules for formatting the Data File: </A></H3>
<P>
Blank lines are important. After the header section, new entries are
separated by blank lines. </P>
<P>
Indentation and space between words/numbers on one line is not
important except that entry keywords (e.g. Masses, Bond Coeffs) must be
left-justified and capitalized as shown. </P>
<P>
The header section (thru box bounds) must appear first in the file, the
remaining entries (Masses, various Coeffs, Atoms, Bonds, etc) can come
in any order. </P>
<P>
These entries must be in the file: header section, Masses, Atoms. </P>
<P>
These entries must be in the file if there are a non-zero number of
them: Bonds, Angles, Dihedrals, Impropers, Bond Coeffs, Angle Coeffs,
Dihedral Coeffs, Improper Coeffs. Cross-term coefficients for a
particular kind of interaction (e.g. BondAngle Coeffs for bonds) must
appear if class II force fields have been turned on in the input
command file via a &quot;style&quot; command. </P>
<P>
The Nonbond Coeffs entry contains one line for each atom type. These
are the coefficients for an interaction between 2 atoms of the same
type. The cross-type coeffs are computed by the appropriate class I or
class II mixing rules, or can be specified explicitly using the
&quot;nonbond coeff&quot; command in the input command script. See the <A
HREF="force_fields.html">force_fields</A> page for more information. </P>
<P>
The Nonbond Coeffs and Bond Coeffs entries are optional since they can
be specified from the input command script. This is not true if bond
style is set to class II since those coeffs can only be specified in
this data file. </P>
<P>
In the Atoms entry, the atoms can be in any order so long as there are
N entries. The 1st number on the line is the atom-tag (number from 1 to
N) which is used to identify the atom throughout the simulation. The
molecule-tag is a second identifier which is attached to the atom; it
can be 0, or a counter for the molecule the atom is part of, or any
other number you wish. The q value is the charge of the atom in
electron units (e.g. +1 for a proton). The xyz values are the initial
position of the atom. For 2-d simulations specify z as 0.0.</P>
<P>
The final 3 nx,ny,nz values on a line of the Atoms entry are optional.
LAMMPS only reads them if the &quot;true flag&quot; command is
specified in the input command script. Otherwise they are initialized
to 0 by LAMMPS. Their meaning, for each dimension, is that
&quot;n&quot; box-lengths are added to xyz to get the atom's
&quot;true&quot; un-remapped position. This can be useful in pre- or
post-processing to enable the unwrapping of long-chained molecules
which wrap thru the periodic box one or more times. The value of
&quot;n&quot; can be positive, negative, or zero. For 2-d simulations
specify nz as 0. </P>
<P>
For simulations with periodic boundary conditions, xyz are remapped
into the periodic box (from as far away as needed), so the initial
coordinates need not be inside the box. The nx,ny,nz values (as read in
or as set to zero by LAMMPS) are appropriately adjusted by this
remapping. </P>
<P>
The number of coefficients specified on each line of coefficient
entries (Nonbond Coeffs, Bond Coeffs, etc) depends on the
&quot;style&quot; of interaction. This is specified in the input
command script, unless the default is used. See the <A
HREF="input_commands.html">input_commands</A> page for a description
of the various style options. The <A HREF="input_commands.html">input_commands</A>
and <A HREF="force_fields.html">force_fields</A> pages explain the
meaning and valid ranges for each of the coefficients. </P>
<HR>
<H3>
<A NAME="_cch3_930958969">Sample file with Annotations</A></H3>
<P>
Here is a sample file with annotations in parenthesis and lengthy
sections replaced by dots (...). Note that the blank lines are
important in this example.</P>
<PRE>
LAMMPS Description (1st line of file)
100 atoms (this must be the 3rd line, 1st 2 lines are ignored)
95 bonds (# of bonds to be simulated)
50 angles (include these lines even if number = 0)
30 dihedrals
20 impropers
5 atom types (# of nonbond atom types)
10 bond types (# of bond types = sets of bond coefficients)
18 angle types
20 dihedral types (do not include a bond,angle,dihedral,improper type
2 improper types line if number of bonds,angles,etc is 0)
-0.5 0.5 xlo xhi (for periodic systems this is box size,
-0.5 0.5 ylo yhi for non-periodic it is min/max extent of atoms)
-0.5 0.5 zlo zhi (do not include this line for 2-d simulations)
Masses
1 mass
...
N mass (N = # of atom types)
Nonbond Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of atom types)
Bond Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of bond types)
Angle Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of angle types)
Dihedral Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
Improper Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of improper types)
BondBond Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of angle types)
BondAngle Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of angle types)
MiddleBondTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
EndBondTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
AngleTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
AngleAngleTorsion Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
BondBond13 Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of dihedral types)
AngleAngle Coeffs
1 coeff1 coeff2 ...
...
N coeff1 coeff2 ... (N = # of improper types)
Atoms
1 molecule-tag atom-type q x y z nx ny nz (nx,ny,nz are optional -
... see &quot;true flag&quot; input command)
...
N molecule-tag atom-type q x y z nx ny nz (N = # of atoms)
Bonds
1 bond-type atom-1 atom-2
...
N bond-type atom-1 atom-2 (N = # of bonds)
Angles
1 angle-type atom-1 atom-2 atom-3 (atom-2 is the center atom in angle)
...
N angle-type atom-1 atom-2 atom-3 (N = # of angles)
Dihedrals
1 dihedral-type atom-1 atom-2 atom-3 atom-4 (atoms 2-3 form central bond)
...
N dihedral-type atom-1 atom-2 atom-3 atom-4 (N = # of dihedrals)
Impropers
1 improper-type atom-1 atom-2 atom-3 atom-4 (atom-1 is central atom)
...
N improper-type atom-1 atom-2 atom-3 atom-4 (N = # of impropers)
</PRE>
</BODY>
</HTML>

View File

@ -1,550 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS Force Fields</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation</P>
<P>
This file outlines the force-field formulas used in LAMMPS. Read this
file in conjunction with the <A HREF="data_format.html">data_format</A>
and <A HREF="units.html">units</A> file.</P>
<P>
The sections of this page are as follows:</P>
<UL>
<LI>
<A HREF="#_cch3_930957465">Nonbond Coulomb</A>
<LI>
<A HREF="#_cch3_930957471">Nonbond Lennard-Jones</A>
<LI>
<A HREF="#_cch3_930957478">Mixing Rules for Lennard-Jones</A>
<LI>
<A HREF="#_cch3_930957482">Bonds</A>
<LI>
<A HREF="#_cch3_930957488">Angles</A>
<LI>
<A HREF="#_cch3_930957509">Dihedrals</A>
<LI>
<A HREF="#_cch3_930957513">Impropers</A>
<LI>
<A HREF="#_cch3_930957527">Class II Force Field</A>
</UL>
<HR>
<H3>
<A NAME="_cch3_930957465">Nonbond Coulomb</A></H3>
<P>
Whatever Coulomb style is specified in the input command file, the
short-range Coulombic interactions are computed by this formula,
modified by an appropriate smoother for the smooth, Ewald, and PPPM
styles.</P>
<PRE>
E = C q1 q2 / (epsilon * r)
r = distance (computed by LAMMPS)
C = hardwired constant to convert to energy units
q1,q2 = charge of each atom in electron units (proton = +1),
specified in &quot;Atoms&quot; entry in data file
epsilon = dielectric constant (vacuum = 1.0),
set by user in input command file
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957471">Nonbond Lennard-Jones </A></H3>
<P>
The style of nonbond potential is specified in the input command file. </P>
<H4>
(1) lj/cutoff </H4>
<PRE>
E = 4 epsilon [ (sigma/r)^12 - (sigma/r)^6 ]
standard Lennard Jones potential
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
2 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<H4>
(2) lj/switch </H4>
<PRE>
E = 4 epsilon [ (sigma/r)^12 - (sigma/r)^6 ] for r &lt; r_inner
= spline fit for r_inner &lt; r &lt; cutoff
= 0 for r &gt; cutoff
switching function (spline fit) is applied to standard LJ
within a switching region (from r_inner to cutoff) so that
energy and force go smoothly to zero
spline coefficients are computed by LAMMPS
so that at inner cutoff (r_inner) the potential, force,
and 1st-derivative of force are all continuous,
and at outer cutoff (cutoff) the potential and force
both go to zero
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
2 coeffs are listed in data file or set in input script
2 cutoffs (r_inner and cutoff) are set in input script
</PRE>
<H4>
(3) lj/shift </H4>
<PRE>
E = 4 epsilon [ (sigma/(r - delta))^12 - (sigma/(r - delta))^6 ]
same as lj/cutoff except that r is shifted by delta
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
coeff3 = delta (distance)
3 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<H4>
(4) soft </H4>
<PRE>
E = A * [ 1 + cos( pi * r / cutoff ) ]
useful for pushing apart overlapping atoms by ramping A over time
r = distance (computed by LAMMPS)
coeff1 = prefactor A at start of run (energy)
coeff2 = prefactor A at end of run (energy)
2 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<H4>
(5) class2/cutoff </H4>
<PRE>
E = epsilon [ 2 (sigma/r)^9 - 3 (sigma/r)^6 ]
used with class2 bonded force field
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = sigma (distance)
2 coeffs are listed in data file or set in input script
1 cutoff is set in input script
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957478">Mixing Rules for Lennard-Jones</A></H3>
<P>
The coefficients for each nonbond style are input in either the data
file by the &quot;read data&quot; command or in the input script using
the &quot;nonbond coeff&quot; command. In the former case, only one set
of coefficients is input for each atom type. The cross-type coeffs are
computed using one of three possible mixing rules: </P>
<PRE>
geometric: epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = sqrt(sigma_i * sigma_j)
arithmetic: epsilon_ij = sqrt(epsilon_i * epsilon_j)
sigma_ij = (sigma_i + sigma_j) / 2
sixthpower: epsilon_ij =
(2 * sqrt(epsilon_i*epsilon_j) * sigma_i^3 * sigma_j^3) /
(sigma_i^6 + sigma_j^6)
sigma_ij= ((sigma_i**6 + sigma_j**6) / 2) ^ (1/6)
</PRE>
<P>
The default mixing rule for nonbond styles lj/cutoff, lj/switch,
lj/shift, and soft is &quot;geometric&quot;. The default for nonbond
style class2/cutoff is &quot;sixthpower&quot;. </P>
<P>
The default can be overridden using the &quot;mixing style&quot;
command. The one exception to this is for the nonbond style soft, for
which only an epsilon prefactor is input. This is always mixed
geometrically. </P>
<P>
Also, for nonbond style lj/shift, the delta coefficient is always mixed
using the rule </P>
<UL>
<LI>
delta_ij = (delta_i + delta_j) / 2
</UL>
<HR>
<H3>
<A NAME="_cch3_930957482">Bonds</A></H3>
<P>
The style of bond potential is specified in the input command file.</P>
<H4>
(1) harmonic </H4>
<PRE>
E = K (r - r0)^2
standard harmonic spring
r = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2) (the usual 1/2 is included in the K)
coeff2 = r0 (distance)
2 coeffs are listed in data file or set in input script
</PRE>
<H4>
(2) FENE/standard </H4>
<PRE>
E = -0.5 K R0^2 * ln[1 - (r/R0)^2] +
4 epsilon [(sigma/r)^12 - (sigma/r)^6] + epsilon
finite extensible nonlinear elastic (FENE) potential for
polymer bead-spring models
see Kremer, Grest, J Chem Phys, 92, p 5057 (1990)
r = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2)
coeff2 = R0 (distance)
coeff3 = epsilon (energy)
coeff4 = sigma (distance)
1st term is attraction, 2nd term is repulsion (shifted LJ)
1st term extends to R0
2nd term only extends to the minimum of the LJ potential,
a cutoff distance computed by LAMMPS (2^(1/6) * sigma)
4 coeffs are listed in data file or set in input script
</PRE>
<H4>
(3) FENE/shift </H4>
<PRE>
E = -0.5 K R0^2 * ln[1 - ((r - delta)/R0)^2] +
4 epsilon [(sigma/(r - delta))^12 - (sigma/(r - delta))^6] + epsilon
same as FENE/standard expect that r is shifted by delta
r = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2)
coeff2 = R0 (distance)
coeff3 = epsilon (energy)
coeff4 = sigma (distance)
coeff5 = delta (distance)
1st term is attraction, 2nd term is repulsion (shifted LJ)
1st term extends to R0
2nd term only extends to the minimum of the LJ potential,
a cutoff distance computed by LAMMPS (2^(1/6) * sigma + delta)
5 coeffs are listed in data file or set in input script
</PRE>
<H4>
(4) nonlinear </H4>
<PRE>
E = epsilon (r - r0)^2 / [ lamda^2 - (r - r0)^2 ]
non-harmonic spring of equilibrium length r0
with finite extension of lamda
see Rector, Van Swol, Henderson, Molecular Physics, 82, p 1009 (1994)
r = distance (computed by LAMMPS)
coeff1 = epsilon (energy)
coeff2 = r0 (distance)
coeff3 = lamda (distance)
3 coeffs are listed in data file or set in input script
</PRE>
<H4>
(5) class2 </H4>
<PRE>
E = K2 (r - r0)^2 + K3 (r - r0)^3 + K4 (r - r0)^4
r = distance (computed by LAMMPS)
coeff1 = r0 (distance)
coeff2 = K2 (energy/distance^2)
coeff3 = K3 (energy/distance^3)
coeff4 = K4 (energy/distance^4)
4 coeffs are listed in data file - cannot be set in input script
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957488">Angles </A></H3>
<P>
The style of angle potential is specified in the input command file. </P>
<H4>
(1) harmonic </H4>
<PRE>
E = K (theta - theta0)^2
theta = radians (computed by LAMMPS)
coeff1 = K (energy/radian^2) (the usual 1/2 is included in the K)
coeff2 = theta0 (degrees) (converted to radians within LAMMPS)
2 coeffs are listed in data file
</PRE>
<H4>
(2) class2 </H4>
<PRE>
E = K2 (theta - theta0)^2 + K3 (theta - theta0)^3 +
K4 (theta - theta0)^4
theta = radians (computed by LAMMPS)
coeff1 = theta0 (degrees) (converted to radians within LAMMPS)
coeff2 = K2 (energy/radian^2)
coeff3 = K3 (energy/radian^3)
coeff4 = K4 (energy/radian^4)
4 coeffs are listed in data file
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957509">Dihedrals </A></H3>
<P>
The style of dihedral potential is specified in the input command file. </P>
<H4>
(1) harmonic </H4>
<PRE>
E = K [1 + d * cos (n * phi) ]
phi = radians (computed by LAMMPS)
coeff1 = K (energy)
coeff2 = d (always +1 or -1)
coeff3 = n (1,2,3,4,6)
Cautions when comparing to other force fields:
some force fields reverse the sign convention on d so that
E = K [1 - d * cos(n*phi)]
some force fields divide/multiply K by the number of multiple
torsions that contain the j-k bond in an i-j-k-l torsion
some force fields let n be positive or negative which
corresponds to d = 1,-1
in the LAMMPS force field, the trans position = 180 degrees, while
in some force fields trans = 0 degrees
3 coeffs are listed in data file
</PRE>
<H4>
(2) class2 </H4>
<PRE>
E = SUM(n=1,3) { K_n [ 1 - cos( n*Phi - Phi0_n ) ] }
phi = radians (computed by LAMMPS)
coeff1 = K_1 (energy)
coeff2 = Phi0_1 (degrees) (converted to radians within LAMMPS)
coeff3 = K_2 (energy)
coeff4 = Phi0_2 (degrees) (converted to radians within LAMMPS)
coeff5 = K_3 (energy)
coeff6 = Phi0_3 (degrees) (converted to radians within LAMMPS)
6 coeffs are listed in data file
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957513">Impropers</A></H3>
<P>
The style of improper potential is specified in the input command file. </P>
<H4>
(1) harmonic </H4>
<PRE>
E = K (chi - chi0)^2
chi = radians (computed by LAMMPS)
coeff1 = K (energy/radian^2) (the usual 1/2 is included in the K)
coeff2 = chi0 (degrees) (converted to radians within LAMMPS)
in data file, listing of 4 atoms requires atom-1 as central atom
some force fields (AMBER,Discover) have atom-2 as central atom - it is really
an out-of-plane torsion, may need to treat as dihedral in LAMMPS
2 coeffs are listed in data file
</PRE>
<H4>
(2) class2 </H4>
<PRE>
same formula, coeffs, and meaning as &quot;harmonic&quot; except that LAMMPS
averages all 3 angle-contributions to chi
in class II this is called a Wilson out-of-plane interaction
2 coeffs are listed in data file
</PRE>
<HR>
<H3>
<A NAME="_cch3_930957527">Class II Force Field</A></H3>
<P>
If class II force fields are selected in the input command file,
additional cross terms are computed as part of the force field.</P>
<H4>
Bond-Bond (computed within class II angles) </H4>
<PRE>
E = K (r - r0) * (r' - r0')
r,r' = distance (computed by LAMMPS)
coeff1 = K (energy/distance^2)
coeff2 = r0 (distance)
coeff3 = r0' (distance)
3 coeffs are input in data file
</PRE>
<H4>
Bond-Angle (computed within class II angles for each of 2 bonds) </H4>
<PRE>
E = K_n (r - r0_n) * (theta - theta0)
r = distance (computed by LAMMPS)
theta = radians (computed by LAMMPS)
coeff1 = K_1 (energy/distance-radians)
coeff2 = K_2 (energy/distance-radians)
coeff3 = r0_1 (distance)
coeff4 = r0_2 (distance)
Note: theta0 is known from angle coeffs so don't need it specified here
4 coeffs are listed in data file
</PRE>
<H4>
Middle-Bond-Torsion (computed within class II dihedral) </H4>
<PRE>
E = (r - r0) * [ F1*cos(phi) + F2*cos(2*phi) + F3*cos(3*phi) ]
r = distance (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = F1 (energy/distance)
coeff2 = F2 (energy/distance)
coeff3 = F3 (energy/distance)
coeff4 = r0 (distance)
4 coeffs are listed in data file
</PRE>
<H4>
End-Bond-Torsion (computed within class II dihedral for each of 2
bonds) </H4>
<PRE>
E = (r - r0_n) * [ F1_n*cos(phi) + F2_n*cos(2*phi) + F3_n*cos(3*phi) ]
r = distance (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = F1_1 (energy/distance)
coeff2 = F2_1 (energy/distance)
coeff3 = F3_1 (energy/distance)
coeff4 = F1_2 (energy/distance)
coeff5 = F2_3 (energy/distance)
coeff6 = F3_3 (energy/distance)
coeff7 = r0_1 (distance)
coeff8 = r0_2 (distance)
8 coeffs are listed in data file
</PRE>
<H4>
Angle-Torsion (computed within class II dihedral for each of 2 angles) </H4>
<PRE>
E = (theta - theta0) * [ F1_n*cos(phi) + F2_n*cos(2*phi) + F3_n*cos(3*phi) ]
theta = radians (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = F1_1 (energy/radians)
coeff2 = F2_1 (energy/radians)
coeff3 = F3_1 (energy/radians)
coeff4 = F1_2 (energy/radians)
coeff5 = F2_3 (energy/radians)
coeff6 = F3_3 (energy/radians)
coeff7 = theta0_1 (degrees) (converted to radians within LAMMPS)
coeff8 = theta0_2 (degrees) (converted to radians within LAMMPS)
8 coeffs are listed in data file
</PRE>
<H4>
Angle-Angle-Torsion (computed within class II dihedral) </H4>
<PRE>
E = K (theta - theta0) * (theta' - theta0') * (phi - phi0)
theta,theta' = radians (computed by LAMMPS)
phi = radians (computed by LAMMPS)
coeff1 = K (energy/radians^3)
coeff2 = theta0 (degrees) (converted to radians within LAMMPS)
coeff3 = theta0' (degrees) (converted to radians within LAMMPS)
Note: phi0 is known from dihedral coeffs so don't need it specified here
3 coeffs are listed in data file
</PRE>
<H4>
Bond-Bond-13-Torsion (computed within class II dihedral) </H4>
<PRE>
(undocumented)
</PRE>
<H4>
Angle-Angle (computed within class II improper for each of 3 pairs of
angles) </H4>
<PRE>
E = K_n (theta - theta0_n) * (theta' - theta0_n')
theta,theta' = radians (computed by LAMMPS)
coeff1 = K_1 (energy/radians^2)
coeff2 = K_2 (energy/radians^2)
coeff3 = K_3 (energy/radians^2)
coeff4 = theta0_1 (degrees) (converted to radians within LAMMPS)
coeff5 = theta0_2 (degrees) (converted to radians within LAMMPS)
coeff6 = theta0_3 (degrees) (converted to radians within LAMMPS)
6 coeffs are listed in data file
</PRE>
</BODY>
</HTML>

View File

@ -1,127 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
History of LAMMPS</H2>
<P>
<A HREF="README.html">Return</A> to top-level of LAMMPS documentation.</P>
<P>
This is a brief history of features added to each version of LAMMPS.</P>
<HR>
<H3>
LAMMPS 99 - June 99 </H3>
<UL>
<LI>
all-MPI version of code (F77 + C + MPI) for maximum portablility
<LI>
only one PPPM choice now, the better of the two earlier ones
<LI>
PPPM uses portable FFTs and data remapping routines, written in C w/
MPI, can now use non-power-of-2 processors and grid sizes
<LI>
auto-mapping of simulation box to processors
<LI>
removed a few unused/unneeded commands (bdump, log file, id string,
limit)
<LI>
changed syntax of some commands for simplicity &amp; consistency (see <A
HREF="input_commands.html">input commands</A>)
<LI>
changed method of calling/writing user diagnostic routines to be simpler
<LI>
documentation in HTML format
</UL>
<HR>
<H3>
Version 5.0 - Oct 1997 </H3>
<UL>
<LI>
final version of class II force fields
<LI>
new formulation of NVE, NVT, NPT and rRESPA integrators
<LI>
new version of msi2lmp pre-processing tool, does not require DISCOVER
to run, only DISCOVER force field files
<LI>
energy minimizer, Hessian-free truncated Newton method
<LI>
new pressure controllers and constraints
<LI>
replicate tool for generating new data files from old ones
</UL>
<HR ALIGN="LEFT">
<H3>
Version 4.0 - March 1997 </H3>
<UL>
<LI>
1st version of class II force fields
<LI>
new, faster PPPM solver (newpppm)
<LI>
rRESPA
<LI>
new data file format
<LI>
new constraints, diagnostics
<LI>
msi2lmp pre-processing tool
</UL>
<HR>
<H3>
Version 3.0 - March 1996 </H3>
<UL>
<LI>
more general force-field formulation
<LI>
atom/group constraints
<LI>
LJ units and bond potentials
<LI>
smoothed LJ potential option
<LI>
Langevin thermostat
<LI>
Newton's 3rd law option
<LI>
hook for user-supplied diagnostic routines
</UL>
<HR>
<H3>
Version 2.0 - October 1995 </H3>
<UL>
<LI>
bug fix of velocity initialization which caused drift
<LI>
PPPM for long-range Coulombic
<LI>
constant NPT
</UL>
<HR>
<H3>
Version 1.1 - February 1995 </H3>
<UL>
<LI>
Ewald for long-range Coulombic
<LI>
full Newton's 3rd law (doubled communication)
<LI>
dumping of atom positions and velocities
<LI>
restart files
</UL>
<HR>
<H3>
Version 1.0 - January 1995 </H3>
<UL>
<LI>
short-range bonded and non-bonded forces
<LI>
partial Newton's 3rd law
<LI>
velocity-Verlet integrator
</UL>
</BODY>
</HTML>

File diff suppressed because it is too large Load Diff

View File

@ -1,119 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">
<HTML>
<HEAD>
<META NAME="Generator" CONTENT="Cosmo Create 1.0.3">
</HEAD>
<BODY>
<H2>
LAMMPS Units</H2>
<P>
<A HREF="README.html">Return</A> to top-level LAMMPS documentation.</P>
<P>
This file describes the units associated with many of the key variables
and equations used inside the LAMMPS code. Units used for input command
parameters are described in the input_commands file. The input command
&quot;units&quot; selects between conventional and Lennard-Jones units.
See the force_fields file for more information on units for the force
field parameters that are input from data files. </P>
<P>
Conventional units: </P>
<UL>
<LI>
distance = Angstroms
<LI>
time = femtoseconds
<LI>
mass = grams/mole
<LI>
temperature = degrees K
<LI>
pressure = atmospheres
<LI>
energy = Kcal/mole
<LI>
velocity = Angstroms/femtosecond
<LI>
force = grams/mole * Angstroms/femtosecond^2
<LI>
charge = +/- 1.0 is proton/electron
</UL>
<P>
LJ reduced units: </P>
<UL>
<LI>
distance = sigmas
<LI>
time = reduced LJ tau
<LI>
mass = ratio to unitless 1.0
<LI>
temperature = reduced LJ temp
<LI>
pressure = reduced LJ pressure
<LI>
energy = epsilons
<LI>
velocity = sigmas/tau
<LI>
force = reduced LJ force (sigmas/tau^2)
<LI>
charge = ratio to unitless 1.0
</UL>
<HR>
<P>
This listing of variables assumes conventional units; to convert to LJ
reduced units, simply substitute the appropriate term from the list
above. E.g. x is in sigmas in LJ units. Per-mole in any of the units
simply means for 6.023 x 10^23 atoms.</P>
<P>
</P>
<PRE>
Meaning Variable Units
positions x Angstroms
velocities v Angstroms / click (see below)
forces f Kcal / (mole - Angstrom)
masses mass gram / mole
charges q electron units (-1 for an electron)
(1 e.u. = 1.602 x 10^-19 coul)
time --- clicks (1 click = 48.88821 fmsec)
timestep dt clicks
input timestep dt_in fmsec
time convert dtfactor 48.88821 fmsec / click
temperature t_current degrees K
t_start
t_stop
input damping t_freq_in inverse fmsec
internal temp t_freq inverse clicks
damping
dielec const dielectric 1.0 (unitless)
Boltmann const boltz 0.001987191 Kcal / (mole - degree K)
virial virial[xyz] Kcal/mole = r dot F
pressure factor pfactor 68589.796 (convert internal to atmospheres)
internal p_current Kcal / (mole - Angs^3)
pressure p_start
p_stop
input press p_start_in atmospheres
p_stop_in
output press log file atmospheres
input damping p_freq_in inverse time
internal press p_freq inverse clicks
damping
pot eng e_potential Kcal/mole
kin eng e_kinetic Kcal/mole
eng convert efactor 332.0636 (Kcal - Ang) / (q^2 - mole)
(convert Coulomb eng to Kcal/mole)
LJ coeffs lja,ljb Kcal-Angs^(6,12)/mole
bond various see force_fields file
parameters 2,3,4-body
terms
</PRE>
</BODY>
</HTML>

