Shifted Tersoff Potential
This commit is contained in:
116
doc/src/pair_tersoff_shift.rst
Normal file
116
doc/src/pair_tersoff_shift.rst
Normal file
@ -0,0 +1,116 @@
|
||||
.. index:: pair_style tersoff/shift
|
||||
|
||||
Syntax
|
||||
""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
pair_style tersoff/shift delta
|
||||
|
||||
* delta = the shift applied to the equilibrium bond length of the tersoff potential.
|
||||
|
||||
Examples
|
||||
""""""""
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
pair_style tersoff/shift delta
|
||||
pair_coeff * * Si.tersoff Si
|
||||
pair_coeff * * BNC.tersoff B N
|
||||
|
||||
Description
|
||||
"""""""""""
|
||||
|
||||
The *tersoff/shift* style computes the energy E of a system of atoms, whose formula
|
||||
is the same as a 3-body Tersoff potential :ref:`(Tersoff_1) <Tersoff_11>`. The only
|
||||
modification is that the original equilibrium bond length (:math: `r_0`) of the
|
||||
system is shifted to :math:`r_0-\delta`.
|
||||
|
||||
.. note::
|
||||
|
||||
The sign of :math:`\delta` determines whether the resulting equilibrium bond length will be elongated
|
||||
or shrinked relative to the original value. Specifically, values of :math:`\delta < 0` will result in
|
||||
elongation of the bond length, while values of :math:`\delta > 0` will result in shrinking of the bond length.
|
||||
|
||||
This style is designed for simulations of closely matched van der Waals heterostructures. For instance, let's
|
||||
consider the case of a system with few-layers graphene atop a thick hexagonal boron nitride (h-BN) substrate
|
||||
simulated using periodic boundary conditions. The experimental lattice mismatch of ~1.8% between graphene and h-BN
|
||||
is not well captured by the equilibrium lattice constants of available potentials, thus a small in-plane strain
|
||||
will be introduced in the system when building a periodic supercell.To minimize the effect of strain on
|
||||
simulation results, the *tersoff/shift* style is proposed that allows adjusting the equilibrium bond length
|
||||
of one of the two materials (e.g., h-BN). Validitation, benchmark tests and applications of the *tersoff/shift* style
|
||||
can be found in :ref:`(Mandelli_1) <Mandelli1>` and :ref:`(Ouyang_1) <Ouyang5>`.
|
||||
|
||||
For the specific case discussed above, the force field can be defined as
|
||||
|
||||
.. code-block:: LAMMPS
|
||||
|
||||
pair_style hybrid/overlay rebo tersoff/shift -4.07e-3 ilp/graphene/hbn 16.0 coul/shield 16.0
|
||||
pair_coeff * * rebo CH.rebo NULL NULL C
|
||||
pair_coeff * * tersoff/shift BNC.tersoff B N NULL
|
||||
pair_coeff * * ilp/graphene/hbn BNCH.ILP B N C
|
||||
pair_coeff 1 1 coul/shield 0.70
|
||||
pair_coeff 1 2 coul/shield 0.695
|
||||
pair_coeff 2 2 coul/shield 0.69
|
||||
|
||||
Except for the shift, the usage of the *tersoff/shift* style is the same as that for the
|
||||
*tersoff* style :doc:`tersoff <pair_tersoff>`.
|
||||
|
||||
|
||||
Mixing, shift, table, tail correction, restart, rRESPA info
|
||||
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
|
||||
|
||||
For atom type pairs I,J and I != J, where types I and J correspond to
|
||||
two different element types, mixing is performed by LAMMPS as
|
||||
described above from values in the potential file.
|
||||
|
||||
This pair style does not support the :doc:`pair_modify <pair_modify>`
|
||||
shift, table, and tail options.
|
||||
|
||||
This pair style does not write its information to :doc:`binary restart files <restart>`, since it is stored in potential files. Thus, you
|
||||
need to re-specify the pair_style and pair_coeff commands in an input
|
||||
script that reads a restart file.
|
||||
|
||||
This pair style can only be used via the *pair* keyword of the
|
||||
:doc:`run_style respa <run_style>` command. It does not support the
|
||||
*inner*\ , *middle*\ , *outer* keywords.
|
||||
|
||||
----------
|
||||
|
||||
Restrictions
|
||||
""""""""""""
|
||||
|
||||
This pair style is part of the USER-MISC package. It is only enabled
|
||||
if LAMMPS was built with that package. See the :doc:`Build package <Build_package>` doc page for more info.
|
||||
|
||||
This pair style requires the :doc:`newton <newton>` setting to be "on"
|
||||
for pair interactions.
|
||||
|
||||
The Tersoff potential files provided with LAMMPS (see the potentials
|
||||
directory) are parameterized for metal :doc:`units <units>`. You can
|
||||
use the Tersoff potential with any LAMMPS units, but you would need to
|
||||
create your own Tersoff potential file with coefficients listed in the
|
||||
appropriate units if your simulation does not use "metal" units.
|
||||
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
:doc:`pair_coeff <pair_coeff>`,
|
||||
:doc:`pair_style tersoff <pair_tersoff>`,
|
||||
:doc:`pair_style ilp/graphene/hbn <pair_ilp_graphene_hbn>`.
|
||||
|
||||
Default
|
||||
"""""""
|
||||
|
||||
none
|
||||
|
||||
----------
|
||||
|
||||
.. _Mandelli1:
|
||||
|
||||
**(Mandelli_1)** D. Mandelli, W. Ouyang, M. Urbakh, and O. Hod, ACS Nano 13(7), 7603-7609 (2019).
|
||||
|
||||
|
||||
.. _Ouyang5:
|
||||
|
||||
**(Ouyang_1)** W. Ouyang et al., J. Chem. Theory Comput. 16(1), 666-676 (2020).
|
||||
74
examples/USER/misc/tersoff_shift/BNC.tersoff
Normal file
74
examples/USER/misc/tersoff_shift/BNC.tersoff
Normal file
@ -0,0 +1,74 @@
|
||||
# DATE: 2013-03-21 CONTRIBUTOR: Cem Sevik CITATION: Kinaci, Haskins, Sevik and Cagin, Phys Rev B, 86, 115410 (2012)
|
||||
# Tersoff parameters for B, C, and BN-C hybrid based graphene like nano structures
|
||||
# multiple entries can be added to this file, LAMMPS reads the ones it needs
|
||||
|
||||
# these entries are in LAMMPS "metal" units:
|
||||
# A,B = eV; lambda1,lambda2,lambda3 = 1/Angstroms; R,D = Angstroms
|
||||
# other quantities are unitless
|
||||
|
||||
# Cem Sevik (csevik at anadolu.edu.tr) takes full blame for this
|
||||
# file. It specifies B-N, B-C, and N-C interaction parameters
|
||||
# generated and published by the reseacrh group of Prof. Tahir Cagin.
|
||||
|
||||
# 1. Physical Review B 84, 085409 2011
|
||||
# Characterization of thermal transport in low-dimensional boron nitride nanostructures,
|
||||
#
|
||||
|
||||
# 2. Physical Review B 86, 075403 2012
|
||||
# Influence of disorder on thermal transport properties of boron nitride nanostructures
|
||||
#
|
||||
|
||||
# 3. Physical Review B 86, 075403 2012, Please see for further information about B-C and N-C parameters
|
||||
# Thermal conductivity of BN-C nanostructures
|
||||
#
|
||||
|
||||
# The file also specifies C-C, interaction parameters
|
||||
# generated and published by the reseacrh group of Dr. D. A. Broido
|
||||
# Physical Review B 81, 205441 2010
|
||||
# Optimized Tersoff and Brenner empirical potential parameters for
|
||||
# lattice dynamics and phonon thermal transport in carbon nanotubes and graphene
|
||||
|
||||
# Users in referring the full parameters can cite the full parameter paper (3) as:
|
||||
# A. Kinaci, J. B. Haskins, C. Sevik, T. Cagin, Physical Review B 86, 115410 (2012)
|
||||
# Thermal conductivity of BN-C nanostructures
|
||||
#
|
||||
|
||||
# format of a single entry (one or more lines):
|
||||
# element 1, element 2, element 3,
|
||||
# m, gamma, lambda3, c, d, costheta0, n, beta, lambda2, B, R, D, lambda1, A
|
||||
|
||||
N B B 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.199 340.00 1.95 0.05 3.568 1380.0
|
||||
N B N 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.199 340.00 1.95 0.05 3.568 1380.0
|
||||
N B C 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.199 340.00 1.95 0.05 3.568 1380.0
|
||||
|
||||
B N B 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.199 340.00 1.95 0.05 3.568 1380.0
|
||||
B N N 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.199 340.00 1.95 0.05 3.568 1380.0
|
||||
B N C 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.199 340.00 1.95 0.05 3.568 1380.0
|
||||
|
||||
N N B 3.0 1.0 0.0 17.7959 5.9484 0.00000 0.6184432 0.019251 2.6272721 138.77866 2.0 0.1 2.8293093 128.86866
|
||||
N N N 3.0 1.0 0.0 17.7959 5.9484 0.00000 0.6184432 0.019251 2.6272721 138.77866 2.0 0.1 2.8293093 128.86866
|
||||
N N C 3.0 1.0 0.0 17.7959 5.9484 0.00000 0.6184432 0.019251 2.6272721 138.77866 2.0 0.1 2.8293093 128.86866
|
||||
|
||||
B B B 3.0 1.0 0.0 0.52629 0.001587 0.5 3.9929061 1.6e-6 2.0774982 43.132016 2.0 0.1 2.2372578 40.0520156
|
||||
B B N 3.0 1.0 0.0 0.52629 0.001587 0.5 3.9929061 1.6e-6 2.0774982 43.132016 2.0 0.1 2.2372578 40.0520156
|
||||
B B C 3.0 1.0 0.0 0.52629 0.001587 0.5 3.9929061 1.6e-6 2.0774982 43.132016 2.0 0.1 2.2372578 40.0520156
|
||||
|
||||
C C C 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2119 430.00 1.95 0.15 3.4879 1393.6
|
||||
C C B 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2119 430.00 1.95 0.15 3.4879 1393.6
|
||||
C C N 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2119 430.00 1.95 0.15 3.4879 1393.6
|
||||
|
||||
C B B 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2054 339.068910 1.95 0.10 3.5279 1386.78
|
||||
C B N 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2054 339.068910 1.95 0.10 3.5279 1386.78
|
||||
C B C 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2054 339.068910 1.95 0.10 3.5279 1386.78
|
||||
|
||||
C N B 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2054 387.575152 1.95 0.10 3.5279 1386.78
|
||||
C N N 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2054 387.575152 1.95 0.10 3.5279 1386.78
|
||||
C N C 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2054 387.575152 1.95 0.10 3.5279 1386.78
|
||||
|
||||
B C C 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.2054 339.068910 1.95 0.10 3.5279 1386.78
|
||||
B C B 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.2054 339.068910 1.95 0.10 3.5279 1386.78
|
||||
B C N 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.2054 339.068910 1.95 0.10 3.5279 1386.78
|
||||
|
||||
N C C 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.2054 387.575152 1.95 0.10 3.5279 1386.78
|
||||
N C B 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.2054 387.575152 1.95 0.10 3.5279 1386.78
|
||||
N C N 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.2054 387.575152 1.95 0.10 3.5279 1386.78
|
||||
892
examples/USER/misc/tersoff_shift/hBN-momolayer-5nm.data
Normal file
892
examples/USER/misc/tersoff_shift/hBN-momolayer-5nm.data
Normal file
@ -0,0 +1,892 @@
|
||||
Makeup graphene nanoribbon on hBN
|
||||
|
||||
880 atoms
|
||||
|
||||
2 atom types
|
||||
|
||||
0.000000000000000 46.152979739999999 xlo xhi
|
||||
0.000000000000000 48.443364211584992 ylo yhi
|
||||
0.000000000000000 100.000000000000000 zlo zhi
|
||||
|
||||
Atoms
|
||||
|
||||
1 1 1 0.420 0.000000000000000 0.000000000000000 0.000000000000000
|
||||
2 1 2 -0.420 0.698900000000000 1.210530287683010 0.000000000000000
|
||||
3 1 1 0.420 2.096700000000000 1.210530287683010 0.000000000000000
|
||||
4 1 2 -0.420 2.795600000000000 0.000000000000000 0.000000000000000
|
||||
5 1 1 0.420 4.193400000000000 0.000000000000000 0.000000000000000
|
||||
6 1 2 -0.420 4.892300000000000 1.210530287683010 0.000000000000000
|
||||
7 1 1 0.420 6.290100000000000 1.210530287683010 0.000000000000000
|
||||
8 1 2 -0.420 6.989000000000000 0.000000000000000 0.000000000000000
|
||||
9 1 1 0.420 8.386799999999999 0.000000000000000 0.000000000000000
|
||||
10 1 2 -0.420 9.085699999999999 1.210530287683010 0.000000000000000
|
||||
11 1 1 0.420 10.483499999999999 1.210530287683010 0.000000000000000
|
||||
12 1 2 -0.420 11.182399999999999 0.000000000000000 0.000000000000000
|
||||
13 1 1 0.420 12.580200000000000 0.000000000000000 0.000000000000000
|
||||
14 1 2 -0.420 13.279100000000000 1.210530287683010 0.000000000000000
|
||||
15 1 1 0.420 14.676900000000000 1.210530287683010 0.000000000000000
|
||||
16 1 2 -0.420 15.375800000000000 0.000000000000000 0.000000000000000
|
||||
17 1 1 0.420 16.773599999999998 0.000000000000000 0.000000000000000
|
||||
18 1 2 -0.420 17.472500000000000 1.210530287683010 0.000000000000000
|
||||
19 1 1 0.420 18.870300000000000 1.210530287683010 0.000000000000000
|
||||
20 1 2 -0.420 19.569199999999999 0.000000000000000 0.000000000000000
|
||||
21 1 1 0.420 20.966999999999999 0.000000000000000 0.000000000000000
|
||||
22 1 2 -0.420 21.665900000000001 1.210530287683010 0.000000000000000
|
||||
23 1 1 0.420 23.063699999999997 1.210530287683010 0.000000000000000
|
||||
24 1 2 -0.420 23.762599999999999 0.000000000000000 0.000000000000000
|
||||
25 1 1 0.420 25.160399999999999 0.000000000000000 0.000000000000000
|
||||
26 1 2 -0.420 25.859299999999998 1.210530287683010 0.000000000000000
|
||||
27 1 1 0.420 27.257099999999998 1.210530287683010 0.000000000000000
|
||||
28 1 2 -0.420 27.956000000000000 0.000000000000000 0.000000000000000
|
||||
29 1 1 0.420 29.353800000000000 0.000000000000000 0.000000000000000
|
||||
30 1 2 -0.420 30.052699999999998 1.210530287683010 0.000000000000000
|
||||
31 1 1 0.420 31.450499999999998 1.210530287683010 0.000000000000000
|
||||
32 1 2 -0.420 32.149400000000000 0.000000000000000 0.000000000000000
|
||||
33 1 1 0.420 33.547199999999997 0.000000000000000 0.000000000000000
|
||||
34 1 2 -0.420 34.246099999999998 1.210530287683010 0.000000000000000
|
||||
35 1 1 0.420 35.643899999999995 1.210530287683010 0.000000000000000
|
||||
36 1 2 -0.420 36.342799999999997 0.000000000000000 0.000000000000000
|
||||
37 1 1 0.420 37.740600000000001 0.000000000000000 0.000000000000000
|
||||
38 1 2 -0.420 38.439499999999995 1.210530287683010 0.000000000000000
|
||||
39 1 1 0.420 39.837299999999999 1.210530287683010 0.000000000000000
|
||||
40 1 2 -0.420 40.536200000000001 0.000000000000000 0.000000000000000
|
||||
41 1 1 0.420 41.933999999999997 0.000000000000000 0.000000000000000
|
||||
42 1 2 -0.420 42.632899999999999 1.210530287683010 0.000000000000000
|
||||
43 1 1 0.420 44.030699999999996 1.210530287683010 0.000000000000000
|
||||
44 1 2 -0.420 44.729599999999998 0.000000000000000 0.000000000000000
|
||||
45 1 1 0.420 0.000000000000000 2.421060575366020 0.000000000000000
|
||||
46 1 2 -0.420 0.698900000000000 3.631590863049030 0.000000000000000
|
||||
47 1 1 0.420 2.096700000000000 3.631590863049030 0.000000000000000
|
||||
48 1 2 -0.420 2.795600000000000 2.421060575366020 0.000000000000000
|
||||
49 1 1 0.420 4.193400000000000 2.421060575366020 0.000000000000000
|
||||
50 1 2 -0.420 4.892300000000000 3.631590863049030 0.000000000000000
|
||||
51 1 1 0.420 6.290100000000000 3.631590863049030 0.000000000000000
|
||||
52 1 2 -0.420 6.989000000000000 2.421060575366020 0.000000000000000
|
||||
53 1 1 0.420 8.386799999999999 2.421060575366020 0.000000000000000
|
||||
54 1 2 -0.420 9.085699999999999 3.631590863049030 0.000000000000000
|
||||
55 1 1 0.420 10.483499999999999 3.631590863049030 0.000000000000000
|
||||
56 1 2 -0.420 11.182399999999999 2.421060575366020 0.000000000000000
|
||||
57 1 1 0.420 12.580200000000000 2.421060575366020 0.000000000000000
|
||||