View File

@ -1,437 +0,0 @@
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>LAMMPS Documentation &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
<link rel="top" title="LAMMPS documentation" href="index.html"/>
<link rel="next" title="1. Introduction" href="Section_intro.html"/>
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-nav-search">
<a href="#" class="icon icon-home"> LAMMPS
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul>
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a></li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="#">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="#">Docs</a> &raquo;</li>
<li>LAMMPS Documentation</li>
<li class="wy-breadcrumbs-aside">
<a href="http://lammps.sandia.gov">Website</a>
<a href="Section_commands.html#comm">Commands</a>
</li>
</ul>
<hr/>
<div class="rst-footer-buttons" style="margin-bottom: 1em" role="navigation" aria-label="footer navigation">
<a href="Section_intro.html" class="btn btn-neutral float-right" title="1. Introduction" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
</div>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<H1></H1><div class="section" id="lammps-documentation">
<h1>LAMMPS Documentation</h1>
<div class="section" id="sep-2016-version">
<h2>7 Sep 2016 version</h2>
</div>
<div class="section" id="version-info">
<h2>Version info:</h2>
<p>The LAMMPS &#8220;version&#8221; is the date when it was released, such as 1 May
2010. LAMMPS is updated continuously. Whenever we fix a bug or add a
feature, we release it immediately, and post a notice on <a class="reference external" href="http://lammps.sandia.gov/bug.html">this page of the WWW site</a>. Every 2-4 months one of the incremental releases
is subjected to more thorough testing and labeled as a <em>stable</em> version.</p>
<p>Each dated copy of LAMMPS contains all the
features and bug-fixes up to and including that version date. The
version date is printed to the screen and logfile every time you run
LAMMPS. It is also in the file src/version.h and in the LAMMPS
directory name created when you unpack a tarball, and at the top of
the first page of the manual (this page).</p>
<ul class="simple">
<li>If you browse the HTML doc pages on the LAMMPS WWW site, they always
describe the most current version of LAMMPS.</li>
<li>If you browse the HTML doc pages included in your tarball, they
describe the version you have.</li>
<li>The <a class="reference external" href="Manual.pdf">PDF file</a> on the WWW site or in the tarball is updated
about once per month. This is because it is large, and we don&#8217;t want
it to be part of every patch.</li>
<li>There is also a <a class="reference external" href="Developer.pdf">Developer.pdf</a> file in the doc
directory, which describes the internal structure and algorithms of
LAMMPS.</li>
</ul>
<p>LAMMPS stands for Large-scale Atomic/Molecular Massively Parallel
Simulator.</p>
<p>LAMMPS is a classical molecular dynamics simulation code designed to
run efficiently on parallel computers. It was developed at Sandia
National Laboratories, a US Department of Energy facility, with
funding from the DOE. It is an open-source code, distributed freely
under the terms of the GNU Public License (GPL).</p>
<p>The current core group of LAMMPS developers is at Sandia National
Labs and Temple University:</p>
<ul class="simple">
<li><a class="reference external" href="http://www.sandia.gov/~sjplimp">Steve Plimpton</a>, sjplimp at sandia.gov</li>
<li>Aidan Thompson, athomps at sandia.gov</li>
<li>Stan Moore, stamoore at sandia.gov</li>
<li><a class="reference external" href="http://goo.gl/1wk0">Axel Kohlmeyer</a>, akohlmey at gmail.com</li>
</ul>
<p>Past core developers include Paul Crozier, Ray Shan and Mark Stevens,
all at Sandia. The <strong>LAMMPS home page</strong> at
<a class="reference external" href="http://lammps.sandia.gov">http://lammps.sandia.gov</a> has more information
about the code and its uses. Interaction with external LAMMPS developers,
bug reports and feature requests are mainly coordinated through the
<a class="reference external" href="https://github.com/lammps/lammps">LAMMPS project on GitHub.</a></p>
<hr class="docutils" />
<p>The LAMMPS documentation is organized into the following sections. If
you find errors or omissions in this manual or have suggestions for
useful information to add, please send an email to the developers so
we can improve the LAMMPS documentation.</p>
<p>Once you are familiar with LAMMPS, you may want to bookmark <a class="reference internal" href="Section_commands.html#comm"><span class="std std-ref">this page</span></a> at Section_commands.html#comm since
it gives quick access to documentation for all LAMMPS commands.</p>
<p><a class="reference external" href="Manual.pdf">PDF file</a> of the entire manual, generated by
<a class="reference external" href="http://freecode.com/projects/htmldoc">htmldoc</a></p>
<div class="toctree-wrapper compound">
<ul>
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_intro.html#what-is-lammps">1.1. What is LAMMPS</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_intro.html#lammps-features">1.2. LAMMPS features</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_intro.html#lammps-non-features">1.3. LAMMPS non-features</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_intro.html#open-source-distribution">1.4. Open source distribution</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_intro.html#acknowledgments-and-citations">1.5. Acknowledgments and citations</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#what-s-in-the-lammps-distribution">2.1. What&#8217;s in the LAMMPS distribution</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#making-lammps">2.2. Making LAMMPS</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#making-lammps-with-optional-packages">2.3. Making LAMMPS with optional packages</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#building-lammps-via-the-make-py-tool">2.4. Building LAMMPS via the Make.py tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#building-lammps-as-a-library">2.5. Building LAMMPS as a library</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#running-lammps">2.6. Running LAMMPS</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#command-line-options">2.7. Command-line options</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#lammps-screen-output">2.8. LAMMPS screen output</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_start.html#tips-for-users-of-previous-lammps-versions">2.9. Tips for users of previous LAMMPS versions</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#lammps-input-script">3.1. LAMMPS input script</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#parsing-rules">3.2. Parsing rules</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#input-script-structure">3.3. Input script structure</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#commands-listed-by-category">3.4. Commands listed by category</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#individual-commands">3.5. Individual commands</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#fix-styles">3.6. Fix styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#compute-styles">3.7. Compute styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#pair-style-potentials">3.8. Pair_style potentials</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#bond-style-potentials">3.9. Bond_style potentials</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#angle-style-potentials">3.10. Angle_style potentials</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#dihedral-style-potentials">3.11. Dihedral_style potentials</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#improper-style-potentials">3.12. Improper_style potentials</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_commands.html#kspace-solvers">3.13. Kspace solvers</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_packages.html#standard-packages">4.1. Standard packages</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_packages.html#user-packages">4.2. User packages</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_accelerate.html#measuring-performance">5.1. Measuring performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_accelerate.html#general-strategies">5.2. General strategies</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_accelerate.html#packages-with-optimized-styles">5.3. Packages with optimized styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_accelerate.html#comparison-of-various-accelerator-packages">5.4. Comparison of various accelerator packages</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#restarting-a-simulation">6.1. Restarting a simulation</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#d-simulations">6.2. 2d simulations</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#charmm-amber-and-dreiding-force-fields">6.3. CHARMM, AMBER, and DREIDING force fields</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#running-multiple-simulations-from-one-input-script">6.4. Running multiple simulations from one input script</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#multi-replica-simulations">6.5. Multi-replica simulations</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#granular-models">6.6. Granular models</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#tip3p-water-model">6.7. TIP3P water model</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#tip4p-water-model">6.8. TIP4P water model</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#spc-water-model">6.9. SPC water model</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#coupling-lammps-to-other-codes">6.10. Coupling LAMMPS to other codes</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#visualizing-lammps-snapshots">6.11. Visualizing LAMMPS snapshots</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#triclinic-non-orthogonal-simulation-boxes">6.12. Triclinic (non-orthogonal) simulation boxes</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#nemd-simulations">6.13. NEMD simulations</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#finite-size-spherical-and-aspherical-particles">6.14. Finite-size spherical and aspherical particles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#output-from-lammps-thermo-dumps-computes-fixes-variables">6.15. Output from LAMMPS (thermo, dumps, computes, fixes, variables)</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#thermostatting-barostatting-and-computing-temperature">6.16. Thermostatting, barostatting, and computing temperature</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#walls">6.17. Walls</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#elastic-constants">6.18. Elastic constants</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#library-interface-to-lammps">6.19. Library interface to LAMMPS</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#calculating-thermal-conductivity">6.20. Calculating thermal conductivity</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#calculating-viscosity">6.21. Calculating viscosity</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#calculating-a-diffusion-coefficient">6.22. Calculating a diffusion coefficient</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#using-chunks-to-calculate-system-properties">6.23. Using chunks to calculate system properties</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#setting-parameters-for-the-kspace-style-pppm-disp-command">6.24. Setting parameters for the <code class="docutils literal"><span class="pre">kspace_style</span> <span class="pre">pppm/disp</span></code> command</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#polarizable-models">6.25. Polarizable models</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#adiabatic-core-shell-model">6.26. Adiabatic core/shell model</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_howto.html#drude-induced-dipoles">6.27. Drude induced dipoles</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_example.html#lowercase-directories">7.1. Lowercase directories</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_example.html#uppercase-directories">7.2. Uppercase directories</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#amber2lmp-tool">9.1. amber2lmp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#binary2txt-tool">9.2. binary2txt tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#ch2lmp-tool">9.3. ch2lmp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#chain-tool">9.4. chain tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#colvars-tools">9.5. colvars tools</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#createatoms-tool">9.6. createatoms tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#data2xmovie-tool">9.7. data2xmovie tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#eam-database-tool">9.8. eam database tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#eam-generate-tool">9.9. eam generate tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#eff-tool">9.10. eff tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#emacs-tool">9.11. emacs tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#fep-tool">9.12. fep tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#i-pi-tool">9.13. i-pi tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#ipp-tool">9.14. ipp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#kate-tool">9.15. kate tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#lmp2arc-tool">9.16. lmp2arc tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#lmp2cfg-tool">9.17. lmp2cfg tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#lmp2vmd-tool">9.18. lmp2vmd tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#matlab-tool">9.19. matlab tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#micelle2d-tool">9.20. micelle2d tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#moltemplate-tool">9.21. moltemplate tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#msi2lmp-tool">9.22. msi2lmp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#phonon-tool">9.23. phonon tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#polymer-bonding-tool">9.24. polymer bonding tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#pymol-asphere-tool">9.25. pymol_asphere tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#python-tool">9.26. python tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#reax-tool">9.27. reax tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#restart2data-tool">9.28. restart2data tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#vim-tool">9.29. vim tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#xmgrace-tool">9.30. xmgrace tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_tools.html#xmovie-tool">9.31. xmovie tool</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#atom-styles">10.1. Atom styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#bond-angle-dihedral-improper-potentials">10.2. Bond, angle, dihedral, improper potentials</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#compute-styles">10.3. Compute styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#dump-styles">10.4. Dump styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#dump-custom-output-options">10.5. Dump custom output options</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#fix-styles">10.6. Fix styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#input-script-commands">10.7. Input script commands</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#kspace-computations">10.8. Kspace computations</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#minimization-styles">10.9. Minimization styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#pairwise-potentials">10.10. Pairwise potentials</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#region-styles">10.11. Region styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#body-styles">10.12. Body styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#thermodynamic-output-options">10.13. Thermodynamic output options</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#variable-options">10.14. Variable options</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_modify.html#submitting-new-features-for-inclusion-in-lammps">10.15. Submitting new features for inclusion in LAMMPS</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#overview-of-running-lammps-from-python">11.1. Overview of running LAMMPS from Python</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#overview-of-using-python-from-a-lammps-script">11.2. Overview of using Python from a LAMMPS script</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#building-lammps-as-a-shared-library">11.3. Building LAMMPS as a shared library</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#installing-the-python-wrapper-into-python">11.4. Installing the Python wrapper into Python</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#extending-python-with-mpi-to-run-in-parallel">11.5. Extending Python with MPI to run in parallel</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#testing-the-python-lammps-interface">11.6. Testing the Python-LAMMPS interface</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#using-lammps-from-python">11.7. Using LAMMPS from Python</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_python.html#example-python-scripts-that-use-lammps">11.8. Example Python scripts that use LAMMPS</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_errors.html#common-problems">12.1. Common problems</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_errors.html#reporting-bugs">12.2. Reporting bugs</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_errors.html#error-warning-messages">12.3. Error &amp; warning messages</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_errors.html#error">12.4. Errors:</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_errors.html#warnings">12.5. Warnings:</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a><ul>
<li class="toctree-l2"><a class="reference internal" href="Section_history.html#coming-attractions">13.1. Coming attractions</a></li>
<li class="toctree-l2"><a class="reference internal" href="Section_history.html#past-versions">13.2. Past versions</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
<div class="section" id="indices-and-tables">
<h1>Indices and tables</h1>
<ul class="simple">
<li><a class="reference internal" href="genindex.html"><span class="std std-ref">Index</span></a></li>
<li><a class="reference internal" href="search.html"><span class="std std-ref">Search Page</span></a></li>
</ul>
</BODY></div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="Section_intro.html" class="btn btn-neutral float-right" title="1. Introduction" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2013 Sandia Corporation.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
</body>
</html>

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -1,167 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
\begin{center}
\large{Additional documentation for the Gay-Berne ellipsoidal potential \\
as implemented in LAMMPS}
\end{center}
\centerline{Mike Brown, Sandia National Labs, April 2007}
\vspace{0.3in}
The Gay-Berne anisotropic LJ interaction between pairs of dissimilar
ellipsoidal particles is given by
$$ U ( \mathbf{A}_1, \mathbf{A}_2, \mathbf{r}_{12} ) = U_r (
\mathbf{A}_1, \mathbf{A}_2, \mathbf{r}_{12}, \gamma ) \cdot \eta_{12} (
\mathbf{A}_1, \mathbf{A}_2, \upsilon ) \cdot \chi_{12} ( \mathbf{A}_1,
\mathbf{A}_2, \mathbf{r}_{12}, \mu ) $$
where $\mathbf{A}_1$ and $\mathbf{A}_2$ are the transformation
matrices from the simulation box frame to the body frame and
$\mathbf{r}_{12}$ is the center to center vector between the
particles. $U_r$ controls the shifted distance dependent interaction
based on the distance of closest approach of the two particles
($h_{12}$) and the user-specified shift parameter gamma:
$$ U_r = 4 \epsilon ( \varrho^{12} - \varrho^6) $$
$$ \varrho = \frac{\sigma}{ h_{12} + \gamma \sigma} $$
Let the shape matrices $\mathbf{S}_i=\mbox{diag}(a_i, b_i, c_i)$ be
given by the ellipsoid radii. The $\eta$ orientation-dependent energy
based on the user-specified exponent $\upsilon$ is given by
$$ \eta_{12} = [ \frac{ 2 s_1 s_2 }{\det ( \mathbf{G}_{12} )}]^{
\upsilon / 2 } , $$
$$ s_i = [a_i b_i + c_i c_i][a_i b_i]^{ 1 / 2 }, $$
and
$$ \mathbf{G}_{12} = \mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1 +
\mathbf{A}_2^T \mathbf{S}_2^2 \mathbf{A}_2 = \mathbf{G}_1 +
\mathbf{G}_2. $$
Let the relative energy matrices $\mathbf{E}_i = \mbox{diag}
(\epsilon_{ia}, \epsilon_{ib}, \epsilon_{ic})$ be given by
the relative well depths (dimensionless energy scales
inversely proportional to the well-depths of the respective
orthogonal configurations of the interacting molecules). The
$\chi$ orientation-dependent energy based on the user-specified
exponent $\mu$ is given by
$$ \chi_{12} = [2 \hat{\mathbf{r}}_{12}^T \mathbf{B}_{12}^{-1}
\hat{\mathbf{r}}_{12}]^\mu, $$
$$ \hat{\mathbf{r}}_{12} = { \mathbf{r}_{12} } / |\mathbf{r}_{12}|, $$
and
$$ \mathbf{B}_{12} = \mathbf{A}_1^T \mathbf{E}_1^2 \mathbf{A}_1 +
\mathbf{A}_2^T \mathbf{E}_2^2 \mathbf{A}_2 = \mathbf{B}_1 +
\mathbf{B}_2. $$
Here, we use the distance of closest approach approximation given by the
Perram reference, namely
$$ h_{12} = r - \sigma_{12} ( \mathbf{A}_1, \mathbf{A}_2,
\mathbf{r}_{12} ), $$
$$ r = |\mathbf{r}_{12}|, $$
and
$$ \sigma_{12} = [ \frac{1}{2} \hat{\mathbf{r}}_{12}^T
\mathbf{G}_{12}^{-1} \hat{\mathbf{r}}_{12}.]^{ -1/2 } $$
Forces and Torques: Because the analytic forces and torques have not
been published for this potential, we list them here:
$$ \mathbf{f} = - \eta_{12} ( U_r \cdot { \frac{\partial \chi_{12}
}{\partial r} } + \chi_{12} \cdot { \frac{\partial U_r }{\partial r} }
) $$
where the derivative of $U_r$ is given by (see Allen reference)
$$ \frac{\partial U_r }{\partial r} = \frac{ \partial U_{SLJ} }{
\partial r } \hat{\mathbf{r}}_{12} + r^{-2} \frac{ \partial U_{SLJ} }{
\partial \varphi } [ \mathbf{\kappa} - ( \mathbf{\kappa}^T \cdot
\hat{\mathbf{r}}_{12}) \hat{\mathbf{r}}_{12} ], $$
$$ \frac{ \partial U_{SLJ} }{ \partial \varphi } = 24 \epsilon ( 2
\varrho^{13} - \varrho^7 ) \sigma_{12}^3 / 2 \sigma, $$
$$ \frac{ \partial U_{SLJ} }{ \partial r } = 24 \epsilon ( 2
\varrho^{13} - \varrho^7 ) / \sigma, $$
and
$$ \mathbf{\kappa} = \mathbf{G}_{12}^{-1} \cdot \mathbf{r}_{12}. $$
The derivate of the $\chi$ term is given by
$$ \frac{\partial \chi_{12} }{\partial r} = - r^{-2} \cdot 4.0 \cdot [
\mathbf{\iota} - ( \mathbf{\iota}^T \cdot \hat{\mathbf{r}}_{12} )
\hat{\mathbf{r}}_{12} ] \cdot \mu \cdot \chi_{12}^{ ( \mu -1 ) / \mu
}, $$
and
$$ \mathbf{\iota} = \mathbf{B}_{12}^{-1} \cdot \mathbf{r}_{12}. $$
The torque is given by:
$$ \mathbf{\tau}_i = U_r \eta_{12} \frac{ \partial \chi_{12} }{
\partial \mathbf{q}_i } + \chi_{12} ( U_r \frac{ \partial \eta_{12} }{
\partial \mathbf{q}_i } + \eta_{12} \frac{ \partial U_r }{ \partial
\mathbf{q}_i } ), $$
$$ \frac{ \partial U_r }{ \partial \mathbf{q}_i } = \mathbf{A}_i \cdot
(- \mathbf{\kappa}^T \cdot \mathbf{G}_i \times \mathbf{f}_k ), $$
$$ \mathbf{f}_k = - r^{-2} \frac{ \delta U_{SLJ} }{ \delta \varphi }
\mathbf{\kappa}, $$
and
$$ \frac{ \partial \chi_{12} }{ \partial \mathbf{q}_i } = 4.0 \cdot
r^{-2} \cdot \mathbf{A}_i (- \mathbf{\iota}^T \cdot \mathbf{B}_i
\times \mathbf{\iota} ). $$
For the derivative of the $\eta$ term, we were unable to find a matrix
expression due to the determinant. Let $a_{mi}$ be the mth row of the
rotation matrix $A_i$. Then,
$$ \frac{ \partial \eta_{12} }{ \partial \mathbf{q}_i } = \mathbf{A}_i
\cdot \sum_m \mathbf{a}_{mi} \times \frac{ \partial \eta_{12} }{
\partial \mathbf{a}_{mi} } = \mathbf{A}_i \cdot \sum_m \mathbf{a}_{mi}
\times \mathbf{d}_{mi}, $$
where $d_mi$ represents the mth row of a derivative matrix $D_i$,
$$ \mathbf{D}_i = - \frac{1}{2} \cdot ( \frac{2s1s2}{\det (
\mathbf{G}_{12} ) } )^{ \upsilon / 2 } \cdot {\frac{\upsilon}{\det (
\mathbf{G}_{12} ) }} \cdot \mathbf{E}, $$
where the matrix $E$ gives the derivate with respect to the rotation
matrix,
$$ \mathbf{E} = [ e_{my} ] = \frac{ \partial \eta_{12} }{ \partial
\mathbf{A}_i }, $$
and
$$ e_{my} = \det ( \mathbf{G}_{12} ) \cdot \mbox{trace} [
\mathbf{G}_{12}^{-1} \cdot ( \hat{\mathbf{p}}_y \otimes \mathbf{a}_m +
\mathbf{a}_m \otimes \hat{\mathbf{p}}_y ) \cdot s_{mm}^2 ]. $$
Here, $p_v$ is the unit vector for the axes in the lab frame $(p1=[1, 0,
0], p2=[0, 1, 0], and p3=[0, 0, 1])$ and $s_{mm}$ gives the mth radius of
the ellipsoid $i$.
\end{document}

View File

@ -1,113 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
\begin{center}
\large{Additional documentation for the RE-squared ellipsoidal potential \\
as implemented in LAMMPS}
\end{center}
\centerline{Mike Brown, Sandia National Labs, October 2007}
\vspace{0.3in}
Let the shape matrices $\mathbf{S}_i=\mbox{diag}(a_i, b_i, c_i)$ be
given by the ellipsoid radii. Let the relative energy matrices
$\mathbf{E}_i = \mbox{diag} (\epsilon_{ia}, \epsilon_{ib},
\epsilon_{ic})$ be given by the relative well depths
(dimensionless energy scales inversely proportional to the well-depths
of the respective orthogonal configurations of the interacting molecules).
Let $\mathbf{A}_1$ and $\mathbf{A}_2$ be the transformation matrices
from the simulation box frame to the body frame and $\mathbf{r}$
be the center to center vector between the particles. Let $A_{12}$ be
the Hamaker constant for the interaction given in LJ units by
$A_{12}=4\pi^2\epsilon_{\mathrm{LJ}}(\rho\sigma^3)^2$.
\vspace{0.3in}
The RE-squared anisotropic interaction between pairs of
ellipsoidal particles is given by
$$ U=U_A+U_R, $$
$$ U_\alpha=\frac{A_{12}}{m_\alpha}(\frac\sigma{h})^{n_\alpha}
(1+o_\alpha\eta\chi\frac\sigma{h}) \times \prod_i{
\frac{a_ib_ic_i}{(a_i+h/p_\alpha)(b_i+h/p_\alpha)(c_i+h/p_\alpha)}}, $$
$$ m_A=-36, n_A=0, o_A=3, p_A=2, $$
$$ m_R=2025, n_R=6, o_R=45/56, p_R=60^{1/3}, $$
$$ \chi = 2 \hat{\mathbf{r}}^T \mathbf{B}^{-1}
\hat{\mathbf{r}}, $$
$$ \hat{\mathbf{r}} = { \mathbf{r} } / |\mathbf{r}|, $$
$$ \mathbf{B} = \mathbf{A}_1^T \mathbf{E}_1 \mathbf{A}_1 +
\mathbf{A}_2^T \mathbf{E}_2 \mathbf{A}_2 $$
$$ \eta = \frac{ \det[\mathbf{S}_1]/\sigma_1^2+
det[\mathbf{S}_2]/\sigma_2^2}{[\det[\mathbf{H}]/
(\sigma_1+\sigma_2)]^{1/2}}, $$
$$ \sigma_i = (\hat{\mathbf{r}}^T\mathbf{A}_i^T\mathbf{S}_i^{-2}
\mathbf{A}_i\hat{\mathbf{r}})^{-1/2}, $$
$$ \mathbf{H} = \frac{1}{\sigma_1}\mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1 +
\frac{1}{\sigma_2}\mathbf{A}_2^T \mathbf{S}_2^2 \mathbf{A}_2 $$
Here, we use the distance of closest approach approximation given by the
Perram reference, namely
$$ h = |r| - \sigma_{12}, $$
$$ \sigma_{12} = [ \frac{1}{2} \hat{\mathbf{r}}^T
\mathbf{G}^{-1} \hat{\mathbf{r}}]^{ -1/2 }, $$
and
$$ \mathbf{G} = \mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1 +
\mathbf{A}_2^T \mathbf{S}_2^2 \mathbf{A}_2 $$
\vspace{0.3in}
The RE-squared anisotropic interaction between a
ellipsoidal particle and a Lennard-Jones sphere is defined
as the $\lim_{a_2->0}U$ under the constraints that
$a_2=b_2=c_2$ and $\frac{4}{3}\pi a_2^3\rho=1$:
$$ U_{\mathrm{elj}}=U_{A_{\mathrm{elj}}}+U_{R_{\mathrm{elj}}}, $$
$$ U_{\alpha_{\mathrm{elj}}}=(\frac{3\sigma^3c_\alpha^3}
{4\pi h_{\mathrm{elj}}^3})\frac{A_{12_{\mathrm{elj}}}}
{m_\alpha}(\frac\sigma{h_{\mathrm{elj}}})^{n_\alpha}
(1+o_\alpha\chi_{\mathrm{elj}}\frac\sigma{h_{\mathrm{elj}}}) \times
\frac{a_1b_1c_1}{(a_1+h_{\mathrm{elj}}/p_\alpha)
(b_1+h_{\mathrm{elj}}/p_\alpha)(c_1+h_{\mathrm{elj}}/p_\alpha)}, $$
$$ A_{12_{\mathrm{elj}}}=4\pi^2\epsilon_{\mathrm{LJ}}(\rho\sigma^3), $$
with $h_{\mathrm{elj}}$ and $\chi_{\mathrm{elj}}$ calculated as above
by replacing $B$ with $B_{\mathrm{elj}}$ and $G$ with $G_{\mathrm{elj}}$:
$$ \mathbf{B}_{\mathrm{elj}} = \mathbf{A}_1^T \mathbf{E}_1 \mathbf{A}_1 + I, $$
$$ \mathbf{G}_{\mathrm{elj}} = \mathbf{A}_1^T \mathbf{S}_1^2 \mathbf{A}_1.$$
\vspace{0.3in}
The interaction between two LJ spheres is calculated as:
$$
U_{\mathrm{lj}} = 4 \epsilon \left[ \left(\frac{\sigma}{|\mathbf{r}|}\right)^{12} -
\left(\frac{\sigma}{|\mathbf{r}|}\right)^6 \right]
$$
\vspace{0.3in}
The analytic derivatives are used for all force and torque calculation.
\end{document}

View File

@ -1,591 +0,0 @@
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>5. Accelerating LAMMPS performance &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
<link rel="top" title="LAMMPS documentation" href="index.html"/>
<link rel="next" title="6. How-to discussions" href="Section_howto.html"/>
<link rel="prev" title="4. Packages" href="Section_packages.html"/>
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-nav-search">
<a href="Manual.html" class="icon icon-home"> LAMMPS
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">5. Accelerating LAMMPS performance</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#measuring-performance">5.1. Measuring performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="#general-strategies">5.2. General strategies</a></li>
<li class="toctree-l2"><a class="reference internal" href="#packages-with-optimized-styles">5.3. Packages with optimized styles</a></li>
<li class="toctree-l2"><a class="reference internal" href="#comparison-of-various-accelerator-packages">5.4. Comparison of various accelerator packages</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a></li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="Manual.html">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="Manual.html">Docs</a> &raquo;</li>
<li>5. Accelerating LAMMPS performance</li>
<li class="wy-breadcrumbs-aside">
<a href="http://lammps.sandia.gov">Website</a>
<a href="Section_commands.html#comm">Commands</a>
</li>
</ul>
<hr/>
<div class="rst-footer-buttons" style="margin-bottom: 1em" role="navigation" aria-label="footer navigation">
<a href="Section_howto.html" class="btn btn-neutral float-right" title="6. How-to discussions" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_packages.html" class="btn btn-neutral" title="4. Packages" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="accelerating-lammps-performance">
<h1>5. Accelerating LAMMPS performance</h1>
<p>This section describes various methods for improving LAMMPS
performance for different classes of problems running on different
kinds of machines.</p>
<p>There are two thrusts to the discussion that follows. The
first is using code options that implement alternate algorithms
that can speed-up a simulation. The second is to use one
of the several accelerator packages provided with LAMMPS that
contain code optimized for certain kinds of hardware, including
multi-core CPUs, GPUs, and Intel Xeon Phi coprocessors.</p>
<ul class="simple">
<li>5.1 <a class="reference internal" href="#acc-1"><span class="std std-ref">Measuring performance</span></a></li>
<li>5.2 <a class="reference internal" href="#acc-2"><span class="std std-ref">Algorithms and code options to boost performace</span></a></li>
<li>5.3 <a class="reference internal" href="#acc-3"><span class="std std-ref">Accelerator packages with optimized styles</span></a></li>
<li>5.3.1 <a class="reference internal" href="accelerate_gpu.html"><span class="doc">GPU package</span></a></li>
<li>5.3.2 <a class="reference internal" href="accelerate_intel.html"><span class="doc">USER-INTEL package</span></a></li>
<li>5.3.3 <a class="reference internal" href="accelerate_kokkos.html"><span class="doc">KOKKOS package</span></a></li>
<li>5.3.4 <a class="reference internal" href="accelerate_omp.html"><span class="doc">USER-OMP package</span></a></li>
<li>5.3.5 <a class="reference internal" href="accelerate_opt.html"><span class="doc">OPT package</span></a></li>
<li>5.4 <a class="reference internal" href="#acc-4"><span class="std std-ref">Comparison of various accelerator packages</span></a></li>
</ul>
<p>The <a class="reference external" href="http://lammps.sandia.gov/bench.html">Benchmark page</a> of the LAMMPS
web site gives performance results for the various accelerator
packages discussed in Section 5.2, for several of the standard LAMMPS
benchmark problems, as a function of problem size and number of
compute nodes, on different hardware platforms.</p>
<div class="section" id="measuring-performance">
<span id="acc-1"></span><h2>5.1. Measuring performance</h2>
<p>Before trying to make your simulation run faster, you should
understand how it currently performs and where the bottlenecks are.</p>
<p>The best way to do this is run the your system (actual number of
atoms) for a modest number of timesteps (say 100 steps) on several
different processor counts, including a single processor if possible.
Do this for an equilibrium version of your system, so that the
100-step timings are representative of a much longer run. There is
typically no need to run for 1000s of timesteps to get accurate
timings; you can simply extrapolate from short runs.</p>
<p>For the set of runs, look at the timing data printed to the screen and
log file at the end of each LAMMPS run. <a class="reference internal" href="Section_start.html#start-8"><span class="std std-ref">This section</span></a> of the manual has an overview.</p>
<p>Running on one (or a few processors) should give a good estimate of
the serial performance and what portions of the timestep are taking
the most time. Running the same problem on a few different processor
counts should give an estimate of parallel scalability. I.e. if the
simulation runs 16x faster on 16 processors, its 100% parallel
efficient; if it runs 8x faster on 16 processors, it&#8217;s 50% efficient.</p>
<p>The most important data to look at in the timing info is the timing
breakdown and relative percentages. For example, trying different
options for speeding up the long-range solvers will have little impact
if they only consume 10% of the run time. If the pairwise time is
dominating, you may want to look at GPU or OMP versions of the pair
style, as discussed below. Comparing how the percentages change as
you increase the processor count gives you a sense of how different
operations within the timestep are scaling. Note that if you are
running with a Kspace solver, there is additional output on the
breakdown of the Kspace time. For PPPM, this includes the fraction
spent on FFTs, which can be communication intensive.</p>
<p>Another important detail in the timing info are the histograms of
atoms counts and neighbor counts. If these vary widely across
processors, you have a load-imbalance issue. This often results in
inaccurate relative timing data, because processors have to wait when
communication occurs for other processors to catch up. Thus the
reported times for &#8220;Communication&#8221; or &#8220;Other&#8221; may be higher than they
really are, due to load-imbalance. If this is an issue, you can
uncomment the MPI_Barrier() lines in src/timer.cpp, and recompile
LAMMPS, to obtain synchronized timings.</p>
<hr class="docutils" />
</div>
<div class="section" id="general-strategies">
<span id="acc-2"></span><h2>5.2. General strategies</h2>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">this section 5.2 is still a work in progress</p>
</div>
<p>Here is a list of general ideas for improving simulation performance.
Most of them are only applicable to certain models and certain
bottlenecks in the current performance, so let the timing data you
generate be your guide. It is hard, if not impossible, to predict how
much difference these options will make, since it is a function of
problem size, number of processors used, and your machine. There is
no substitute for identifying performance bottlenecks, and trying out
various options.</p>
<ul class="simple">
<li>rRESPA</li>
<li>2-FFT PPPM</li>
<li>Staggered PPPM</li>
<li>single vs double PPPM</li>
<li>partial charge PPPM</li>
<li>verlet/split run style</li>
<li>processor command for proc layout and numa layout</li>
<li>load-balancing: balance and fix balance</li>
</ul>
<p>2-FFT PPPM, also called <em>analytic differentiation</em> or <em>ad</em> PPPM, uses
2 FFTs instead of the 4 FFTs used by the default <em>ik differentiation</em>
PPPM. However, 2-FFT PPPM also requires a slightly larger mesh size to
achieve the same accuracy as 4-FFT PPPM. For problems where the FFT
cost is the performance bottleneck (typically large problems running
on many processors), 2-FFT PPPM may be faster than 4-FFT PPPM.</p>
<p>Staggered PPPM performs calculations using two different meshes, one
shifted slightly with respect to the other. This can reduce force
aliasing errors and increase the accuracy of the method, but also
doubles the amount of work required. For high relative accuracy, using
staggered PPPM allows one to half the mesh size in each dimension as
compared to regular PPPM, which can give around a 4x speedup in the
kspace time. However, for low relative accuracy, using staggered PPPM
gives little benefit and can be up to 2x slower in the kspace
time. For example, the rhodopsin benchmark was run on a single
processor, and results for kspace time vs. relative accuracy for the
different methods are shown in the figure below. For this system,
staggered PPPM (using ik differentiation) becomes useful when using a
relative accuracy of slightly greater than 1e-5 and above.</p>
<img alt="_images/rhodo_staggered.jpg" class="align-center" src="_images/rhodo_staggered.jpg" />
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">Using staggered PPPM may not give the same increase in accuracy
of energy and pressure as it does in forces, so some caution must be
used if energy and/or pressure are quantities of interest, such as
when using a barostat.</p>
</div>
<hr class="docutils" />
</div>
<div class="section" id="packages-with-optimized-styles">
<span id="acc-3"></span><h2>5.3. Packages with optimized styles</h2>
<p>Accelerated versions of various <a class="reference internal" href="pair_style.html"><span class="doc">pair_style</span></a>,
<a class="reference internal" href="fix.html"><span class="doc">fixes</span></a>, <a class="reference internal" href="compute.html"><span class="doc">computes</span></a>, and other commands have
been added to LAMMPS, which will typically run faster than the
standard non-accelerated versions. Some require appropriate hardware
to be present on your system, e.g. GPUs or Intel Xeon Phi
coprocessors.</p>
<p>All of these commands are in packages provided with LAMMPS. An
overview of packages is give in <a class="reference internal" href="Section_packages.html"><span class="doc">Section packages</span></a>.</p>
<p>These are the accelerator packages
currently in LAMMPS, either as standard or user packages:</p>
<table border="1" class="docutils">
<colgroup>
<col width="44%" />
<col width="56%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td><a class="reference internal" href="accelerate_gpu.html"><span class="doc">GPU</span></a></td>
<td>for NVIDIA GPUs as well as OpenCL support</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="accelerate_intel.html"><span class="doc">USER-INTEL</span></a></td>
<td>for Intel CPUs and Intel Xeon Phi</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="accelerate_kokkos.html"><span class="doc">KOKKOS</span></a></td>
<td>for GPUs, Intel Xeon Phi, and OpenMP threading</td>
</tr>
<tr class="row-even"><td><a class="reference internal" href="accelerate_omp.html"><span class="doc">USER-OMP</span></a></td>
<td>for OpenMP threading</td>
</tr>
<tr class="row-odd"><td><a class="reference internal" href="accelerate_opt.html"><span class="doc">OPT</span></a></td>
<td>generic CPU optimizations</td>
</tr>
</tbody>
</table>
<p>Inverting this list, LAMMPS currently has acceleration support for
three kinds of hardware, via the listed packages:</p>
<table border="1" class="docutils">
<colgroup>
<col width="10%" />
<col width="90%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>Many-core CPUs</td>
<td><a class="reference internal" href="accelerate_intel.html"><span class="doc">USER-INTEL</span></a>, <a class="reference internal" href="accelerate_kokkos.html"><span class="doc">KOKKOS</span></a>, <a class="reference internal" href="accelerate_omp.html"><span class="doc">USER-OMP</span></a>, <a class="reference internal" href="accelerate_opt.html"><span class="doc">OPT</span></a> packages</td>
</tr>
<tr class="row-even"><td>NVIDIA GPUs</td>
<td><a class="reference internal" href="accelerate_gpu.html"><span class="doc">GPU</span></a>, <a class="reference internal" href="accelerate_kokkos.html"><span class="doc">KOKKOS</span></a> packages</td>
</tr>
<tr class="row-odd"><td>Intel Phi</td>
<td><a class="reference internal" href="accelerate_intel.html"><span class="doc">USER-INTEL</span></a>, <a class="reference internal" href="accelerate_kokkos.html"><span class="doc">KOKKOS</span></a> packages</td>
</tr>
</tbody>
</table>
<p>Which package is fastest for your hardware may depend on the size
problem you are running and what commands (accelerated and
non-accelerated) are invoked by your input script. While these doc
pages include performance guidelines, there is no substitute for
trying out the different packages appropriate to your hardware.</p>
<p>Any accelerated style has the same name as the corresponding standard
style, except that a suffix is appended. Otherwise, the syntax for
the command that uses the style is identical, their functionality is
the same, and the numerical results it produces should also be the
same, except for precision and round-off effects.</p>
<p>For example, all of these styles are accelerated variants of the
Lennard-Jones <a class="reference internal" href="pair_lj.html"><span class="doc">pair_style lj/cut</span></a>:</p>
<ul class="simple">
<li><a class="reference internal" href="pair_lj.html"><span class="doc">pair_style lj/cut/gpu</span></a></li>
<li><a class="reference internal" href="pair_lj.html"><span class="doc">pair_style lj/cut/intel</span></a></li>
<li><a class="reference internal" href="pair_lj.html"><span class="doc">pair_style lj/cut/kk</span></a></li>
<li><a class="reference internal" href="pair_lj.html"><span class="doc">pair_style lj/cut/omp</span></a></li>
<li><a class="reference internal" href="pair_lj.html"><span class="doc">pair_style lj/cut/opt</span></a></li>
</ul>
<p>To see what accelerate styles are currently available, see
<a class="reference internal" href="Section_commands.html#cmd-5"><span class="std std-ref">Section_commands 5</span></a> of the manual. The
doc pages for individual commands (e.g. <a class="reference internal" href="pair_lj.html"><span class="doc">pair lj/cut</span></a> or
<a class="reference internal" href="fix_nve.html"><span class="doc">fix nve</span></a>) also list any accelerated variants available
for that style.</p>
<p>To use an accelerator package in LAMMPS, and one or more of the styles
it provides, follow these general steps. Details vary from package to
package and are explained in the individual accelerator doc pages,
listed above:</p>
<table border="1" class="docutils">
<colgroup>
<col width="64%" />
<col width="36%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>build the accelerator library</td>
<td>only for GPU package</td>
</tr>
<tr class="row-even"><td>install the accelerator package</td>
<td>make yes-opt, make yes-user-intel, etc</td>
</tr>
<tr class="row-odd"><td>add compile/link flags to Makefile.machine in src/MAKE</td>
<td>only for USER-INTEL, KOKKOS, USER-OMP, OPT packages</td>
</tr>
<tr class="row-even"><td>re-build LAMMPS</td>
<td>make machine</td>
</tr>
<tr class="row-odd"><td>prepare and test a regular LAMMPS simulation</td>
<td>lmp_machine -in in.script; mpirun -np 32 lmp_machine -in in.script</td>
</tr>
<tr class="row-even"><td>enable specific accelerator support via &#8216;-k on&#8217; <a class="reference internal" href="Section_start.html#start-7"><span class="std std-ref">command-line switch</span></a>,</td>
<td>only needed for KOKKOS package</td>
</tr>
<tr class="row-odd"><td>set any needed options for the package via &#8220;-pk&#8221; <a class="reference internal" href="Section_start.html#start-7"><span class="std std-ref">command-line switch</span></a> or <a class="reference internal" href="package.html"><span class="doc">package</span></a> command,</td>
<td>only if defaults need to be changed</td>
</tr>
<tr class="row-even"><td>use accelerated styles in your input via &#8220;-sf&#8221; <a class="reference internal" href="Section_start.html#start-7"><span class="std std-ref">command-line switch</span></a> or <a class="reference internal" href="suffix.html"><span class="doc">suffix</span></a> command</td>
<td>lmp_machine -in in.script -sf gpu</td>
</tr>
</tbody>
</table>
<p>Note that the first 4 steps can be done as a single command, using the
src/Make.py tool. This tool is discussed in <a class="reference internal" href="Section_start.html#start-4"><span class="std std-ref">Section 2.4</span></a> of the manual, and its use is
illustrated in the individual accelerator sections. Typically these
steps only need to be done once, to create an executable that uses one
or more accelerator packages.</p>
<p>The last 4 steps can all be done from the command-line when LAMMPS is
launched, without changing your input script, as illustrated in the
individual accelerator sections. Or you can add
<a class="reference internal" href="package.html"><span class="doc">package</span></a> and <a class="reference internal" href="suffix.html"><span class="doc">suffix</span></a> commands to your input
script.</p>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">With a few exceptions, you can build a single LAMMPS executable
with all its accelerator packages installed. Note however that the
USER-INTEL and KOKKOS packages require you to choose one of their
hardware options when building for a specific platform. I.e. CPU or
Phi option for the USER-INTEL package. Or the OpenMP, Cuda, or Phi
option for the KOKKOS package.</p>
</div>
<p>These are the exceptions. You cannot build a single executable with:</p>
<ul class="simple">
<li>both the USER-INTEL Phi and KOKKOS Phi options</li>
<li>the USER-INTEL Phi or Kokkos Phi option, and the GPU package</li>
</ul>
<p>See the examples/accelerate/README and make.list files for sample
Make.py commands that build LAMMPS with any or all of the accelerator
packages. As an example, here is a command that builds with all the
GPU related packages installed (GPU, KOKKOS with Cuda), including
settings to build the needed auxiliary GPU libraries for Kepler GPUs:</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">Make</span><span class="o">.</span><span class="n">py</span> <span class="o">-</span><span class="n">j</span> <span class="mi">16</span> <span class="o">-</span><span class="n">p</span> <span class="n">omp</span> <span class="n">gpu</span> <span class="n">kokkos</span> <span class="o">-</span><span class="n">cc</span> <span class="n">nvcc</span> <span class="n">wrap</span><span class="o">=</span><span class="n">mpi</span> <span class="o">-</span><span class="n">gpu</span> <span class="n">mode</span><span class="o">=</span><span class="n">double</span> <span class="n">arch</span><span class="o">=</span><span class="mi">35</span> <span class="o">-</span><span class="n">kokkos</span> <span class="n">cuda</span> <span class="n">arch</span><span class="o">=</span><span class="mi">35</span> <span class="n">lib</span><span class="o">-</span><span class="nb">all</span> <span class="n">file</span> <span class="n">mpi</span>
</pre></div>
</div>
<p>The examples/accelerate directory also has input scripts that can be
used with all of the accelerator packages. See its README file for
details.</p>
<p>Likewise, the bench directory has FERMI and KEPLER and PHI
sub-directories with Make.py commands and input scripts for using all
the accelerator packages on various machines. See the README files in
those dirs.</p>
<p>As mentioned above, the <a class="reference external" href="http://lammps.sandia.gov/bench.html">Benchmark page</a> of the LAMMPS web site gives
performance results for the various accelerator packages for several
of the standard LAMMPS benchmark problems, as a function of problem
size and number of compute nodes, on different hardware platforms.</p>
<p>Here is a brief summary of what the various packages provide. Details
are in the individual accelerator sections.</p>
<ul class="simple">
<li>Styles with a &#8220;gpu&#8221; suffix are part of the GPU package, and can be run
on NVIDIA GPUs. The speed-up on a GPU depends on a variety of
factors, discussed in the accelerator sections.</li>
<li>Styles with an &#8220;intel&#8221; suffix are part of the USER-INTEL
package. These styles support vectorized single and mixed precision
calculations, in addition to full double precision. In extreme cases,
this can provide speedups over 3.5x on CPUs. The package also
supports acceleration in &#8220;offload&#8221; mode to Intel(R) Xeon Phi(TM)
coprocessors. This can result in additional speedup over 2x depending
on the hardware configuration.</li>
<li>Styles with a &#8220;kk&#8221; suffix are part of the KOKKOS package, and can be
run using OpenMP on multicore CPUs, on an NVIDIA GPU, or on an Intel
Xeon Phi in &#8220;native&#8221; mode. The speed-up depends on a variety of
factors, as discussed on the KOKKOS accelerator page.</li>
<li>Styles with an &#8220;omp&#8221; suffix are part of the USER-OMP package and allow
a pair-style to be run in multi-threaded mode using OpenMP. This can
be useful on nodes with high-core counts when using less MPI processes
than cores is advantageous, e.g. when running with PPPM so that FFTs
are run on fewer MPI processors or when the many MPI tasks would
overload the available bandwidth for communication.</li>
<li>Styles with an &#8220;opt&#8221; suffix are part of the OPT package and typically
speed-up the pairwise calculations of your simulation by 5-25% on a
CPU.</li>
</ul>
<p>The individual accelerator package doc pages explain:</p>
<ul class="simple">
<li>what hardware and software the accelerated package requires</li>
<li>how to build LAMMPS with the accelerated package</li>
<li>how to run with the accelerated package either via command-line switches or modifying the input script</li>
<li>speed-ups to expect</li>
<li>guidelines for best performance</li>
<li>restrictions</li>
</ul>
<hr class="docutils" />
</div>
<div class="section" id="comparison-of-various-accelerator-packages">
<span id="acc-4"></span><h2>5.4. Comparison of various accelerator packages</h2>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">this section still needs to be re-worked with additional KOKKOS
and USER-INTEL information.</p>
</div>
<p>The next section compares and contrasts the various accelerator
options, since there are multiple ways to perform OpenMP threading,
run on GPUs, and run on Intel Xeon Phi coprocessors.</p>
<p>All 3 of these packages accelerate a LAMMPS calculation using NVIDIA
hardware, but they do it in different ways.</p>
<p>As a consequence, for a particular simulation on specific hardware,
one package may be faster than the other. We give guidelines below,
but the best way to determine which package is faster for your input
script is to try both of them on your machine. See the benchmarking
section below for examples where this has been done.</p>
<p><strong>Guidelines for using each package optimally:</strong></p>
<ul class="simple">
<li>The GPU package allows you to assign multiple CPUs (cores) to a single
GPU (a common configuration for &#8220;hybrid&#8221; nodes that contain multicore
CPU(s) and GPU(s)) and works effectively in this mode.</li>
<li>The GPU package moves per-atom data (coordinates, forces)
back-and-forth between the CPU and GPU every timestep. The
KOKKOS/CUDA package only does this on timesteps when a CPU calculation
is required (e.g. to invoke a fix or compute that is non-GPU-ized).
Hence, if you can formulate your input script to only use GPU-ized
fixes and computes, and avoid doing I/O too often (thermo output, dump
file snapshots, restart files), then the data transfer cost of the
KOKKOS/CUDA package can be very low, causing it to run faster than the
GPU package.</li>
<li>The GPU package is often faster than the KOKKOS/CUDA package, if the
number of atoms per GPU is smaller. The crossover point, in terms of
atoms/GPU at which the KOKKOS/CUDA package becomes faster depends
strongly on the pair style. For example, for a simple Lennard Jones
system the crossover (in single precision) is often about 50K-100K
atoms per GPU. When performing double precision calculations the
crossover point can be significantly smaller.</li>
<li>Both packages compute bonded interactions (bonds, angles, etc) on the
CPU. If the GPU package is running with several MPI processes
assigned to one GPU, the cost of computing the bonded interactions is
spread across more CPUs and hence the GPU package can run faster.</li>
<li>When using the GPU package with multiple CPUs assigned to one GPU, its
performance depends to some extent on high bandwidth between the CPUs
and the GPU. Hence its performance is affected if full 16 PCIe lanes
are not available for each GPU. In HPC environments this can be the
case if S2050/70 servers are used, where two devices generally share
one PCIe 2.0 16x slot. Also many multi-GPU mainboards do not provide
full 16 lanes to each of the PCIe 2.0 16x slots.</li>
</ul>
<p><strong>Differences between the two packages:</strong></p>
<ul class="simple">
<li>The GPU package accelerates only pair force, neighbor list, and PPPM
calculations.</li>
<li>The GPU package requires neighbor lists to be built on the CPU when using
exclusion lists, hybrid pair styles, or a triclinic simulation box.</li>
</ul>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="Section_howto.html" class="btn btn-neutral float-right" title="6. How-to discussions" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_packages.html" class="btn btn-neutral" title="4. Packages" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2013 Sandia Corporation.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
</body>
</html>

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,448 +0,0 @@
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>7. Example problems &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
<link rel="top" title="LAMMPS documentation" href="index.html"/>
<link rel="next" title="8. Performance &amp; scalability" href="Section_perf.html"/>
<link rel="prev" title="6. How-to discussions" href="Section_howto.html"/>
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-nav-search">
<a href="Manual.html" class="icon icon-home"> LAMMPS
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">7. Example problems</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#lowercase-directories">7.1. Lowercase directories</a></li>
<li class="toctree-l2"><a class="reference internal" href="#uppercase-directories">7.2. Uppercase directories</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a></li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="Manual.html">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="Manual.html">Docs</a> &raquo;</li>
<li>7. Example problems</li>
<li class="wy-breadcrumbs-aside">
<a href="http://lammps.sandia.gov">Website</a>
<a href="Section_commands.html#comm">Commands</a>
</li>
</ul>
<hr/>
<div class="rst-footer-buttons" style="margin-bottom: 1em" role="navigation" aria-label="footer navigation">
<a href="Section_perf.html" class="btn btn-neutral float-right" title="8. Performance &amp; scalability" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_howto.html" class="btn btn-neutral" title="6. How-to discussions" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="example-problems">
<h1>7. Example problems</h1>
<p>The LAMMPS distribution includes an examples sub-directory with many
sample problems. Many are 2d models that run quickly are are
straightforward to visualize, requiring at most a couple of minutes to
run on a desktop machine. Each problem has an input script (in.*) and
produces a log file (log.*) when it runs. Some use a data file
(data.*) of initial coordinates as additional input. A few sample log
file run on different machines and different numbers of processors are
included in the directories to compare your answers to. E.g. a log
file like log.date.crack.foo.P means the &#8220;crack&#8221; example was run on P
processors of machine &#8220;foo&#8221; on that date (i.e. with that version of
LAMMPS).</p>
<p>Many of the input files have commented-out lines for creating dump
files and image files.</p>
<p>If you uncomment the <a class="reference internal" href="dump.html"><span class="doc">dump</span></a> command in the input script, a
text dump file will be produced, which can be animated by various
<a class="reference external" href="http://lammps.sandia.gov/viz.html">visualization programs</a>. It can
also be animated using the xmovie tool described in the <a class="reference internal" href="Section_tools.html"><span class="doc">Additional Tools</span></a> section of the LAMMPS documentation.</p>
<p>If you uncomment the <a class="reference internal" href="dump.html"><span class="doc">dump image</span></a> command in the input
script, and assuming you have built LAMMPS with a JPG library, JPG
snapshot images will be produced when the simulation runs. They can
be quickly post-processed into a movie using commands described on the
<a class="reference internal" href="dump_image.html"><span class="doc">dump image</span></a> doc page.</p>
<p>Animations of many of the examples can be viewed on the Movies section
of the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS web site</a>.</p>
<p>There are two kinds of sub-directories in the examples dir. Lowercase
dirs contain one or a few simple, quick-to-run problems. Uppercase
dirs contain up to several complex scripts that illustrate a
particular kind of simulation method or model. Some of these run for
longer times, e.g. to measure a particular quantity.</p>
<p>Lists of both kinds of directories are given below.</p>
<hr class="docutils" />
<div class="section" id="lowercase-directories">
<h2>7.1. Lowercase directories</h2>
<table border="1" class="docutils">
<colgroup>
<col width="16%" />
<col width="84%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>accelerate</td>
<td>run with various acceleration options (OpenMP, GPU, Phi)</td>
</tr>
<tr class="row-even"><td>balance</td>
<td>dynamic load balancing, 2d system</td>
</tr>
<tr class="row-odd"><td>body</td>
<td>body particles, 2d system</td>
</tr>
<tr class="row-even"><td>colloid</td>
<td>big colloid particles in a small particle solvent, 2d system</td>
</tr>
<tr class="row-odd"><td>comb</td>
<td>models using the COMB potential</td>
</tr>
<tr class="row-even"><td>coreshell</td>
<td>core/shell model using CORESHELL package</td>
</tr>
<tr class="row-odd"><td>crack</td>
<td>crack propagation in a 2d solid</td>
</tr>
<tr class="row-even"><td>deposit</td>
<td>deposit atoms and molecules on a surface</td>
</tr>
<tr class="row-odd"><td>dipole</td>
<td>point dipolar particles, 2d system</td>
</tr>
<tr class="row-even"><td>dreiding</td>
<td>methanol via Dreiding FF</td>
</tr>
<tr class="row-odd"><td>eim</td>
<td>NaCl using the EIM potential</td>
</tr>
<tr class="row-even"><td>ellipse</td>
<td>ellipsoidal particles in spherical solvent, 2d system</td>
</tr>
<tr class="row-odd"><td>flow</td>
<td>Couette and Poiseuille flow in a 2d channel</td>
</tr>
<tr class="row-even"><td>friction</td>
<td>frictional contact of spherical asperities between 2d surfaces</td>
</tr>
<tr class="row-odd"><td>hugoniostat</td>
<td>Hugoniostat shock dynamics</td>
</tr>
<tr class="row-even"><td>indent</td>
<td>spherical indenter into a 2d solid</td>
</tr>
<tr class="row-odd"><td>kim</td>
<td>use of potentials in Knowledge Base for Interatomic Models (KIM)</td>
</tr>
<tr class="row-even"><td>meam</td>
<td>MEAM test for SiC and shear (same as shear examples)</td>
</tr>
<tr class="row-odd"><td>melt</td>
<td>rapid melt of 3d LJ system</td>
</tr>
<tr class="row-even"><td>micelle</td>
<td>self-assembly of small lipid-like molecules into 2d bilayers</td>
</tr>
<tr class="row-odd"><td>min</td>
<td>energy minimization of 2d LJ melt</td>
</tr>
<tr class="row-even"><td>msst</td>
<td>MSST shock dynamics</td>
</tr>
<tr class="row-odd"><td>nb3b</td>
<td>use of nonbonded 3-body harmonic pair style</td>
</tr>
<tr class="row-even"><td>neb</td>
<td>nudged elastic band (NEB) calculation for barrier finding</td>
</tr>
<tr class="row-odd"><td>nemd</td>
<td>non-equilibrium MD of 2d sheared system</td>
</tr>
<tr class="row-even"><td>obstacle</td>
<td>flow around two voids in a 2d channel</td>
</tr>
<tr class="row-odd"><td>peptide</td>
<td>dynamics of a small solvated peptide chain (5-mer)</td>
</tr>
<tr class="row-even"><td>peri</td>
<td>Peridynamic model of cylinder impacted by indenter</td>
</tr>
<tr class="row-odd"><td>pour</td>
<td>pouring of granular particles into a 3d box, then chute flow</td>
</tr>
<tr class="row-even"><td>prd</td>
<td>parallel replica dynamics of vacancy diffusion in bulk Si</td>
</tr>
<tr class="row-odd"><td>python</td>
<td>using embedded Python in a LAMMPS input script</td>
</tr>
<tr class="row-even"><td>qeq</td>
<td>use of the QEQ package for charge equilibration</td>
</tr>
<tr class="row-odd"><td>reax</td>
<td>RDX and TATB models using the ReaxFF</td>
</tr>
<tr class="row-even"><td>rigid</td>
<td>rigid bodies modeled as independent or coupled</td>
</tr>
<tr class="row-odd"><td>shear</td>
<td>sideways shear applied to 2d solid, with and without a void</td>
</tr>
<tr class="row-even"><td>snap</td>
<td>NVE dynamics for BCC tantalum crystal using SNAP potential</td>
</tr>
<tr class="row-odd"><td>srd</td>
<td>stochastic rotation dynamics (SRD) particles as solvent</td>
</tr>
<tr class="row-even"><td>streitz</td>
<td>use of Streitz/Mintmire potential with charge equilibration</td>
</tr>
<tr class="row-odd"><td>tad</td>
<td>temperature-accelerated dynamics of vacancy diffusion in bulk Si</td>
</tr>
<tr class="row-even"><td>vashishta</td>
<td>use of the Vashishta potential</td>
</tr>
</tbody>
</table>
<p>Here is how you can run and visualize one of the sample problems:</p>
<pre class="literal-block">
cd indent
cp ../../src/lmp_linux . # copy LAMMPS executable to this dir
lmp_linux -in in.indent # run the problem
</pre>
<p>Running the simulation produces the files <em>dump.indent</em> and
<em>log.lammps</em>. You can visualize the dump file of snapshots with a
variety of 3rd-party tools highlighted on the
<a class="reference external" href="http://lammps.sandia.gov/viz.html">Visualization</a> page of the LAMMPS
web site.</p>
<p>If you uncomment the <a class="reference internal" href="dump_image.html"><span class="doc">dump image</span></a> line(s) in the input
script a series of JPG images will be produced by the run (assuming
you built LAMMPS with JPG support; see <a class="reference internal" href="Section_start.html"><span class="doc">Section start 2.2</span></a> for details). These can be viewed
individually or turned into a movie or animated by tools like
ImageMagick or QuickTime or various Windows-based tools. See the
<a class="reference internal" href="dump_image.html"><span class="doc">dump image</span></a> doc page for more details. E.g. this
Imagemagick command would create a GIF file suitable for viewing in a
browser.</p>
<pre class="literal-block">
% convert -loop 1 *.jpg foo.gif
</pre>
</div>
<hr class="docutils" />
<div class="section" id="uppercase-directories">
<h2>7.2. Uppercase directories</h2>
<table border="1" class="docutils">
<colgroup>
<col width="11%" />
<col width="89%" />
</colgroup>
<tbody valign="top">
<tr class="row-odd"><td>ASPHERE</td>
<td>various aspherical particle models, using ellipsoids, rigid bodies, line/triangle particles, etc</td>
</tr>
<tr class="row-even"><td>COUPLE</td>
<td>examples of how to use LAMMPS as a library</td>
</tr>
<tr class="row-odd"><td>DIFFUSE</td>
<td>compute diffusion coefficients via several methods</td>
</tr>
<tr class="row-even"><td>ELASTIC</td>
<td>compute elastic constants at zero temperature</td>
</tr>
<tr class="row-odd"><td>ELASTIC_T</td>
<td>compute elastic constants at finite temperature</td>
</tr>
<tr class="row-even"><td>KAPPA</td>
<td>compute thermal conductivity via several methods</td>
</tr>
<tr class="row-odd"><td>MC</td>
<td>using LAMMPS in a Monte Carlo mode to relax the energy of a system</td>
</tr>
<tr class="row-even"><td>USER</td>
<td>examples for USER packages and USER-contributed commands</td>
</tr>
<tr class="row-odd"><td>VISCOSITY</td>
<td>compute viscosity via several methods</td>
</tr>
</tbody>
</table>
<p>Nearly all of these directories have README files which give more
details on how to understand and use their contents.</p>
<p>The USER directory has a large number of sub-directories which
correspond by name to a USER package. They contain scripts that
illustrate how to use the command(s) provided in that package. Many
of the sub-directories have their own README files which give further
instructions. See the <a class="reference internal" href="Section_packages.html"><span class="doc">Section packages</span></a> doc
page for more info on specific USER packages.</p>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="Section_perf.html" class="btn btn-neutral float-right" title="8. Performance &amp; scalability" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_howto.html" class="btn btn-neutral" title="6. How-to discussions" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2013 Sandia Corporation.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
</body>
</html>