58 1 2 -0.420 13.279100000000000 3.631590863049030 0.000000000000000
|
||||
59 1 1 0.420 14.676900000000000 3.631590863049030 0.000000000000000
|
||||
60 1 2 -0.420 15.375800000000000 2.421060575366020 0.000000000000000
|
||||
61 1 1 0.420 16.773599999999998 2.421060575366020 0.000000000000000
|
||||
62 1 2 -0.420 17.472500000000000 3.631590863049030 0.000000000000000
|
||||
63 1 1 0.420 18.870300000000000 3.631590863049030 0.000000000000000
|
||||
64 1 2 -0.420 19.569199999999999 2.421060575366020 0.000000000000000
|
||||
65 1 1 0.420 20.966999999999999 2.421060575366020 0.000000000000000
|
||||
66 1 2 -0.420 21.665900000000001 3.631590863049030 0.000000000000000
|
||||
67 1 1 0.420 23.063699999999997 3.631590863049030 0.000000000000000
|
||||
68 1 2 -0.420 23.762599999999999 2.421060575366020 0.000000000000000
|
||||
69 1 1 0.420 25.160399999999999 2.421060575366020 0.000000000000000
|
||||
70 1 2 -0.420 25.859299999999998 3.631590863049030 0.000000000000000
|
||||
71 1 1 0.420 27.257099999999998 3.631590863049030 0.000000000000000
|
||||
72 1 2 -0.420 27.956000000000000 2.421060575366020 0.000000000000000
|
||||
73 1 1 0.420 29.353800000000000 2.421060575366020 0.000000000000000
|
||||
74 1 2 -0.420 30.052699999999998 3.631590863049030 0.000000000000000
|
||||
75 1 1 0.420 31.450499999999998 3.631590863049030 0.000000000000000
|
||||
76 1 2 -0.420 32.149400000000000 2.421060575366020 0.000000000000000
|
||||
77 1 1 0.420 33.547199999999997 2.421060575366020 0.000000000000000
|
||||
78 1 2 -0.420 34.246099999999998 3.631590863049030 0.000000000000000
|
||||
79 1 1 0.420 35.643899999999995 3.631590863049030 0.000000000000000
|
||||
80 1 2 -0.420 36.342799999999997 2.421060575366020 0.000000000000000
|
||||
81 1 1 0.420 37.740600000000001 2.421060575366020 0.000000000000000
|
||||
82 1 2 -0.420 38.439499999999995 3.631590863049030 0.000000000000000
|
||||
83 1 1 0.420 39.837299999999999 3.631590863049030 0.000000000000000
|
||||
84 1 2 -0.420 40.536200000000001 2.421060575366020 0.000000000000000
|
||||
85 1 1 0.420 41.933999999999997 2.421060575366020 0.000000000000000
|
||||
86 1 2 -0.420 42.632899999999999 3.631590863049030 0.000000000000000
|
||||
87 1 1 0.420 44.030699999999996 3.631590863049030 0.000000000000000
|
||||
88 1 2 -0.420 44.729599999999998 2.421060575366020 0.000000000000000
|
||||
89 1 1 0.420 0.000000000000000 4.842121150732040 0.000000000000000
|
||||
90 1 2 -0.420 0.698900000000000 6.052651438415050 0.000000000000000
|
||||
91 1 1 0.420 2.096700000000000 6.052651438415050 0.000000000000000
|
||||
92 1 2 -0.420 2.795600000000000 4.842121150732040 0.000000000000000
|
||||
93 1 1 0.420 4.193400000000000 4.842121150732040 0.000000000000000
|
||||
94 1 2 -0.420 4.892300000000000 6.052651438415050 0.000000000000000
|
||||
95 1 1 0.420 6.290100000000000 6.052651438415050 0.000000000000000
|
||||
96 1 2 -0.420 6.989000000000000 4.842121150732040 0.000000000000000
|
||||
97 1 1 0.420 8.386799999999999 4.842121150732040 0.000000000000000
|
||||
98 1 2 -0.420 9.085699999999999 6.052651438415050 0.000000000000000
|
||||
99 1 1 0.420 10.483499999999999 6.052651438415050 0.000000000000000
|
||||
100 1 2 -0.420 11.182399999999999 4.842121150732040 0.000000000000000
|
||||
101 1 1 0.420 12.580200000000000 4.842121150732040 0.000000000000000
|
||||
102 1 2 -0.420 13.279100000000000 6.052651438415050 0.000000000000000
|
||||
103 1 1 0.420 14.676900000000000 6.052651438415050 0.000000000000000
|
||||
104 1 2 -0.420 15.375800000000000 4.842121150732040 0.000000000000000
|
||||
105 1 1 0.420 16.773599999999998 4.842121150732040 0.000000000000000
|
||||
106 1 2 -0.420 17.472500000000000 6.052651438415050 0.000000000000000
|
||||
107 1 1 0.420 18.870300000000000 6.052651438415050 0.000000000000000
|
||||
108 1 2 -0.420 19.569199999999999 4.842121150732040 0.000000000000000
|
||||
109 1 1 0.420 20.966999999999999 4.842121150732040 0.000000000000000
|
||||
110 1 2 -0.420 21.665900000000001 6.052651438415050 0.000000000000000
|
||||
111 1 1 0.420 23.063699999999997 6.052651438415050 0.000000000000000
|
||||
112 1 2 -0.420 23.762599999999999 4.842121150732040 0.000000000000000
|
||||
113 1 1 0.420 25.160399999999999 4.842121150732040 0.000000000000000
|
||||
114 1 2 -0.420 25.859299999999998 6.052651438415050 0.000000000000000
|
||||
115 1 1 0.420 27.257099999999998 6.052651438415050 0.000000000000000
|
||||
116 1 2 -0.420 27.956000000000000 4.842121150732040 0.000000000000000
|
||||
117 1 1 0.420 29.353800000000000 4.842121150732040 0.000000000000000
|
||||
118 1 2 -0.420 30.052699999999998 6.052651438415050 0.000000000000000
|
||||
119 1 1 0.420 31.450499999999998 6.052651438415050 0.000000000000000
|
||||
120 1 2 -0.420 32.149400000000000 4.842121150732040 0.000000000000000
|
||||
121 1 1 0.420 33.547199999999997 4.842121150732040 0.000000000000000
|
||||
122 1 2 -0.420 34.246099999999998 6.052651438415050 0.000000000000000
|
||||
123 1 1 0.420 35.643899999999995 6.052651438415050 0.000000000000000
|
||||
124 1 2 -0.420 36.342799999999997 4.842121150732040 0.000000000000000
|
||||
125 1 1 0.420 37.740600000000001 4.842121150732040 0.000000000000000
|
||||
126 1 2 -0.420 38.439499999999995 6.052651438415050 0.000000000000000
|
||||
127 1 1 0.420 39.837299999999999 6.052651438415050 0.000000000000000
|
||||
128 1 2 -0.420 40.536200000000001 4.842121150732040 0.000000000000000
|
||||
129 1 1 0.420 41.933999999999997 4.842121150732040 0.000000000000000
|
||||
130 1 2 -0.420 42.632899999999999 6.052651438415050 0.000000000000000
|
||||
131 1 1 0.420 44.030699999999996 6.052651438415050 0.000000000000000
|
||||
132 1 2 -0.420 44.729599999999998 4.842121150732040 0.000000000000000
|
||||
133 1 1 0.420 0.000000000000000 7.263181726098059 0.000000000000000
|
||||
134 1 2 -0.420 0.698900000000000 8.473712013781070 0.000000000000000
|
||||
135 1 1 0.420 2.096700000000000 8.473712013781070 0.000000000000000
|
||||
136 1 2 -0.420 2.795600000000000 7.263181726098059 0.000000000000000
|
||||
137 1 1 0.420 4.193400000000000 7.263181726098059 0.000000000000000
|
||||
138 1 2 -0.420 4.892300000000000 8.473712013781070 0.000000000000000
|
||||
139 1 1 0.420 6.290100000000000 8.473712013781070 0.000000000000000
|
||||
140 1 2 -0.420 6.989000000000000 7.263181726098059 0.000000000000000
|
||||
141 1 1 0.420 8.386799999999999 7.263181726098059 0.000000000000000
|
||||
142 1 2 -0.420 9.085699999999999 8.473712013781070 0.000000000000000
|
||||
143 1 1 0.420 10.483499999999999 8.473712013781070 0.000000000000000
|
||||
144 1 2 -0.420 11.182399999999999 7.263181726098059 0.000000000000000
|
||||
145 1 1 0.420 12.580200000000000 7.263181726098059 0.000000000000000
|
||||
146 1 2 -0.420 13.279100000000000 8.473712013781070 0.000000000000000
|
||||
147 1 1 0.420 14.676900000000000 8.473712013781070 0.000000000000000
|
||||
148 1 2 -0.420 15.375800000000000 7.263181726098059 0.000000000000000
|
||||
149 1 1 0.420 16.773599999999998 7.263181726098059 0.000000000000000
|
||||
150 1 2 -0.420 17.472500000000000 8.473712013781070 0.000000000000000
|
||||
151 1 1 0.420 18.870300000000000 8.473712013781070 0.000000000000000
|
||||
152 1 2 -0.420 19.569199999999999 7.263181726098059 0.000000000000000
|
||||
153 1 1 0.420 20.966999999999999 7.263181726098059 0.000000000000000
|
||||
154 1 2 -0.420 21.665900000000001 8.473712013781070 0.000000000000000
|
||||
155 1 1 0.420 23.063699999999997 8.473712013781070 0.000000000000000
|
||||
156 1 2 -0.420 23.762599999999999 7.263181726098059 0.000000000000000
|
||||
157 1 1 0.420 25.160399999999999 7.263181726098059 0.000000000000000
|
||||
158 1 2 -0.420 25.859299999999998 8.473712013781070 0.000000000000000
|
||||
159 1 1 0.420 27.257099999999998 8.473712013781070 0.000000000000000
|
||||
160 1 2 -0.420 27.956000000000000 7.263181726098059 0.000000000000000
|
||||
161 1 1 0.420 29.353800000000000 7.263181726098059 0.000000000000000
|
||||
162 1 2 -0.420 30.052699999999998 8.473712013781070 0.000000000000000
|
||||
163 1 1 0.420 31.450499999999998 8.473712013781070 0.000000000000000
|
||||
164 1 2 -0.420 32.149400000000000 7.263181726098059 0.000000000000000
|
||||
165 1 1 0.420 33.547199999999997 7.263181726098059 0.000000000000000
|
||||
166 1 2 -0.420 34.246099999999998 8.473712013781070 0.000000000000000
|
||||
167 1 1 0.420 35.643899999999995 8.473712013781070 0.000000000000000
|
||||
168 1 2 -0.420 36.342799999999997 7.263181726098059 0.000000000000000
|
||||
169 1 1 0.420 37.740600000000001 7.263181726098059 0.000000000000000
|
||||
170 1 2 -0.420 38.439499999999995 8.473712013781070 0.000000000000000
|
||||
171 1 1 0.420 39.837299999999999 8.473712013781070 0.000000000000000
|
||||
172 1 2 -0.420 40.536200000000001 7.263181726098059 0.000000000000000
|
||||
173 1 1 0.420 41.933999999999997 7.263181726098059 0.000000000000000
|
||||
174 1 2 -0.420 42.632899999999999 8.473712013781070 0.000000000000000
|
||||
175 1 1 0.420 44.030699999999996 8.473712013781070 0.000000000000000
|
||||
176 1 2 -0.420 44.729599999999998 7.263181726098059 0.000000000000000
|
||||
177 1 1 0.420 0.000000000000000 9.684242301464080 0.000000000000000
|
||||
178 1 2 -0.420 0.698900000000000 10.894772589147090 0.000000000000000
|
||||
179 1 1 0.420 2.096700000000000 10.894772589147090 0.000000000000000
|
||||
180 1 2 -0.420 2.795600000000000 9.684242301464080 0.000000000000000
|
||||
181 1 1 0.420 4.193400000000000 9.684242301464080 0.000000000000000
|
||||
182 1 2 -0.420 4.892300000000000 10.894772589147090 0.000000000000000
|
||||
183 1 1 0.420 6.290100000000000 10.894772589147090 0.000000000000000
|
||||
184 1 2 -0.420 6.989000000000000 9.684242301464080 0.000000000000000
|
||||
185 1 1 0.420 8.386799999999999 9.684242301464080 0.000000000000000
|
||||
186 1 2 -0.420 9.085699999999999 10.894772589147090 0.000000000000000
|
||||
187 1 1 0.420 10.483499999999999 10.894772589147090 0.000000000000000
|
||||
188 1 2 -0.420 11.182399999999999 9.684242301464080 0.000000000000000
|
||||
189 1 1 0.420 12.580200000000000 9.684242301464080 0.000000000000000
|
||||
190 1 2 -0.420 13.279100000000000 10.894772589147090 0.000000000000000
|
||||
191 1 1 0.420 14.676900000000000 10.894772589147090 0.000000000000000
|
||||
192 1 2 -0.420 15.375800000000000 9.684242301464080 0.000000000000000
|
||||
193 1 1 0.420 16.773599999999998 9.684242301464080 0.000000000000000
|
||||
194 1 2 -0.420 17.472500000000000 10.894772589147090 0.000000000000000
|
||||
195 1 1 0.420 18.870300000000000 10.894772589147090 0.000000000000000
|
||||
196 1 2 -0.420 19.569199999999999 9.684242301464080 0.000000000000000
|
||||
197 1 1 0.420 20.966999999999999 9.684242301464080 0.000000000000000
|
||||
198 1 2 -0.420 21.665900000000001 10.894772589147090 0.000000000000000
|
||||
199 1 1 0.420 23.063699999999997 10.894772589147090 0.000000000000000
|
||||
200 1 2 -0.420 23.762599999999999 9.684242301464080 0.000000000000000
|
||||
201 1 1 0.420 25.160399999999999 9.684242301464080 0.000000000000000
|
||||
202 1 2 -0.420 25.859299999999998 10.894772589147090 0.000000000000000
|
||||
203 1 1 0.420 27.257099999999998 10.894772589147090 0.000000000000000
|
||||
204 1 2 -0.420 27.956000000000000 9.684242301464080 0.000000000000000
|
||||
205 1 1 0.420 29.353800000000000 9.684242301464080 0.000000000000000
|
||||
206 1 2 -0.420 30.052699999999998 10.894772589147090 0.000000000000000
|
||||
207 1 1 0.420 31.450499999999998 10.894772589147090 0.000000000000000
|
||||
208 1 2 -0.420 32.149400000000000 9.684242301464080 0.000000000000000
|
||||
209 1 1 0.420 33.547199999999997 9.684242301464080 0.000000000000000
|
||||
210 1 2 -0.420 34.246099999999998 10.894772589147090 0.000000000000000
|
||||
211 1 1 0.420 35.643899999999995 10.894772589147090 0.000000000000000
|
||||
212 1 2 -0.420 36.342799999999997 9.684242301464080 0.000000000000000
|
||||
213 1 1 0.420 37.740600000000001 9.684242301464080 0.000000000000000
|
||||
214 1 2 -0.420 38.439499999999995 10.894772589147090 0.000000000000000
|
||||
215 1 1 0.420 39.837299999999999 10.894772589147090 0.000000000000000
|
||||
216 1 2 -0.420 40.536200000000001 9.684242301464080 0.000000000000000
|
||||
217 1 1 0.420 41.933999999999997 9.684242301464080 0.000000000000000
|
||||
218 1 2 -0.420 42.632899999999999 10.894772589147090 0.000000000000000
|
||||
219 1 1 0.420 44.030699999999996 10.894772589147090 0.000000000000000
|
||||
220 1 2 -0.420 44.729599999999998 9.684242301464080 0.000000000000000
|
||||
221 1 1 0.420 0.000000000000000 12.105302876830100 0.000000000000000
|
||||
222 1 2 -0.420 0.698900000000000 13.315833164513110 0.000000000000000
|
||||
223 1 1 0.420 2.096700000000000 13.315833164513110 0.000000000000000
|
||||
224 1 2 -0.420 2.795600000000000 12.105302876830100 0.000000000000000
|
||||
225 1 1 0.420 4.193400000000000 12.105302876830100 0.000000000000000
|
||||
226 1 2 -0.420 4.892300000000000 13.315833164513110 0.000000000000000
|
||||
227 1 1 0.420 6.290100000000000 13.315833164513110 0.000000000000000
|
||||
228 1 2 -0.420 6.989000000000000 12.105302876830100 0.000000000000000
|
||||
229 1 1 0.420 8.386799999999999 12.105302876830100 0.000000000000000
|
||||
230 1 2 -0.420 9.085699999999999 13.315833164513110 0.000000000000000
|
||||
231 1 1 0.420 10.483499999999999 13.315833164513110 0.000000000000000
|
||||
232 1 2 -0.420 11.182399999999999 12.105302876830100 0.000000000000000
|
||||
233 1 1 0.420 12.580200000000000 12.105302876830100 0.000000000000000
|
||||
234 1 2 -0.420 13.279100000000000 13.315833164513110 0.000000000000000
|
||||
235 1 1 0.420 14.676900000000000 13.315833164513110 0.000000000000000
|
||||
236 1 2 -0.420 15.375800000000000 12.105302876830100 0.000000000000000
|
||||
237 1 1 0.420 16.773599999999998 12.105302876830100 0.000000000000000
|
||||
238 1 2 -0.420 17.472500000000000 13.315833164513110 0.000000000000000
|
||||
239 1 1 0.420 18.870300000000000 13.315833164513110 0.000000000000000
|
||||
240 1 2 -0.420 19.569199999999999 12.105302876830100 0.000000000000000
|
||||
241 1 1 0.420 20.966999999999999 12.105302876830100 0.000000000000000
|
||||
242 1 2 -0.420 21.665900000000001 13.315833164513110 0.000000000000000
|
||||
243 1 1 0.420 23.063699999999997 13.315833164513110 0.000000000000000
|
||||
244 1 2 -0.420 23.762599999999999 12.105302876830100 0.000000000000000
|
||||
245 1 1 0.420 25.160399999999999 12.105302876830100 0.000000000000000
|
||||
246 1 2 -0.420 25.859299999999998 13.315833164513110 0.000000000000000
|
||||
247 1 1 0.420 27.257099999999998 13.315833164513110 0.000000000000000
|
||||
248 1 2 -0.420 27.956000000000000 12.105302876830100 0.000000000000000
|
||||
249 1 1 0.420 29.353800000000000 12.105302876830100 0.000000000000000
|
||||
250 1 2 -0.420 30.052699999999998 13.315833164513110 0.000000000000000
|
||||
251 1 1 0.420 31.450499999999998 13.315833164513110 0.000000000000000
|
||||
252 1 2 -0.420 32.149400000000000 12.105302876830100 0.000000000000000
|
||||
253 1 1 0.420 33.547199999999997 12.105302876830100 0.000000000000000
|
||||
254 1 2 -0.420 34.246099999999998 13.315833164513110 0.000000000000000
|
||||