View File

@ -1,313 +0,0 @@
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>13. Future and history &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
<link rel="top" title="LAMMPS documentation" href="index.html"/>
<link rel="prev" title="12. Errors" href="Section_errors.html"/>
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-nav-search">
<a href="Manual.html" class="icon icon-home"> LAMMPS
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">13. Future and history</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#coming-attractions">13.1. Coming attractions</a></li>
<li class="toctree-l2"><a class="reference internal" href="#past-versions">13.2. Past versions</a></li>
</ul>
</li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="Manual.html">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="Manual.html">Docs</a> &raquo;</li>
<li>13. Future and history</li>
<li class="wy-breadcrumbs-aside">
<a href="http://lammps.sandia.gov">Website</a>
<a href="Section_commands.html#comm">Commands</a>
</li>
</ul>
<hr/>
<div class="rst-footer-buttons" style="margin-bottom: 1em" role="navigation" aria-label="footer navigation">
<a href="Section_errors.html" class="btn btn-neutral" title="12. Errors" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="future-and-history">
<h1>13. Future and history</h1>
<p>This section lists features we plan to add to LAMMPS, features of
previous versions of LAMMPS, and features of other parallel molecular
dynamics codes our group has distributed.</p>
<div class="line-block">
<div class="line">13.1 <a class="reference internal" href="#hist-1"><span class="std std-ref">Coming attractions</span></a></div>
<div class="line">13.2 <a class="reference internal" href="#hist-2"><span class="std std-ref">Past versions</span></a></div>
<div class="line"><br /></div>
</div>
<div class="section" id="coming-attractions">
<span id="hist-1"></span><h2>13.1. Coming attractions</h2>
<p>The <a class="reference external" href="http://lammps.sandia.gov/future.html">Wish list link</a> on the
LAMMPS WWW page gives a list of features we are hoping to add to
LAMMPS in the future, including contact names of individuals you can
email if you are interested in contributing to the developement or
would be a future user of that feature.</p>
<p>You can also send <a class="reference external" href="http://lammps.sandia.gov/authors.html">email to the developers</a> if you want to add
your wish to the list.</p>
<hr class="docutils" />
</div>
<div class="section" id="past-versions">
<span id="hist-2"></span><h2>13.2. Past versions</h2>
<p>LAMMPS development began in the mid 1990s under a cooperative research
&amp; development agreement (CRADA) between two DOE labs (Sandia and LLNL)
and 3 companies (Cray, Bristol Myers Squibb, and Dupont). The goal was
to develop a large-scale parallel classical MD code; the coding effort
was led by Steve Plimpton at Sandia.</p>
<p>After the CRADA ended, a final F77 version, LAMMPS 99, was
released. As development of LAMMPS continued at Sandia, its memory
management was converted to F90; a final F90 version was released as
LAMMPS 2001.</p>
<p>The current LAMMPS is a rewrite in C++ and was first publicly released
as an open source code in 2004. It includes many new features beyond
those in LAMMPS 99 or 2001. It also includes features from older
parallel MD codes written at Sandia, namely ParaDyn, Warp, and
GranFlow (see below).</p>
<p>In late 2006 we began merging new capabilities into LAMMPS that were
developed by Aidan Thompson at Sandia for his MD code GRASP, which has
a parallel framework similar to LAMMPS. Most notably, these have
included many-body potentials - Stillinger-Weber, Tersoff, ReaxFF -
and the associated charge-equilibration routines needed for ReaxFF.</p>
<p>The <a class="reference external" href="http://lammps.sandia.gov/history.html">History link</a> on the
LAMMPS WWW page gives a timeline of features added to the
C++ open-source version of LAMMPS over the last several years.</p>
<p>These older codes are available for download from the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW site</a>, except for Warp &amp; GranFlow which were primarily used
internally. A brief listing of their features is given here.</p>
<p>LAMMPS 2001</p>
<ul class="simple">
<li>F90 + MPI</li>
<li>dynamic memory</li>
<li>spatial-decomposition parallelism</li>
<li>NVE, NVT, NPT, NPH, rRESPA integrators</li>
<li>LJ and Coulombic pairwise force fields</li>
<li>all-atom, united-atom, bead-spring polymer force fields</li>
<li>CHARMM-compatible force fields</li>
<li>class 2 force fields</li>
<li>3d/2d Ewald &amp; PPPM</li>
<li>various force and temperature constraints</li>
<li>SHAKE</li>
<li>Hessian-free truncated-Newton minimizer</li>
<li>user-defined diagnostics</li>
</ul>
<p>LAMMPS 99</p>
<ul class="simple">
<li>F77 + MPI</li>
<li>static memory allocation</li>
<li>spatial-decomposition parallelism</li>
<li>most of the LAMMPS 2001 features with a few exceptions</li>
<li>no 2d Ewald &amp; PPPM</li>
<li>molecular force fields are missing a few CHARMM terms</li>
<li>no SHAKE</li>
</ul>
<p>Warp</p>
<ul class="simple">
<li>F90 + MPI</li>
<li>spatial-decomposition parallelism</li>
<li>embedded atom method (EAM) metal potentials + LJ</li>
<li>lattice and grain-boundary atom creation</li>
<li>NVE, NVT integrators</li>
<li>boundary conditions for applying shear stresses</li>
<li>temperature controls for actively sheared systems</li>
<li>per-atom energy and centro-symmetry computation and output</li>
</ul>
<p>ParaDyn</p>
<ul class="simple">
<li>F77 + MPI</li>
<li>atom- and force-decomposition parallelism</li>
<li>embedded atom method (EAM) metal potentials</li>
<li>lattice atom creation</li>
<li>NVE, NVT, NPT integrators</li>
<li>all serial DYNAMO features for controls and constraints</li>
</ul>
<p>GranFlow</p>
<ul class="simple">
<li>F90 + MPI</li>
<li>spatial-decomposition parallelism</li>
<li>frictional granular potentials</li>
<li>NVE integrator</li>
<li>boundary conditions for granular flow and packing and walls</li>
<li>particle insertion</li>
</ul>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="Section_errors.html" class="btn btn-neutral" title="12. Errors" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2013 Sandia Corporation.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
</body>
</html>