255 1 1 0.420 35.643899999999995 13.315833164513110 0.000000000000000
|
||||
256 1 2 -0.420 36.342799999999997 12.105302876830100 0.000000000000000
|
||||
257 1 1 0.420 37.740600000000001 12.105302876830100 0.000000000000000
|
||||
258 1 2 -0.420 38.439499999999995 13.315833164513110 0.000000000000000
|
||||
259 1 1 0.420 39.837299999999999 13.315833164513110 0.000000000000000
|
||||
260 1 2 -0.420 40.536200000000001 12.105302876830100 0.000000000000000
|
||||
261 1 1 0.420 41.933999999999997 12.105302876830100 0.000000000000000
|
||||
262 1 2 -0.420 42.632899999999999 13.315833164513110 0.000000000000000
|
||||
263 1 1 0.420 44.030699999999996 13.315833164513110 0.000000000000000
|
||||
264 1 2 -0.420 44.729599999999998 12.105302876830100 0.000000000000000
|
||||
265 1 1 0.420 0.000000000000000 14.526363452196119 0.000000000000000
|
||||
266 1 2 -0.420 0.698900000000000 15.736893739879129 0.000000000000000
|
||||
267 1 1 0.420 2.096700000000000 15.736893739879129 0.000000000000000
|
||||
268 1 2 -0.420 2.795600000000000 14.526363452196119 0.000000000000000
|
||||
269 1 1 0.420 4.193400000000000 14.526363452196119 0.000000000000000
|
||||
270 1 2 -0.420 4.892300000000000 15.736893739879129 0.000000000000000
|
||||
271 1 1 0.420 6.290100000000000 15.736893739879129 0.000000000000000
|
||||
272 1 2 -0.420 6.989000000000000 14.526363452196119 0.000000000000000
|
||||
273 1 1 0.420 8.386799999999999 14.526363452196119 0.000000000000000
|
||||
274 1 2 -0.420 9.085699999999999 15.736893739879129 0.000000000000000
|
||||
275 1 1 0.420 10.483499999999999 15.736893739879129 0.000000000000000
|
||||
276 1 2 -0.420 11.182399999999999 14.526363452196119 0.000000000000000
|
||||
277 1 1 0.420 12.580200000000000 14.526363452196119 0.000000000000000
|
||||
278 1 2 -0.420 13.279100000000000 15.736893739879129 0.000000000000000
|
||||
279 1 1 0.420 14.676900000000000 15.736893739879129 0.000000000000000
|
||||
280 1 2 -0.420 15.375800000000000 14.526363452196119 0.000000000000000
|
||||
281 1 1 0.420 16.773599999999998 14.526363452196119 0.000000000000000
|
||||
282 1 2 -0.420 17.472500000000000 15.736893739879129 0.000000000000000
|
||||
283 1 1 0.420 18.870300000000000 15.736893739879129 0.000000000000000
|
||||
284 1 2 -0.420 19.569199999999999 14.526363452196119 0.000000000000000
|
||||
285 1 1 0.420 20.966999999999999 14.526363452196119 0.000000000000000
|
||||
286 1 2 -0.420 21.665900000000001 15.736893739879129 0.000000000000000
|
||||
287 1 1 0.420 23.063699999999997 15.736893739879129 0.000000000000000
|
||||
288 1 2 -0.420 23.762599999999999 14.526363452196119 0.000000000000000
|
||||
289 1 1 0.420 25.160399999999999 14.526363452196119 0.000000000000000
|
||||
290 1 2 -0.420 25.859299999999998 15.736893739879129 0.000000000000000
|
||||
291 1 1 0.420 27.257099999999998 15.736893739879129 0.000000000000000
|
||||
292 1 2 -0.420 27.956000000000000 14.526363452196119 0.000000000000000
|
||||
293 1 1 0.420 29.353800000000000 14.526363452196119 0.000000000000000
|
||||
294 1 2 -0.420 30.052699999999998 15.736893739879129 0.000000000000000
|
||||
295 1 1 0.420 31.450499999999998 15.736893739879129 0.000000000000000
|
||||
296 1 2 -0.420 32.149400000000000 14.526363452196119 0.000000000000000
|
||||
297 1 1 0.420 33.547199999999997 14.526363452196119 0.000000000000000
|
||||
298 1 2 -0.420 34.246099999999998 15.736893739879129 0.000000000000000
|
||||
299 1 1 0.420 35.643899999999995 15.736893739879129 0.000000000000000
|
||||
300 1 2 -0.420 36.342799999999997 14.526363452196119 0.000000000000000
|
||||
301 1 1 0.420 37.740600000000001 14.526363452196119 0.000000000000000
|
||||
302 1 2 -0.420 38.439499999999995 15.736893739879129 0.000000000000000
|
||||
303 1 1 0.420 39.837299999999999 15.736893739879129 0.000000000000000
|
||||
304 1 2 -0.420 40.536200000000001 14.526363452196119 0.000000000000000
|
||||
305 1 1 0.420 41.933999999999997 14.526363452196119 0.000000000000000
|
||||
306 1 2 -0.420 42.632899999999999 15.736893739879129 0.000000000000000
|
||||
307 1 1 0.420 44.030699999999996 15.736893739879129 0.000000000000000
|
||||
308 1 2 -0.420 44.729599999999998 14.526363452196119 0.000000000000000
|
||||
309 1 1 0.420 0.000000000000000 16.947424027562139 0.000000000000000
|
||||
310 1 2 -0.420 0.698900000000000 18.157954315245149 0.000000000000000
|
||||
311 1 1 0.420 2.096700000000000 18.157954315245149 0.000000000000000
|
||||
312 1 2 -0.420 2.795600000000000 16.947424027562139 0.000000000000000
|
||||
313 1 1 0.420 4.193400000000000 16.947424027562139 0.000000000000000
|
||||
314 1 2 -0.420 4.892300000000000 18.157954315245149 0.000000000000000
|
||||
315 1 1 0.420 6.290100000000000 18.157954315245149 0.000000000000000
|
||||
316 1 2 -0.420 6.989000000000000 16.947424027562139 0.000000000000000
|
||||
317 1 1 0.420 8.386799999999999 16.947424027562139 0.000000000000000
|
||||
318 1 2 -0.420 9.085699999999999 18.157954315245149 0.000000000000000
|
||||
319 1 1 0.420 10.483499999999999 18.157954315245149 0.000000000000000
|
||||
320 1 2 -0.420 11.182399999999999 16.947424027562139 0.000000000000000
|
||||
321 1 1 0.420 12.580200000000000 16.947424027562139 0.000000000000000
|
||||
322 1 2 -0.420 13.279100000000000 18.157954315245149 0.000000000000000
|
||||
323 1 1 0.420 14.676900000000000 18.157954315245149 0.000000000000000
|
||||
324 1 2 -0.420 15.375800000000000 16.947424027562139 0.000000000000000
|
||||
325 1 1 0.420 16.773599999999998 16.947424027562139 0.000000000000000
|
||||
326 1 2 -0.420 17.472500000000000 18.157954315245149 0.000000000000000
|
||||
327 1 1 0.420 18.870300000000000 18.157954315245149 0.000000000000000
|
||||
328 1 2 -0.420 19.569199999999999 16.947424027562139 0.000000000000000
|
||||
329 1 1 0.420 20.966999999999999 16.947424027562139 0.000000000000000
|
||||
330 1 2 -0.420 21.665900000000001 18.157954315245149 0.000000000000000
|
||||
331 1 1 0.420 23.063699999999997 18.157954315245149 0.000000000000000
|
||||
332 1 2 -0.420 23.762599999999999 16.947424027562139 0.000000000000000
|
||||
333 1 1 0.420 25.160399999999999 16.947424027562139 0.000000000000000
|
||||
334 1 2 -0.420 25.859299999999998 18.157954315245149 0.000000000000000
|
||||
335 1 1 0.420 27.257099999999998 18.157954315245149 0.000000000000000
|
||||
336 1 2 -0.420 27.956000000000000 16.947424027562139 0.000000000000000
|
||||
337 1 1 0.420 29.353800000000000 16.947424027562139 0.000000000000000
|
||||
338 1 2 -0.420 30.052699999999998 18.157954315245149 0.000000000000000
|
||||
339 1 1 0.420 31.450499999999998 18.157954315245149 0.000000000000000
|
||||
340 1 2 -0.420 32.149400000000000 16.947424027562139 0.000000000000000
|
||||
341 1 1 0.420 33.547199999999997 16.947424027562139 0.000000000000000
|
||||
342 1 2 -0.420 34.246099999999998 18.157954315245149 0.000000000000000
|
||||
343 1 1 0.420 35.643899999999995 18.157954315245149 0.000000000000000
|
||||
344 1 2 -0.420 36.342799999999997 16.947424027562139 0.000000000000000
|
||||
345 1 1 0.420 37.740600000000001 16.947424027562139 0.000000000000000
|
||||
346 1 2 -0.420 38.439499999999995 18.157954315245149 0.000000000000000
|
||||
347 1 1 0.420 39.837299999999999 18.157954315245149 0.000000000000000
|
||||
348 1 2 -0.420 40.536200000000001 16.947424027562139 0.000000000000000
|
||||
349 1 1 0.420 41.933999999999997 16.947424027562139 0.000000000000000
|
||||
350 1 2 -0.420 42.632899999999999 18.157954315245149 0.000000000000000
|
||||
351 1 1 0.420 44.030699999999996 18.157954315245149 0.000000000000000
|
||||
352 1 2 -0.420 44.729599999999998 16.947424027562139 0.000000000000000
|
||||
353 1 1 0.420 0.000000000000000 19.368484602928159 0.000000000000000
|
||||
354 1 2 -0.420 0.698900000000000 20.579014890611170 0.000000000000000
|
||||
355 1 1 0.420 2.096700000000000 20.579014890611170 0.000000000000000
|
||||
356 1 2 -0.420 2.795600000000000 19.368484602928159 0.000000000000000
|
||||
357 1 1 0.420 4.193400000000000 19.368484602928159 0.000000000000000
|
||||
358 1 2 -0.420 4.892300000000000 20.579014890611170 0.000000000000000
|
||||
359 1 1 0.420 6.290100000000000 20.579014890611170 0.000000000000000
|
||||
360 1 2 -0.420 6.989000000000000 19.368484602928159 0.000000000000000
|
||||
361 1 1 0.420 8.386799999999999 19.368484602928159 0.000000000000000
|
||||
362 1 2 -0.420 9.085699999999999 20.579014890611170 0.000000000000000
|
||||
363 1 1 0.420 10.483499999999999 20.579014890611170 0.000000000000000
|
||||
364 1 2 -0.420 11.182399999999999 19.368484602928159 0.000000000000000
|
||||
365 1 1 0.420 12.580200000000000 19.368484602928159 0.000000000000000
|
||||
366 1 2 -0.420 13.279100000000000 20.579014890611170 0.000000000000000
|
||||
367 1 1 0.420 14.676900000000000 20.579014890611170 0.000000000000000
|
||||
368 1 2 -0.420 15.375800000000000 19.368484602928159 0.000000000000000
|
||||
369 1 1 0.420 16.773599999999998 19.368484602928159 0.000000000000000
|
||||
370 1 2 -0.420 17.472500000000000 20.579014890611170 0.000000000000000
|
||||
371 1 1 0.420 18.870300000000000 20.579014890611170 0.000000000000000
|
||||
372 1 2 -0.420 19.569199999999999 19.368484602928159 0.000000000000000
|
||||
373 1 1 0.420 20.966999999999999 19.368484602928159 0.000000000000000
|
||||
374 1 2 -0.420 21.665900000000001 20.579014890611170 0.000000000000000
|
||||
375 1 1 0.420 23.063699999999997 20.579014890611170 0.000000000000000
|
||||
376 1 2 -0.420 23.762599999999999 19.368484602928159 0.000000000000000
|
||||
377 1 1 0.420 25.160399999999999 19.368484602928159 0.000000000000000
|
||||
378 1 2 -0.420 25.859299999999998 20.579014890611170 0.000000000000000
|
||||
379 1 1 0.420 27.257099999999998 20.579014890611170 0.000000000000000
|
||||
380 1 2 -0.420 27.956000000000000 19.368484602928159 0.000000000000000
|
||||
381 1 1 0.420 29.353800000000000 19.368484602928159 0.000000000000000
|
||||
382 1 2 -0.420 30.052699999999998 20.579014890611170 0.000000000000000
|
||||
383 1 1 0.420 31.450499999999998 20.579014890611170 0.000000000000000
|
||||
384 1 2 -0.420 32.149400000000000 19.368484602928159 0.000000000000000
|
||||
385 1 1 0.420 33.547199999999997 19.368484602928159 0.000000000000000
|
||||
386 1 2 -0.420 34.246099999999998 20.579014890611170 0.000000000000000
|
||||
387 1 1 0.420 35.643899999999995 20.579014890611170 0.000000000000000
|
||||
388 1 2 -0.420 36.342799999999997 19.368484602928159 0.000000000000000
|
||||
389 1 1 0.420 37.740600000000001 19.368484602928159 0.000000000000000
|
||||
390 1 2 -0.420 38.439499999999995 20.579014890611170 0.000000000000000
|
||||
391 1 1 0.420 39.837299999999999 20.579014890611170 0.000000000000000
|
||||
392 1 2 -0.420 40.536200000000001 19.368484602928159 0.000000000000000
|
||||
393 1 1 0.420 41.933999999999997 19.368484602928159 0.000000000000000
|
||||
394 1 2 -0.420 42.632899999999999 20.579014890611170 0.000000000000000
|
||||
395 1 1 0.420 44.030699999999996 20.579014890611170 0.000000000000000
|
||||
396 1 2 -0.420 44.729599999999998 19.368484602928159 0.000000000000000
|
||||
397 1 1 0.420 0.000000000000000 21.789545178294180 0.000000000000000
|
||||
398 1 2 -0.420 0.698900000000000 23.000075465977190 0.000000000000000
|
||||
399 1 1 0.420 2.096700000000000 23.000075465977190 0.000000000000000
|
||||
400 1 2 -0.420 2.795600000000000 21.789545178294180 0.000000000000000
|
||||
401 1 1 0.420 4.193400000000000 21.789545178294180 0.000000000000000
|
||||
402 1 2 -0.420 4.892300000000000 23.000075465977190 0.000000000000000
|
||||
403 1 1 0.420 6.290100000000000 23.000075465977190 0.000000000000000
|
||||
404 1 2 -0.420 6.989000000000000 21.789545178294180 0.000000000000000
|
||||
405 1 1 0.420 8.386799999999999 21.789545178294180 0.000000000000000
|
||||
406 1 2 -0.420 9.085699999999999 23.000075465977190 0.000000000000000
|
||||
407 1 1 0.420 10.483499999999999 23.000075465977190 0.000000000000000
|
||||
408 1 2 -0.420 11.182399999999999 21.789545178294180 0.000000000000000
|
||||
409 1 1 0.420 12.580200000000000 21.789545178294180 0.000000000000000
|
||||
410 1 2 -0.420 13.279100000000000 23.000075465977190 0.000000000000000
|
||||
411 1 1 0.420 14.676900000000000 23.000075465977190 0.000000000000000
|
||||
412 1 2 -0.420 15.375800000000000 21.789545178294180 0.000000000000000
|
||||
413 1 1 0.420 16.773599999999998 21.789545178294180 0.000000000000000
|
||||
414 1 2 -0.420 17.472500000000000 23.000075465977190 0.000000000000000
|
||||
415 1 1 0.420 18.870300000000000 23.000075465977190 0.000000000000000
|
||||
416 1 2 -0.420 19.569199999999999 21.789545178294180 0.000000000000000
|
||||
417 1 1 0.420 20.966999999999999 21.789545178294180 0.000000000000000
|
||||
418 1 2 -0.420 21.665900000000001 23.000075465977190 0.000000000000000
|
||||
419 1 1 0.420 23.063699999999997 23.000075465977190 0.000000000000000
|
||||
420 1 2 -0.420 23.762599999999999 21.789545178294180 0.000000000000000
|
||||
421 1 1 0.420 25.160399999999999 21.789545178294180 0.000000000000000
|
||||
422 1 2 -0.420 25.859299999999998 23.000075465977190 0.000000000000000
|
||||
423 1 1 0.420 27.257099999999998 23.000075465977190 0.000000000000000
|
||||
424 1 2 -0.420 27.956000000000000 21.789545178294180 0.000000000000000
|
||||
425 1 1 0.420 29.353800000000000 21.789545178294180 0.000000000000000
|
||||
426 1 2 -0.420 30.052699999999998 23.000075465977190 0.000000000000000
|
||||
427 1 1 0.420 31.450499999999998 23.000075465977190 0.000000000000000
|
||||
428 1 2 -0.420 32.149400000000000 21.789545178294180 0.000000000000000
|
||||
429 1 1 0.420 33.547199999999997 21.789545178294180 0.000000000000000
|
||||
430 1 2 -0.420 34.246099999999998 23.000075465977190 0.000000000000000
|
||||
431 1 1 0.420 35.643899999999995 23.000075465977190 0.000000000000000
|
||||
432 1 2 -0.420 36.342799999999997 21.789545178294180 0.000000000000000
|
||||
433 1 1 0.420 37.740600000000001 21.789545178294180 0.000000000000000
|
||||
434 1 2 -0.420 38.439499999999995 23.000075465977190 0.000000000000000
|
||||
435 1 1 0.420 39.837299999999999 23.000075465977190 0.000000000000000
|
||||
436 1 2 -0.420 40.536200000000001 21.789545178294180 0.000000000000000
|
||||
437 1 1 0.420 41.933999999999997 21.789545178294180 0.000000000000000
|
||||
438 1 2 -0.420 42.632899999999999 23.000075465977190 0.000000000000000
|
||||
439 1 1 0.420 44.030699999999996 23.000075465977190 0.000000000000000
|
||||
440 1 2 -0.420 44.729599999999998 21.789545178294180 0.000000000000000
|
||||
441 1 1 0.420 0.000000000000000 24.210605753660200 0.000000000000000
|
||||
442 1 2 -0.420 0.698900000000000 25.421136041343210 0.000000000000000
|
||||
443 1 1 0.420 2.096700000000000 25.421136041343210 0.000000000000000
|
||||
444 1 2 -0.420 2.795600000000000 24.210605753660200 0.000000000000000
|
||||
445 1 1 0.420 4.193400000000000 24.210605753660200 0.000000000000000
|
||||
446 1 2 -0.420 4.892300000000000 25.421136041343210 0.000000000000000
|
||||
447 1 1 0.420 6.290100000000000 25.421136041343210 0.000000000000000
|
||||
448 1 2 -0.420 6.989000000000000 24.210605753660200 0.000000000000000
|
||||
449 1 1 0.420 8.386799999999999 24.210605753660200 0.000000000000000
|
||||