File diff suppressed because it is too large Load Diff

View File

@ -1,695 +0,0 @@
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>1. Introduction &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
<link rel="top" title="LAMMPS documentation" href="index.html"/>
<link rel="next" title="2. Getting Started" href="Section_start.html"/>
<link rel="prev" title="LAMMPS Documentation" href="Manual.html"/>
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-nav-search">
<a href="Manual.html" class="icon icon-home"> LAMMPS
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1 current"><a class="current reference internal" href="#">1. Introduction</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#what-is-lammps">1.1. What is LAMMPS</a></li>
<li class="toctree-l2"><a class="reference internal" href="#lammps-features">1.2. LAMMPS features</a><ul>
<li class="toctree-l3"><a class="reference internal" href="#general-features">1.2.1. General features</a></li>
<li class="toctree-l3"><a class="reference internal" href="#particle-and-model-types">1.2.2. Particle and model types</a></li>
<li class="toctree-l3"><a class="reference internal" href="#force-fields">1.2.3. Force fields</a></li>
<li class="toctree-l3"><a class="reference internal" href="#atom-creation">1.2.4. Atom creation</a></li>
<li class="toctree-l3"><a class="reference internal" href="#ensembles-constraints-and-boundary-conditions">1.2.5. Ensembles, constraints, and boundary conditions</a></li>
<li class="toctree-l3"><a class="reference internal" href="#integrators">1.2.6. Integrators</a></li>
<li class="toctree-l3"><a class="reference internal" href="#diagnostics">1.2.7. Diagnostics</a></li>
<li class="toctree-l3"><a class="reference internal" href="#output">1.2.8. Output</a></li>
<li class="toctree-l3"><a class="reference internal" href="#multi-replica-models">1.2.9. Multi-replica models</a></li>
<li class="toctree-l3"><a class="reference internal" href="#pre-and-post-processing">1.2.10. Pre- and post-processing</a></li>
<li class="toctree-l3"><a class="reference internal" href="#specialized-features">1.2.11. Specialized features</a></li>
</ul>
</li>
<li class="toctree-l2"><a class="reference internal" href="#lammps-non-features">1.3. LAMMPS non-features</a></li>
<li class="toctree-l2"><a class="reference internal" href="#open-source-distribution">1.4. Open source distribution</a></li>
<li class="toctree-l2"><a class="reference internal" href="#acknowledgments-and-citations">1.5. Acknowledgments and citations</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a></li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="Manual.html">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="Manual.html">Docs</a> &raquo;</li>
<li>1. Introduction</li>
<li class="wy-breadcrumbs-aside">
<a href="http://lammps.sandia.gov">Website</a>
<a href="Section_commands.html#comm">Commands</a>
</li>
</ul>
<hr/>
<div class="rst-footer-buttons" style="margin-bottom: 1em" role="navigation" aria-label="footer navigation">
<a href="Section_start.html" class="btn btn-neutral float-right" title="2. Getting Started" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Manual.html" class="btn btn-neutral" title="LAMMPS Documentation" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="introduction">
<h1>1. Introduction</h1>
<p>This section provides an overview of what LAMMPS can and can&#8217;t do,
describes what it means for LAMMPS to be an open-source code, and
acknowledges the funding and people who have contributed to LAMMPS
over the years.</p>
<div class="line-block">
<div class="line">1.1 <a class="reference internal" href="#intro-1"><span class="std std-ref">What is LAMMPS</span></a></div>
<div class="line">1.2 <a class="reference internal" href="#intro-2"><span class="std std-ref">LAMMPS features</span></a></div>
<div class="line">1.3 <a class="reference internal" href="#intro-3"><span class="std std-ref">LAMMPS non-features</span></a></div>
<div class="line">1.4 <a class="reference internal" href="#intro-4"><span class="std std-ref">Open source distribution</span></a></div>
<div class="line">1.5 <a class="reference internal" href="#intro-5"><span class="std std-ref">Acknowledgments and citations</span></a></div>
<div class="line"><br /></div>
</div>
<div class="section" id="what-is-lammps">
<span id="intro-1"></span><h2>1.1. What is LAMMPS</h2>
<p>LAMMPS is a classical molecular dynamics code that models an ensemble
of particles in a liquid, solid, or gaseous state. It can model
atomic, polymeric, biological, metallic, granular, and coarse-grained
systems using a variety of force fields and boundary conditions.</p>
<p>For examples of LAMMPS simulations, see the Publications page of the
<a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>.</p>
<p>LAMMPS runs efficiently on single-processor desktop or laptop
machines, but is designed for parallel computers. It will run on any
parallel machine that compiles C++ and supports the <a class="reference external" href="http://www-unix.mcs.anl.gov/mpi">MPI</a>
message-passing library. This includes distributed- or shared-memory
parallel machines and Beowulf-style clusters.</p>
<p>LAMMPS can model systems with only a few particles up to millions or
billions. See <a class="reference internal" href="Section_perf.html"><span class="doc">Section_perf</span></a> for information on
LAMMPS performance and scalability, or the Benchmarks section of the
<a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>.</p>
<p>LAMMPS is a freely-available open-source code, distributed under the
terms of the <a class="reference external" href="http://www.gnu.org/copyleft/gpl.html">GNU Public License</a>, which means you can use or
modify the code however you wish. See <a class="reference internal" href="#intro-4"><span class="std std-ref">this section</span></a> for a
brief discussion of the open-source philosophy.</p>
<p>LAMMPS is designed to be easy to modify or extend with new
capabilities, such as new force fields, atom types, boundary
conditions, or diagnostics. See <a class="reference internal" href="Section_modify.html"><span class="doc">Section_modify</span></a>
for more details.</p>
<p>The current version of LAMMPS is written in C++. Earlier versions
were written in F77 and F90. See
<a class="reference internal" href="Section_history.html"><span class="doc">Section_history</span></a> for more information on
different versions. All versions can be downloaded from the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>.</p>
<p>LAMMPS was originally developed under a US Department of Energy CRADA
(Cooperative Research and Development Agreement) between two DOE labs
and 3 companies. It is distributed by <a class="reference external" href="http://www.sandia.gov">Sandia National Labs</a>.
See <a class="reference internal" href="#intro-5"><span class="std std-ref">this section</span></a> for more information on LAMMPS funding and
individuals who have contributed to LAMMPS.</p>
<p>In the most general sense, LAMMPS integrates Newton&#8217;s equations of
motion for collections of atoms, molecules, or macroscopic particles
that interact via short- or long-range forces with a variety of
initial and/or boundary conditions. For computational efficiency
LAMMPS uses neighbor lists to keep track of nearby particles. The
lists are optimized for systems with particles that are repulsive at
short distances, so that the local density of particles never becomes
too large. On parallel machines, LAMMPS uses spatial-decomposition
techniques to partition the simulation domain into small 3d
sub-domains, one of which is assigned to each processor. Processors
communicate and store &#8220;ghost&#8221; atom information for atoms that border
their sub-domain. LAMMPS is most efficient (in a parallel sense) for
systems whose particles fill a 3d rectangular box with roughly uniform
density. Papers with technical details of the algorithms used in
LAMMPS are listed in <a class="reference internal" href="#intro-5"><span class="std std-ref">this section</span></a>.</p>
<hr class="docutils" />
</div>
<div class="section" id="lammps-features">
<span id="intro-2"></span><h2>1.2. LAMMPS features</h2>
<p>This section highlights LAMMPS features, with pointers to specific
commands which give more details. If LAMMPS doesn&#8217;t have your
favorite interatomic potential, boundary condition, or atom type, see
<a class="reference internal" href="Section_modify.html"><span class="doc">Section_modify</span></a>, which describes how you can add
it to LAMMPS.</p>
<div class="section" id="general-features">
<h3>1.2.1. General features</h3>
<ul class="simple">
<li>runs on a single processor or in parallel</li>
<li>distributed-memory message-passing parallelism (MPI)</li>
<li>spatial-decomposition of simulation domain for parallelism</li>
<li>open-source distribution</li>
<li>highly portable C++</li>
<li>optional libraries used: MPI and single-processor FFT</li>
<li>GPU (CUDA and OpenCL), Intel(R) Xeon Phi(TM) coprocessors, and OpenMP support for many code features</li>
<li>easy to extend with new features and functionality</li>
<li>runs from an input script</li>
<li>syntax for defining and using variables and formulas</li>
<li>syntax for looping over runs and breaking out of loops</li>
<li>run one or multiple simulations simultaneously (in parallel) from one script</li>
<li>build as library, invoke LAMMPS thru library interface or provided Python wrapper</li>
<li>couple with other codes: LAMMPS calls other code, other code calls LAMMPS, umbrella code calls both</li>
</ul>
</div>
<div class="section" id="particle-and-model-types">
<h3>1.2.2. Particle and model types</h3>
<p>(<a class="reference internal" href="atom_style.html"><span class="doc">atom style</span></a> command)</p>
<ul class="simple">
<li>atoms</li>
<li>coarse-grained particles (e.g. bead-spring polymers)</li>
<li>united-atom polymers or organic molecules</li>
<li>all-atom polymers, organic molecules, proteins, DNA</li>
<li>metals</li>
<li>granular materials</li>
<li>coarse-grained mesoscale models</li>
<li>finite-size spherical and ellipsoidal particles</li>
<li>finite-size line segment (2d) and triangle (3d) particles</li>
<li>point dipole particles</li>
<li>rigid collections of particles</li>
<li>hybrid combinations of these</li>
</ul>
</div>
<div class="section" id="force-fields">
<h3>1.2.3. Force fields</h3>
<p>(<a class="reference internal" href="pair_style.html"><span class="doc">pair style</span></a>, <a class="reference internal" href="bond_style.html"><span class="doc">bond style</span></a>,
<a class="reference internal" href="angle_style.html"><span class="doc">angle style</span></a>, <a class="reference internal" href="dihedral_style.html"><span class="doc">dihedral style</span></a>,
<a class="reference internal" href="improper_style.html"><span class="doc">improper style</span></a>, <a class="reference internal" href="kspace_style.html"><span class="doc">kspace style</span></a>
commands)</p>
<ul class="simple">
<li>pairwise potentials: Lennard-Jones, Buckingham, Morse, Born-Mayer-Huggins, Yukawa, soft, class 2 (COMPASS), hydrogen bond, tabulated</li>
<li>charged pairwise potentials: Coulombic, point-dipole</li>
<li>manybody potentials: EAM, Finnis/Sinclair EAM, modified EAM (MEAM), embedded ion method (EIM), EDIP, ADP, Stillinger-Weber, Tersoff, REBO, AIREBO, ReaxFF, COMB, SNAP, Streitz-Mintmire, 3-body polymorphic</li>
<li>long-range interactions for charge, point-dipoles, and LJ dispersion: Ewald, Wolf, PPPM (similar to particle-mesh Ewald)</li>
<li>polarization models: <a class="reference internal" href="fix_qeq.html"><span class="doc">QEq</span></a>, <a class="reference internal" href="Section_howto.html#howto-26"><span class="std std-ref">core/shell model</span></a>, <a class="reference internal" href="Section_howto.html#howto-27"><span class="std std-ref">Drude dipole model</span></a></li>
<li>charge equilibration (QEq via dynamic, point, shielded, Slater methods)</li>
<li>coarse-grained potentials: DPD, GayBerne, REsquared, colloidal, DLVO</li>
<li>mesoscopic potentials: granular, Peridynamics, SPH</li>
<li>electron force field (eFF, AWPMD)</li>
<li>bond potentials: harmonic, FENE, Morse, nonlinear, class 2, quartic (breakable)</li>
<li>angle potentials: harmonic, CHARMM, cosine, cosine/squared, cosine/periodic, class 2 (COMPASS)</li>
<li>dihedral potentials: harmonic, CHARMM, multi-harmonic, helix, class 2 (COMPASS), OPLS</li>
<li>improper potentials: harmonic, cvff, umbrella, class 2 (COMPASS)</li>
<li>polymer potentials: all-atom, united-atom, bead-spring, breakable</li>
<li>water potentials: TIP3P, TIP4P, SPC</li>
<li>implicit solvent potentials: hydrodynamic lubrication, Debye</li>
<li>force-field compatibility with common CHARMM, AMBER, DREIDING, OPLS, GROMACS, COMPASS options</li>
<li>access to <a class="reference external" href="http://openkim.org">KIM archive</a> of potentials via <a class="reference internal" href="pair_kim.html"><span class="doc">pair kim</span></a></li>
<li>hybrid potentials: multiple pair, bond, angle, dihedral, improper potentials can be used in one simulation</li>
<li>overlaid potentials: superposition of multiple pair potentials</li>
</ul>
</div>
<div class="section" id="atom-creation">
<h3>1.2.4. Atom creation</h3>
<p>(<a class="reference internal" href="read_data.html"><span class="doc">read_data</span></a>, <a class="reference internal" href="lattice.html"><span class="doc">lattice</span></a>,
<a class="reference internal" href="create_atoms.html"><span class="doc">create_atoms</span></a>, <a class="reference internal" href="delete_atoms.html"><span class="doc">delete_atoms</span></a>,
<a class="reference internal" href="displace_atoms.html"><span class="doc">displace_atoms</span></a>, <a class="reference internal" href="replicate.html"><span class="doc">replicate</span></a> commands)</p>
<ul class="simple">
<li>read in atom coords from files</li>
<li>create atoms on one or more lattices (e.g. grain boundaries)</li>
<li>delete geometric or logical groups of atoms (e.g. voids)</li>
<li>replicate existing atoms multiple times</li>
<li>displace atoms</li>
</ul>
</div>
<div class="section" id="ensembles-constraints-and-boundary-conditions">
<h3>1.2.5. Ensembles, constraints, and boundary conditions</h3>
<p>(<a class="reference internal" href="fix.html"><span class="doc">fix</span></a> command)</p>
<ul class="simple">
<li>2d or 3d systems</li>
<li>orthogonal or non-orthogonal (triclinic symmetry) simulation domains</li>
<li>constant NVE, NVT, NPT, NPH, Parinello/Rahman integrators</li>
<li>thermostatting options for groups and geometric regions of atoms</li>
<li>pressure control via Nose/Hoover or Berendsen barostatting in 1 to 3 dimensions</li>
<li>simulation box deformation (tensile and shear)</li>
<li>harmonic (umbrella) constraint forces</li>
<li>rigid body constraints</li>
<li>SHAKE bond and angle constraints</li>
<li>Monte Carlo bond breaking, formation, swapping</li>
<li>atom/molecule insertion and deletion</li>
<li>walls of various kinds</li>
<li>non-equilibrium molecular dynamics (NEMD)</li>
<li>variety of additional boundary conditions and constraints</li>
</ul>
</div>
<div class="section" id="integrators">
<h3>1.2.6. Integrators</h3>
<p>(<a class="reference internal" href="run.html"><span class="doc">run</span></a>, <a class="reference internal" href="run_style.html"><span class="doc">run_style</span></a>, <a class="reference internal" href="minimize.html"><span class="doc">minimize</span></a> commands)</p>
<ul class="simple">
<li>velocity-Verlet integrator</li>
<li>Brownian dynamics</li>
<li>rigid body integration</li>
<li>energy minimization via conjugate gradient or steepest descent relaxation</li>
<li>rRESPA hierarchical timestepping</li>
<li>rerun command for post-processing of dump files</li>
</ul>
</div>
<div class="section" id="diagnostics">
<h3>1.2.7. Diagnostics</h3>
<ul class="simple">
<li>see the various flavors of the <a class="reference internal" href="fix.html"><span class="doc">fix</span></a> and <a class="reference internal" href="compute.html"><span class="doc">compute</span></a> commands</li>
</ul>
</div>
<div class="section" id="output">
<h3>1.2.8. Output</h3>
<p>(<a class="reference internal" href="dump.html"><span class="doc">dump</span></a>, <a class="reference internal" href="restart.html"><span class="doc">restart</span></a> commands)</p>
<ul class="simple">
<li>log file of thermodynamic info</li>
<li>text dump files of atom coords, velocities, other per-atom quantities</li>
<li>binary restart files</li>
<li>parallel I/O of dump and restart files</li>
<li>per-atom quantities (energy, stress, centro-symmetry parameter, CNA, etc)</li>
<li>user-defined system-wide (log file) or per-atom (dump file) calculations</li>
<li>spatial and time averaging of per-atom quantities</li>
<li>time averaging of system-wide quantities</li>
<li>atom snapshots in native, XYZ, XTC, DCD, CFG formats</li>
</ul>
</div>
<div class="section" id="multi-replica-models">
<h3>1.2.9. Multi-replica models</h3>
<p><a class="reference internal" href="neb.html"><span class="doc">nudged elastic band</span></a>
<a class="reference internal" href="prd.html"><span class="doc">parallel replica dynamics</span></a>
<a class="reference internal" href="tad.html"><span class="doc">temperature accelerated dynamics</span></a>
<a class="reference internal" href="temper.html"><span class="doc">parallel tempering</span></a></p>
</div>
<div class="section" id="pre-and-post-processing">
<h3>1.2.10. Pre- and post-processing</h3>
<ul class="simple">
<li>Various pre- and post-processing serial tools are packaged
with LAMMPS; see these <a class="reference internal" href="Section_tools.html"><span class="doc">doc pages</span></a>.</li>
<li>Our group has also written and released a separate toolkit called
<a class="reference external" href="http://www.sandia.gov/~sjplimp/pizza.html">Pizza.py</a> which provides tools for doing setup, analysis,
plotting, and visualization for LAMMPS simulations. Pizza.py is
written in <a class="reference external" href="http://www.python.org">Python</a> and is available for download from <a class="reference external" href="http://www.sandia.gov/~sjplimp/pizza.html">the Pizza.py WWW site</a>.</li>
</ul>
</div>
<div class="section" id="specialized-features">
<h3>1.2.11. Specialized features</h3>
<p>These are LAMMPS capabilities which you may not think of as typical
molecular dynamics options:</p>
<ul class="simple">
<li><a class="reference internal" href="balance.html"><span class="doc">static</span></a> and <a class="reference internal" href="fix_balance.html"><span class="doc">dynamic load-balancing</span></a></li>
<li><a class="reference internal" href="body.html"><span class="doc">generalized aspherical particles</span></a></li>
<li><a class="reference internal" href="fix_srd.html"><span class="doc">stochastic rotation dynamics (SRD)</span></a></li>
<li><a class="reference internal" href="fix_imd.html"><span class="doc">real-time visualization and interactive MD</span></a></li>
<li>calculate <a class="reference internal" href="compute_xrd.html"><span class="doc">virtual diffraction patterns</span></a></li>
<li><a class="reference internal" href="fix_atc.html"><span class="doc">atom-to-continuum coupling</span></a> with finite elements</li>
<li>coupled rigid body integration via the <a class="reference internal" href="fix_poems.html"><span class="doc">POEMS</span></a> library</li>
<li><a class="reference internal" href="fix_qmmm.html"><span class="doc">QM/MM coupling</span></a></li>
<li><a class="reference internal" href="fix_ipi.html"><span class="doc">path-integral molecular dynamics (PIMD)</span></a> and <a class="reference internal" href="fix_pimd.html"><span class="doc">this as well</span></a></li>
<li>Monte Carlo via <a class="reference internal" href="fix_gcmc.html"><span class="doc">GCMC</span></a> and <a class="reference internal" href="fix_tfmc.html"><span class="doc">tfMC</span></a> <a class="reference internal" href="fix_atom_swap.html"><span class="doc">atom swapping</span></a> and <a class="reference internal" href="fix_bond_swap.html"><span class="doc">bond swapping</span></a></li>
<li><a class="reference internal" href="pair_dsmc.html"><span class="doc">Direct Simulation Monte Carlo</span></a> for low-density fluids</li>
<li><a class="reference internal" href="pair_peri.html"><span class="doc">Peridynamics mesoscale modeling</span></a></li>
<li><a class="reference internal" href="fix_lb_fluid.html"><span class="doc">Lattice Boltzmann fluid</span></a></li>
<li><a class="reference internal" href="fix_tmd.html"><span class="doc">targeted</span></a> and <a class="reference internal" href="fix_smd.html"><span class="doc">steered</span></a> molecular dynamics</li>
<li><a class="reference internal" href="fix_ttm.html"><span class="doc">two-temperature electron model</span></a></li>
</ul>
<hr class="docutils" />
</div>
</div>
<div class="section" id="lammps-non-features">
<span id="intro-3"></span><h2>1.3. LAMMPS non-features</h2>
<p>LAMMPS is designed to efficiently compute Newton&#8217;s equations of motion
for a system of interacting particles. Many of the tools needed to
pre- and post-process the data for such simulations are not included
in the LAMMPS kernel for several reasons:</p>
<ul class="simple">
<li>the desire to keep LAMMPS simple</li>
<li>they are not parallel operations</li>
<li>other codes already do them</li>
<li>limited development resources</li>
</ul>
<p>Specifically, LAMMPS itself does not:</p>
<ul class="simple">
<li>run thru a GUI</li>
<li>build molecular systems</li>
<li>assign force-field coefficients automagically</li>
<li>perform sophisticated analyses of your MD simulation</li>
<li>visualize your MD simulation</li>
<li>plot your output data</li>
</ul>
<p>A few tools for pre- and post-processing tasks are provided as part of
the LAMMPS package; they are described in <a class="reference internal" href="Section_tools.html"><span class="doc">this section</span></a>. However, many people use other codes or
write their own tools for these tasks.</p>
<p>As noted above, our group has also written and released a separate
toolkit called <a class="reference external" href="http://www.sandia.gov/~sjplimp/pizza.html">Pizza.py</a> which addresses some of the listed
bullets. It provides tools for doing setup, analysis, plotting, and
visualization for LAMMPS simulations. Pizza.py is written in
<a class="reference external" href="http://www.python.org">Python</a> and is available for download from <a class="reference external" href="http://www.sandia.gov/~sjplimp/pizza.html">the Pizza.py WWW site</a>.</p>
<p>LAMMPS requires as input a list of initial atom coordinates and types,
molecular topology information, and force-field coefficients assigned
to all atoms and bonds. LAMMPS will not build molecular systems and
assign force-field parameters for you.</p>
<p>For atomic systems LAMMPS provides a <a class="reference internal" href="create_atoms.html"><span class="doc">create_atoms</span></a>
command which places atoms on solid-state lattices (fcc, bcc,
user-defined, etc). Assigning small numbers of force field
coefficients can be done via the <a class="reference internal" href="pair_coeff.html"><span class="doc">pair coeff</span></a>, <a class="reference internal" href="bond_coeff.html"><span class="doc">bond coeff</span></a>, <a class="reference internal" href="angle_coeff.html"><span class="doc">angle coeff</span></a>, etc commands.
For molecular systems or more complicated simulation geometries, users
typically use another code as a builder and convert its output to
LAMMPS input format, or write their own code to generate atom
coordinate and molecular topology for LAMMPS to read in.</p>
<p>For complicated molecular systems (e.g. a protein), a multitude of
topology information and hundreds of force-field coefficients must
typically be specified. We suggest you use a program like
<a class="reference external" href="http://www.scripps.edu/brooks">CHARMM</a> or <a class="reference external" href="http://amber.scripps.edu">AMBER</a> or other molecular builders to setup
such problems and dump its information to a file. You can then
reformat the file as LAMMPS input. Some of the tools in <a class="reference internal" href="Section_tools.html"><span class="doc">this section</span></a> can assist in this process.</p>
<p>Similarly, LAMMPS creates output files in a simple format. Most users
post-process these files with their own analysis tools or re-format
them for input into other programs, including visualization packages.
If you are convinced you need to compute something on-the-fly as
LAMMPS runs, see <a class="reference internal" href="Section_modify.html"><span class="doc">Section_modify</span></a> for a discussion
of how you can use the <a class="reference internal" href="dump.html"><span class="doc">dump</span></a> and <a class="reference internal" href="compute.html"><span class="doc">compute</span></a> and
<a class="reference internal" href="fix.html"><span class="doc">fix</span></a> commands to print out data of your choosing. Keep in
mind that complicated computations can slow down the molecular
dynamics timestepping, particularly if the computations are not
parallel, so it is often better to leave such analysis to
post-processing codes.</p>
<p>A very simple (yet fast) visualizer is provided with the LAMMPS
package - see the <a class="reference internal" href="Section_tools.html#xmovie"><span class="std std-ref">xmovie</span></a> tool in <a class="reference internal" href="Section_tools.html"><span class="doc">this section</span></a>. It creates xyz projection views of
atomic coordinates and animates them. We find it very useful for
debugging purposes. For high-quality visualization we recommend the
following packages:</p>
<ul class="simple">
<li><a class="reference external" href="http://www.ks.uiuc.edu/Research/vmd">VMD</a></li>
<li><a class="reference external" href="http://mt.seas.upenn.edu/Archive/Graphics/A">AtomEye</a></li>
<li><a class="reference external" href="http://pymol.sourceforge.net">PyMol</a></li>
<li><a class="reference external" href="http://www.bmsc.washington.edu/raster3d/raster3d.html">Raster3d</a></li>
<li><a class="reference external" href="http://www.openrasmol.org">RasMol</a></li>
</ul>
<p>Other features that LAMMPS does not yet (and may never) support are
discussed in <a class="reference internal" href="Section_history.html"><span class="doc">Section_history</span></a>.</p>
<p>Finally, these are freely-available molecular dynamics codes, most of
them parallel, which may be well-suited to the problems you want to
model. They can also be used in conjunction with LAMMPS to perform
complementary modeling tasks.</p>
<ul class="simple">
<li><a class="reference external" href="http://www.scripps.edu/brooks">CHARMM</a></li>
<li><a class="reference external" href="http://amber.scripps.edu">AMBER</a></li>
<li><a class="reference external" href="http://www.ks.uiuc.edu/Research/namd/">NAMD</a></li>
<li><a class="reference external" href="http://www.emsl.pnl.gov/docs/nwchem/nwchem.html">NWCHEM</a></li>
<li><a class="reference external" href="http://www.cse.clrc.ac.uk/msi/software/DL_POLY">DL_POLY</a></li>
<li><a class="reference external" href="http://dasher.wustl.edu/tinker">Tinker</a></li>
</ul>
<p>CHARMM, AMBER, NAMD, NWCHEM, and Tinker are designed primarily for
modeling biological molecules. CHARMM and AMBER use
atom-decomposition (replicated-data) strategies for parallelism; NAMD
and NWCHEM use spatial-decomposition approaches, similar to LAMMPS.
Tinker is a serial code. DL_POLY includes potentials for a variety of
biological and non-biological materials; both a replicated-data and
spatial-decomposition version exist.</p>
<hr class="docutils" />
</div>
<div class="section" id="open-source-distribution">
<span id="intro-4"></span><h2>1.4. Open source distribution</h2>
<p>LAMMPS comes with no warranty of any kind. As each source file states
in its header, it is a copyrighted code that is distributed free-of-
charge, under the terms of the <a class="reference external" href="http://www.gnu.org/copyleft/gpl.html">GNU Public License</a> (GPL). This
is often referred to as open-source distribution - see
<a class="reference external" href="http://www.gnu.org">www.gnu.org</a> or <a class="reference external" href="http://www.opensource.org">www.opensource.org</a> for more
details. The legal text of the GPL is in the LICENSE file that is
included in the LAMMPS distribution.</p>
<p>Here is a summary of what the GPL means for LAMMPS users:</p>
<p>(1) Anyone is free to use, modify, or extend LAMMPS in any way they
choose, including for commercial purposes.</p>
<p>(2) If you distribute a modified version of LAMMPS, it must remain
open-source, meaning you distribute it under the terms of the GPL.
You should clearly annotate such a code as a derivative version of
LAMMPS.</p>
<p>(3) If you release any code that includes LAMMPS source code, then it
must also be open-sourced, meaning you distribute it under the terms
of the GPL.</p>
<p>(4) If you give LAMMPS files to someone else, the GPL LICENSE file and
source file headers (including the copyright and GPL notices) should
remain part of the code.</p>
<p>In the spirit of an open-source code, these are various ways you can
contribute to making LAMMPS better. You can send email to the
<a class="reference external" href="http://lammps.sandia.gov/authors.html">developers</a> on any of these
items.</p>
<ul class="simple">
<li>Point prospective users to the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>. Mention it in
talks or link to it from your WWW site.</li>
<li>If you find an error or omission in this manual or on the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>, or have a suggestion for something to clarify or include,
send an email to the
<a class="reference external" href="http://lammps.sandia.gov/authors.html">developers</a>.</li>
<li>If you find a bug, <a class="reference internal" href="Section_errors.html#err-2"><span class="std std-ref">Section_errors 2</span></a>
describes how to report it.</li>
<li>If you publish a paper using LAMMPS results, send the citation (and
any cool pictures or movies if you like) to add to the Publications,
Pictures, and Movies pages of the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>, with links
and attributions back to you.</li>
<li>Create a new Makefile.machine that can be added to the src/MAKE
directory.</li>
<li>The tools sub-directory of the LAMMPS distribution has various
stand-alone codes for pre- and post-processing of LAMMPS data. More
details are given in <a class="reference internal" href="Section_tools.html"><span class="doc">Section_tools</span></a>. If you write
a new tool that users will find useful, it can be added to the LAMMPS
distribution.</li>
<li>LAMMPS is designed to be easy to extend with new code for features
like potentials, boundary conditions, diagnostic computations, etc.
<a class="reference internal" href="Section_modify.html"><span class="doc">This section</span></a> gives details. If you add a
feature of general interest, it can be added to the LAMMPS
distribution.</li>
<li>The Benchmark page of the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a> lists LAMMPS
performance on various platforms. The files needed to run the
benchmarks are part of the LAMMPS distribution. If your machine is
sufficiently different from those listed, your timing data can be
added to the page.</li>
<li>You can send feedback for the User Comments page of the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>. It might be added to the page. No promises.</li>
<li>Cash. Small denominations, unmarked bills preferred. Paper sack OK.
Leave on desk. VISA also accepted. Chocolate chip cookies
encouraged.</li>
</ul>
<hr class="docutils" />
</div>
<div class="section" id="acknowledgments-and-citations">
<span id="intro-5"></span><h2>1.5. Acknowledgments and citations</h2>
<p>LAMMPS development has been funded by the <a class="reference external" href="http://www.doe.gov">US Department of Energy</a> (DOE), through its CRADA, LDRD, ASCI, and Genomes-to-Life
programs and its <a class="reference external" href="http://www.sc.doe.gov/ascr/home.html">OASCR</a> and <a class="reference external" href="http://www.er.doe.gov/production/ober/ober_top.html">OBER</a> offices.</p>
<p>Specifically, work on the latest version was funded in part by the US
Department of Energy&#8217;s Genomics:GTL program
(<a class="reference external" href="http://www.doegenomestolife.org">www.doegenomestolife.org</a>) under the <a class="reference external" href="http://www.genomes2life.org">project</a>, &#8220;Carbon
Sequestration in Synechococcus Sp.: From Molecular Machines to
Hierarchical Modeling&#8221;.</p>
<p>The following paper describe the basic parallel algorithms used in
LAMMPS. If you use LAMMPS results in your published work, please cite
this paper and include a pointer to the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a>
(<a class="reference external" href="http://lammps.sandia.gov">http://lammps.sandia.gov</a>):</p>
<p>S. Plimpton, <strong>Fast Parallel Algorithms for Short-Range Molecular
Dynamics</strong>, J Comp Phys, 117, 1-19 (1995).</p>
<p>Other papers describing specific algorithms used in LAMMPS are listed
under the <a class="reference external" href="http://lammps.sandia.gov/cite.html">Citing LAMMPS link</a> of
the LAMMPS WWW page.</p>
<p>The <a class="reference external" href="http://lammps.sandia.gov/papers.html">Publications link</a> on the
LAMMPS WWW page lists papers that have cited LAMMPS. If your paper is
not listed there for some reason, feel free to send us the info. If
the simulations in your paper produced cool pictures or animations,
we&#8217;ll be pleased to add them to the
<a class="reference external" href="http://lammps.sandia.gov/pictures.html">Pictures</a> or
<a class="reference external" href="http://lammps.sandia.gov/movies.html">Movies</a> pages of the LAMMPS WWW
site.</p>
<p>The core group of LAMMPS developers is at Sandia National Labs:</p>
<ul class="simple">
<li>Steve Plimpton, sjplimp at sandia.gov</li>
<li>Aidan Thompson, athomps at sandia.gov</li>
<li>Paul Crozier, pscrozi at sandia.gov</li>
</ul>
<p>The following folks are responsible for significant contributions to
the code, or other aspects of the LAMMPS development effort. Many of
the packages they have written are somewhat unique to LAMMPS and the
code would not be as general-purpose as it is without their expertise
and efforts.</p>
<ul class="simple">
<li>Axel Kohlmeyer (Temple U), akohlmey at gmail.com, SVN and Git repositories, indefatigable mail list responder, USER-CG-CMM and USER-OMP packages</li>
<li>Roy Pollock (LLNL), Ewald and PPPM solvers</li>
<li>Mike Brown (ORNL), brownw at ornl.gov, GPU package</li>
<li>Greg Wagner (Sandia), gjwagne at sandia.gov, MEAM package for MEAM potential</li>
<li>Mike Parks (Sandia), mlparks at sandia.gov, PERI package for Peridynamics</li>
<li>Rudra Mukherjee (JPL), Rudranarayan.M.Mukherjee at jpl.nasa.gov, POEMS package for articulated rigid body motion</li>
<li>Reese Jones (Sandia) and collaborators, rjones at sandia.gov, USER-ATC package for atom/continuum coupling</li>
<li>Ilya Valuev (JIHT), valuev at physik.hu-berlin.de, USER-AWPMD package for wave-packet MD</li>
<li>Christian Trott (U Tech Ilmenau), christian.trott at tu-ilmenau.de, USER-CUDA package</li>
<li>Andres Jaramillo-Botero (Caltech), ajaramil at wag.caltech.edu, USER-EFF package for electron force field</li>
<li>Christoph Kloss (JKU), Christoph.Kloss at jku.at, USER-LIGGGHTS package for granular models and granular/fluid coupling</li>
<li>Metin Aktulga (LBL), hmaktulga at lbl.gov, USER-REAXC package for C version of ReaxFF</li>
<li>Georg Gunzenmuller (EMI), georg.ganzenmueller at emi.fhg.de, USER-SPH package</li>
</ul>
<p>As discussed in <a class="reference internal" href="Section_history.html"><span class="doc">Section_history</span></a>, LAMMPS
originated as a cooperative project between DOE labs and industrial
partners. Folks involved in the design and testing of the original
version of LAMMPS were the following:</p>
<ul class="simple">
<li>John Carpenter (Mayo Clinic, formerly at Cray Research)</li>
<li>Terry Stouch (Lexicon Pharmaceuticals, formerly at Bristol Myers Squibb)</li>
<li>Steve Lustig (Dupont)</li>
<li>Jim Belak (LLNL)</li>
</ul>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="Section_start.html" class="btn btn-neutral float-right" title="2. Getting Started" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Manual.html" class="btn btn-neutral" title="LAMMPS Documentation" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2013 Sandia Corporation.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
</body>
</html>

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,279 +0,0 @@
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>8. Performance &amp; scalability &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
<link rel="top" title="LAMMPS documentation" href="index.html"/>
<link rel="next" title="9. Additional tools" href="Section_tools.html"/>
<link rel="prev" title="7. Example problems" href="Section_example.html"/>
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-nav-search">
<a href="Manual.html" class="icon icon-home"> LAMMPS
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">8. Performance &amp; scalability</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_tools.html">9. Additional tools</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a></li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="Manual.html">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="Manual.html">Docs</a> &raquo;</li>
<li>8. Performance &amp; scalability</li>
<li class="wy-breadcrumbs-aside">
<a href="http://lammps.sandia.gov">Website</a>
<a href="Section_commands.html#comm">Commands</a>
</li>
</ul>
<hr/>
<div class="rst-footer-buttons" style="margin-bottom: 1em" role="navigation" aria-label="footer navigation">
<a href="Section_tools.html" class="btn btn-neutral float-right" title="9. Additional tools" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_example.html" class="btn btn-neutral" title="7. Example problems" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="performance-scalability">
<h1>8. Performance &amp; scalability</h1>
<p>Current LAMMPS performance is discussed on the Benchmarks page of the
<a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW Site</a> where CPU timings and parallel efficiencies are
listed. The page has several sections, which are briefly described
below:</p>
<ul class="simple">
<li>CPU performance on 5 standard problems, strong and weak scaling</li>
<li>GPU and Xeon Phi performance on same and related problems</li>
<li>Comparison of cost of interatomic potentials</li>
<li>Performance of huge, billion-atom problems</li>
</ul>
<p>The 5 standard problems are as follow:</p>
<ol class="arabic simple">
<li>LJ = atomic fluid, Lennard-Jones potential with 2.5 sigma cutoff (55
neighbors per atom), NVE integration</li>
<li>Chain = bead-spring polymer melt of 100-mer chains, FENE bonds and LJ
pairwise interactions with a 2^(1/6) sigma cutoff (5 neighbors per
atom), NVE integration</li>
<li>EAM = metallic solid, Cu EAM potential with 4.95 Angstrom cutoff (45
neighbors per atom), NVE integration</li>
<li>Chute = granular chute flow, frictional history potential with 1.1
sigma cutoff (7 neighbors per atom), NVE integration</li>
<li>Rhodo = rhodopsin protein in solvated lipid bilayer, CHARMM force
field with a 10 Angstrom LJ cutoff (440 neighbors per atom),
particle-particle particle-mesh (PPPM) for long-range Coulombics, NPT
integration</li>
</ol>
<p>Input files for these 5 problems are provided in the bench directory
of the LAMMPS distribution. Each has 32,000 atoms and runs for 100
timesteps. The size of the problem (number of atoms) can be varied
using command-line switches as described in the bench/README file.
This is an easy way to test performance and either strong or weak
scalability on your machine.</p>
<p>The bench directory includes a few log.* files that show performance
of these 5 problems on 1 or 4 cores of Linux desktop. The bench/FERMI
and bench/KEPLER dirs have input files and scripts and instructions
for running the same (or similar) problems using OpenMP or GPU or Xeon
Phi acceleration options. See the README files in those dirs and the
<a class="reference internal" href="Section_accelerate.html"><span class="doc">Section accelerate</span></a> doc pages for
instructions on how to build LAMMPS and run on that kind of hardware.</p>
<p>The bench/POTENTIALS directory has input files which correspond to the
table of results on the
<span class="xref std std-ref">Potentials</span> section of
the Benchmarks web page. So you can also run those test problems on
your machine.</p>
<p>The <span class="xref std std-ref">billion-atom</span> section
of the Benchmarks web page has performance data for very large
benchmark runs of simple Lennard-Jones (LJ) models, which use the
bench/in.lj input script.</p>
<hr class="docutils" />
<p>For all the benchmarks, a useful metric is the CPU cost per atom per
timestep. Since performance scales roughly linearly with problem size
and timesteps for all LAMMPS models (i.e. inteatomic or coarse-grained
potentials), the run time of any problem using the same model (atom
style, force field, cutoff, etc) can then be estimated.</p>
<p>Performance on a parallel machine can also be predicted from one-core
or one-node timings if the parallel efficiency can be estimated. The
communication bandwidth and latency of a particular parallel machine
affects the efficiency. On most machines LAMMPS will give parallel
efficiencies on these benchmarks above 50% so long as the number of
atoms/core is a few 100 or greater, and closer to 100% for large
numbers of atoms/core. This is for all-MPI mode with one MPI task per
core. For nodes with accelerator options or hardware (OpenMP, GPU,
Phi), you should first measure single node performance. Then you can
estimate parallel performance for multi-node runs using the same logic
as for all-MPI mode, except that now you will typically need many more
atoms/node to achieve good scalability.</p>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="Section_tools.html" class="btn btn-neutral float-right" title="9. Additional tools" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_example.html" class="btn btn-neutral" title="7. Example problems" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2013 Sandia Corporation.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
</body>
</html>

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,707 +0,0 @@
<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>9. Additional tools &mdash; LAMMPS documentation</title>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/sphinxcontrib-images/LightBox2/lightbox2/css/lightbox.css" type="text/css" />
<link rel="top" title="LAMMPS documentation" href="index.html"/>
<link rel="next" title="10. Modifying &amp; extending LAMMPS" href="Section_modify.html"/>
<link rel="prev" title="8. Performance &amp; scalability" href="Section_perf.html"/>
<script src="_static/js/modernizr.min.js"></script>
</head>
<body class="wy-body-for-nav" role="document">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-nav-search">
<a href="Manual.html" class="icon icon-home"> LAMMPS
</a>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<ul class="current">
<li class="toctree-l1"><a class="reference internal" href="Section_intro.html">1. Introduction</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_start.html">2. Getting Started</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_commands.html">3. Commands</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_packages.html">4. Packages</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_accelerate.html">5. Accelerating LAMMPS performance</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_howto.html">6. How-to discussions</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_example.html">7. Example problems</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_perf.html">8. Performance &amp; scalability</a></li>
<li class="toctree-l1 current"><a class="current reference internal" href="#">9. Additional tools</a><ul>
<li class="toctree-l2"><a class="reference internal" href="#amber2lmp-tool">9.1. amber2lmp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#binary2txt-tool">9.2. binary2txt tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#ch2lmp-tool">9.3. ch2lmp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#chain-tool">9.4. chain tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#colvars-tools">9.5. colvars tools</a></li>
<li class="toctree-l2"><a class="reference internal" href="#createatoms-tool">9.6. createatoms tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#data2xmovie-tool">9.7. data2xmovie tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#eam-database-tool">9.8. eam database tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#eam-generate-tool">9.9. eam generate tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#eff-tool">9.10. eff tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#emacs-tool">9.11. emacs tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#fep-tool">9.12. fep tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#i-pi-tool">9.13. i-pi tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#ipp-tool">9.14. ipp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#kate-tool">9.15. kate tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#lmp2arc-tool">9.16. lmp2arc tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#lmp2cfg-tool">9.17. lmp2cfg tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#lmp2vmd-tool">9.18. lmp2vmd tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#matlab-tool">9.19. matlab tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#micelle2d-tool">9.20. micelle2d tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#moltemplate-tool">9.21. moltemplate tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#msi2lmp-tool">9.22. msi2lmp tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#phonon-tool">9.23. phonon tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#polymer-bonding-tool">9.24. polymer bonding tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#pymol-asphere-tool">9.25. pymol_asphere tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#python-tool">9.26. python tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#reax-tool">9.27. reax tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#restart2data-tool">9.28. restart2data tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#vim-tool">9.29. vim tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#xmgrace-tool">9.30. xmgrace tool</a></li>
<li class="toctree-l2"><a class="reference internal" href="#xmovie-tool">9.31. xmovie tool</a></li>
</ul>
</li>
<li class="toctree-l1"><a class="reference internal" href="Section_modify.html">10. Modifying &amp; extending LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_python.html">11. Python interface to LAMMPS</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_errors.html">12. Errors</a></li>
<li class="toctree-l1"><a class="reference internal" href="Section_history.html">13. Future and history</a></li>
</ul>
</div>
&nbsp;
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" role="navigation" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="Manual.html">LAMMPS</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="Manual.html">Docs</a> &raquo;</li>
<li>9. Additional tools</li>
<li class="wy-breadcrumbs-aside">
<a href="http://lammps.sandia.gov">Website</a>
<a href="Section_commands.html#comm">Commands</a>
</li>
</ul>
<hr/>
<div class="rst-footer-buttons" style="margin-bottom: 1em" role="navigation" aria-label="footer navigation">
<a href="Section_modify.html" class="btn btn-neutral float-right" title="10. Modifying &amp; extending LAMMPS" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_perf.html" class="btn btn-neutral" title="8. Performance &amp; scalability" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="additional-tools">
<h1>9. Additional tools</h1>
<p>LAMMPS is designed to be a computational kernel for performing
molecular dynamics computations. Additional pre- and post-processing
steps are often necessary to setup and analyze a simulation. A few
additional tools are provided with the LAMMPS distribution and are
described in this section.</p>
<p>Our group has also written and released a separate toolkit called
<a class="reference external" href="http://www.sandia.gov/~sjplimp/pizza.html">Pizza.py</a> which provides tools for doing setup, analysis,
plotting, and visualization for LAMMPS simulations. Pizza.py is
written in <a class="reference external" href="http://www.python.org">Python</a> and is available for download from <a class="reference external" href="http://www.sandia.gov/~sjplimp/pizza.html">the Pizza.py WWW site</a>.</p>
<p>Note that many users write their own setup or analysis tools or use
other existing codes and convert their output to a LAMMPS input format
or vice versa. The tools listed here are included in the LAMMPS
distribution as examples of auxiliary tools. Some of them are not
actively supported by Sandia, as they were contributed by LAMMPS
users. If you have problems using them, we can direct you to the
authors.</p>
<p>The source code for each of these codes is in the tools sub-directory
of the LAMMPS distribution. There is a Makefile (which you may need
to edit for your platform) which will build several of the tools which
reside in that directory. Some of them are larger packages in their
own sub-directories with their own Makefiles.</p>
<ul class="simple">
<li><a class="reference internal" href="#amber"><span class="std std-ref">amber2lmp</span></a></li>
<li><a class="reference internal" href="#binary"><span class="std std-ref">binary2txt</span></a></li>
<li><a class="reference internal" href="#charmm"><span class="std std-ref">ch2lmp</span></a></li>
<li><a class="reference internal" href="#chain"><span class="std std-ref">chain</span></a></li>
<li><a class="reference internal" href="#colvars"><span class="std std-ref">colvars</span></a></li>
<li><a class="reference internal" href="#create"><span class="std std-ref">createatoms</span></a></li>
<li><a class="reference internal" href="#data"><span class="std std-ref">data2xmovie</span></a></li>
<li><a class="reference internal" href="#eamdb"><span class="std std-ref">eam database</span></a></li>
<li><a class="reference internal" href="#eamgn"><span class="std std-ref">eam generate</span></a></li>
<li><a class="reference internal" href="#eff"><span class="std std-ref">eff</span></a></li>
<li><a class="reference internal" href="#emacs"><span class="std std-ref">emacs</span></a></li>
<li><a class="reference internal" href="#fep"><span class="std std-ref">fep</span></a></li>
<li><a class="reference internal" href="fix_ipi.html#ipi"><span class="std std-ref">i-pi</span></a></li>
<li><a class="reference internal" href="#ipp"><span class="std std-ref">ipp</span></a></li>
<li><a class="reference internal" href="#kate"><span class="std std-ref">kate</span></a></li>
<li><a class="reference internal" href="#arc"><span class="std std-ref">lmp2arc</span></a></li>
<li><a class="reference internal" href="#cfg"><span class="std std-ref">lmp2cfg</span></a></li>
<li><a class="reference internal" href="#vmd"><span class="std std-ref">lmp2vmd</span></a></li>
<li><span class="xref std std-ref">matlab</span></li>
<li><a class="reference internal" href="#micelle"><span class="std std-ref">micelle2d</span></a></li>
<li><a class="reference internal" href="#moltemplate"><span class="std std-ref">moltemplate</span></a></li>
<li><a class="reference internal" href="#msi"><span class="std std-ref">msi2lmp</span></a></li>
<li><a class="reference internal" href="#phonon"><span class="std std-ref">phonon</span></a></li>
<li><a class="reference internal" href="#polybond"><span class="std std-ref">polymer bonding</span></a></li>
<li><span class="xref std std-ref">pymol_asphere</span></li>
<li><a class="reference internal" href="#pythontools"><span class="std std-ref">python</span></a></li>
<li><a class="reference internal" href="#reax-tool"><span class="std std-ref">reax</span></a></li>
<li><a class="reference internal" href="#restart"><span class="std std-ref">restart2data</span></a></li>
<li><a class="reference internal" href="#vim"><span class="std std-ref">vim</span></a></li>
<li><a class="reference internal" href="#xmgrace"><span class="std std-ref">xmgrace</span></a></li>
<li><a class="reference internal" href="#xmovie"><span class="std std-ref">xmovie</span></a></li>
</ul>
<hr class="docutils" />
<div class="section" id="amber2lmp-tool">
<span id="amber"></span><h2>9.1. amber2lmp tool</h2>
<p>The amber2lmp sub-directory contains two Python scripts for converting
files back-and-forth between the AMBER MD code and LAMMPS. See the
README file in amber2lmp for more information.</p>
<p>These tools were written by Keir Novik while he was at Queen Mary
University of London. Keir is no longer there and cannot support
these tools which are out-of-date with respect to the current LAMMPS
version (and maybe with respect to AMBER as well). Since we don&#8217;t use
these tools at Sandia, you&#8217;ll need to experiment with them and make
necessary modifications yourself.</p>
<hr class="docutils" />
</div>
<div class="section" id="binary2txt-tool">
<span id="binary"></span><h2>9.2. binary2txt tool</h2>
<p>The file binary2txt.cpp converts one or more binary LAMMPS dump file
into ASCII text files. The syntax for running the tool is</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">binary2txt</span> <span class="n">file1</span> <span class="n">file2</span> <span class="o">...</span>
</pre></div>
</div>
<p>which creates file1.txt, file2.txt, etc. This tool must be compiled
on a platform that can read the binary file created by a LAMMPS run,
since binary files are not compatible across all platforms.</p>
<hr class="docutils" />
</div>
<div class="section" id="ch2lmp-tool">
<span id="charmm"></span><h2>9.3. ch2lmp tool</h2>
<p>The ch2lmp sub-directory contains tools for converting files
back-and-forth between the CHARMM MD code and LAMMPS.</p>
<p>They are intended to make it easy to use CHARMM as a builder and as a
post-processor for LAMMPS. Using charmm2lammps.pl, you can convert an
ensemble built in CHARMM into its LAMMPS equivalent. Using
lammps2pdb.pl you can convert LAMMPS atom dumps into pdb files.</p>
<p>See the README file in the ch2lmp sub-directory for more information.</p>
<p>These tools were created by Pieter in&#8217;t Veld (pjintve at sandia.gov)
and Paul Crozier (pscrozi at sandia.gov) at Sandia.</p>
<hr class="docutils" />
</div>
<div class="section" id="chain-tool">
<span id="chain"></span><h2>9.4. chain tool</h2>
<p>The file chain.f creates a LAMMPS data file containing bead-spring
polymer chains and/or monomer solvent atoms. It uses a text file
containing chain definition parameters as an input. The created
chains and solvent atoms can strongly overlap, so LAMMPS needs to run
the system initially with a &#8220;soft&#8221; pair potential to un-overlap it.
The syntax for running the tool is</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">chain</span> <span class="o">&lt;</span> <span class="n">def</span><span class="o">.</span><span class="n">chain</span> <span class="o">&gt;</span> <span class="n">data</span><span class="o">.</span><span class="n">file</span>
</pre></div>
</div>
<p>See the def.chain or def.chain.ab files in the tools directory for
examples of definition files. This tool was used to create the
system for the <a class="reference internal" href="Section_perf.html"><span class="doc">chain benchmark</span></a>.</p>
<hr class="docutils" />
</div>
<div class="section" id="colvars-tools">
<span id="colvars"></span><h2>9.5. colvars tools</h2>
<p>The colvars directory contains a collection of tools for postprocessing
data produced by the colvars collective variable library.
To compile the tools, edit the makefile for your system and run &#8220;make&#8221;.</p>
<p>Please report problems and issues the colvars library and its tools
at: <a class="reference external" href="https://github.com/colvars/colvars/issues">https://github.com/colvars/colvars/issues</a></p>
<p>abf_integrate:</p>
<p>MC-based integration of multidimensional free energy gradient
Version 20110511</p>
<pre class="literal-block">
Syntax: ./abf_integrate &lt; filename &gt; [-n &lt; nsteps &gt;] [-t &lt; temp &gt;] [-m [0|1] (metadynamics)] [-h &lt; hill_height &gt;] [-f &lt; variable_hill_factor &gt;]
</pre>
<p>The LAMMPS interface to the colvars collective variable library, as
well as these tools, were created by Axel Kohlmeyer (akohlmey at
gmail.com) at ICTP, Italy.</p>
<hr class="docutils" />
</div>
<div class="section" id="createatoms-tool">
<span id="create"></span><h2>9.6. createatoms tool</h2>
<p>The tools/createatoms directory contains a Fortran program called
createAtoms.f which can generate a variety of interesting crystal
structures and geometries and output the resulting list of atom
coordinates in LAMMPS or other formats.</p>
<p>See the included Manual.pdf for details.</p>
<p>The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov.</p>
<hr class="docutils" />
</div>
<div class="section" id="data2xmovie-tool">
<span id="data"></span><h2>9.7. data2xmovie tool</h2>
<p>The file data2xmovie.c converts a LAMMPS data file into a snapshot
suitable for visualizing with the <a class="reference internal" href="#xmovie"><span class="std std-ref">xmovie</span></a> tool, as if it had
been output with a dump command from LAMMPS itself. The syntax for
running the tool is</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">data2xmovie</span> <span class="p">[</span><span class="n">options</span><span class="p">]</span> <span class="o">&lt;</span> <span class="n">infile</span> <span class="o">&gt;</span> <span class="n">outfile</span>
</pre></div>
</div>
<p>See the top of the data2xmovie.c file for a discussion of the options.</p>
<hr class="docutils" />
</div>
<div class="section" id="eam-database-tool">
<span id="eamdb"></span><h2>9.8. eam database tool</h2>
<p>The tools/eam_database directory contains a Fortran program that will
generate EAM alloy setfl potential files for any combination of 16
elements: Cu, Ag, Au, Ni, Pd, Pt, Al, Pb, Fe, Mo, Ta, W, Mg, Co, Ti,
Zr. The files can then be used with the <a class="reference internal" href="pair_eam.html"><span class="doc">pair_style eam/alloy</span></a> command.</p>
<p>The tool is authored by Xiaowang Zhou (Sandia), xzhou at sandia.gov,
and is based on his paper:</p>
<p>X. W. Zhou, R. A. Johnson, and H. N. G. Wadley, Phys. Rev. B, 69,
144113 (2004).</p>
<hr class="docutils" />
</div>
<div class="section" id="eam-generate-tool">
<span id="eamgn"></span><h2>9.9. eam generate tool</h2>
<p>The tools/eam_generate directory contains several one-file C programs
that convert an analytic formula into a tabulated <a class="reference internal" href="pair_eam.html"><span class="doc">embedded atom method (EAM)</span></a> setfl potential file. The potentials they
produce are in the potentials directory, and can be used with the
<a class="reference internal" href="pair_eam.html"><span class="doc">pair_style eam/alloy</span></a> command.</p>
<p>The source files and potentials were provided by Gerolf Ziegenhain
(gerolf at ziegenhain.com).</p>
<hr class="docutils" />
</div>
<div class="section" id="eff-tool">
<span id="eff"></span><h2>9.10. eff tool</h2>
<p>The tools/eff directory contains various scripts for generating
structures and post-processing output for simulations using the
electron force field (eFF).</p>
<p>These tools were provided by Andres Jaramillo-Botero at CalTech
(ajaramil at wag.caltech.edu).</p>
<hr class="docutils" />
</div>
<div class="section" id="emacs-tool">
<span id="emacs"></span><h2>9.11. emacs tool</h2>
<p>The tools/emacs directory contains a Lips add-on file for Emacs that
enables a lammps-mode for editing of input scripts when using Emacs,
with various highlighting options setup.</p>
<p>These tools were provided by Aidan Thompson at Sandia
(athomps at sandia.gov).</p>
<hr class="docutils" />
</div>
<div class="section" id="fep-tool">
<span id="fep"></span><h2>9.12. fep tool</h2>
<p>The tools/fep directory contains Python scripts useful for
post-processing results from performing free-energy perturbation
simulations using the USER-FEP package.</p>
<p>The scripts were contributed by Agilio Padua (Universite Blaise
Pascal Clermont-Ferrand), agilio.padua at univ-bpclermont.fr.</p>
<p>See README file in the tools/fep directory.</p>
<hr class="docutils" />
</div>
<div class="section" id="i-pi-tool">
<span id="ipi"></span><h2>9.13. i-pi tool</h2>
<p>The tools/i-pi directory contains a version of the i-PI package, with
all the LAMMPS-unrelated files removed. It is provided so that it can
be used with the <a class="reference internal" href="fix_ipi.html"><span class="doc">fix ipi</span></a> command to perform
path-integral molecular dynamics (PIMD).</p>
<p>The i-PI package was created and is maintained by Michele Ceriotti,
michele.ceriotti at gmail.com, to interface to a variety of molecular
dynamics codes.</p>
<p>See the tools/i-pi/manual.pdf file for an overview of i-PI, and the
<a class="reference internal" href="fix_ipi.html"><span class="doc">fix ipi</span></a> doc page for further details on running PIMD
calculations with LAMMPS.</p>
<hr class="docutils" />
</div>
<div class="section" id="ipp-tool">
<span id="ipp"></span><h2>9.14. ipp tool</h2>
<p>The tools/ipp directory contains a Perl script ipp which can be used
to facilitate the creation of a complicated file (say, a lammps input
script or tools/createatoms input file) using a template file.</p>
<p>ipp was created and is maintained by Reese Jones (Sandia), rjones at
sandia.gov.</p>
<p>See two examples in the tools/ipp directory. One of them is for the
tools/createatoms tool&#8217;s input file.</p>
<hr class="docutils" />
</div>
<div class="section" id="kate-tool">
<span id="kate"></span><h2>9.15. kate tool</h2>
<p>The file in the tools/kate directory is an add-on to the Kate editor
in the KDE suite that allow syntax highlighting of LAMMPS input
scripts. See the README.txt file for details.</p>
<p>The file was provided by Alessandro Luigi Sellerio
(alessandro.sellerio at ieni.cnr.it).</p>
<hr class="docutils" />
</div>
<div class="section" id="lmp2arc-tool">
<span id="arc"></span><h2>9.16. lmp2arc tool</h2>
<p>The lmp2arc sub-directory contains a tool for converting LAMMPS output
files to the format for Accelrys&#8217; Insight MD code (formerly
MSI/Biosym and its Discover MD code). See the README file for more
information.</p>
<p>This tool was written by John Carpenter (Cray), Michael Peachey
(Cray), and Steve Lustig (Dupont). John is now at the Mayo Clinic
(jec at mayo.edu), but still fields questions about the tool.</p>
<p>This tool was updated for the current LAMMPS C++ version by Jeff
Greathouse at Sandia (jagreat at sandia.gov).</p>
<hr class="docutils" />
</div>
<div class="section" id="lmp2cfg-tool">
<span id="cfg"></span><h2>9.17. lmp2cfg tool</h2>
<p>The lmp2cfg sub-directory contains a tool for converting LAMMPS output
files into a series of *.cfg files which can be read into the
<a class="reference external" href="http://mt.seas.upenn.edu/Archive/Graphics/A">AtomEye</a> visualizer. See
the README file for more information.</p>
<p>This tool was written by Ara Kooser at Sandia (askoose at sandia.gov).</p>
<hr class="docutils" />
</div>
<div class="section" id="lmp2vmd-tool">
<span id="vmd"></span><h2>9.18. lmp2vmd tool</h2>
<p>The lmp2vmd sub-directory contains a README.txt file that describes
details of scripts and plugin support within the <a class="reference external" href="http://www.ks.uiuc.edu/Research/vmd">VMD package</a> for visualizing LAMMPS
dump files.</p>
<p>The VMD plugins and other supporting scripts were written by Axel
Kohlmeyer (akohlmey at cmm.chem.upenn.edu) at U Penn.</p>
<hr class="docutils" />
</div>
<div class="section" id="matlab-tool">
<span id="matlab"></span><h2>9.19. matlab tool</h2>
<p>The matlab sub-directory contains several <span class="xref std std-ref">MATLAB</span> scripts for
post-processing LAMMPS output. The scripts include readers for log
and dump files, a reader for EAM potential files, and a converter that
reads LAMMPS dump files and produces CFG files that can be visualized
with the <a class="reference external" href="http://mt.seas.upenn.edu/Archive/Graphics/A">AtomEye</a>
visualizer.</p>
<p>See the README.pdf file for more information.</p>
<p>These scripts were written by Arun Subramaniyan at Purdue Univ
(asubrama at purdue.edu).</p>
<hr class="docutils" />
</div>
<div class="section" id="micelle2d-tool">
<span id="micelle"></span><h2>9.20. micelle2d tool</h2>
<p>The file micelle2d.f creates a LAMMPS data file containing short lipid
chains in a monomer solution. It uses a text file containing lipid
definition parameters as an input. The created molecules and solvent
atoms can strongly overlap, so LAMMPS needs to run the system
initially with a &#8220;soft&#8221; pair potential to un-overlap it. The syntax
for running the tool is</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">micelle2d</span> <span class="o">&lt;</span> <span class="n">def</span><span class="o">.</span><span class="n">micelle2d</span> <span class="o">&gt;</span> <span class="n">data</span><span class="o">.</span><span class="n">file</span>
</pre></div>
</div>
<p>See the def.micelle2d file in the tools directory for an example of a
definition file. This tool was used to create the system for the
<a class="reference internal" href="Section_example.html"><span class="doc">micelle example</span></a>.</p>
<hr class="docutils" />
</div>
<div class="section" id="moltemplate-tool">
<span id="moltemplate"></span><h2>9.21. moltemplate tool</h2>
<p>The moltemplate sub-directory contains a Python-based tool for
building molecular systems based on a text-file description, and
creating LAMMPS data files that encode their molecular topology as
lists of bonds, angles, dihedrals, etc. See the README.TXT file for
more information.</p>
<p>This tool was written by Andrew Jewett (jewett.aij at gmail.com), who
supports it. It has its own WWW page at
<a class="reference external" href="http://moltemplate.org">http://moltemplate.org</a>.</p>
<hr class="docutils" />
</div>
<div class="section" id="msi2lmp-tool">
<span id="msi"></span><h2>9.22. msi2lmp tool</h2>
<p>The msi2lmp sub-directory contains a tool for creating LAMMPS input
data files from Accelrys&#8217; Insight MD code (formerly MSI/Biosym and
its Discover MD code). See the README file for more information.</p>
<p>This tool was written by John Carpenter (Cray), Michael Peachey
(Cray), and Steve Lustig (Dupont). John is now at the Mayo Clinic
(jec at mayo.edu), but still fields questions about the tool.</p>
<p>This tool may be out-of-date with respect to the current LAMMPS and
Insight versions. Since we don&#8217;t use it at Sandia, you&#8217;ll need to
experiment with it yourself.</p>
<hr class="docutils" />
</div>
<div class="section" id="phonon-tool">
<span id="phonon"></span><h2>9.23. phonon tool</h2>
<p>The phonon sub-directory contains a post-processing tool useful for
analyzing the output of the <a class="reference internal" href="fix_phonon.html"><span class="doc">fix phonon</span></a> command in
the USER-PHONON package.</p>
<p>See the README file for instruction on building the tool and what
library it needs. And see the examples/USER/phonon directory
for example problems that can be post-processed with this tool.</p>
<p>This tool was written by Ling-Ti Kong at Shanghai Jiao Tong
University.</p>
<hr class="docutils" />
</div>
<div class="section" id="polymer-bonding-tool">
<span id="polybond"></span><h2>9.24. polymer bonding tool</h2>
<p>The polybond sub-directory contains a Python-based tool useful for
performing &#8220;programmable polymer bonding&#8221;. The Python file
lmpsdata.py provides a &#8220;Lmpsdata&#8221; class with various methods which can
be invoked by a user-written Python script to create data files with
complex bonding topologies.</p>
<p>See the Manual.pdf for details and example scripts.</p>
<p>This tool was written by Zachary Kraus at Georgia Tech.</p>
<hr class="docutils" />
</div>
<div class="section" id="pymol-asphere-tool">
<span id="pymol"></span><h2>9.25. pymol_asphere tool</h2>
<p>The pymol_asphere sub-directory contains a tool for converting a
LAMMPS dump file that contains orientation info for ellipsoidal
particles into an input file for the <span class="xref std std-ref">PyMol visualization package</span>.</p>
<p>Specifically, the tool triangulates the ellipsoids so they can be
viewed as true ellipsoidal particles within PyMol. See the README and
examples directory within pymol_asphere for more information.</p>
<p>This tool was written by Mike Brown at Sandia.</p>
<hr class="docutils" />
</div>
<div class="section" id="python-tool">
<span id="pythontools"></span><h2>9.26. python tool</h2>
<p>The python sub-directory contains several Python scripts
that perform common LAMMPS post-processing tasks, such as:</p>
<ul class="simple">
<li>extract thermodynamic info from a log file as columns of numbers</li>
<li>plot two columns of thermodynamic info from a log file using GnuPlot</li>
<li>sort the snapshots in a dump file by atom ID</li>
<li>convert multiple <a class="reference internal" href="neb.html"><span class="doc">NEB</span></a> dump files into one dump file for viz</li>
<li>convert dump files into XYZ, CFG, or PDB format for viz by other packages</li>
</ul>
<p>These are simple scripts built on <a class="reference external" href="http://www.sandia.gov/~sjplimp/pizza.html">Pizza.py</a> modules. See the
README for more info on Pizza.py and how to use these scripts.</p>
<hr class="docutils" />
</div>
<div class="section" id="reax-tool">
<span id="id4"></span><h2>9.27. reax tool</h2>
<p>The reax sub-directory contains stand-alond codes that can
post-process the output of the <a class="reference internal" href="fix_reax_bonds.html"><span class="doc">fix reax/bonds</span></a>
command from a LAMMPS simulation using <a class="reference internal" href="pair_reax.html"><span class="doc">ReaxFF</span></a>. See
the README.txt file for more info.</p>
<p>These tools were written by Aidan Thompson at Sandia.</p>
<hr class="docutils" />
</div>
<div class="section" id="restart2data-tool">
<span id="restart"></span><h2>9.28. restart2data tool</h2>
<div class="admonition note">
<p class="first admonition-title">Note</p>
<p class="last">This tool is now obsolete and is not included in the current
LAMMPS distribution. This is becaues there is now a
<a class="reference internal" href="write_data.html"><span class="doc">write_data</span></a> command, which can create a data file
from within an input script. Running LAMMPS with the &#8220;-r&#8221;
<a class="reference internal" href="Section_start.html#start-7"><span class="std std-ref">command-line switch</span></a> as follows:</p>
</div>
<p>lmp_g++ -r restartfile datafile</p>
<p>is the same as running a 2-line input script:</p>
<p>read_restart restartfile
write_data datafile</p>
<p>which will produce the same data file that the restart2data tool used
to create. The following information is included in case you have an
older version of LAMMPS which still includes the restart2data tool.</p>
<p>The file restart2data.cpp converts a binary LAMMPS restart file into
an ASCII data file. The syntax for running the tool is</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">restart2data</span> <span class="n">restart</span><span class="o">-</span><span class="n">file</span> <span class="n">data</span><span class="o">-</span><span class="n">file</span> <span class="p">(</span><span class="nb">input</span><span class="o">-</span><span class="n">file</span><span class="p">)</span>
</pre></div>
</div>
<p>Input-file is optional and if specified will contain LAMMPS input
commands for the masses and force field parameters, instead of putting
those in the data-file. Only a few force field styles currently
support this option.</p>
<p>This tool must be compiled on a platform that can read the binary file
created by a LAMMPS run, since binary files are not compatible across
all platforms.</p>
<p>Note that a text data file has less precision than a binary restart
file. Hence, continuing a run from a converted data file will
typically not conform as closely to a previous run as will restarting
from a binary restart file.</p>
<p>If a &#8220;%&#8221; appears in the specified restart-file, the tool expects a set
of multiple files to exist. See the <a class="reference internal" href="restart.html"><span class="doc">restart</span></a> and
<a class="reference internal" href="write_restart.html"><span class="doc">write_restart</span></a> commands for info on how such sets
of files are written by LAMMPS, and how the files are named.</p>
<hr class="docutils" />
</div>
<div class="section" id="vim-tool">
<span id="vim"></span><h2>9.29. vim tool</h2>
<p>The files in the tools/vim directory are add-ons to the VIM editor
that allow easier editing of LAMMPS input scripts. See the README.txt
file for details.</p>
<p>These files were provided by Gerolf Ziegenhain (gerolf at
ziegenhain.com)</p>
<hr class="docutils" />
</div>
<div class="section" id="xmgrace-tool">
<span id="xmgrace"></span><h2>9.30. xmgrace tool</h2>
<p>The files in the tools/xmgrace directory can be used to plot the
thermodynamic data in LAMMPS log files via the xmgrace plotting
package. There are several tools in the directory that can be used in
post-processing mode. The lammpsplot.cpp file can be compiled and
used to create plots from the current state of a running LAMMPS
simulation.</p>
<p>See the README file for details.</p>
<p>These files were provided by Vikas Varshney (vv0210 at gmail.com)</p>
<hr class="docutils" />
</div>
<div class="section" id="xmovie-tool">
<span id="xmovie"></span><h2>9.31. xmovie tool</h2>
<p>The xmovie tool is an X-based visualization package that can read
LAMMPS dump files and animate them. It is in its own sub-directory
with the tools directory. You may need to modify its Makefile so that
it can find the appropriate X libraries to link against.</p>
<p>The syntax for running xmovie is</p>
<div class="highlight-default"><div class="highlight"><pre><span></span><span class="n">xmovie</span> <span class="p">[</span><span class="n">options</span><span class="p">]</span> <span class="n">dump</span><span class="o">.</span><span class="n">file1</span> <span class="n">dump</span><span class="o">.</span><span class="n">file2</span> <span class="o">...</span>
</pre></div>
</div>
<p>If you just type &#8220;xmovie&#8221; you will see a list of options. Note that
by default, LAMMPS dump files are in scaled coordinates, so you
typically need to use the -scale option with xmovie. When xmovie runs
it opens a visualization window and a control window. The control
options are straightforward to use.</p>
<p>Xmovie was mostly written by Mike Uttormark (U Wisconsin) while he
spent a summer at Sandia. It displays 2d projections of a 3d domain.
While simple in design, it is an amazingly fast program that can
render large numbers of atoms very quickly. It&#8217;s a useful tool for
debugging LAMMPS input and output and making sure your simulation is
doing what you think it should. The animations on the Examples page
of the <a class="reference external" href="http://lammps.sandia.gov">LAMMPS WWW site</a> were created with xmovie.</p>
<p>I&#8217;ve lost contact with Mike, so I hope he&#8217;s comfortable with us
distributing his great tool!</p>
</div>
</div>
</div>
</div>
<footer>
<div class="rst-footer-buttons" role="navigation" aria-label="footer navigation">
<a href="Section_modify.html" class="btn btn-neutral float-right" title="10. Modifying &amp; extending LAMMPS" accesskey="n">Next <span class="fa fa-arrow-circle-right"></span></a>
<a href="Section_perf.html" class="btn btn-neutral" title="8. Performance &amp; scalability" accesskey="p"><span class="fa fa-arrow-circle-left"></span> Previous</a>
</div>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright 2013 Sandia Corporation.
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/snide/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT:'./',
VERSION:'',
COLLAPSE_INDEX:false,
FILE_SUFFIX:'.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="https://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/jquery-1.11.0.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2/js/lightbox.min.js"></script>
<script type="text/javascript" src="_static/sphinxcontrib-images/LightBox2/lightbox2-customize/jquery-noconflict.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.StickyNav.enable();
});
</script>
</body>
</html>