450 1 2 -0.420 9.085699999999999 25.421136041343210 0.000000000000000
|
||||
451 1 1 0.420 10.483499999999999 25.421136041343210 0.000000000000000
|
||||
452 1 2 -0.420 11.182399999999999 24.210605753660200 0.000000000000000
|
||||
453 1 1 0.420 12.580200000000000 24.210605753660200 0.000000000000000
|
||||
454 1 2 -0.420 13.279100000000000 25.421136041343210 0.000000000000000
|
||||
455 1 1 0.420 14.676900000000000 25.421136041343210 0.000000000000000
|
||||
456 1 2 -0.420 15.375800000000000 24.210605753660200 0.000000000000000
|
||||
457 1 1 0.420 16.773599999999998 24.210605753660200 0.000000000000000
|
||||
458 1 2 -0.420 17.472500000000000 25.421136041343210 0.000000000000000
|
||||
459 1 1 0.420 18.870300000000000 25.421136041343210 0.000000000000000
|
||||
460 1 2 -0.420 19.569199999999999 24.210605753660200 0.000000000000000
|
||||
461 1 1 0.420 20.966999999999999 24.210605753660200 0.000000000000000
|
||||
462 1 2 -0.420 21.665900000000001 25.421136041343210 0.000000000000000
|
||||
463 1 1 0.420 23.063699999999997 25.421136041343210 0.000000000000000
|
||||
464 1 2 -0.420 23.762599999999999 24.210605753660200 0.000000000000000
|
||||
465 1 1 0.420 25.160399999999999 24.210605753660200 0.000000000000000
|
||||
466 1 2 -0.420 25.859299999999998 25.421136041343210 0.000000000000000
|
||||
467 1 1 0.420 27.257099999999998 25.421136041343210 0.000000000000000
|
||||
468 1 2 -0.420 27.956000000000000 24.210605753660200 0.000000000000000
|
||||
469 1 1 0.420 29.353800000000000 24.210605753660200 0.000000000000000
|
||||
470 1 2 -0.420 30.052699999999998 25.421136041343210 0.000000000000000
|
||||
471 1 1 0.420 31.450499999999998 25.421136041343210 0.000000000000000
|
||||
472 1 2 -0.420 32.149400000000000 24.210605753660200 0.000000000000000
|
||||
473 1 1 0.420 33.547199999999997 24.210605753660200 0.000000000000000
|
||||
474 1 2 -0.420 34.246099999999998 25.421136041343210 0.000000000000000
|
||||
475 1 1 0.420 35.643899999999995 25.421136041343210 0.000000000000000
|
||||
476 1 2 -0.420 36.342799999999997 24.210605753660200 0.000000000000000
|
||||
477 1 1 0.420 37.740600000000001 24.210605753660200 0.000000000000000
|
||||
478 1 2 -0.420 38.439499999999995 25.421136041343210 0.000000000000000
|
||||
479 1 1 0.420 39.837299999999999 25.421136041343210 0.000000000000000
|
||||
480 1 2 -0.420 40.536200000000001 24.210605753660200 0.000000000000000
|
||||
481 1 1 0.420 41.933999999999997 24.210605753660200 0.000000000000000
|
||||
482 1 2 -0.420 42.632899999999999 25.421136041343210 0.000000000000000
|
||||
483 1 1 0.420 44.030699999999996 25.421136041343210 0.000000000000000
|
||||
484 1 2 -0.420 44.729599999999998 24.210605753660200 0.000000000000000
|
||||
485 1 1 0.420 0.000000000000000 26.631666329026221 0.000000000000000
|
||||
486 1 2 -0.420 0.698900000000000 27.842196616709231 0.000000000000000
|
||||
487 1 1 0.420 2.096700000000000 27.842196616709231 0.000000000000000
|
||||
488 1 2 -0.420 2.795600000000000 26.631666329026221 0.000000000000000
|
||||
489 1 1 0.420 4.193400000000000 26.631666329026221 0.000000000000000
|
||||
490 1 2 -0.420 4.892300000000000 27.842196616709231 0.000000000000000
|
||||
491 1 1 0.420 6.290100000000000 27.842196616709231 0.000000000000000
|
||||
492 1 2 -0.420 6.989000000000000 26.631666329026221 0.000000000000000
|
||||
493 1 1 0.420 8.386799999999999 26.631666329026221 0.000000000000000
|
||||
494 1 2 -0.420 9.085699999999999 27.842196616709231 0.000000000000000
|
||||
495 1 1 0.420 10.483499999999999 27.842196616709231 0.000000000000000
|
||||
496 1 2 -0.420 11.182399999999999 26.631666329026221 0.000000000000000
|
||||
497 1 1 0.420 12.580200000000000 26.631666329026221 0.000000000000000
|
||||
498 1 2 -0.420 13.279100000000000 27.842196616709231 0.000000000000000
|
||||
499 1 1 0.420 14.676900000000000 27.842196616709231 0.000000000000000
|
||||
500 1 2 -0.420 15.375800000000000 26.631666329026221 0.000000000000000
|
||||
501 1 1 0.420 16.773599999999998 26.631666329026221 0.000000000000000
|
||||
502 1 2 -0.420 17.472500000000000 27.842196616709231 0.000000000000000
|
||||
503 1 1 0.420 18.870300000000000 27.842196616709231 0.000000000000000
|
||||
504 1 2 -0.420 19.569199999999999 26.631666329026221 0.000000000000000
|
||||
505 1 1 0.420 20.966999999999999 26.631666329026221 0.000000000000000
|
||||
506 1 2 -0.420 21.665900000000001 27.842196616709231 0.000000000000000
|
||||
507 1 1 0.420 23.063699999999997 27.842196616709231 0.000000000000000
|
||||
508 1 2 -0.420 23.762599999999999 26.631666329026221 0.000000000000000
|
||||
509 1 1 0.420 25.160399999999999 26.631666329026221 0.000000000000000
|
||||
510 1 2 -0.420 25.859299999999998 27.842196616709231 0.000000000000000
|
||||
511 1 1 0.420 27.257099999999998 27.842196616709231 0.000000000000000
|
||||
512 1 2 -0.420 27.956000000000000 26.631666329026221 0.000000000000000
|
||||
513 1 1 0.420 29.353800000000000 26.631666329026221 0.000000000000000
|
||||
514 1 2 -0.420 30.052699999999998 27.842196616709231 0.000000000000000
|
||||
515 1 1 0.420 31.450499999999998 27.842196616709231 0.000000000000000
|
||||
516 1 2 -0.420 32.149400000000000 26.631666329026221 0.000000000000000
|
||||
517 1 1 0.420 33.547199999999997 26.631666329026221 0.000000000000000
|
||||
518 1 2 -0.420 34.246099999999998 27.842196616709231 0.000000000000000
|
||||
519 1 1 0.420 35.643899999999995 27.842196616709231 0.000000000000000
|
||||
520 1 2 -0.420 36.342799999999997 26.631666329026221 0.000000000000000
|
||||
521 1 1 0.420 37.740600000000001 26.631666329026221 0.000000000000000
|
||||
522 1 2 -0.420 38.439499999999995 27.842196616709231 0.000000000000000
|
||||
523 1 1 0.420 39.837299999999999 27.842196616709231 0.000000000000000
|
||||
524 1 2 -0.420 40.536200000000001 26.631666329026221 0.000000000000000
|
||||
525 1 1 0.420 41.933999999999997 26.631666329026221 0.000000000000000
|
||||
526 1 2 -0.420 42.632899999999999 27.842196616709231 0.000000000000000
|
||||
527 1 1 0.420 44.030699999999996 27.842196616709231 0.000000000000000
|
||||
528 1 2 -0.420 44.729599999999998 26.631666329026221 0.000000000000000
|
||||
529 1 1 0.420 0.000000000000000 29.052726904392237 0.000000000000000
|
||||
530 1 2 -0.420 0.698900000000000 30.263257192075248 0.000000000000000
|
||||
531 1 1 0.420 2.096700000000000 30.263257192075248 0.000000000000000
|
||||
532 1 2 -0.420 2.795600000000000 29.052726904392237 0.000000000000000
|
||||
533 1 1 0.420 4.193400000000000 29.052726904392237 0.000000000000000
|
||||
534 1 2 -0.420 4.892300000000000 30.263257192075248 0.000000000000000
|
||||
535 1 1 0.420 6.290100000000000 30.263257192075248 0.000000000000000
|
||||
536 1 2 -0.420 6.989000000000000 29.052726904392237 0.000000000000000
|
||||
537 1 1 0.420 8.386799999999999 29.052726904392237 0.000000000000000
|
||||
538 1 2 -0.420 9.085699999999999 30.263257192075248 0.000000000000000
|
||||
539 1 1 0.420 10.483499999999999 30.263257192075248 0.000000000000000
|
||||
540 1 2 -0.420 11.182399999999999 29.052726904392237 0.000000000000000
|
||||
541 1 1 0.420 12.580200000000000 29.052726904392237 0.000000000000000
|
||||
542 1 2 -0.420 13.279100000000000 30.263257192075248 0.000000000000000
|
||||
543 1 1 0.420 14.676900000000000 30.263257192075248 0.000000000000000
|
||||
544 1 2 -0.420 15.375800000000000 29.052726904392237 0.000000000000000
|
||||
545 1 1 0.420 16.773599999999998 29.052726904392237 0.000000000000000
|
||||
546 1 2 -0.420 17.472500000000000 30.263257192075248 0.000000000000000
|
||||
547 1 1 0.420 18.870300000000000 30.263257192075248 0.000000000000000
|
||||
548 1 2 -0.420 19.569199999999999 29.052726904392237 0.000000000000000
|
||||
549 1 1 0.420 20.966999999999999 29.052726904392237 0.000000000000000
|
||||
550 1 2 -0.420 21.665900000000001 30.263257192075248 0.000000000000000
|
||||
551 1 1 0.420 23.063699999999997 30.263257192075248 0.000000000000000
|
||||
552 1 2 -0.420 23.762599999999999 29.052726904392237 0.000000000000000
|
||||
553 1 1 0.420 25.160399999999999 29.052726904392237 0.000000000000000
|
||||
554 1 2 -0.420 25.859299999999998 30.263257192075248 0.000000000000000
|
||||
555 1 1 0.420 27.257099999999998 30.263257192075248 0.000000000000000
|
||||
556 1 2 -0.420 27.956000000000000 29.052726904392237 0.000000000000000
|
||||
557 1 1 0.420 29.353800000000000 29.052726904392237 0.000000000000000
|
||||
558 1 2 -0.420 30.052699999999998 30.263257192075248 0.000000000000000
|
||||
559 1 1 0.420 31.450499999999998 30.263257192075248 0.000000000000000
|
||||
560 1 2 -0.420 32.149400000000000 29.052726904392237 0.000000000000000
|
||||
561 1 1 0.420 33.547199999999997 29.052726904392237 0.000000000000000
|
||||
562 1 2 -0.420 34.246099999999998 30.263257192075248 0.000000000000000
|
||||
563 1 1 0.420 35.643899999999995 30.263257192075248 0.000000000000000
|
||||
564 1 2 -0.420 36.342799999999997 29.052726904392237 0.000000000000000
|
||||
565 1 1 0.420 37.740600000000001 29.052726904392237 0.000000000000000
|
||||
566 1 2 -0.420 38.439499999999995 30.263257192075248 0.000000000000000
|
||||
567 1 1 0.420 39.837299999999999 30.263257192075248 0.000000000000000
|
||||
568 1 2 -0.420 40.536200000000001 29.052726904392237 0.000000000000000
|
||||
569 1 1 0.420 41.933999999999997 29.052726904392237 0.000000000000000
|
||||
570 1 2 -0.420 42.632899999999999 30.263257192075248 0.000000000000000
|
||||
571 1 1 0.420 44.030699999999996 30.263257192075248 0.000000000000000
|
||||
572 1 2 -0.420 44.729599999999998 29.052726904392237 0.000000000000000
|
||||
573 1 1 0.420 0.000000000000000 31.473787479758258 0.000000000000000
|
||||
574 1 2 -0.420 0.698900000000000 32.684317767441271 0.000000000000000
|
||||
575 1 1 0.420 2.096700000000000 32.684317767441271 0.000000000000000
|
||||
576 1 2 -0.420 2.795600000000000 31.473787479758258 0.000000000000000
|
||||
577 1 1 0.420 4.193400000000000 31.473787479758258 0.000000000000000
|
||||
578 1 2 -0.420 4.892300000000000 32.684317767441271 0.000000000000000
|
||||
579 1 1 0.420 6.290100000000000 32.684317767441271 0.000000000000000
|
||||
580 1 2 -0.420 6.989000000000000 31.473787479758258 0.000000000000000
|
||||
581 1 1 0.420 8.386799999999999 31.473787479758258 0.000000000000000
|
||||
582 1 2 -0.420 9.085699999999999 32.684317767441271 0.000000000000000
|
||||
583 1 1 0.420 10.483499999999999 32.684317767441271 0.000000000000000
|
||||
584 1 2 -0.420 11.182399999999999 31.473787479758258 0.000000000000000
|
||||
585 1 1 0.420 12.580200000000000 31.473787479758258 0.000000000000000
|
||||
586 1 2 -0.420 13.279100000000000 32.684317767441271 0.000000000000000
|
||||
587 1 1 0.420 14.676900000000000 32.684317767441271 0.000000000000000
|
||||
588 1 2 -0.420 15.375800000000000 31.473787479758258 0.000000000000000
|
||||
589 1 1 0.420 16.773599999999998 31.473787479758258 0.000000000000000
|
||||
590 1 2 -0.420 17.472500000000000 32.684317767441271 0.000000000000000
|
||||
591 1 1 0.420 18.870300000000000 32.684317767441271 0.000000000000000
|
||||
592 1 2 -0.420 19.569199999999999 31.473787479758258 0.000000000000000
|
||||
593 1 1 0.420 20.966999999999999 31.473787479758258 0.000000000000000
|
||||
594 1 2 -0.420 21.665900000000001 32.684317767441271 0.000000000000000
|
||||
595 1 1 0.420 23.063699999999997 32.684317767441271 0.000000000000000
|
||||
596 1 2 -0.420 23.762599999999999 31.473787479758258 0.000000000000000
|
||||
597 1 1 0.420 25.160399999999999 31.473787479758258 0.000000000000000
|
||||
598 1 2 -0.420 25.859299999999998 32.684317767441271 0.000000000000000
|
||||
599 1 1 0.420 27.257099999999998 32.684317767441271 0.000000000000000
|
||||
600 1 2 -0.420 27.956000000000000 31.473787479758258 0.000000000000000
|
||||
601 1 1 0.420 29.353800000000000 31.473787479758258 0.000000000000000
|
||||
602 1 2 -0.420 30.052699999999998 32.684317767441271 0.000000000000000
|
||||
603 1 1 0.420 31.450499999999998 32.684317767441271 0.000000000000000
|
||||
604 1 2 -0.420 32.149400000000000 31.473787479758258 0.000000000000000
|
||||
605 1 1 0.420 33.547199999999997 31.473787479758258 0.000000000000000
|
||||
606 1 2 -0.420 34.246099999999998 32.684317767441271 0.000000000000000
|
||||
607 1 1 0.420 35.643899999999995 32.684317767441271 0.000000000000000
|
||||
608 1 2 -0.420 36.342799999999997 31.473787479758258 0.000000000000000
|
||||
609 1 1 0.420 37.740600000000001 31.473787479758258 0.000000000000000
|
||||
610 1 2 -0.420 38.439499999999995 32.684317767441271 0.000000000000000
|
||||
611 1 1 0.420 39.837299999999999 32.684317767441271 0.000000000000000
|
||||
612 1 2 -0.420 40.536200000000001 31.473787479758258 0.000000000000000
|
||||
613 1 1 0.420 41.933999999999997 31.473787479758258 0.000000000000000
|
||||
614 1 2 -0.420 42.632899999999999 32.684317767441271 0.000000000000000
|
||||
615 1 1 0.420 44.030699999999996 32.684317767441271 0.000000000000000
|
||||
616 1 2 -0.420 44.729599999999998 31.473787479758258 0.000000000000000
|
||||
617 1 1 0.420 0.000000000000000 33.894848055124278 0.000000000000000
|
||||
618 1 2 -0.420 0.698900000000000 35.105378342807292 0.000000000000000
|
||||
619 1 1 0.420 2.096700000000000 35.105378342807292 0.000000000000000
|
||||
620 1 2 -0.420 2.795600000000000 33.894848055124278 0.000000000000000
|
||||
621 1 1 0.420 4.193400000000000 33.894848055124278 0.000000000000000
|
||||
622 1 2 -0.420 4.892300000000000 35.105378342807292 0.000000000000000
|
||||
623 1 1 0.420 6.290100000000000 35.105378342807292 0.000000000000000
|
||||
624 1 2 -0.420 6.989000000000000 33.894848055124278 0.000000000000000
|
||||
625 1 1 0.420 8.386799999999999 33.894848055124278 0.000000000000000
|
||||
626 1 2 -0.420 9.085699999999999 35.105378342807292 0.000000000000000
|
||||
627 1 1 0.420 10.483499999999999 35.105378342807292 0.000000000000000
|
||||
628 1 2 -0.420 11.182399999999999 33.894848055124278 0.000000000000000
|
||||
629 1 1 0.420 12.580200000000000 33.894848055124278 0.000000000000000
|
||||
630 1 2 -0.420 13.279100000000000 35.105378342807292 0.000000000000000
|
||||
631 1 1 0.420 14.676900000000000 35.105378342807292 0.000000000000000
|
||||
632 1 2 -0.420 15.375800000000000 33.894848055124278 0.000000000000000
|
||||
633 1 1 0.420 16.773599999999998 33.894848055124278 0.000000000000000
|
||||
634 1 2 -0.420 17.472500000000000 35.105378342807292 0.000000000000000
|
||||
635 1 1 0.420 18.870300000000000 35.105378342807292 0.000000000000000
|
||||
636 1 2 -0.420 19.569199999999999 33.894848055124278 0.000000000000000
|
||||
637 1 1 0.420 20.966999999999999 33.894848055124278 0.000000000000000
|
||||
638 1 2 -0.420 21.665900000000001 35.105378342807292 0.000000000000000
|
||||
639 1 1 0.420 23.063699999999997 35.105378342807292 0.000000000000000
|
||||
640 1 2 -0.420 23.762599999999999 33.894848055124278 0.000000000000000
|
||||
641 1 1 0.420 25.160399999999999 33.894848055124278 0.000000000000000
|
||||
642 1 2 -0.420 25.859299999999998 35.105378342807292 0.000000000000000
|
||||
643 1 1 0.420 27.257099999999998 35.105378342807292 0.000000000000000
|
||||
644 1 2 -0.420 27.956000000000000 33.894848055124278 0.000000000000000
|
||||
645 1 1 0.420 29.353800000000000 33.894848055124278 0.000000000000000
|
||||
646 1 2 -0.420 30.052699999999998 35.105378342807292 0.000000000000000
|
||||
647 1 1 0.420 31.450499999999998 35.105378342807292 0.000000000000000
|
||||
648 1 2 -0.420 32.149400000000000 33.894848055124278 0.000000000000000
|
||||
649 1 1 0.420 33.547199999999997 33.894848055124278 0.000000000000000
|
||||
650 1 2 -0.420 34.246099999999998 35.105378342807292 0.000000000000000
|
||||
651 1 1 0.420 35.643899999999995 35.105378342807292 0.000000000000000
|
||||
652 1 2 -0.420 36.342799999999997 33.894848055124278 0.000000000000000
|
||||
653 1 1 0.420 37.740600000000001 33.894848055124278 0.000000000000000
|
||||
654 1 2 -0.420 38.439499999999995 35.105378342807292 0.000000000000000
|
||||
655 1 1 0.420 39.837299999999999 35.105378342807292 0.000000000000000
|
||||
656 1 2 -0.420 40.536200000000001 33.894848055124278 0.000000000000000
|
||||
657 1 1 0.420 41.933999999999997 33.894848055124278 0.000000000000000
|
||||
658 1 2 -0.420 42.632899999999999 35.105378342807292 0.000000000000000
|
||||
659 1 1 0.420 44.030699999999996 35.105378342807292 0.000000000000000
|
||||
660 1 2 -0.420 44.729599999999998 33.894848055124278 0.000000000000000
|
||||
661 1 1 0.420 0.000000000000000 36.315908630490298 0.000000000000000
|
||||
662 1 2 -0.420 0.698900000000000 37.526438918173312 0.000000000000000
|
||||
663 1 1 0.420 2.096700000000000 37.526438918173312 0.000000000000000
|
||||
664 1 2 -0.420 2.795600000000000 36.315908630490298 0.000000000000000
|
||||
665 1 1 0.420 4.193400000000000 36.315908630490298 0.000000000000000
|
||||
666 1 2 -0.420 4.892300000000000 37.526438918173312 0.000000000000000
|
||||
667 1 1 0.420 6.290100000000000 37.526438918173312 0.000000000000000
|
||||
668 1 2 -0.420 6.989000000000000 36.315908630490298 0.000000000000000
|
||||
669 1 1 0.420 8.386799999999999 36.315908630490298 0.000000000000000
|
||||
670 1 2 -0.420 9.085699999999999 37.526438918173312 0.000000000000000
|
||||
671 1 1 0.420 10.483499999999999 37.526438918173312 0.000000000000000
|
||||
672 1 2 -0.420 11.182399999999999 36.315908630490298 0.000000000000000
|
||||
673 1 1 0.420 12.580200000000000 36.315908630490298 0.000000000000000
|
||||
674 1 2 -0.420 13.279100000000000 37.526438918173312 0.000000000000000
|
||||
675 1 1 0.420 14.676900000000000 37.526438918173312 0.000000000000000
|
||||
676 1 2 -0.420 15.375800000000000 36.315908630490298 0.000000000000000
|
||||
677 1 1 0.420 16.773599999999998 36.315908630490298 0.000000000000000
|
||||
678 1 2 -0.420 17.472500000000000 37.526438918173312 0.000000000000000
|
||||
679 1 1 0.420 18.870300000000000 37.526438918173312 0.000000000000000
|
||||
680 1 2 -0.420 19.569199999999999 36.315908630490298 0.000000000000000
|
||||
681 1 1 0.420 20.966999999999999 36.315908630490298 0.000000000000000
|
||||
682 1 2 -0.420 21.665900000000001 37.526438918173312 0.000000000000000
|
||||
683 1 1 0.420 23.063699999999997 37.526438918173312 0.000000000000000
|
||||
684 1 2 -0.420 23.762599999999999 36.315908630490298 0.000000000000000
|
||||
685 1 1 0.420 25.160399999999999 36.315908630490298 0.000000000000000
|
||||
686 1 2 -0.420 25.859299999999998 37.526438918173312 0.000000000000000
|
||||
687 1 1 0.420 27.257099999999998 37.526438918173312 0.000000000000000
|
||||
688 1 2 -0.420 27.956000000000000 36.315908630490298 0.000000000000000
|
||||
689 1 1 0.420 29.353800000000000 36.315908630490298 0.000000000000000
|
||||
690 1 2 -0.420 30.052699999999998 37.526438918173312 0.000000000000000
|
||||
691 1 1 0.420 31.450499999999998 37.526438918173312 0.000000000000000
|
||||
692 1 2 -0.420 32.149400000000000 36.315908630490298 0.000000000000000
|
||||
693 1 1 0.420 33.547199999999997 36.315908630490298 0.000000000000000
|
||||
694 1 2 -0.420 34.246099999999998 37.526438918173312 0.000000000000000
|
||||
695 1 1 0.420 35.643899999999995 37.526438918173312 0.000000000000000
|
||||
696 1 2 -0.420 36.342799999999997 36.315908630490298 0.000000000000000
|
||||
697 1 1 0.420 37.740600000000001 36.315908630490298 0.000000000000000
|
||||
698 1 2 -0.420 38.439499999999995 37.526438918173312 0.000000000000000
|
||||
699 1 1 0.420 39.837299999999999 37.526438918173312 0.000000000000000
|
||||
700 1 2 -0.420 40.536200000000001 36.315908630490298 0.000000000000000
|
||||
701 1 1 0.420 41.933999999999997 36.315908630490298 0.000000000000000
|
||||
702 1 2 -0.420 42.632899999999999 37.526438918173312 0.000000000000000
|
||||
703 1 1 0.420 44.030699999999996 37.526438918173312 0.000000000000000
|
||||
704 1 2 -0.420 44.729599999999998 36.315908630490298 0.000000000000000
|
||||
705 1 1 0.420 0.000000000000000 38.736969205856319 0.000000000000000
|
||||
706 1 2 -0.420 0.698900000000000 39.947499493539325 0.000000000000000
|
||||
707 1 1 0.420 2.096700000000000 39.947499493539325 0.000000000000000
|
||||
708 1 2 -0.420 2.795600000000000 38.736969205856319 0.000000000000000
|
||||
709 1 1 0.420 4.193400000000000 38.736969205856319 0.000000000000000
|
||||
710 1 2 -0.420 4.892300000000000 39.947499493539325 0.000000000000000
|
||||
711 1 1 0.420 6.290100000000000 39.947499493539325 0.000000000000000
|
||||
712 1 2 -0.420 6.989000000000000 38.736969205856319 0.000000000000000
|
||||
713 1 1 0.420 8.386799999999999 38.736969205856319 0.000000000000000
|
||||
714 1 2 -0.420 9.085699999999999 39.947499493539325 0.000000000000000
|
||||
715 1 1 0.420 10.483499999999999 39.947499493539325 0.000000000000000
|
||||
716 1 2 -0.420 11.182399999999999 38.736969205856319 0.000000000000000
|
||||
717 1 1 0.420 12.580200000000000 38.736969205856319 0.000000000000000
|
||||
718 1 2 -0.420 13.279100000000000 39.947499493539325 0.000000000000000
|
||||
719 1 1 0.420 14.676900000000000 39.947499493539325 0.000000000000000
|
||||
720 1 2 -0.420 15.375800000000000 38.736969205856319 0.000000000000000
|
||||
721 1 1 0.420 16.773599999999998 38.736969205856319 0.000000000000000
|
||||
722 1 2 -0.420 17.472500000000000 39.947499493539325 0.000000000000000
|
||||
723 1 1 0.420 18.870300000000000 39.947499493539325 0.000000000000000
|
||||
724 1 2 -0.420 19.569199999999999 38.736969205856319 0.000000000000000
|
||||
725 1 1 0.420 20.966999999999999 38.736969205856319 0.000000000000000
|
||||
726 1 2 -0.420 21.665900000000001 39.947499493539325 0.000000000000000
|
||||
727 1 1 0.420 23.063699999999997 39.947499493539325 0.000000000000000
|
||||
728 1 2 -0.420 23.762599999999999 38.736969205856319 0.000000000000000
|
||||
729 1 1 0.420 25.160399999999999 38.736969205856319 0.000000000000000
|
||||
730 1 2 -0.420 25.859299999999998 39.947499493539325 0.000000000000000
|
||||
731 1 1 0.420 27.257099999999998 39.947499493539325 0.000000000000000
|
||||
732 1 2 -0.420 27.956000000000000 38.736969205856319 0.000000000000000
|
||||
733 1 1 0.420 29.353800000000000 38.736969205856319 0.000000000000000
|
||||
734 1 2 -0.420 30.052699999999998 39.947499493539325 0.000000000000000
|
||||
735 1 1 0.420 31.450499999999998 39.947499493539325 0.000000000000000
|
||||
736 1 2 -0.420 32.149400000000000 38.736969205856319 0.000000000000000
|
||||
737 1 1 0.420 33.547199999999997 38.736969205856319 0.000000000000000
|
||||
738 1 2 -0.420 34.246099999999998 39.947499493539325 0.000000000000000
|
||||
739 1 1 0.420 35.643899999999995 39.947499493539325 0.000000000000000
|
||||
740 1 2 -0.420 36.342799999999997 38.736969205856319 0.000000000000000
|
||||
741 1 1 0.420 37.740600000000001 38.736969205856319 0.000000000000000
|
||||
742 1 2 -0.420 38.439499999999995 39.947499493539325 0.000000000000000
|
||||
743 1 1 0.420 39.837299999999999 39.947499493539325 0.000000000000000
|
||||
744 1 2 -0.420 40.536200000000001 38.736969205856319 0.000000000000000
|
||||
745 1 1 0.420 41.933999999999997 38.736969205856319 0.000000000000000
|
||||
746 1 2 -0.420 42.632899999999999 39.947499493539325 0.000000000000000
|
||||
747 1 1 0.420 44.030699999999996 39.947499493539325 0.000000000000000
|
||||
748 1 2 -0.420 44.729599999999998 38.736969205856319 0.000000000000000
|
||||
749 1 1 0.420 0.000000000000000 41.158029781222339 0.000000000000000
|
||||
750 1 2 -0.420 0.698900000000000 42.368560068905346 0.000000000000000
|
||||
751 1 1 0.420 2.096700000000000 42.368560068905346 0.000000000000000
|
||||
752 1 2 -0.420 2.795600000000000 41.158029781222339 0.000000000000000
|
||||
753 1 1 0.420 4.193400000000000 41.158029781222339 0.000000000000000
|
||||
754 1 2 -0.420 4.892300000000000 42.368560068905346 0.000000000000000
|
||||
755 1 1 0.420 6.290100000000000 42.368560068905346 0.000000000000000
|
||||
756 1 2 -0.420 6.989000000000000 41.158029781222339 0.000000000000000
|
||||
757 1 1 0.420 8.386799999999999 41.158029781222339 0.000000000000000
|
||||
758 1 2 -0.420 9.085699999999999 42.368560068905346 0.000000000000000
|
||||
759 1 1 0.420 10.483499999999999 42.368560068905346 0.000000000000000
|
||||
760 1 2 -0.420 11.182399999999999 41.158029781222339 0.000000000000000
|
||||
761 1 1 0.420 12.580200000000000 41.158029781222339 0.000000000000000
|
||||
762 1 2 -0.420 13.279100000000000 42.368560068905346 0.000000000000000
|
||||
763 1 1 0.420 14.676900000000000 42.368560068905346 0.000000000000000
|
||||
764 1 2 -0.420 15.375800000000000 41.158029781222339 0.000000000000000
|
||||
765 1 1 0.420 16.773599999999998 41.158029781222339 0.000000000000000
|
||||
766 1 2 -0.420 17.472500000000000 42.368560068905346 0.000000000000000
|
||||
767 1 1 0.420 18.870300000000000 42.368560068905346 0.000000000000000
|
||||
768 1 2 -0.420 19.569199999999999 41.158029781222339 0.000000000000000
|
||||
769 1 1 0.420 20.966999999999999 41.158029781222339 0.000000000000000
|
||||
770 1 2 -0.420 21.665900000000001 42.368560068905346 0.000000000000000
|
||||
771 1 1 0.420 23.063699999999997 42.368560068905346 0.000000000000000
|
||||
772 1 2 -0.420 23.762599999999999 41.158029781222339 0.000000000000000
|
||||
773 1 1 0.420 25.160399999999999 41.158029781222339 0.000000000000000
|
||||
774 1 2 -0.420 25.859299999999998 42.368560068905346 0.000000000000000
|
||||
775 1 1 0.420 27.257099999999998 42.368560068905346 0.000000000000000
|
||||
776 1 2 -0.420 27.956000000000000 41.158029781222339 0.000000000000000
|
||||
777 1 1 0.420 29.353800000000000 41.158029781222339 0.000000000000000
|
||||
778 1 2 -0.420 30.052699999999998 42.368560068905346 0.000000000000000
|
||||
779 1 1 0.420 31.450499999999998 42.368560068905346 0.000000000000000
|
||||
780 1 2 -0.420 32.149400000000000 41.158029781222339 0.000000000000000
|
||||
781 1 1 0.420 33.547199999999997 41.158029781222339 0.000000000000000
|
||||
782 1 2 -0.420 34.246099999999998 42.368560068905346 0.000000000000000
|
||||
783 1 1 0.420 35.643899999999995 42.368560068905346 0.000000000000000
|
||||
784 1 2 -0.420 36.342799999999997 41.158029781222339 0.000000000000000
|
||||
785 1 1 0.420 37.740600000000001 41.158029781222339 0.000000000000000
|
||||
786 1 2 -0.420 38.439499999999995 42.368560068905346 0.000000000000000
|
||||
787 1 1 0.420 39.837299999999999 42.368560068905346 0.000000000000000
|
||||
788 1 2 -0.420 40.536200000000001 41.158029781222339 0.000000000000000
|
||||
789 1 1 0.420 41.933999999999997 41.158029781222339 0.000000000000000
|
||||
790 1 2 -0.420 42.632899999999999 42.368560068905346 0.000000000000000
|
||||
791 1 1 0.420 44.030699999999996 42.368560068905346 0.000000000000000
|
||||
792 1 2 -0.420 44.729599999999998 41.158029781222339 0.000000000000000
|
||||
793 1 1 0.420 0.000000000000000 43.579090356588360 0.000000000000000
|
||||
794 1 2 -0.420 0.698900000000000 44.789620644271366 0.000000000000000
|
||||
795 1 1 0.420 2.096700000000000 44.789620644271366 0.000000000000000
|
||||
796 1 2 -0.420 2.795600000000000 43.579090356588360 0.000000000000000
|
||||
797 1 1 0.420 4.193400000000000 43.579090356588360 0.000000000000000
|
||||
798 1 2 -0.420 4.892300000000000 44.789620644271366 0.000000000000000
|
||||
799 1 1 0.420 6.290100000000000 44.789620644271366 0.000000000000000
|
||||
800 1 2 -0.420 6.989000000000000 43.579090356588360 0.000000000000000
|
||||
801 1 1 0.420 8.386799999999999 43.579090356588360 0.000000000000000
|
||||
802 1 2 -0.420 9.085699999999999 44.789620644271366 0.000000000000000
|
||||
803 1 1 0.420 10.483499999999999 44.789620644271366 0.000000000000000
|
||||
804 1 2 -0.420 11.182399999999999 43.579090356588360 0.000000000000000
|
||||
805 1 1 0.420 12.580200000000000 43.579090356588360 0.000000000000000
|
||||
806 1 2 -0.420 13.279100000000000 44.789620644271366 0.000000000000000
|
||||
807 1 1 0.420 14.676900000000000 44.789620644271366 0.000000000000000
|
||||
808 1 2 -0.420 15.375800000000000 43.579090356588360 0.000000000000000
|
||||
809 1 1 0.420 16.773599999999998 43.579090356588360 0.000000000000000
|
||||
810 1 2 -0.420 17.472500000000000 44.789620644271366 0.000000000000000
|
||||
811 1 1 0.420 18.870300000000000 44.789620644271366 0.000000000000000
|
||||
812 1 2 -0.420 19.569199999999999 43.579090356588360 0.000000000000000
|
||||
813 1 1 0.420 20.966999999999999 43.579090356588360 0.000000000000000
|
||||
814 1 2 -0.420 21.665900000000001 44.789620644271366 0.000000000000000
|
||||
815 1 1 0.420 23.063699999999997 44.789620644271366 0.000000000000000
|
||||
816 1 2 -0.420 23.762599999999999 43.579090356588360 0.000000000000000
|
||||
817 1 1 0.420 25.160399999999999 43.579090356588360 0.000000000000000
|
||||
818 1 2 -0.420 25.859299999999998 44.789620644271366 0.000000000000000
|
||||
819 1 1 0.420 27.257099999999998 44.789620644271366 0.000000000000000
|
||||
820 1 2 -0.420 27.956000000000000 43.579090356588360 0.000000000000000
|
||||
821 1 1 0.420 29.353800000000000 43.579090356588360 0.000000000000000
|
||||
822 1 2 -0.420 30.052699999999998 44.789620644271366 0.000000000000000
|
||||
823 1 1 0.420 31.450499999999998 44.789620644271366 0.000000000000000
|
||||
824 1 2 -0.420 32.149400000000000 43.579090356588360 0.000000000000000
|
||||
825 1 1 0.420 33.547199999999997 43.579090356588360 0.000000000000000
|
||||
826 1 2 -0.420 34.246099999999998 44.789620644271366 0.000000000000000
|
||||
827 1 1 0.420 35.643899999999995 44.789620644271366 0.000000000000000
|
||||
828 1 2 -0.420 36.342799999999997 43.579090356588360 0.000000000000000
|
||||
829 1 1 0.420 37.740600000000001 43.579090356588360 0.000000000000000
|
||||
830 1 2 -0.420 38.439499999999995 44.789620644271366 0.000000000000000
|
||||
831 1 1 0.420 39.837299999999999 44.789620644271366 0.000000000000000
|
||||
832 1 2 -0.420 40.536200000000001 43.579090356588360 0.000000000000000
|
||||
833 1 1 0.420 41.933999999999997 43.579090356588360 0.000000000000000
|
||||
834 1 2 -0.420 42.632899999999999 44.789620644271366 0.000000000000000
|
||||
835 1 1 0.420 44.030699999999996 44.789620644271366 0.000000000000000
|
||||
836 1 2 -0.420 44.729599999999998 43.579090356588360 0.000000000000000
|
||||
837 1 1 0.420 0.000000000000000 46.000150931954380 0.000000000000000
|
||||
838 1 2 -0.420 0.698900000000000 47.210681219637387 0.000000000000000
|
||||