View File

@ -1,59 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC add_molecule</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_add_molecule">fix_modify AtC add_molecule </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify_AtC add_molecule &lt;small|large&gt; &lt;TAG&gt; &lt;GROUP_NAME&gt; <br/>
</p>
<ul>
<li>small|large = can be small if molecule size &lt; cutoff radius, must be large otherwise <br/>
</li>
<li>&lt;TAG&gt; = tag for tracking a species <br/>
</li>
<li>&lt;GROUP_NAME&gt; = name of group that tracking will be applied to <br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> group WATERGROUP type 1 2 </code> <br/>
<code> fix_modify AtC add_molecule small water WATERGROUP </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Associates a tag with all molecules corresponding to a specified group. <br/>
</p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>No defaults for this command. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,59 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC add_species</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_add_species">fix_modify AtC add_species </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify_AtC add_species &lt;TAG&gt; &lt;group|type&gt; &lt;ID&gt; <br/>
</p>
<ul>
<li>&lt;TAG&gt; = tag for tracking a species <br/>
</li>
<li>group|type = LAMMPS defined group or type of atoms <br/>
</li>
<li>&lt;ID&gt; = name of group or type number <br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC add_species gold type 1 </code> <br/>
<code> group GOLDGROUP type 1 </code> <br/>
<code> fix_modify AtC add_species gold group GOLDGROUP </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Associates a tag with all atoms of a specified type or within a specified group. <br/>
</p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>No defaults for this command. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,52 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC atom_element_map</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_atom_element_map">fix_modify AtC atom_element_map </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC atom_element_map &lt;eulerian|lagrangian&gt; &lt;frequency&gt; <br/>
</p>
<ul>
<li>frequency (int) : frequency of updating atom-to-continuum maps based on the current configuration - only for eulerian </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc atom_element_map eulerian 100 </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Changes frame of reference from eulerian to lagrangian and sets the frequency for which the map from atoms to elements is reformed and all the attendant data is recalculated. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Cannot change map type after initialization. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>lagrangian </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,61 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC atom_weight</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_atom_weight">fix_modify AtC atom_weight </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC atom_weight &lt;method&gt; &lt;arguments&gt;</p>
<ul>
<li>&lt;method&gt; = <br/>
value: atoms in specified group assigned constant value given <br/>
lattice: volume per atom for specified lattice type (e.g. fcc) and parameter <br/>
element: element volume divided among atoms within element <br/>
region: volume per atom determined based on the atom count in the MD regions and their volumes. Note: meaningful only if atoms completely fill all the regions. <br/>
group: volume per atom determined based on the atom count in a group and its volume<br/>
read_in: list of values for atoms are read-in from specified file <br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc atom_weight constant myatoms 11.8 </code> <br/>
<code> fix_modify atc atom_weight lattice </code> <br/>
<code> fix_modify atc atom_weight read-in atm_wt_file.txt </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command for assigning the value of atomic weights used for atomic integration in atom-continuum coupled simulations. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Use of lattice option requires a lattice type and parameter is already specified. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>lattice </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,51 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC atomic_charge</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_atomic_charge">fix_modify AtC atomic_charge </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC &lt;include | omit&gt; atomic_charge</p>
<ul>
<li>&lt;include | omit&gt; = switch to activiate/deactiviate inclusion of intrinsic atomic charge in <a class="el" href="namespaceATC.html" title="owned field/s: MASS_DENSITY">ATC</a> </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc compute include atomic_charge </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Determines whether AtC tracks the total charge as a finite element field </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Required for: electrostatics </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>if the atom charge is defined, default is on, otherwise default is off </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,48 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC boundary</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_boundary">fix_modify AtC boundary </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC boundary type &lt;atom-type-id&gt;</p>
<ul>
<li>&lt;atom-type-id&gt; = type id for atoms that represent a ficticious boundary internal to the FE mesh </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC boundary type ghost_atoms </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command to define the atoms that represent the ficticious boundary internal to the FE mesh. For fully overlapped MD/FE domains with periodic boundary conditions no boundary atoms should be defined. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>none </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,46 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC boundary_dynamics</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_boundary_dynamics">fix_modify AtC boundary_dynamics </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC boundary_dynamics &lt; on | damped_harmonic | prescribed | coupled | none &gt; [args] <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Sets different schemes for controlling boundary atoms. On will integrate the boundary atoms using the velocity-verlet algorithm. Damped harmonic uses a mass/spring/dashpot for the boundary atoms with added arguments of the damping and spring constants followed by the ratio of the boundary type mass to the desired mass. Prescribed forces the boundary atoms to follow the finite element displacement. Coupled does the same. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Boundary atoms must be specified. When using swaps between internal and boundary atoms, the initial configuration must have already correctly partitioned the two. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>prescribed on </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,47 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC boundary_faceset</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_boundary_faceset">fix_modify AtC boundary_faceset </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC boundary_faceset &lt;is | add&gt; [args] </p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p>fix_modify AtC boundary_faceset is obndy </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>This command species the faceset name when using a faceset to compute the MD/FE boundary fluxes. The faceset must already exist. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>This is only valid when fe_md_boundary is set to faceset. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,53 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC output boundary_integral</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_boundary_integral">fix_modify AtC output boundary_integral </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC output boundary_integral [field] faceset [name]</p>
<ul>
<li>field (string) : name of hardy field</li>
<li>name (string) : name of faceset </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC output boundary_integral stress faceset loop1 </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Calculates a surface integral of the given field dotted with the outward normal of the faces and puts output in the "GLOBALS" file </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Must be used with the hardy/field type of AtC fix ( see <a class="el" href="man_fix_atc.html">fix atc command</a> ) </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>none </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,51 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC consistent_fe_initialization</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_consistent_fe_initialization">fix_modify AtC consistent_fe_initialization </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC consistent_fe_initialization &lt;on | off&gt;</p>
<ul>
<li>&lt;on|off&gt; = switch to activiate/deactiviate the intial setting of FE intrinsic field to match the projected MD field </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc consistent_fe_initialization on </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Determines whether AtC initializes FE intrinsic fields (e.g., temperature) to match the projected MD values. This is particularly useful for fully overlapping simulations. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Can be used with: thermal, two_temperature. Cannot be used with time filtering on. Does not include boundary nodes. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>Default is off </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,54 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC output contour_integral</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_contour_integral">fix_modify AtC output contour_integral </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC output contour_integral [field] faceset [name] &lt;axis [x | y | z ]&gt;</p>
<ul>
<li>field (string) : name of hardy field</li>
<li>name (string) : name of faceset</li>
<li>axis (string) : x or y or z </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC output contour_integral stress faceset loop1 </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Calculates a surface integral of the given field dotted with the outward normal of the faces and puts output in the "GLOBALS" file </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Must be used with the hardy/field type of AtC fix ( see <a class="el" href="man_fix_atc.html">fix atc command</a> ) </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>none </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,72 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC control</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_control">fix_modify AtC control </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC control &lt;physics_type&gt; &lt;solution_parameter&gt; </p>
<p><br/>
</p>
<ul>
<li>physics_type (string) = thermal | momentum<br/>
</li>
<li>solution_parameter (string) = max_iterations | tolerance<br/>
</li>
</ul>
<p>fix_modify AtC transfer &lt;physics_type&gt; control max_iterations &lt;max_iterations&gt;<br/>
</p>
<ul>
<li>max_iterations (int) = maximum number of iterations that will be used by iterative matrix solvers<br/>
</li>
</ul>
<p>fix_modify AtC transfer &lt;physics_type&gt; control tolerance &lt;tolerance&gt; <br/>
</p>
<ul>
<li>tolerance (float) = relative tolerance to which matrix equations will be solved<br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC control thermal max_iterations 10 </code> <br/>
<code> fix_modify AtC control momentum tolerance 1.e-5 </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Sets the numerical parameters for the matrix solvers used in the specified control algorithm. Many solution approaches require iterative solvers, and these methods enable users to provide the maximum number of iterations and the relative tolerance. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>only for be used with specific controllers : thermal, momentum <br/>
They are ignored if a lumped solution is requested </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>max_iterations is the number of rows in the matrix<br/>
tolerance is 1.e-10 </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,68 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC control momentum</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_control_momentum">fix_modify AtC control momentum </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC control momentum none <br/>
</p>
<p>fix_modify AtC control momentum rescale &lt;frequency&gt;<br/>
</p>
<ul>
<li>frequency (int) = time step frequency for applying displacement and velocity rescaling <br/>
</li>
</ul>
<p>fix_modify AtC control momentum glc_displacement <br/>
</p>
<p>fix_modify AtC control momentum glc_velocity <br/>
</p>
<p>fix_modify AtC control momentum hoover <br/>
</p>
<p>fix_modify AtC control momentum flux [faceset face_set_id, interpolate]</p>
<ul>
<li>face_set_id (string) = id of boundary face set, if not specified (or not possible when the atomic domain does not line up with mesh boundaries) defaults to an atomic-quadrature approximate evaulation<br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p>fix_modify AtC control momentum glc_velocity <br/>
fix_modify AtC control momentum flux faceset bndy_faces <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>only to be used with specific transfers : elastic <br/>
rescale not valid with time filtering activated </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>none </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,76 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC control thermal</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_control_thermal">fix_modify AtC control thermal </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC control thermal &lt;control_type&gt; &lt;optional_args&gt;</p>
<ul>
<li>control_type (string) = none | rescale | hoover | flux<br/>
</li>
</ul>
<p>fix_modify AtC control thermal rescale &lt;frequency&gt; <br/>
</p>
<ul>
<li>frequency (int) = time step frequency for applying velocity rescaling <br/>
</li>
</ul>
<p>fix_modify AtC control thermal hoover <br/>
</p>
<p>fix_modify AtC control thermal flux &lt;boundary_integration_type(optional)&gt; &lt;face_set_id(optional)&gt;<br/>
</p>
<ul>
<li>boundary_integration_type (string) = faceset | interpolate<br/>
</li>
<li>face_set_id (string), optional = id of boundary face set, if not specified (or not possible when the atomic domain does not line up with mesh boundaries) defaults to an atomic-quadrature approximate evaulation, does not work with interpolate<br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC control thermal none </code> <br/>
<code> fix_modify AtC control thermal rescale 10 </code> <br/>
<code> fix_modify AtC control thermal hoover </code> <br/>
<code> fix_modify AtC control thermal flux </code> <br/>
<code> fix_modify AtC control thermal flux faceset bndy_faces </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Sets the energy exchange mechansim from the finite elements to the atoms, managed through a control algorithm. Rescale computes a scale factor for each atom to match the finite element temperature. Hoover is a Gaussian least-constraint isokinetic thermostat enforces that the nodal restricted atomic temperature matches the finite element temperature. Flux is a similar mode, but rather adds energy to the atoms based on conservation of energy. Hoover and flux allows the prescription of sources or fixed temperatures on the atoms. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>only for be used with specific transfers : thermal (rescale, hoover, flux), two_temperature (flux) <br/>
rescale not valid with time filtering activated </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>none<br/>
rescale frequency is 1<br/>
flux boundary_integration_type is interpolate </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,53 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC control thermal correction_max_iterations</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_control_thermal_correction_max_iterations">fix_modify AtC control thermal correction_max_iterations </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC control thermal correction_max_iterations &lt;max_iterations&gt;</p>
<ul>
<li>max_iterations (int) = maximum number of iterations that will be used by iterative matrix solvers<br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC control thermal correction_max_iterations 10 </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Sets the maximum number of iterations to compute the 2nd order in time correction term for lambda with the fractional step method. The method uses the same tolerance as the controller's matrix solver. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>only for use with thermal physics using the fractional step method. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>correction_max_iterations is 20 </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,55 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC decomposition</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_decomposition">fix_modify AtC decomposition </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC decomposition &lt;type&gt;</p>
<ul>
<li>&lt;type&gt; = <br/>
replicated_memory: nodal information replicated on each processor <br/>
distributed_memory: only owned nodal information on processor <br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc decomposition distributed_memory </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command for assigning the distribution of work and memory for parallel runs. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>replicated_memory is appropriate for simulations were the number of nodes &lt;&lt; number of atoms </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>replicated_memory </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,56 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC extrinsic electron_integration</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_electron_integration">fix_modify AtC extrinsic electron_integration </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC extrinsic electron_integration &lt;integration_type&gt; &lt;num_subcyle_steps(optional)&gt; <br/>
</p>
<ul>
<li>integration_type (string) = explicit | implicit | steady <br/>
</li>
<li>num_subcycle_steps (int), optional = number of subcycle steps for the electron time integration</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC extrinsic electron_integration implicit </code> <br/>
<code> fix_modify AtC extrinsic electron_integration explicit 100 </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Switches between integration scheme for the electron temperature. The number of subcyling steps used to integrate the electron temperature 1 LAMMPS timestep can be manually adjusted to capture fast electron dynamics.</p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>For use only with two_temperature type of AtC fix ( see <a class="el" href="man_fix_atc.html">fix atc command</a> ) <br/>
</p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>implicit<br/>
subcycle_steps = 1 </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,50 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC equilibrium_start</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_equilibrium_start">fix_modify AtC equilibrium_start </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC equilibrium_start &lt;on|off&gt;</p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc equilibrium_start on </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Starts filtered calculations assuming they start in equilibrium, i.e. perfect finite element force balance.</p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>only needed before filtering is begun</p>
<h2><a class="anchor" id="related">
related</a></h2>
<p>see <a class="el" href="man_time_filter.html">fix_modify AtC filter</a></p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>on </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,50 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC extrinsic exchange</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_extrinsic_exchange">fix_modify AtC extrinsic exchange </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC extrinsic exchange &lt;on|off&gt;</p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC extrinsic exchange on </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Switches energy exchange between the MD system and electron system on and off</p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Only valid for use with two_temperature type of AtC fix.</p>
<h2><a class="anchor" id="related">
related</a></h2>
<p>see <a class="el" href="man_fix_atc.html">fix atc command</a></p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>on </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,50 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC fe_md_boundary</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_fe_md_boundary">fix_modify AtC fe_md_boundary </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC fe_md_boundary &lt;faceset | interpolate | no_boundary&gt; [args] </p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc fe_md_boundary interpolate </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Specifies different methods for computing fluxes between between the MD and FE integration regions. Faceset defines a faceset separating the MD and FE regions and uses finite element face quadrature to compute the flux. Interpolate uses a reconstruction scheme to approximate the flux, which is more robust but less accurate if the MD/FE boundary does correspond to a faceset. No boundary results in no fluxes between the systems being computed. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>If faceset is used, all the AtC non-boundary atoms must lie within and completely fill the domain enclosed by the faceset. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<p>see for how to specify the faceset name. </p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>Interpolate. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,25 +0,0 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html><head><meta http-equiv="Content-Type" content="text/html;charset=iso-8859-1">
<title>ATC: fix_modify AtC fem create mesh</title>
<link href="doxygen.css" rel="stylesheet" type="text/css">
</head><body>
<!-- Generated by Doxygen 1.3.9.1 -->
<h1><a class="anchor" name="man_fem_mesh">fix_modify AtC fem create mesh</a></h1><h2><a class="anchor" name="syntax">
syntax</a></h2>
fix_modify AtC fem create mesh &lt;nx&gt; &lt;ny&gt; &lt;nz&gt; &lt;region-id&gt; &lt;f|p&gt; &lt;f|p&gt; &lt;f|p&gt;<ul>
<li>nx ny nz = number of elements in x, y, z</li><li>region-id = id of region that is to be meshed</li><li>f p p = perioidicity flags for x, y, z </li></ul>
<h2><a class="anchor" name="examples">
examples</a></h2>
<code> fix_modify AtC fem create mesh 10 1 1 feRegion p p p </code> <h2><a class="anchor" name="description">
description</a></h2>
Creates a uniform mesh in a rectangular region <h2><a class="anchor" name="restrictions">
restrictions</a></h2>
creates only uniform rectangular grids in a rectangular region <h2><a class="anchor" name="related">
related</a></h2>
<h2><a class="anchor" name="default">
default</a></h2>
none <hr size="1"><address style="align: right;"><small>Generated on Mon Aug 17 09:35:16 2009 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img src="doxygen.png" alt="doxygen" align="middle" border="0"></a> 1.3.9.1 </small></address>
</body>
</html>