839 1 1 0.420 2.096700000000000 47.210681219637387 0.000000000000000
|
||||
840 1 2 -0.420 2.795600000000000 46.000150931954380 0.000000000000000
|
||||
841 1 1 0.420 4.193400000000000 46.000150931954380 0.000000000000000
|
||||
842 1 2 -0.420 4.892300000000000 47.210681219637387 0.000000000000000
|
||||
843 1 1 0.420 6.290100000000000 47.210681219637387 0.000000000000000
|
||||
844 1 2 -0.420 6.989000000000000 46.000150931954380 0.000000000000000
|
||||
845 1 1 0.420 8.386799999999999 46.000150931954380 0.000000000000000
|
||||
846 1 2 -0.420 9.085699999999999 47.210681219637387 0.000000000000000
|
||||
847 1 1 0.420 10.483499999999999 47.210681219637387 0.000000000000000
|
||||
848 1 2 -0.420 11.182399999999999 46.000150931954380 0.000000000000000
|
||||
849 1 1 0.420 12.580200000000000 46.000150931954380 0.000000000000000
|
||||
850 1 2 -0.420 13.279100000000000 47.210681219637387 0.000000000000000
|
||||
851 1 1 0.420 14.676900000000000 47.210681219637387 0.000000000000000
|
||||
852 1 2 -0.420 15.375800000000000 46.000150931954380 0.000000000000000
|
||||
853 1 1 0.420 16.773599999999998 46.000150931954380 0.000000000000000
|
||||
854 1 2 -0.420 17.472500000000000 47.210681219637387 0.000000000000000
|
||||
855 1 1 0.420 18.870300000000000 47.210681219637387 0.000000000000000
|
||||
856 1 2 -0.420 19.569199999999999 46.000150931954380 0.000000000000000
|
||||
857 1 1 0.420 20.966999999999999 46.000150931954380 0.000000000000000
|
||||
858 1 2 -0.420 21.665900000000001 47.210681219637387 0.000000000000000
|
||||
859 1 1 0.420 23.063699999999997 47.210681219637387 0.000000000000000
|
||||
860 1 2 -0.420 23.762599999999999 46.000150931954380 0.000000000000000
|
||||
861 1 1 0.420 25.160399999999999 46.000150931954380 0.000000000000000
|
||||
862 1 2 -0.420 25.859299999999998 47.210681219637387 0.000000000000000
|
||||
863 1 1 0.420 27.257099999999998 47.210681219637387 0.000000000000000
|
||||
864 1 2 -0.420 27.956000000000000 46.000150931954380 0.000000000000000
|
||||
865 1 1 0.420 29.353800000000000 46.000150931954380 0.000000000000000
|
||||
866 1 2 -0.420 30.052699999999998 47.210681219637387 0.000000000000000
|
||||
867 1 1 0.420 31.450499999999998 47.210681219637387 0.000000000000000
|
||||
868 1 2 -0.420 32.149400000000000 46.000150931954380 0.000000000000000
|
||||
869 1 1 0.420 33.547199999999997 46.000150931954380 0.000000000000000
|
||||
870 1 2 -0.420 34.246099999999998 47.210681219637387 0.000000000000000
|
||||
871 1 1 0.420 35.643899999999995 47.210681219637387 0.000000000000000
|
||||
872 1 2 -0.420 36.342799999999997 46.000150931954380 0.000000000000000
|
||||
873 1 1 0.420 37.740600000000001 46.000150931954380 0.000000000000000
|
||||
874 1 2 -0.420 38.439499999999995 47.210681219637387 0.000000000000000
|
||||
875 1 1 0.420 39.837299999999999 47.210681219637387 0.000000000000000
|
||||
876 1 2 -0.420 40.536200000000001 46.000150931954380 0.000000000000000
|
||||
877 1 1 0.420 41.933999999999997 46.000150931954380 0.000000000000000
|
||||
878 1 2 -0.420 42.632899999999999 47.210681219637387 0.000000000000000
|
||||
879 1 1 0.420 44.030699999999996 47.210681219637387 0.000000000000000
|
||||
880 1 2 -0.420 44.729599999999998 46.000150931954380 0.000000000000000
|
||||
36
examples/USER/misc/tersoff_shift/in.hBN_no_shift
Normal file
36
examples/USER/misc/tersoff_shift/in.hBN_no_shift
Normal file
@ -0,0 +1,36 @@
|
||||
# Initialization
|
||||
units metal
|
||||
boundary p p p
|
||||
atom_style full
|
||||
processors * * 1 # domain decomposition over x and y
|
||||
|
||||
# System and atom definition
|
||||
# we use different molecule ids for each layer of hBN
|
||||
# so that inter- and intra-layer
|
||||
# interactions can be specified separately
|
||||
read_data hBN-momolayer-5nm.data
|
||||
mass 1 10.8110 # boron mass (g/mole) | membrane
|
||||
mass 2 14.0067 # nitrogen mass (g/mole) | adsorbate
|
||||
|
||||
######################## Potential defition ########################
|
||||
pair_style tersoff
|
||||
pair_coeff * * BNC.tersoff B N
|
||||
####################################################################
|
||||
# Neighbor update settings
|
||||
neighbor 2.0 bin
|
||||
neigh_modify every 1
|
||||
neigh_modify delay 0
|
||||
neigh_modify check yes
|
||||
|
||||
#### Simulation settings ####
|
||||
timestep 0.001
|
||||
#velocity all create 300.0 12345 dist gaussian mom yes rot yes
|
||||
fix thermostat all nve
|
||||
|
||||
############# Output ###############
|
||||
thermo 100
|
||||
thermo_style custom step etotal pe ke temp
|
||||
thermo_modify lost warn
|
||||
|
||||
###### Run molecular dynamics ######
|
||||
run 1000
|
||||
36
examples/USER/misc/tersoff_shift/in.hBN_shift
Normal file
36
examples/USER/misc/tersoff_shift/in.hBN_shift
Normal file
@ -0,0 +1,36 @@
|
||||
# Initialization
|
||||
units metal
|
||||
boundary p p p
|
||||
atom_style full
|
||||
processors * * 1 # domain decomposition over x and y
|
||||
|
||||
# System and atom definition
|
||||
# we use different molecule ids for each layer of hBN
|
||||
# so that inter- and intra-layer
|
||||
# interactions can be specified separately
|
||||
read_data hBN-momolayer-5nm.data
|
||||
mass 1 10.8110 # boron mass (g/mole) | membrane
|
||||
mass 2 14.0067 # nitrogen mass (g/mole) | adsorbate
|
||||
|
||||
######################## Potential defition ########################
|
||||
pair_style tersoff/shift 0.0
|
||||
pair_coeff * * BNC.tersoff B N
|
||||
####################################################################
|
||||
# Neighbor update settings
|
||||
neighbor 2.0 bin
|
||||
neigh_modify every 1
|
||||
neigh_modify delay 0
|
||||
neigh_modify check yes
|
||||
|
||||
#### Simulation settings ####
|
||||
timestep 0.001
|
||||
#velocity all create 300.0 12345 dist gaussian mom yes rot yes
|
||||
fix thermostat all nve
|
||||
|
||||
############# Output ###############
|
||||
thermo 100
|
||||
thermo_style custom step etotal pe ke temp
|
||||
thermo_modify lost warn
|
||||
|
||||
###### Run molecular dynamics ######
|
||||
run 1000
|
||||
108
examples/USER/misc/tersoff_shift/log.30Nov20.hBN_no_shift.g++.1
Normal file
108
examples/USER/misc/tersoff_shift/log.30Nov20.hBN_no_shift.g++.1
Normal file
@ -0,0 +1,108 @@
|
||||
LAMMPS (30 Nov 2020)
|
||||
# Initialization
|
||||
units metal
|
||||
boundary p p p
|
||||
atom_style full
|
||||
processors * * 1 # domain decomposition over x and y
|
||||
|
||||
# System and atom definition
|
||||
# we use different molecule ids for each layer of hBN
|
||||
# so that inter- and intra-layer
|
||||
# interactions can be specified separately
|
||||
read_data hBN-momolayer-5nm.data
|
||||
Reading data file ...
|
||||
orthogonal box = (0.0000000 0.0000000 0.0000000) to (46.152980 48.443364 100.00000)
|
||||
1 by 1 by 1 MPI processor grid
|
||||
reading atoms ...
|
||||
880 atoms
|
||||
Finding 1-2 1-3 1-4 neighbors ...
|
||||
special bond factors lj: 0 0 0
|
||||
special bond factors coul: 0 0 0
|
||||
0 = max # of 1-2 neighbors
|
||||
0 = max # of 1-3 neighbors
|
||||
0 = max # of 1-4 neighbors
|
||||
1 = max # of special neighbors
|
||||
special bonds CPU = 0.001 seconds
|
||||
read_data CPU = 0.096 seconds
|
||||
mass 1 10.8110 # boron mass (g/mole) | membrane
|
||||
mass 2 14.0067 # nitrogen mass (g/mole) | adsorbate
|
||||
|
||||
######################## Potential defition ########################
|
||||
pair_style tersoff
|
||||
pair_coeff * * BNC.tersoff B N
|
||||
Reading tersoff potential file BNC.tersoff with DATE: 2013-03-21
|
||||
####################################################################
|
||||
# Neighbor update settings
|
||||
neighbor 2.0 bin
|
||||
neigh_modify every 1
|
||||
neigh_modify delay 0
|
||||
neigh_modify check yes
|
||||
|
||||
#### Simulation settings ####
|
||||
timestep 0.001
|
||||
#velocity all create 300.0 12345 dist gaussian mom yes rot yes
|
||||
fix thermostat all nve
|
||||
|
||||
############# Output ###############
|
||||
thermo 100
|
||||
thermo_style custom step etotal pe ke temp
|
||||
thermo_modify lost warn
|
||||
|
||||
###### Run molecular dynamics ######
|
||||
run 1000
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 4.1
|
||||
ghost atom cutoff = 4.1
|
||||
binsize = 2.05, bins = 23 24 49
|
||||
1 neighbor lists, perpetual/occasional/extra = 1 0 0
|
||||
(1) pair tersoff, perpetual
|
||||
attributes: full, newton on
|
||||
pair build: full/bin
|
||||
stencil: full/bin/3d
|
||||
bin: standard
|
||||
Per MPI rank memory allocation (min/avg/max) = 6.651 | 6.651 | 6.651 Mbytes
|
||||
Step TotEng PotEng KinEng Temp
|
||||
0 -6551.8376 -6551.8376 0 0
|
||||
100 -6551.8404 -6552.045 0.20459665 1.8007151
|
||||
200 -6551.8415 -6552.0901 0.24854441 2.1875122
|
||||
300 -6551.8417 -6552.0785 0.23679696 2.0841195
|
||||
400 -6551.8417 -6552.0803 0.23866698 2.1005781
|
||||
500 -6551.8415 -6552.0561 0.21461008 1.8888462
|
||||
600 -6551.8414 -6552.0933 0.25192103 2.2172309
|
||||
700 -6551.8418 -6552.085 0.24321116 2.1405727
|
||||
800 -6551.8421 -6552.0818 0.23974657 2.1100799
|
||||
900 -6551.8417 -6552.0803 0.23863749 2.1003185
|
||||
1000 -6551.8407 -6552.0573 0.2165681 1.9060793
|
||||
Loop time of 1.30034 on 1 procs for 1000 steps with 880 atoms
|
||||
|
||||
Performance: 66.444 ns/day, 0.361 hours/ns, 769.030 timesteps/s
|
||||
99.4% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 1.2606 | 1.2606 | 1.2606 | 0.0 | 96.95
|
||||
Bond | 0.00058399 | 0.00058399 | 0.00058399 | 0.0 | 0.04
|
||||
Neigh | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Comm | 0.014387 | 0.014387 | 0.014387 | 0.0 | 1.11
|
||||
Output | 0.00062956 | 0.00062956 | 0.00062956 | 0.0 | 0.05
|
||||
Modify | 0.014313 | 0.014313 | 0.014313 | 0.0 | 1.10
|
||||
Other | | 0.009804 | | | 0.75
|
||||
|
||||
Nlocal: 880.000 ave 880 max 880 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Nghost: 1518.00 ave 1518 max 1518 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Neighs: 0.00000 ave 0 max 0 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
FullNghs: 15840.0 ave 15840 max 15840 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
|
||||
Total # of neighbors = 15840
|
||||
Ave neighs/atom = 18.000000
|
||||
Ave special neighs/atom = 0.0000000
|
||||
Neighbor list builds = 0
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:00:01
|
||||
111
examples/USER/misc/tersoff_shift/log.30Nov20.hBN_shift.g++.1
Normal file
111
examples/USER/misc/tersoff_shift/log.30Nov20.hBN_shift.g++.1
Normal file
@ -0,0 +1,111 @@
|
||||
LAMMPS (30 Nov 2020)
|
||||
# Initialization
|
||||
units metal
|
||||
boundary p p p
|
||||
atom_style full
|
||||
processors * * 1 # domain decomposition over x and y
|
||||
|
||||
# System and atom definition
|
||||
# we use different molecule ids for each layer of hBN
|
||||
# so that inter- and intra-layer
|
||||
# interactions can be specified separately
|
||||
read_data hBN-momolayer-5nm.data
|
||||
Reading data file ...
|
||||
orthogonal box = (0.0000000 0.0000000 0.0000000) to (46.152980 48.443364 100.00000)
|
||||
1 by 1 by 1 MPI processor grid
|
||||
reading atoms ...
|
||||
880 atoms
|
||||
Finding 1-2 1-3 1-4 neighbors ...
|
||||
special bond factors lj: 0 0 0
|
||||
special bond factors coul: 0 0 0
|
||||
0 = max # of 1-2 neighbors
|
||||
0 = max # of 1-3 neighbors
|
||||
0 = max # of 1-4 neighbors
|
||||
1 = max # of special neighbors
|
||||
special bonds CPU = 0.000 seconds
|
||||
read_data CPU = 0.009 seconds
|
||||
mass 1 10.8110 # boron mass (g/mole) | membrane
|
||||
mass 2 14.0067 # nitrogen mass (g/mole) | adsorbate
|
||||
|
||||
######################## Potential defition ########################
|
||||
pair_style tersoff/shift 0.0
|
||||
pair_coeff * * BNC.tersoff B N
|
||||
Reading tersoff potential file BNC.tersoff with DATE: 2013-03-21
|
||||
####################################################################
|
||||
# Neighbor update settings
|
||||
neighbor 2.0 bin
|
||||
neigh_modify every 1
|
||||
neigh_modify delay 0
|
||||
neigh_modify check yes
|
||||
|
||||
#### Simulation settings ####
|
||||
timestep 0.001
|
||||
#velocity all create 300.0 12345 dist gaussian mom yes rot yes
|
||||
fix thermostat all nve
|
||||
|
||||
############# Output ###############
|
||||
thermo 100
|
||||
thermo_style custom step etotal pe ke temp
|
||||
thermo_modify lost warn
|
||||
|
||||
###### Run molecular dynamics ######
|
||||
run 1000
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 0 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 4.1
|
||||
ghost atom cutoff = 4.1
|
||||
binsize = 2.05, bins = 23 24 49
|
||||
1 neighbor lists, perpetual/occasional/extra = 1 0 0
|
||||
(1) pair tersoff/shift, perpetual
|
||||
attributes: full, newton on
|
||||
pair build: full/bin
|
||||
stencil: full/bin/3d
|
||||
bin: standard
|
||||
Per MPI rank memory allocation (min/avg/max) = 6.651 | 6.651 | 6.651 Mbytes
|
||||
Step TotEng PotEng KinEng Temp
|
||||
0 -6551.8376 -6551.8376 0 0
|
||||
100 -6551.8404 -6552.045 0.20459665 1.8007151
|
||||
200 -6551.8415 -6552.0901 0.24854441 2.1875122
|
||||
300 -6551.8417 -6552.0785 0.23679696 2.0841195
|
||||
400 -6551.8417 -6552.0803 0.23866698 2.1005781
|
||||
500 -6551.8415 -6552.0561 0.21461008 1.8888462
|
||||
600 -6551.8414 -6552.0933 0.25192103 2.2172309
|
||||
700 -6551.8418 -6552.085 0.24321116 2.1405727
|
||||
800 -6551.8421 -6552.0818 0.23974657 2.1100799
|
||||
900 -6551.8417 -6552.0803 0.23863749 2.1003185
|
||||
1000 -6551.8407 -6552.0573 0.2165681 1.9060793
|
||||
Loop time of 2.01887 on 1 procs for 1000 steps with 880 atoms
|
||||
|
||||
Performance: 42.796 ns/day, 0.561 hours/ns, 495.328 timesteps/s
|
||||
98.7% CPU use with 1 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 1.9692 | 1.9692 | 1.9692 | 0.0 | 97.54
|
||||
Bond | 0.00080803 | 0.00080803 | 0.00080803 | 0.0 | 0.04
|
||||
Neigh | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Comm | 0.017753 | 0.017753 | 0.017753 | 0.0 | 0.88
|
||||
Output | 0.00098974 | 0.00098974 | 0.00098974 | 0.0 | 0.05
|
||||
Modify | 0.017247 | 0.017247 | 0.017247 | 0.0 | 0.85
|
||||
Other | | 0.01289 | | | 0.64
|
||||
|
||||
Nlocal: 880.000 ave 880 max 880 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Nghost: 1518.00 ave 1518 max 1518 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
Neighs: 0.00000 ave 0 max 0 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
FullNghs: 15840.0 ave 15840 max 15840 min
|
||||
Histogram: 1 0 0 0 0 0 0 0 0 0
|
||||
|
||||
Total # of neighbors = 15840
|
||||
Ave neighs/atom = 18.000000
|
||||
Ave special neighs/atom = 0.0000000
|
||||
Neighbor list builds = 0
|
||||
Dangerous builds = 0
|
||||
|
||||
Please see the log.cite file for references relevant to this simulation
|
||||
|
||||
Total wall time: 0:00:02
|
||||
817
src/USER-MISC/pair_tersoff_shift.cpp
Normal file
817
src/USER-MISC/pair_tersoff_shift.cpp
Normal file
@ -0,0 +1,817 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
https://lammps.sandia.gov/, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Contributing author: Wengen Ouyang (Tel Aviv University)
|
||||
e-mail: w.g.ouyang at gmail dot com
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include "pair_tersoff_shift.h"
|
||||
|
||||
#include "atom.h"
|
||||
#include "comm.h"
|
||||
#include "error.h"
|
||||
#include "force.h"
|
||||
#include "math_const.h"
|
||||
#include "math_special.h"
|
||||
#include "memory.h"
|
||||
#include "neigh_list.h"
|
||||
#include "neigh_request.h"
|
||||
#include "neighbor.h"
|
||||
#include "potential_file_reader.h"
|
||||
#include "tokenizer.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include "citeme.h"
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
using namespace MathConst;
|
||||
|
||||
#define MAXLINE 1024
|
||||
#define DELTA 4
|
||||
|
||||
static const char cite_tersoff_shift[] =
|
||||
"@Article{Mandelli2019\n"
|
||||
" author = {D. Mandelli, W. Ouyang, M. Urbakh, and O. Hod},\n"
|
||||
" title = {The Princess and the Nanoscale Pea: Long-Range Penetration of Surface Distortions into Layered Materials Stacks},\n"
|
||||
" journal = {ACS Nano},\n"
|
||||
" volume = 13,\n"
|
||||
" pages = {7603}\n"
|
||||
" year = 2019,\n"
|
||||
"}\n\n"
|
||||
"@Article{Ouyang2020\n"
|
||||
" author = {W. Ouyang, I. Azuri, D. Mandelli, A. Tkatchenko, L. Kronik, M. Urbakh, and O. Hod},\n"
|
||||
" title = {Mechanical and Tribological Properties of Layered Materials under High Pressure: Assessing the Importance of Many-Body Dispersion Effects},\n"
|
||||
" journal = {J. Chem. Theory Comput.},\n"
|
||||
" volume = 16,\n"
|
||||
" pages = {666}\n"
|
||||
" year = 2020,\n"
|
||||
"}\n\n";
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
PairTersoffShift::PairTersoffShift(LAMMPS *lmp) : Pair(lmp)
|
||||
{
|
||||
single_enable = 0;
|
||||
restartinfo = 0;
|
||||
one_coeff = 1;
|
||||
manybody_flag = 1;
|
||||
|
||||
if (lmp->citeme) lmp->citeme->add(cite_tersoff_shift);
|
||||
|
||||
nelements = 0;
|
||||
elements = nullptr;
|
||||
nparams = maxparam = 0;
|
||||
params = nullptr;
|
||||
elem2param = nullptr;
|
||||
map = nullptr;
|
||||
|
||||
maxshort = 10;
|
||||
neighshort = nullptr;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
check if allocated, since class can be destructed when incomplete
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
PairTersoffShift::~PairTersoffShift()
|
||||
{
|
||||
if (copymode) return;
|
||||
|
||||
if (elements)
|
||||
for (int i = 0; i < nelements; i++) delete [] elements[i];
|
||||
delete [] elements;
|
||||
memory->destroy(params);
|
||||
memory->destroy(elem2param);
|
||||
|
||||
if (allocated) {
|
||||
memory->destroy(setflag);
|
||||
memory->destroy(cutsq);
|
||||
memory->destroy(neighshort);
|
||||
delete [] map;
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairTersoffShift::compute(int eflag, int vflag)
|
||||
{
|
||||
int i,j,k,ii,jj,kk,inum,jnum;
|
||||
int itype,jtype,ktype,iparam_ij,iparam_ijk;
|
||||
tagint itag,jtag;
|
||||
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
|
||||
double rsq,rsq1,rsq2;
|
||||
double delr1[3],delr2[3],fi[3],fj[3],fk[3];
|
||||
double zeta_ij,prefactor;
|
||||
int *ilist,*jlist,*numneigh,**firstneigh;
|
||||
|
||||
evdwl = 0.0;
|
||||
ev_init(eflag,vflag);
|
||||
|
||||
double **x = atom->x;
|
||||
double **f = atom->f;
|
||||
tagint *tag = atom->tag;
|
||||
int *type = atom->type;
|
||||
int nlocal = atom->nlocal;
|
||||
int newton_pair = force->newton_pair;
|
||||
const double cutshortsq = cutmax*cutmax;
|
||||
|
||||
inum = list->inum;
|
||||
ilist = list->ilist;
|
||||
numneigh = list->numneigh;
|
||||
firstneigh = list->firstneigh;
|
||||
|
||||
double fxtmp,fytmp,fztmp;
|
||||
|
||||
// loop over full neighbor list of my atoms
|
||||
|
||||
for (ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
itag = tag[i];
|
||||
itype = map[type[i]];
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
fxtmp = fytmp = fztmp = 0.0;
|
||||
|
||||
// two-body interactions, skip half of them
|
||||
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
int numshort = 0;
|
||||
|
||||
for (jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
jtype = map[type[j]];
|
||||
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
rsq += shiftBN*shiftBN + 2*sqrt(rsq)*shiftBN;
|
||||
//rsq += shift[itype][jtype]*shift[itype][jtype] + 2*sqrt(rsq)*shift[itype][jtype];
|
||||
|
||||
if (rsq < cutshortsq) {
|
||||
neighshort[numshort++] = j;
|
||||
if (numshort >= maxshort) {
|
||||
maxshort += maxshort/2;
|
||||
memory->grow(neighshort,maxshort,"pair:neighshort");
|
||||
}
|
||||
}
|
||||
|
||||
jtag = tag[j];
|
||||
if (itag > jtag) {
|
||||
if ((itag+jtag) % 2 == 0) continue;
|
||||
} else if (itag < jtag) {
|
||||
if ((itag+jtag) % 2 == 1) continue;
|
||||
} else {
|
||||
if (x[j][2] < x[i][2]) continue;
|
||||
if (x[j][2] == ztmp && x[j][1] < ytmp) continue;
|
||||
if (x[j][2] == ztmp && x[j][1] == ytmp && x[j][0] < xtmp) continue;
|
||||
}
|
||||
|
||||
jtype = map[type[j]];
|
||||
iparam_ij = elem2param[itype][jtype][jtype];
|
||||
if (rsq >= params[iparam_ij].cutsq) continue;
|
||||
|
||||
repulsive(¶ms[iparam_ij],rsq,fpair,eflag,evdwl);
|
||||
|
||||
fxtmp += delx*fpair;
|
||||
fytmp += dely*fpair;
|
||||
fztmp += delz*fpair;
|
||||
f[j][0] -= delx*fpair;
|
||||
f[j][1] -= dely*fpair;
|
||||
f[j][2] -= delz*fpair;
|
||||
|
||||
if (evflag) ev_tally(i,j,nlocal,newton_pair,
|
||||
evdwl,0.0,fpair,delx,dely,delz);
|
||||
}
|
||||
|
||||
// three-body interactions
|
||||
// skip immediately if I-J is not within cutoff
|
||||
double fjxtmp,fjytmp,fjztmp;
|
||||
|
||||
for (jj = 0; jj < numshort; jj++) {
|
||||
j = neighshort[jj];
|
||||
jtype = map[type[j]];
|
||||
iparam_ij = elem2param[itype][jtype][jtype];
|
||||
|
||||
delr1[0] = x[j][0] - xtmp;
|
||||
delr1[1] = x[j][1] - ytmp;
|
||||
delr1[2] = x[j][2] - ztmp;
|
||||
rsq1 = delr1[0]*delr1[0] + delr1[1]*delr1[1] + delr1[2]*delr1[2];
|
||||
rsq1 += shiftBN*shiftBN + 2*sqrt(rsq1)*shiftBN;
|
||||
if (rsq1 >= params[iparam_ij].cutsq) continue;
|
||||
|
||||
// accumulate bondorder zeta for each i-j interaction via loop over k
|
||||
|
||||
fjxtmp = fjytmp = fjztmp = 0.0;
|
||||
zeta_ij = 0.0;
|
||||
|
||||
for (kk = 0; kk < numshort; kk++) {
|
||||
if (jj == kk) continue;
|
||||
k = neighshort[kk];
|
||||
ktype = map[type[k]];
|
||||
iparam_ijk = elem2param[itype][jtype][ktype];
|
||||
|
||||
delr2[0] = x[k][0] - xtmp;
|
||||
delr2[1] = x[k][1] - ytmp;
|
||||
delr2[2] = x[k][2] - ztmp;
|
||||
rsq2 = delr2[0]*delr2[0] + delr2[1]*delr2[1] + delr2[2]*delr2[2];
|
||||
rsq2 += shiftBN*shiftBN + 2*sqrt(rsq2)*shiftBN;
|
||||
if (rsq2 >= params[iparam_ijk].cutsq) continue;
|
||||
|
||||
zeta_ij += zeta(¶ms[iparam_ijk],rsq1,rsq2,delr1,delr2);
|
||||
}
|
||||
|
||||
// pairwise force due to zeta
|
||||
|
||||
force_zeta(¶ms[iparam_ij],rsq1,zeta_ij,fpair,prefactor,eflag,evdwl);
|
||||
|
||||
fxtmp += delr1[0]*fpair;
|
||||
fytmp += delr1[1]*fpair;
|
||||
fztmp += delr1[2]*fpair;
|
||||
fjxtmp -= delr1[0]*fpair;
|
||||
fjytmp -= delr1[1]*fpair;
|
||||
fjztmp -= delr1[2]*fpair;
|
||||
|
||||
if (evflag) ev_tally(i,j,nlocal,newton_pair,
|
||||
evdwl,0.0,-fpair,-delr1[0],-delr1[1],-delr1[2]);
|
||||
|
||||
// attractive term via loop over k
|
||||
|
||||
for (kk = 0; kk < numshort; kk++) {
|
||||
if (jj == kk) continue;
|
||||
k = neighshort[kk];
|
||||
ktype = map[type[k]];
|
||||
iparam_ijk = elem2param[itype][jtype][ktype];
|
||||
|
||||
delr2[0] = x[k][0] - xtmp;
|
||||
delr2[1] = x[k][1] - ytmp;
|
||||
delr2[2] = x[k][2] - ztmp;
|
||||
rsq2 = delr2[0]*delr2[0] + delr2[1]*delr2[1] + delr2[2]*delr2[2];
|
||||
rsq2 += shiftBN*shiftBN + 2*sqrt(rsq2)*shiftBN;
|
||||
if (rsq2 >= params[iparam_ijk].cutsq) continue;
|
||||
|
||||
attractive(¶ms[iparam_ijk],prefactor,
|
||||
rsq1,rsq2,delr1,delr2,fi,fj,fk);
|
||||
|
||||
fxtmp += fi[0];
|
||||
fytmp += fi[1];
|
||||
fztmp += fi[2];
|
||||
fjxtmp += fj[0];
|
||||
fjytmp += fj[1];
|
||||
fjztmp += fj[2];
|
||||
f[k][0] += fk[0];
|
||||
f[k][1] += fk[1];
|
||||
f[k][2] += fk[2];
|
||||
|
||||
if (vflag_atom) v_tally3(i,j,k,fj,fk,delr1,delr2);
|
||||
}
|
||||
f[j][0] += fjxtmp;
|
||||
f[j][1] += fjytmp;
|
||||
f[j][2] += fjztmp;
|
||||
}
|
||||
f[i][0] += fxtmp;
|
||||
f[i][1] += fytmp;
|
||||
f[i][2] += fztmp;
|
||||
}
|
||||
|
||||
if (vflag_fdotr) virial_fdotr_compute();
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairTersoffShift::allocate()
|
||||
{
|
||||
allocated = 1;
|
||||
int n = atom->ntypes;
|
||||
|
||||
memory->create(setflag,n+1,n+1,"pair:setflag");
|
||||
memory->create(cutsq,n+1,n+1,"pair:cutsq");
|
||||
memory->create(neighshort,maxshort,"pair:neighshort");
|
||||
map = new int[n+1];
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
global settings
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void PairTersoffShift::settings(int narg, char **arg)
|
||||
{
|
||||
//if (narg != 0) error->all(FLERR,"Illegal pair_style command");
|
||||
if (narg < 1 || narg > 2) error->all(FLERR,"Illegal pair_style command");
|
||||
|
||||
shiftBN = utils::numeric(FLERR,arg[0],false,lmp);
|
||||
if (narg == 2) shiftCC = utils::numeric(FLERR,arg[1],false,lmp);
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
set coeffs for one or more type pairs
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void PairTersoffShift::coeff(int narg, char **arg)
|
||||
{
|
||||
int i,j,n;
|
||||
|
||||
if (!allocated) allocate();
|
||||
|
||||
if (narg != 3 + atom->ntypes)
|
||||
error->all(FLERR,"Incorrect args for pair coefficients");
|
||||
|
||||
// insure I,J args are * *
|
||||
|
||||
if (strcmp(arg[0],"*") != 0 || strcmp(arg[1],"*") != 0)
|
||||
error->all(FLERR,"Incorrect args for pair coefficients");
|
||||
|
||||
// read args that map atom types to elements in potential file
|
||||
// map[i] = which element the Ith atom type is, -1 if "NULL"
|
||||
// nelements = # of unique elements
|
||||
// elements = list of element names
|
||||
|
||||
if (elements) {
|
||||
for (i = 0; i < nelements; i++) delete [] elements[i];
|
||||
delete [] elements;
|
||||
}
|
||||
elements = new char*[atom->ntypes];
|
||||
for (i = 0; i < atom->ntypes; i++) elements[i] = nullptr;
|
||||
|
||||
nelements = 0;
|
||||
for (i = 3; i < narg; i++) {
|
||||
if (strcmp(arg[i],"NULL") == 0) {
|
||||
map[i-2] = -1;
|
||||
continue;
|
||||
}
|
||||
for (j = 0; j < nelements; j++)
|
||||
if (strcmp(arg[i],elements[j]) == 0) break;
|
||||
map[i-2] = j;
|
||||
if (j == nelements) {
|
||||
n = strlen(arg[i]) + 1;
|
||||
elements[j] = new char[n];
|
||||
strcpy(elements[j],arg[i]);
|
||||
nelements++;
|
||||
}
|
||||
}
|
||||
|
||||
// read potential file and initialize potential parameters
|
||||
|
||||
read_file(arg[2]);
|
||||
setup_params();
|
||||
|
||||
// clear setflag since coeff() called once with I,J = * *
|
||||
|
||||
n = atom->ntypes;
|
||||
for (i = 1; i <= n; i++)
|
||||
for (j = i; j <= n; j++)
|
||||
setflag[i][j] = 0;
|
||||
|
||||
// set setflag i,j for type pairs where both are mapped to elements
|
||||
|
||||
int count = 0;
|
||||
for (i = 1; i <= n; i++)
|
||||
for (j = i; j <= n; j++)
|
||||
if (map[i] >= 0 && map[j] >= 0) {
|
||||
setflag[i][j] = 1;
|
||||
count++;
|
||||
}
|
||||
|
||||
if (count == 0) error->all(FLERR,"Incorrect args for pair coefficients");
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
init specific to this pair style
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void PairTersoffShift::init_style()
|
||||
{
|
||||
if (atom->tag_enable == 0)
|
||||
error->all(FLERR,"Pair style Tersoff requires atom IDs");
|
||||
if (force->newton_pair == 0)
|
||||
error->all(FLERR,"Pair style Tersoff requires newton pair on");
|
||||
|
||||
// need a full neighbor list
|
||||
|
||||
int irequest = neighbor->request(this,instance_me);
|
||||
neighbor->requests[irequest]->half = 0;
|
||||
neighbor->requests[irequest]->full = 1;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
init for one type pair i,j and corresponding j,i
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
double PairTersoffShift::init_one(int i, int j)
|
||||
{
|
||||
if (setflag[i][j] == 0) error->all(FLERR,"All pair coeffs are not set");
|
||||
|
||||
return cutmax;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairTersoffShift::read_file(char *file)
|
||||
{
|
||||
memory->sfree(params);
|
||||
params = nullptr;
|
||||
nparams = maxparam = 0;
|
||||
|
||||
// open file on proc 0
|
||||
|
||||
if (comm->me == 0) {
|
||||
PotentialFileReader reader(lmp, file, "tersoff", unit_convert_flag);
|
||||
char *line;
|
||||
|
||||
// transparently convert units for supported conversions
|
||||
|
||||
int unit_convert = reader.get_unit_convert();
|
||||
double conversion_factor = utils::get_conversion_factor(utils::ENERGY,
|
||||
unit_convert);
|
||||
while((line = reader.next_line(NPARAMS_PER_LINE))) {
|
||||
try {
|
||||
ValueTokenizer values(line);
|
||||
|
||||
std::string iname = values.next_string();
|
||||
std::string jname = values.next_string();
|
||||
std::string kname = values.next_string();
|
||||
|
||||
// ielement,jelement,kelement = 1st args
|
||||
// if all 3 args are in element list, then parse this line
|
||||
// else skip to next entry in file
|
||||
int ielement, jelement, kelement;
|
||||
|
||||
for (ielement = 0; ielement < nelements; ielement++)
|
||||
if (iname == elements[ielement]) break;
|
||||
if (ielement == nelements) continue;
|
||||
for (jelement = 0; jelement < nelements; jelement++)
|
||||
if (jname == elements[jelement]) break;
|
||||
if (jelement == nelements) continue;
|
||||
for (kelement = 0; kelement < nelements; kelement++)
|
||||
if (kname == elements[kelement]) break;
|
||||
if (kelement == nelements) continue;
|
||||
|
||||
// load up parameter settings and error check their values
|
||||
|
||||
if (nparams == maxparam) {
|
||||
maxparam += DELTA;
|
||||
params = (Param *) memory->srealloc(params,maxparam*sizeof(Param),
|
||||
"pair:params");
|
||||
|
||||
// make certain all addional allocated storage is initialized
|
||||
// to avoid false positives when checking with valgrind
|
||||
|
||||
memset(params + nparams, 0, DELTA*sizeof(Param));
|
||||
}
|
||||
|
||||
params[nparams].ielement = ielement;
|
||||
params[nparams].jelement = jelement;
|
||||
params[nparams].kelement = kelement;
|
||||
params[nparams].powerm = values.next_double();
|
||||
params[nparams].gamma = values.next_double();
|
||||
params[nparams].lam3 = values.next_double();
|
||||
params[nparams].c = values.next_double();
|
||||
params[nparams].d = values.next_double();
|
||||
params[nparams].h = values.next_double();
|
||||
params[nparams].powern = values.next_double();
|
||||
params[nparams].beta = values.next_double();
|
||||
params[nparams].lam2 = values.next_double();
|
||||
params[nparams].bigb = values.next_double();
|
||||
params[nparams].bigr = values.next_double();
|
||||
params[nparams].bigd = values.next_double();
|
||||
params[nparams].lam1 = values.next_double();
|
||||
params[nparams].biga = values.next_double();
|
||||
params[nparams].powermint = int(params[nparams].powerm);
|
||||
|
||||
if (unit_convert) {
|
||||
params[nparams].biga *= conversion_factor;