View File

@ -1,55 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC filter scale</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_filter_scale">fix_modify AtC filter scale </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC filter scale &lt;scale&gt; <br/>
</p>
<ul>
<li>scale (real) = characteristic time scale of the filter <br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC filter scale 10.0 </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Filters the MD dynamics to construct a more appropriate continuous field. Equilibrating first filters the time derivatives without changing the dynamics to provide a better initial condition to the filtered dynamics </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>only for be used with specific transfers: thermal, two_temperature</p>
<h2><a class="anchor" id="related">
related</a></h2>
<p><a class="el" href="man_time_filter.html">fix_modify AtC filter</a> <a class="el" href="man_filter_type.html">fix_modify AtC filter type</a></p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>0. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,51 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC filter type</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_filter_type">fix_modify AtC filter type </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC filter type &lt;exponential | step | no_filter&gt; <br/>
</p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC filter type exponential </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Specifies the type of time filter used. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>only for be used with specific transfers: thermal, two_temperature</p>
<h2><a class="anchor" id="related">
related</a></h2>
<p><a class="el" href="man_time_filter.html">fix_modify AtC filter</a> <a class="el" href="man_filter_scale.html">fix_modify AtC filter scale</a></p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>No default. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,254 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix atc command</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_fix_atc">fix atc command </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix &lt;fixID&gt; &lt;group&gt; atc &lt;type&gt; &lt;parameter_file&gt;</p>
<ul>
<li>fixID = name of fix</li>
<li>group = name of group fix is to be applied</li>
<li>type<br/>
= thermal : thermal coupling with fields: temperature <br/>
= two_temperature : electron-phonon coupling with field: temperature and electron_temperature <br/>
= hardy : on-the-fly post-processing using kernel localization functions (see "related" section for possible fields) <br/>
= field : on-the-fly post-processing using mesh-based localization functions (see "related" section for possible fields) <br/>
</li>
<li>parameter_file = name of the file with material parameters. <br/>
note: Neither hardy nor field requires a parameter file </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix AtC internal atc thermal Ar_thermal.dat </code> <br/>
<code> fix AtC internal atc two_temperature Ar_ttm.mat </code> <br/>
<code> fix AtC internal atc hardy </code> <br/>
<code> fix AtC internal atc field </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>This fix is the beginning to creating a coupled FE/MD simulation and/or an on-the-fly estimation of continuum fields. The coupled versions of this fix do Verlet integration and the /post-processing does not. After instantiating this fix, several other fix_modify commands will be needed to set up the problem, e.g. define the finite element mesh and prescribe initial and boundary conditions.</p>
<p>The following coupling example is typical, but non-exhaustive:<br/>
</p>
<p><code> # ... commands to create and initialize the MD system <br/>
</code></p>
<p><code> # initial fix to designate coupling type and group to apply it to <br/>
# tag group physics material_file <br/>
fix AtC internal atc thermal Ar_thermal.mat<br/>
<br/>
# create a uniform 12 x 2 x 2 mesh that covers region contain the group <br/>
# nx ny nz region periodicity <br/>
fix_modify AtC mesh create 12 2 2 mdRegion f p p<br/>
<br/>
# specify the control method for the type of coupling <br/>
# physics control_type <br/>
fix_modify AtC thermal control flux <br/>
<br/>
# specify the initial values for the empirical field "temperature" <br/>
# field node_group value <br/>
fix_modify AtC initial temperature all 30.<br/>
<br/>
# create an output stream for nodal fields <br/>
# filename output_frequency <br/>
fix_modify AtC output atc_fe_output 100<br/>
<br/>
</code></p>
<p><code> run 1000 <br/>
</code></p>
<p>likewise for this post-processing example: <br/>
</p>
<p><code> # ... commands to create and initialize the MD system <br/>
</code></p>
<p><code> # initial fix to designate post-processing and the group to apply it to <br/>
# no material file is allowed nor required <br/>
fix AtC internal atc hardy <br/>
<br/>
# for hardy fix, specific kernel function (function type and range) to # be used as a localization function <br/>
fix AtC kernel quartic_sphere 10.0 <br/>
<br/>
# create a uniform 1 x 1 x 1 mesh that covers region contain the group <br/>
# with periodicity this effectively creats a system average <br/>
fix_modify AtC mesh create 1 1 1 box p p p <br/>
<br/>
# change from default lagrangian map to eulerian <br/>
# refreshed every 100 steps <br/>
fix_modify AtC atom_element_map eulerian 100 <br/>
<br/>
# start with no field defined <br/>
# add mass density, potential energy density, stress and temperature <br/>
fix_modify AtC fields add density energy stress temperature <br/>
<br/>
# create an output stream for nodal fields <br/>
# filename output_frequency <br/>
fix_modify AtC output nvtFE 100 text <br/>
</code></p>
<p><code> run 1000 <br/>
</code></p>
<p>the mesh's linear interpolation functions can be used as the localization function <br/>
by using the field option: <br/>
</p>
<p><code> fix AtC internal atc field <br/>
<br/>
fix_modify AtC mesh create 1 1 1 box p p p <br/>
<br/>
... <br/>
<br/>
</code></p>
<p>Note coupling and post-processing can be combined in the same simulations using separate fixes. <br/>
For detailed exposition of the theory and algorithms please see:<br/>
</p>
<ul>
<li>Wagner, GJ; Jones, RE; Templeton, JA; Parks, MA, <em> An atomistic-to-continuum coupling method for heat transfer in solids. </em> Special Issue of Computer Methods and Applied Mechanics (2008) 197:3351. <br/>
</li>
<li>Zimmerman, JA; Webb, EB; Hoyt, JJ;. Jones, RE; Klein, PA; Bammann, DJ, <em> Calculation of stress in atomistic simulation. </em> Special Issue of Modelling and Simulation in Materials Science and Engineering (2004), 12:S319. <br/>
</li>
<li>Zimmerman, JA; Jones, RE; Templeton, JA, <em> A material frame approach for evaluating continuum variables in atomistic simulations. </em> Journal of Computational Physics (2010), 229:2364. <br/>
</li>
<li>Templeton, JA; Jones, RE; Wagner, GJ, <em> Application of a field-based method to spatially varying thermal transport problems in molecular dynamics. </em> Modelling and Simulation in Materials Science and Engineering (2010), 18:085007. <br/>
</li>
<li>Jones, RE; Templeton, JA; Wagner, GJ; Olmsted, D; Modine, JA, <em> Electron transport enhanced molecular dynamics for metals and semi-metals. </em> International Journal for Numerical Methods in Engineering (2010), 83:940. <br/>
</li>
<li>Templeton, JA; Jones, RE; Lee, JW; Zimmerman, JA; Wong, BM, <em> A long-range electric field solver for molecular dynamics based on atomistic-to-continuum modeling. </em> Journal of Chemical Theory and Computation (2011), 7:1736. <br/>
</li>
<li>Mandadapu, KK; Templeton, JA; Lee, JW, <em> Polarization as a field variable from molecular dynamics simulations. </em> Journal of Chemical Physics (2013), 139:054115. <br/>
</li>
</ul>
<p>Please refer to the standard finite element (FE) texts, e.g. T.J.R Hughes <em> The finite element method </em>, Dover 2003, for the basics of FE simulation.</p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Thermal and two_temperature (coupling) types use a Verlet time-integration algorithm. The hardy type does not contain its own time-integrator and must be used with a separate fix that does contain one, e.g. nve, nvt, etc.</p>
<p>Currently,</p>
<ul>
<li>the coupling is restricted to thermal physics</li>
<li>the FE computations are done in serial on each processor.</li>
</ul>
<h2><a class="anchor" id="related">
related</a></h2>
<p>fix_modify commands for setup: <br/>
</p>
<ul>
<li><a class="el" href="man_mesh_create.html">fix_modify AtC mesh create</a></li>
<li><a class="el" href="man_mesh_quadrature.html">fix_modify AtC mesh quadrature</a></li>
<li><a class="el" href="man_mesh_read.html">fix_modify AtC mesh read</a></li>
<li><a class="el" href="man_mesh_write.html">fix_modify AtC mesh write</a></li>
<li><a class="el" href="man_mesh_create_nodeset.html">fix_modify AtC mesh create_nodeset</a></li>
<li><a class="el" href="man_mesh_add_to_nodeset.html">fix_modify AtC mesh add_to_nodeset</a></li>
<li><a class="el" href="man_mesh_create_faceset_box.html">fix_modify AtC mesh create_faceset box</a></li>
<li><a class="el" href="man_mesh_create_faceset_plane.html">fix_modify AtC mesh create_faceset plane</a></li>
<li><a class="el" href="man_mesh_create_elementset.html">fix_modify AtC mesh create_elementset</a></li>
<li><a class="el" href="man_mesh_delete_elements.html">fix_modify AtC mesh delete_elements</a></li>
<li><a class="el" href="man_mesh_nodeset_to_elementset.html">fix_modify AtC mesh nodeset_to_elementset</a></li>
<li><a class="el" href="man_boundary.html">fix_modify AtC boundary</a></li>
<li><a class="el" href="man_internal_quadrature.html">fix_modify AtC internal_quadrature</a></li>
<li><a class="el" href="man_thermal_time_integration.html">fix_modify AtC time_integration (thermal)</a></li>
<li><a class="el" href="man_momentum_time_integration.html">fix_modify AtC time_integration (momentum)</a></li>
<li><a class="el" href="man_electron_integration.html">fix_modify AtC extrinsic electron_integration</a></li>
<li><a class="el" href="man_internal_element_set.html">fix_modify AtC internal_element_set</a></li>
<li><a class="el" href="man_decomposition.html">fix_modify AtC decomposition</a></li>
</ul>
<p>fix_modify commands for boundary and initial conditions:<br/>
</p>
<ul>
<li><a class="el" href="man_initial.html">fix_modify AtC initial</a></li>
<li><a class="el" href="man_fix_nodes.html">fix_modify AtC fix</a></li>
<li><a class="el" href="man_unfix_nodes.html">fix_modify AtC unfix</a></li>
<li><a class="el" href="man_fix_flux.html">fix_modify AtC fix_flux</a></li>
<li><a class="el" href="man_unfix_flux.html">fix_modify AtC unfix_flux</a></li>
<li><a class="el" href="man_source.html">fix_modify AtC source</a></li>
<li><a class="el" href="man_remove_source.html">fix_modify AtC remove_source</a></li>
</ul>
<p>fix_modify commands for control and filtering: <br/>
</p>
<ul>
<li><a class="el" href="man_control.html">fix_modify AtC control</a></li>
<li><a class="el" href="man_control_thermal.html">fix_modify AtC control thermal</a></li>
<li><a class="el" href="man_control_thermal_correction_max_iterations.html">fix_modify AtC control thermal correction_max_iterations</a></li>
<li><a class="el" href="man_control_momentum.html">fix_modify AtC control momentum</a></li>
<li><a class="el" href="man_localized_lambda.html">fix_modify AtC control localized_lambda</a></li>
<li><a class="el" href="man_lumped_lambda_solve.html">fix_modify AtC control lumped_lambda_solve</a></li>
<li><a class="el" href="man_mask_direction.html">fix_modify AtC control mask_direction</a></li>
<li><a class="el" href="man_time_filter.html">fix_modify AtC filter</a></li>
<li><a class="el" href="man_filter_scale.html">fix_modify AtC filter scale</a></li>
<li><a class="el" href="man_filter_type.html">fix_modify AtC filter type</a></li>
<li><a class="el" href="man_equilibrium_start.html">fix_modify AtC equilibrium_start</a></li>
<li><a class="el" href="man_extrinsic_exchange.html">fix_modify AtC extrinsic exchange</a></li>
<li><a class="el" href="man_poisson_solver.html">fix_modify AtC poisson_solver</a></li>
</ul>
<p>fix_modify commands for output: <br/>
</p>
<ul>
<li><a class="el" href="man_output.html">fix_modify AtC output</a></li>
<li><a class="el" href="man_output_nodeset.html">fix_modify AtC output nodeset</a></li>
<li><a class="el" href="man_output_elementset.html">fix_modify AtC output elementset</a></li>
<li><a class="el" href="man_boundary_integral.html">fix_modify AtC output boundary_integral</a></li>
<li><a class="el" href="man_contour_integral.html">fix_modify AtC output contour_integral</a></li>
<li><a class="el" href="man_mesh_output.html">fix_modify AtC mesh output</a></li>
<li><a class="el" href="man_write_restart.html">fix_modify AtC write_restart</a></li>
<li><a class="el" href="man_read_restart.html">fix_modify AtC read_restart</a></li>
</ul>
<p>fix_modify commands for post-processing: <br/>
</p>
<ul>
<li><a class="el" href="man_hardy_kernel.html">fix_modify AtC kernel</a></li>
<li><a class="el" href="man_hardy_fields.html">fix_modify AtC fields</a></li>
<li><a class="el" href="man_hardy_gradients.html">fix_modify AtC gradients</a></li>
<li><a class="el" href="man_hardy_rates.html">fix_modify AtC rates</a></li>
<li><a class="el" href="man_hardy_computes.html">fix_modify AtC computes</a></li>
<li><a class="el" href="man_hardy_on_the_fly.html">fix_modify AtC on_the_fly</a></li>
<li><a class="el" href="man_pair_interactions.html">fix_modify AtC pair_interactions/bond_interactions</a></li>
<li><a class="el" href="man_sample_frequency.html">fix_modify AtC sample_frequency</a></li>
<li><a class="el" href="man_set.html">fix_modify AtC set</a></li>
</ul>
<p>miscellaneous fix_modify commands: <br/>
</p>
<ul>
<li><a class="el" href="man_atom_element_map.html">fix_modify AtC atom_element_map</a></li>
<li><a class="el" href="man_atom_weight.html">fix_modify AtC atom_weight</a></li>
<li><a class="el" href="man_write_atom_weights.html">fix_modify AtC write_atom_weights</a></li>
<li><a class="el" href="man_reset_time.html">fix_modify AtC reset_time</a></li>
<li><a class="el" href="man_reset_atomic_reference_positions.html">fix_modify AtC reset_atomic_reference_positions</a></li>
<li><a class="el" href="man_fe_md_boundary.html">fix_modify AtC fe_md_boundary</a></li>
<li><a class="el" href="man_boundary_faceset.html">fix_modify AtC boundary_faceset</a></li>
<li><a class="el" href="man_consistent_fe_initialization.html">fix_modify AtC consistent_fe_initialization</a></li>
<li><a class="el" href="man_mass_matrix.html">fix_modify AtC mass_matrix</a></li>
<li><a class="el" href="man_material.html">fix_modify AtC material</a></li>
<li><a class="el" href="man_atomic_charge.html">fix_modify AtC atomic_charge</a></li>
<li><a class="el" href="man_source_integration.html">fix_modify AtC source_integration</a></li>
<li><a class="el" href="man_temperature_definition.html">fix_modify AtC temperature_definition</a></li>
<li><a class="el" href="man_track_displacement.html">fix_modify AtC track_displacement</a></li>
<li><a class="el" href="man_boundary_dynamics.html">fix_modify AtC boundary_dynamics</a></li>
<li><a class="el" href="man_add_species.html">fix_modify AtC add_species</a></li>
<li><a class="el" href="man_add_molecule.html">fix_modify AtC add_molecule</a></li>
<li><a class="el" href="man_remove_species.html">fix_modify AtC remove_species</a></li>
<li><a class="el" href="man_remove_molecule.html">fix_modify AtC remove_molecule</a></li>
</ul>
<p>Note: a set of example input files with the attendant material files are included with this package </p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>none </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,53 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC fix_flux</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_fix_flux">fix_modify AtC fix_flux </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC fix_flux &lt;field&gt; &lt;face_set&gt; &lt;value | function&gt;</p>
<ul>
<li>&lt;field&gt; = field name valid for type of physics, temperature | electron_temperature</li>
<li>&lt;face_set&gt; = name of set of element faces </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc fix_flux temperature faceSet 10.0 </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command for fixing normal fluxes e.g. heat_flux. This command only prescribes the normal component of the physical flux, e.g. heat (energy) flux. The units are in AtC units, i.e. derived from the LAMMPS length, time, and mass scales. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Only normal fluxes (Neumann data) can be prescribed. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<p>see <a class="el" href="man_unfix_flux.html">fix_modify AtC unfix_flux</a> </p>
<h2><a class="anchor" id="default">
default</a></h2>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,56 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC fix</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_fix_nodes">fix_modify AtC fix </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC fix &lt;field&gt; &lt;nodeset&gt; &lt;constant | function&gt;</p>
<ul>
<li>&lt;field&gt; = field name valid for type of physics</li>
<li>&lt;nodeset&gt; = name of set of nodes to apply boundary condition</li>
<li>&lt;constant | function&gt; = value or name of function followed by its parameters </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC fix temperature groupNAME 10. </code> <br/>
<code> fix_modify AtC fix temperature groupNAME 0 0 0 10.0 0 0 1.0 </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Creates a constraint on the values of the specified field at specified nodes. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>keyword 'all' reserved in nodeset name </p>
<h2><a class="anchor" id="related">
related</a></h2>
<p>see <a class="el" href="man_unfix_nodes.html">fix_modify AtC unfix</a> </p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>none </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,67 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC computes</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_hardy_computes">fix_modify AtC computes </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC computes &lt;add | delete&gt; [per-atom compute id] &lt;volume | number&gt; <br/>
</p>
<ul>
<li>add | delete (keyword) = add or delete the calculation of an equivalent continuum field for the specified per-atom compute as volume or number density quantity <br/>
</li>
<li>per-atom compute id = name/id for per-atom compute, fields can be calculated for all per-atom computes available from LAMMPS <br/>
</li>
<li>volume | number (keyword) = field created is a per-unit-volume quantity or a per-atom quantity as weighted by kernel functions <br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> compute virial all stress/atom </code> <br/>
<code> fix_modify AtC computes add virial volume </code> <br/>
<code> fix_modify AtC computes delete virial </code> <br/>
<br/>
<code> compute centrosymmetry all centro/atom </code> <br/>
<code> fix_modify AtC computes add centrosymmetry number </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Calculates continuum fields corresponding to specified per-atom computes created by LAMMPS <br/>
</p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Must be used with the hardy/field type of AtC fix ( see <a class="el" href="man_fix_atc.html">fix atc command</a> ) <br/>
Per-atom compute must be specified before corresponding continuum field can be requested <br/>
</p>
<h2><a class="anchor" id="related">
related</a></h2>
<p>See manual page for compute </p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>No defaults exist for this command </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,83 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC fields</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_hardy_fields">fix_modify AtC fields </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC fields &lt;all | none&gt; <br/>
fix_modify AtC fields &lt;add | delete&gt; &lt;list_of_fields&gt; <br/>
</p>
<ul>
<li>all | none (keyword) = output all or no fields <br/>
</li>
<li>add | delete (keyword) = add or delete the listed output fields <br/>
</li>
<li>fields (keyword) = <br/>
density : mass per unit volume <br/>
displacement : displacement vector <br/>
momentum : momentum per unit volume <br/>
velocity : defined by momentum divided by density <br/>
projected_velocity : simple kernel estimation of atomic velocities <br/>
temperature : temperature derived from the relative atomic kinetic energy (as done by ) <br/>
kinetic_temperature : temperature derived from the full kinetic energy <br/>
number_density : simple kernel estimation of number of atoms per unit volume <br/>
stress : Cauchy stress tensor for eulerian analysis (atom_element_map), or 1st Piola-Kirchhoff stress tensor for lagrangian analysis <br/>
transformed_stress : 1st Piola-Kirchhoff stress tensor for eulerian analysis (atom_element_map), or Cauchy stress tensor for lagrangian analysis <br/>
heat_flux : spatial heat flux vector for eulerian, or referential heat flux vector for lagrangian <br/>
potential_energy : potential energy per unit volume <br/>
kinetic_energy : kinetic energy per unit volume <br/>
thermal_energy : thermal energy (kinetic energy - continuum kinetic energy) per unit volume <br/>
internal_energy : total internal energy (potential + thermal) per unit volume <br/>
energy : total energy (potential + kinetic) per unit volume <br/>
number_density : number of atoms per unit volume <br/>
eshelby_stress: configurational stress (energy-momentum) tensor defined by Eshelby [References: Philos. Trans. Royal Soc. London A, Math. Phys. Sci., Vol. 244, No. 877 (1951) pp. 87-112; J. Elasticity, Vol. 5, Nos. 3-4 (1975) pp. 321-335] <br/>
vacancy_concentration: volume fraction of vacancy content <br/>
type_concentration: volume fraction of a specific atom type <br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC fields add velocity temperature </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Allows modification of the fields calculated and output by the transfer class. The commands are cumulative, e.g.<br/>
<code> fix_modify AtC fields none </code> <br/>
followed by <br/>
<code> fix_modify AtC fields add velocity temperature </code> <br/>
will only output the velocity and temperature fields. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Must be used with the hardy/field type of AtC fix, see <a class="el" href="man_fix_atc.html">fix atc command</a>. Currently, the stress and heat flux formulas are only correct for central force potentials, e.g. Lennard-Jones and EAM but not Stillinger-Weber. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<p>See <a class="el" href="man_hardy_gradients.html">fix_modify AtC gradients</a> , <a class="el" href="man_hardy_rates.html">fix_modify AtC rates</a> and <a class="el" href="man_hardy_computes.html">fix_modify AtC computes</a> </p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>By default, no fields are output </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,57 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC gradients</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_hardy_gradients">fix_modify AtC gradients </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC gradients &lt;add | delete&gt; &lt;list_of_fields&gt; <br/>
</p>
<ul>
<li>add | delete (keyword) = add or delete the calculation of gradients for the listed output fields <br/>
</li>
<li>fields (keyword) = <br/>
gradients can be calculated for all fields listed in <a class="el" href="man_hardy_fields.html">fix_modify AtC fields</a></li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC gradients add temperature velocity stress </code> <br/>
<code> fix_modify AtC gradients delete velocity </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Requests calculation and ouput of gradients of the fields from the transfer class. These gradients will be with regard to spatial or material coordinate for eulerian or lagrangian analysis, respectively, as specified by atom_element_map (see <a class="el" href="man_atom_element_map.html">fix_modify AtC atom_element_map</a> ) </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Must be used with the hardy/field type of AtC fix ( see <a class="el" href="man_fix_atc.html">fix atc command</a> ) </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>No gradients are calculated by default </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,65 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC kernel</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_hardy_kernel">fix_modify AtC kernel </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC kernel &lt;type&gt; &lt;parameters&gt;</p>
<ul>
<li>type (keyword) = step, cell, cubic_bar, cubic_cylinder, cubic_sphere, quartic_bar, quartic_cylinder, quartic_sphere <br/>
</li>
<li>parameters :<br/>
step = radius (double) <br/>
cell = hx, hy, hz (double) or h (double) <br/>
cubic_bar = half-width (double) <br/>
cubic_cylinder = radius (double) <br/>
cubic_sphere = radius (double) <br/>
quartic_bar = half-width (double) <br/>
quartic_cylinder = radius (double) <br/>
quartic_sphere = radius (double) <br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC kernel cell 1.0 1.0 1.0 </code> <br/>
<code> fix_modify AtC kernel quartic_sphere 10.0 </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Must be used with the hardy AtC fix <br/>
For bar kernel types, half-width oriented along x-direction <br/>
For cylinder kernel types, cylindrical axis is assumed to be in z-direction <br/>
( see <a class="el" href="man_fix_atc.html">fix atc command</a> ) </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>No default </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,60 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC on_the_fly</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_hardy_on_the_fly">fix_modify AtC on_the_fly </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC on_the_fly &lt;bond | kernel&gt; &lt;optional on | off&gt; <br/>
- bond | kernel (keyword) = specifies on-the-fly calculation of bond or kernel matrix elements <br/>
</p>
<ul>
<li>on | off (keyword) = activate or discontinue on-the-fly mode <br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC on_the_fly bond on </code> <br/>
<code> fix_modify AtC on_the_fly kernel </code> <br/>
<code> fix_modify AtC on_the_fly kernel off </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Overrides normal mode of pre-calculating and storing bond pair-to-node a nd kernel atom-to-node matrices. If activated, will calculate elements of t hese matrices during repeated calls of field computations (i.e. "on-the-fly") and not store them for future use. <br/>
on flag is optional - if omitted, on_the_fly will be activated for the s pecified matrix. Can be deactivated using off flag. <br/>
</p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Must be used with the hardy/field type of AtC fix ( see <a class="el" href="man_fix_atc.html">fix atc command</a> ) </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>By default, on-the-fly calculation is not active (i.e. off). However, code does a memory allocation check to determine if it can store all needed bond and kernel matrix ele ments. If this allocation fails, on-the-fly is activated. <br/>
</p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,58 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC rates</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_hardy_rates">fix_modify AtC rates </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC rates &lt;add | delete&gt; &lt;list_of_fields&gt; <br/>
</p>
<ul>
<li>add | delete (keyword) = add or delete the calculation of rates (time derivatives) for the listed output fields <br/>
</li>
<li>fields (keyword) = <br/>
rates can be calculated for all fields listed in <a class="el" href="man_hardy_fields.html">fix_modify AtC fields</a></li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC rates add temperature velocity stress </code> <br/>
<code> fix_modify AtC rates delete stress </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Requests calculation and ouput of rates (time derivatives) of the fields from the transfer class. For eulerian analysis (see <a class="el" href="man_atom_element_map.html">fix_modify AtC atom_element_map</a> ), these rates are the partial time derivatives of the nodal fields, not the full (material) time derivatives. <br/>
</p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Must be used with the hardy/field type of AtC fix ( see <a class="el" href="man_fix_atc.html">fix atc command</a> ) </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>No rates are calculated by default </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,51 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC initial</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_initial">fix_modify AtC initial </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC initial &lt;field&gt; &lt;nodeset&gt; &lt;constant | function&gt;</p>
<ul>
<li>&lt;field&gt; = field name valid for type of physics, temperature | electron_temperature</li>
<li>&lt;nodeset&gt; = name of set of nodes to apply initial condition</li>
<li>&lt;constant | function&gt; = value or name of function followed by its parameters </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc initial temperature groupNAME 10. </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Sets the initial values for the specified field at the specified nodes. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>keyword 'all' reserved in nodeset name </p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>none </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,40 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC internal_atom_integrate</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_internal_atom_integrate">fix_modify AtC internal_atom_integrate </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC internal_atom_integrate &lt;on | off&gt; <code> fix_modify AtC internal_atom_integrate on </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Has AtC perform time integration for the atoms in the group on which it operates. This does not include boundary atoms. </p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>on for coupling methods, off for post-processors off </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,52 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC internal_element_set</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_internal_element_set">fix_modify AtC internal_element_set </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC internal_element_set &lt;element-set-name&gt;</p>
<ul>
<li>&lt;element-set-name&gt; = name of element set defining internal region, or off </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC internal_element_set myElementSet </code> <code> fix_modify AtC internal_element_set off </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Enables AtC to base the region for internal atoms to be an element set. If no ghost atoms are used, all the AtC atoms must be constrained to remain in this element set by the user, e.g., with walls. If boundary atoms are used in conjunction with Eulerian atom maps AtC will partition all atoms of a boundary or internal type to be of type internal if they are in the internal region or to be of type boundary otherwise. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>If boundary atoms are used in conjunction with Eulerian atom maps, the Eulerian reset frequency must be an integer multiple of the Lammps reneighbor frequency </p>
<h2><a class="anchor" id="related">
related</a></h2>
<p>see atom_element_map_type and boundary </p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>off </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,50 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC internal_quadrature</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_internal_quadrature">fix_modify AtC internal_quadrature </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify atc internal_quadrature &lt;on | off&gt; [region] </p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc internal_quadrature off </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command to use or not use atomic quadrature on internal elements fully filled with atoms. By turning the internal quadrature off these elements do not contribute to the governing PDE and the fields at the internal nodes follow the weighted averages of the atomic data. </p>
<h2><a class="anchor" id="optional">
optional</a></h2>
<p>Optional region tag specifies which finite element nodes will be treated as being within the MD region. This option is only valid with internal_quadrature off. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>on </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,64 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC kernel</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_kernel_function">fix_modify AtC kernel </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC kernel &lt;type&gt; &lt;parameters&gt;</p>
<ul>
<li>type (keyword) = step, cell, cubic_bar, cubic_cylinder, cubic_sphere, quartic_bar, quartic_cylinder, quartic_sphere <br/>
</li>
<li>parameters :<br/>
step = radius (double) <br/>
cell = hx, hy, hz (double) or h (double) <br/>
cubic_bar = half-width (double) <br/>
cubic_cylinder = radius (double) <br/>
cubic_sphere = radius (double) <br/>
quartic_bar = half-width (double) <br/>
quartic_cylinder = radius (double) <br/>
quartic_sphere = radius (double) <br/>
</li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p>fix_modify AtC kernel cell 1.0 1.0 1.0 fix_modify AtC kernel quartic_sphere 10.0 </p>
<h2><a class="anchor" id="description">
description</a></h2>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Must be used with the hardy AtC fix <br/>
For bar kernel types, half-width oriented along x-direction <br/>
For cylinder kernel types, cylindrical axis is assumed to be in z-direction <br/>
( see <a class="el" href="man_fix_atc.html">fix atc command</a> ) </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>No default </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,48 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC control localized_lambda</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_localized_lambda">fix_modify AtC control localized_lambda </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC control localized_lambda &lt;on|off&gt; </p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc control localized_lambda on </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Turns on localization algorithms for control algorithms to restrict the influence of FE coupling or boundary conditions to a region near the boundary of the MD region. Control algorithms will not affect atoms in elements not possessing faces on the boundary of the region. Flux-based control is localized via row-sum lumping while quantity control is done by solving a truncated matrix equation. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>Default is off. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,47 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC control lumped_lambda_solve</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_lumped_lambda_solve">fix_modify AtC control lumped_lambda_solve </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC control lumped_lambda_solve &lt;on|off&gt; </p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc control lumped_lambda_solve on </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command to use or not use lumped matrix for lambda solve </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,47 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC control mask_direction</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_mask_direction">fix_modify AtC control mask_direction </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC control mask_direction &lt;direction&gt; &lt;on|off&gt; </p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc control mask_direction 0 on </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command to mask out certain dimensions from the atomic regulator </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,51 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC mass_matrix</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_mass_matrix">fix_modify AtC mass_matrix </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC mass_matrix &lt;fe | md_fe&gt;</p>
<ul>
<li>&lt;fe | md_fe&gt; = activiate/deactiviate using the FE mass matrix in the MD region </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify atc mass_matrix fe </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Determines whether AtC uses the FE mass matrix based on Gaussian quadrature or based on atomic quadrature in the MD region. This is useful for fully overlapping simulations to improve efficiency. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Should not be used unless the FE region is contained within the MD region, otherwise the method will be unstable and inaccurate </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>Default is off </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,49 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC material</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_material">fix_modify AtC material </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC material [elementset_name] [material_id] <br/>
</p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC material gap_region 2</code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Sets the material model in elementset_name to be of type material_id. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>The element set must already be created and the material must be specified in the material file given the the atc fix on construction </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>All elements default to the first material in the material file. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,51 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC mesh add_to_nodeset</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_mesh_add_to_nodeset">fix_modify AtC mesh add_to_nodeset </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC mesh add_to_nodeset &lt;id&gt; &lt;xmin&gt; &lt;xmax&gt; &lt;ymin&gt; &lt;ymax&gt; &lt;zmin&gt; &lt;zmax&gt;</p>
<ul>
<li>&lt;id&gt; = id of FE nodeset to be added to</li>
<li>&lt;xmin&gt; &lt;xmax&gt; &lt;ymin&gt; &lt;ymax&gt; &lt;zmin&gt; &lt;zmax&gt; = coordinates of the bounding box that contains the desired nodes to be added </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC mesh add_to_nodeset lbc -11.9 -11 -12 12 -12 12 </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command to add nodes to an already existing FE nodeset. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>Coordinates are assumed to be in lattice units. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,56 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC mesh create</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_mesh_create">fix_modify AtC mesh create </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC mesh create &lt;nx&gt; &lt;ny&gt; &lt;nz&gt; &lt;region-id&gt; &lt;f|p&gt; &lt;f|p&gt; &lt;f|p&gt; <br/>
</p>
<ul>
<li>nx ny nz = number of elements in x, y, z</li>
<li>region-id = id of region that is to be meshed</li>
<li>f p p = periodicity flags for x, y, z </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC mesh create 10 1 1 feRegion p p p </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Creates a uniform mesh in a rectangular region </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Creates only uniform rectangular grids in a rectangular region </p>
<h2><a class="anchor" id="related">
related</a></h2>
<p><a class="el" href="man_mesh_quadrature.html">fix_modify AtC mesh quadrature</a> </p>
<h2><a class="anchor" id="default">
default</a></h2>
<p>When created, mesh defaults to gauss2 (2-point Gaussian) quadrature. Use "mesh quadrature" command to change quadrature style. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,52 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC mesh create_elementset</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_mesh_create_elementset">fix_modify AtC mesh create_elementset </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC create_elementset &lt;id&gt; &lt;xmin&gt; &lt;xmax&gt; &lt;ymin&gt; &lt;ymax&gt; &lt;zmin&gt; &lt;zmax&gt;</p>
<ul>
<li>&lt;id&gt; = id to assign to the collection of FE element</li>
<li>&lt;xmin&gt; &lt;xmax&gt; &lt;ymin&gt; &lt;ymax&gt; &lt;zmin&gt; &lt;zmax&gt; = coordinates of the bounding box that contains only the desired elements </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC mesh create_elementset middle -4.1 4.1 -100 100 -100 1100 </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command to assign an id to a set of FE elements to be used subsequently in defining material and mesh-based operations. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Only viable for rectangular grids. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>Coordinates are assumed to be in lattice units. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,54 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC mesh create_faceset box</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_mesh_create_faceset_box">fix_modify AtC mesh create_faceset box </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC mesh create_faceset &lt;id&gt; box &lt;xmin&gt; &lt;xmax&gt; &lt;ymin&gt; &lt;ymax&gt; &lt;zmin&gt; &lt;zmax&gt; &lt;in|out&gt; [units]</p>
<ul>
<li>&lt;id&gt; = id to assign to the collection of FE faces</li>
<li>&lt;xmin&gt; &lt;xmax&gt; &lt;ymin&gt; &lt;ymax&gt; &lt;zmin&gt; &lt;zmax&gt; = coordinates of the bounding box that is coincident with the desired FE faces</li>
<li>&lt;in|out&gt; = "in" gives inner faces to the box, "out" gives the outer faces to the box</li>
<li>units = option to specify real as opposed to lattice units </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC mesh create_faceset obndy box -4.0 4.0 -12 12 -12 12 out </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command to assign an id to a set of FE faces. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Only viable for rectangular grids. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>The default options are units = lattice and the use of outer faces </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,54 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC mesh create_faceset plane</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_mesh_create_faceset_plane">fix_modify AtC mesh create_faceset plane </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC mesh create_faceset &lt;id&gt; plane &lt;x|y|z&gt; &lt;val1&gt; &lt;x|y|z&gt; &lt;lval2&gt; &lt;uval2&gt; [units]</p>
<ul>
<li>&lt;id&gt; = id to assign to the collection of FE faces</li>
<li>&lt;x|y|z&gt; = coordinate directions that define plane on which faceset lies</li>
<li>&lt;val1&gt;,&lt;lval2&gt;,&lt;uval2&gt; = plane is specified as the x|y|z=val1 plane bounded by the segments x|y|z = [lval2,uval2]</li>
<li>units = option to specify real as opposed to lattice units </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC mesh create_faceset xyplane plane y 0 x -4 0 </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command to assign an id to a set of FE faces. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>Only viable for rectangular grids. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>The default option is units = lattice. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,51 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC mesh create_nodeset</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_mesh_create_nodeset">fix_modify AtC mesh create_nodeset </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC mesh create_nodeset &lt;id&gt; &lt;xmin&gt; &lt;xmax&gt; &lt;ymin&gt; &lt;ymax&gt; &lt;zmin&gt; &lt;zmax&gt;</p>
<ul>
<li>&lt;id&gt; = id to assign to the collection of FE nodes</li>
<li>&lt;xmin&gt; &lt;xmax&gt; &lt;ymin&gt; &lt;ymax&gt; &lt;zmin&gt; &lt;zmax&gt; = coordinates of the bounding box that contains only the desired nodes </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC mesh create_nodeset lbc -12.1 -11.9 -12 12 -12 12 </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command to assign an id to a set of FE nodes to be used subsequently in defining boundary conditions. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>Coordinates are assumed to be in lattice units. </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,50 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC mesh delete_elements</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_mesh_delete_elements">fix_modify AtC mesh delete_elements </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC mesh delete_elements &lt;element_set&gt;</p>
<ul>
<li>&lt;element_set&gt; = name of an element set </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC delete_elements gap </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Deletes a group of elements from the mesh. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>none </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,53 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC mesh nodeset_to_elementset</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_mesh_nodeset_to_elementset">fix_modify AtC mesh nodeset_to_elementset </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC nodeset_to_elementset &lt;nodeset_id&gt; &lt;elementset_id&gt; &lt;max/min&gt;</p>
<ul>
<li>&lt;nodeset_id&gt; = id of desired nodeset from which to create elementset</li>
<li>&lt;elementset_id&gt; = id to assign to the collection of FE element</li>
<li>&lt;max/min&gt; = flag to choose either the maximal or minimal elementset </li>
</ul>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC mesh nodeset_to_elementset myNodeset myElementset min </code> </p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command to create an elementset from an existing nodeset. Either the minimal element set of elements with all nodes in the set, or maximal element set with all elements with at least one node in the set, can be created </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>None. </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>Unless specified, the maximal element set is created </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

View File

@ -1,49 +0,0 @@
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<title>ATC: fix_modify AtC mesh output</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<link href="doxygen.css" rel="stylesheet" type="text/css"/>
</head>
<body>
<!-- Generated by Doxygen 1.6.1 -->
<div class="navigation" id="top">
<div class="tabs">
<ul>
<li><a href="index.html"><span>Main&nbsp;Page</span></a></li>
<li class="current"><a href="pages.html"><span>Related&nbsp;Pages</span></a></li>
<li><a href="namespaces.html"><span>Namespaces</span></a></li>
<li><a href="annotated.html"><span>Classes</span></a></li>
<li><a href="files.html"><span>Files</span></a></li>
<li><a href="dirs.html"><span>Directories</span></a></li>
</ul>
</div>
</div>
<div class="contents">
<h1><a class="anchor" id="man_mesh_output">fix_modify AtC mesh output </a></h1><h2><a class="anchor" id="syntax">
syntax</a></h2>
<p>fix_modify AtC mesh output &lt;file_prefix&gt; </p>
<h2><a class="anchor" id="examples">
examples</a></h2>
<p><code> fix_modify AtC mesh output meshData </code> <br/>
</p>
<h2><a class="anchor" id="description">
description</a></h2>
<p>Command to output mesh and associated data: nodesets, facesets, and elementsets. This data is only output once upon initialization since currently the mesh is static. Creates (binary, "gold" format) Ensight output of mesh data. </p>
<h2><a class="anchor" id="restrictions">
restrictions</a></h2>
<p>none </p>
<h2><a class="anchor" id="related">
related</a></h2>
<h2><a class="anchor" id="default">
default</a></h2>
<p>none </p>
</div>
<hr size="1"/><address style="text-align: right;"><small>Generated on 21 Aug 2013 for ATC by&nbsp;
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.6.1 </small></address>
</body>
</html>

Some files were not shown because too many files have changed in this diff Show More