|
||||
params[nparams].bigb *= conversion_factor;
|
||||
}
|
||||
} catch (TokenizerException &e) {
|
||||
error->one(FLERR, e.what());
|
||||
}
|
||||
|
||||
// currently only allow m exponent of 1 or 3
|
||||
if (params[nparams].c < 0.0 ||
|
||||
params[nparams].d < 0.0 ||
|
||||
params[nparams].powern < 0.0 ||
|
||||
params[nparams].beta < 0.0 ||
|
||||
params[nparams].lam2 < 0.0 ||
|
||||
params[nparams].bigb < 0.0 ||
|
||||
params[nparams].bigr < 0.0 ||
|
||||
params[nparams].bigd < 0.0 ||
|
||||
params[nparams].bigd > params[nparams].bigr ||
|
||||
params[nparams].lam1 < 0.0 ||
|
||||
params[nparams].biga < 0.0 ||
|
||||
params[nparams].powerm - params[nparams].powermint != 0.0 ||
|
||||
(params[nparams].powermint != 3 &&
|
||||
params[nparams].powermint != 1) ||
|
||||
params[nparams].gamma < 0.0)
|
||||
error->one(FLERR,"Illegal Tersoff parameter");
|
||||
|
||||
nparams++;
|
||||
}
|
||||
}
|
||||
|
||||
MPI_Bcast(&nparams, 1, MPI_INT, 0, world);
|
||||
MPI_Bcast(&maxparam, 1, MPI_INT, 0, world);
|
||||
|
||||
if(comm->me != 0) {
|
||||
params = (Param *) memory->srealloc(params,maxparam*sizeof(Param), "pair:params");
|
||||
}
|
||||
|
||||
MPI_Bcast(params, maxparam*sizeof(Param), MPI_BYTE, 0, world);
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairTersoffShift::setup_params()
|
||||
{
|
||||
int i,j,k,m,n;
|
||||
|
||||
// set elem2param for all element triplet combinations
|
||||
// must be a single exact match to lines read from file
|
||||
// do not allow for ACB in place of ABC
|
||||
|
||||
memory->destroy(elem2param);
|
||||
memory->create(elem2param,nelements,nelements,nelements,"pair:elem2param");
|
||||
|
||||
for (i = 0; i < nelements; i++)
|
||||
for (j = 0; j < nelements; j++)
|
||||
for (k = 0; k < nelements; k++) {
|
||||
n = -1;
|
||||
for (m = 0; m < nparams; m++) {
|
||||
if (i == params[m].ielement && j == params[m].jelement &&
|
||||
k == params[m].kelement) {
|
||||
if (n >= 0) error->all(FLERR,"Potential file has duplicate entry");
|
||||
n = m;
|
||||
}
|
||||
}
|
||||
if (n < 0) error->all(FLERR,"Potential file is missing an entry");
|
||||
elem2param[i][j][k] = n;
|
||||
}
|
||||
|
||||
|
||||
// compute parameter values derived from inputs
|
||||
|
||||
for (m = 0; m < nparams; m++) {
|
||||
params[m].cut = params[m].bigr + params[m].bigd;
|
||||
params[m].cutsq = params[m].cut*params[m].cut;
|
||||
|
||||
if (params[m].powern > 0.0) {
|
||||
params[m].c1 = pow(2.0*params[m].powern*1.0e-16,-1.0/params[m].powern);
|
||||
params[m].c2 = pow(2.0*params[m].powern*1.0e-8,-1.0/params[m].powern);
|
||||
params[m].c3 = 1.0/params[m].c2;
|
||||
params[m].c4 = 1.0/params[m].c1;
|
||||
} else {
|
||||
params[m].c1 = params[m].c2 = params[m].c3 = params[m].c4 = 0.0;
|
||||
}
|
||||
}
|
||||
|
||||
// set cutmax to max of all params
|
||||
|
||||
cutmax = 0.0;
|
||||
for (m = 0; m < nparams; m++)
|
||||
if (params[m].cut > cutmax) cutmax = params[m].cut;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairTersoffShift::repulsive(Param *param, double rsq, double &fforce,
|
||||
int eflag, double &eng)
|
||||
{
|
||||
double r,tmp_fc,tmp_fc_d,tmp_exp;
|
||||
|
||||
r = sqrt(rsq);
|
||||
tmp_fc = ters_fc(r,param);
|
||||
tmp_fc_d = ters_fc_d(r,param);
|
||||
tmp_exp = exp(-param->lam1 * r);
|
||||
fforce = -param->biga * tmp_exp * (tmp_fc_d - tmp_fc*param->lam1) / (r - shiftBN);
|
||||
if (eflag) eng = tmp_fc * param->biga * tmp_exp;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
double PairTersoffShift::zeta(Param *param, double rsqij, double rsqik,
|
||||
double *delrij, double *delrik)
|
||||
{
|
||||
double rij,rik,costheta,arg,ex_delr;
|
||||
|
||||
rij = sqrt(rsqij);
|
||||
rik = sqrt(rsqik);
|
||||
costheta = (delrij[0]*delrik[0] + delrij[1]*delrik[1] +
|
||||
delrij[2]*delrik[2]) / ((rij-shiftBN)*(rik-shiftBN));
|
||||
|
||||
if (param->powermint == 3) arg = pow(param->lam3 * (rij-rik),3.0);
|
||||
else arg = param->lam3 * (rij-rik);
|
||||
|
||||
if (arg > 69.0776) ex_delr = 1.e30;
|
||||
else if (arg < -69.0776) ex_delr = 0.0;
|
||||
else ex_delr = exp(arg);
|
||||
|
||||
return ters_fc(rik,param) * ters_gijk(costheta,param) * ex_delr;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairTersoffShift::force_zeta(Param *param, double rsq, double zeta_ij,
|
||||
double &fforce, double &prefactor,
|
||||
int eflag, double &eng)
|
||||
{
|
||||
double r,fa,fa_d,bij;
|
||||
|
||||
r = sqrt(rsq);
|
||||
fa = ters_fa(r,param);
|
||||
fa_d = ters_fa_d(r,param);
|
||||
bij = ters_bij(zeta_ij,param);
|
||||
fforce = 0.5*bij*fa_d / (r - shiftBN);
|
||||
prefactor = -0.5*fa * ters_bij_d(zeta_ij,param);
|
||||
if (eflag) eng = 0.5*bij*fa;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
attractive term
|
||||
use param_ij cutoff for rij test
|
||||
use param_ijk cutoff for rik test
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void PairTersoffShift::attractive(Param *param, double prefactor,
|
||||
double rsqij, double rsqik,
|
||||
double *delrij, double *delrik,
|
||||
double *fi, double *fj, double *fk)
|
||||
{
|
||||
double rij_hat[3],rik_hat[3];
|
||||
double rij,rijinv,rik,rikinv;
|
||||
|
||||
rij = sqrt(rsqij);
|
||||
rijinv = 1.0/(rij - shiftBN);
|
||||
vec3_scale(rijinv,delrij,rij_hat);
|
||||
|
||||
rik = sqrt(rsqik);
|
||||
rikinv = 1.0/(rik - shiftBN);
|
||||
vec3_scale(rikinv,delrik,rik_hat);
|
||||
|
||||
ters_zetaterm_d(prefactor,rij_hat,rij,rik_hat,rik,fi,fj,fk,param);
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
double PairTersoffShift::ters_fc(double r, Param *param)
|
||||
{
|
||||
double ters_R = param->bigr;
|
||||
double ters_D = param->bigd;
|
||||
|
||||
if (r < ters_R-ters_D) return 1.0;
|
||||
if (r > ters_R+ters_D) return 0.0;
|
||||
return 0.5*(1.0 - sin(MY_PI2*(r - ters_R)/ters_D));
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
double PairTersoffShift::ters_fc_d(double r, Param *param)
|
||||
{
|
||||
double ters_R = param->bigr;
|
||||
double ters_D = param->bigd;
|
||||
|
||||
if (r < ters_R-ters_D) return 0.0;
|
||||
if (r > ters_R+ters_D) return 0.0;
|
||||
return -(MY_PI4/ters_D) * cos(MY_PI2*(r - ters_R)/ters_D);
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
double PairTersoffShift::ters_fa(double r, Param *param)
|
||||
{
|
||||
if (r > param->bigr + param->bigd) return 0.0;
|
||||
return -param->bigb * exp(-param->lam2 * r) * ters_fc(r,param);
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
double PairTersoffShift::ters_fa_d(double r, Param *param)
|
||||
{
|
||||
if (r > param->bigr + param->bigd) return 0.0;
|
||||
return param->bigb * exp(-param->lam2 * r) *
|
||||
(param->lam2 * ters_fc(r,param) - ters_fc_d(r,param));
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
double PairTersoffShift::ters_bij(double zeta, Param *param)
|
||||
{
|
||||
double tmp = param->beta * zeta;
|
||||
if (tmp > param->c1) return 1.0/sqrt(tmp);
|
||||
if (tmp > param->c2)
|
||||
return (1.0 - pow(tmp,-param->powern) / (2.0*param->powern))/sqrt(tmp);
|
||||
if (tmp < param->c4) return 1.0;
|
||||
if (tmp < param->c3)
|
||||
return 1.0 - pow(tmp,param->powern)/(2.0*param->powern);
|
||||
return pow(1.0 + pow(tmp,param->powern), -1.0/(2.0*param->powern));
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
double PairTersoffShift::ters_bij_d(double zeta, Param *param)
|
||||
{
|
||||
double tmp = param->beta * zeta;
|
||||
if (tmp > param->c1) return param->beta * -0.5*pow(tmp,-1.5);
|
||||
if (tmp > param->c2)
|
||||
return param->beta * (-0.5*pow(tmp,-1.5) *
|
||||
// error in negligible 2nd term fixed 9/30/2015
|
||||
// (1.0 - 0.5*(1.0 + 1.0/(2.0*param->powern)) *
|
||||
(1.0 - (1.0 + 1.0/(2.0*param->powern)) *
|
||||
pow(tmp,-param->powern)));
|
||||
if (tmp < param->c4) return 0.0;
|
||||
if (tmp < param->c3)
|
||||
return -0.5*param->beta * pow(tmp,param->powern-1.0);
|
||||
|
||||
double tmp_n = pow(tmp,param->powern);
|
||||
return -0.5 * pow(1.0+tmp_n, -1.0-(1.0/(2.0*param->powern)))*tmp_n / zeta;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairTersoffShift::ters_zetaterm_d(double prefactor,
|
||||
double *rij_hat, double rij,
|
||||
double *rik_hat, double rik,
|
||||
double *dri, double *drj, double *drk,
|
||||
Param *param)
|
||||
{
|
||||
double gijk,gijk_d,ex_delr,ex_delr_d,fc,dfc,cos_theta,tmp;
|
||||
double dcosdri[3],dcosdrj[3],dcosdrk[3];
|
||||
|
||||
fc = ters_fc(rik,param);
|
||||
dfc = ters_fc_d(rik,param);
|
||||
if (param->powermint == 3) tmp = pow(param->lam3 * (rij-rik),3.0);
|
||||
else tmp = param->lam3 * (rij-rik);
|
||||
|
||||
if (tmp > 69.0776) ex_delr = 1.e30;
|
||||
else if (tmp < -69.0776) ex_delr = 0.0;
|
||||
else ex_delr = exp(tmp);
|
||||
|
||||
if (param->powermint == 3)
|
||||
ex_delr_d = 3.0*pow(param->lam3,3.0) * pow(rij-rik,2.0)*ex_delr;
|
||||
else ex_delr_d = param->lam3 * ex_delr;
|
||||
|
||||
cos_theta = vec3_dot(rij_hat,rik_hat);
|
||||
gijk = ters_gijk(cos_theta,param);
|
||||
gijk_d = ters_gijk_d(cos_theta,param);
|
||||
costheta_d(rij_hat,rij,rik_hat,rik,dcosdri,dcosdrj,dcosdrk);
|
||||
|
||||
// compute the derivative wrt Ri
|
||||
// dri = -dfc*gijk*ex_delr*rik_hat;
|
||||
// dri += fc*gijk_d*ex_delr*dcosdri;
|
||||
// dri += fc*gijk*ex_delr_d*(rik_hat - rij_hat);
|
||||
|
||||
vec3_scale(-dfc*gijk*ex_delr,rik_hat,dri);
|
||||
vec3_scaleadd(fc*gijk_d*ex_delr,dcosdri,dri,dri);
|
||||
vec3_scaleadd(fc*gijk*ex_delr_d,rik_hat,dri,dri);
|
||||
vec3_scaleadd(-fc*gijk*ex_delr_d,rij_hat,dri,dri);
|
||||
vec3_scale(prefactor,dri,dri);
|
||||
|
||||
// compute the derivative wrt Rj
|
||||
// drj = fc*gijk_d*ex_delr*dcosdrj;
|
||||
// drj += fc*gijk*ex_delr_d*rij_hat;
|
||||
|
||||
vec3_scale(fc*gijk_d*ex_delr,dcosdrj,drj);
|
||||
vec3_scaleadd(fc*gijk*ex_delr_d,rij_hat,drj,drj);
|
||||
vec3_scale(prefactor,drj,drj);
|
||||
|
||||
// compute the derivative wrt Rk
|
||||
// drk = dfc*gijk*ex_delr*rik_hat;
|
||||
// drk += fc*gijk_d*ex_delr*dcosdrk;
|
||||
// drk += -fc*gijk*ex_delr_d*rik_hat;
|
||||
|
||||
vec3_scale(dfc*gijk*ex_delr,rik_hat,drk);
|
||||
vec3_scaleadd(fc*gijk_d*ex_delr,dcosdrk,drk,drk);
|
||||
vec3_scaleadd(-fc*gijk*ex_delr_d,rik_hat,drk,drk);
|
||||
vec3_scale(prefactor,drk,drk);
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairTersoffShift::costheta_d(double *rij_hat, double rij,
|
||||
double *rik_hat, double rik,
|
||||
double *dri, double *drj, double *drk)
|
||||
{
|
||||
// first element is devative wrt Ri, second wrt Rj, third wrt Rk
|
||||
|
||||
double cos_theta = vec3_dot(rij_hat,rik_hat);
|
||||
|
||||
vec3_scaleadd(-cos_theta,rij_hat,rik_hat,drj);
|
||||
vec3_scale(1.0/(rij-shiftBN),drj,drj);
|
||||
vec3_scaleadd(-cos_theta,rik_hat,rij_hat,drk);
|
||||
vec3_scale(1.0/(rik-shiftBN),drk,drk);
|
||||
vec3_add(drj,drk,dri);
|
||||
vec3_scale(-1.0,dri,dri);
|
||||
}
|
||||
187
src/USER-MISC/pair_tersoff_shift.h
Normal file
187
src/USER-MISC/pair_tersoff_shift.h
Normal file
@ -0,0 +1,187 @@
|
||||
/* -*- c++ -*- ----------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifdef PAIR_CLASS
|
||||
|
||||
PairStyle(tersoff/shift,PairTersoffShift)
|
||||
|
||||
#else
|
||||
|
||||
#ifndef LMP_PAIR_TERSOFF_SHIFT_H
|
||||
#define LMP_PAIR_TERSOFF_SHIFT_H
|
||||
|
||||
#include "pair.h"
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
class PairTersoffShift : public Pair {
|
||||
public:
|
||||
PairTersoffShift(class LAMMPS *);
|
||||
virtual ~PairTersoffShift();
|
||||
virtual void compute(int, int);
|
||||
void settings(int, char **);
|
||||
void coeff(int, char **);
|
||||
virtual void init_style();
|
||||
double init_one(int, int);
|
||||
|
||||
static const int NPARAMS_PER_LINE = 17;
|
||||
|
||||
protected:
|
||||
struct Param {
|
||||
double lam1,lam2,lam3;
|
||||
double c,d,h;
|
||||
double gamma,powerm;
|
||||
double powern,beta;
|
||||
double biga,bigb,bigd,bigr;
|
||||
double cut,cutsq;
|
||||
double c1,c2,c3,c4;
|
||||
int ielement,jelement,kelement;
|
||||
int powermint;
|
||||
double Z_i,Z_j; // added for TersoffZBL
|
||||
double ZBLcut,ZBLexpscale;
|
||||
double c5,ca1,ca4; // added for TersoffMOD
|
||||
double powern_del;
|
||||
double c0; // added for TersoffMODC
|
||||
};
|
||||
|
||||
Param *params; // parameter set for an I-J-K interaction
|
||||
char **elements; // names of unique elements
|
||||
int ***elem2param; // mapping from element triplets to parameters
|
||||
int *map; // mapping from atom types to elements
|
||||
double cutmax; // max cutoff for all elements
|
||||
int nelements; // # of unique elements
|
||||
int nparams; // # of stored parameter sets
|
||||
int maxparam; // max # of parameter sets
|
||||
int maxshort; // size of short neighbor list array
|
||||
int *neighshort; // short neighbor list array
|
||||
double shiftBN,shiftCC; // the values for shifting the BN or C lattice
|
||||
|
||||
virtual void allocate();
|
||||
virtual void read_file(char *);
|
||||
virtual void setup_params();
|
||||
virtual void repulsive(Param *, double, double &, int, double &);
|
||||
virtual double zeta(Param *, double, double, double *, double *);
|
||||
virtual void force_zeta(Param *, double, double, double &,
|
||||
double &, int, double &);
|
||||
void attractive(Param *, double, double, double, double *, double *,
|
||||
double *, double *, double *);
|
||||
|
||||
virtual double ters_fc(double, Param *);
|
||||
virtual double ters_fc_d(double, Param *);
|
||||
virtual double ters_fa(double, Param *);
|
||||
virtual double ters_fa_d(double, Param *);
|
||||
virtual double ters_bij(double, Param *);
|
||||
virtual double ters_bij_d(double, Param *);
|
||||
|
||||
virtual void ters_zetaterm_d(double, double *, double, double *, double,
|
||||
double *, double *, double *, Param *);
|
||||
void costheta_d(double *, double, double *, double,
|
||||
double *, double *, double *);
|
||||
|
||||
// inlined functions for efficiency
|
||||
|
||||
inline double ters_gijk(const double costheta,
|
||||
const Param * const param) const {
|
||||
const double ters_c = param->c * param->c;
|
||||
const double ters_d = param->d * param->d;
|
||||
const double hcth = param->h - costheta;
|
||||
|
||||
return param->gamma*(1.0 + ters_c/ters_d - ters_c / (ters_d + hcth*hcth));
|
||||
}
|
||||
|
||||
inline double ters_gijk_d(const double costheta,
|
||||
const Param * const param) const {
|
||||
const double ters_c = param->c * param->c;
|
||||
const double ters_d = param->d * param->d;
|
||||
const double hcth = param->h - costheta;
|
||||
const double numerator = -2.0 * ters_c * hcth;
|
||||
const double denominator = 1.0/(ters_d + hcth*hcth);
|
||||
return param->gamma*numerator*denominator*denominator;
|
||||
}
|
||||
|
||||
inline double vec3_dot(const double x[3], const double y[3]) const {
|
||||
return x[0]*y[0] + x[1]*y[1] + x[2]*y[2];
|
||||
}
|
||||
|
||||
inline void vec3_add(const double x[3], const double y[3],
|
||||
double * const z) const {
|
||||
z[0] = x[0]+y[0]; z[1] = x[1]+y[1]; z[2] = x[2]+y[2];
|
||||
}
|
||||
|
||||
inline void vec3_scale(const double k, const double x[3],
|
||||
double y[3]) const {
|
||||
y[0] = k*x[0]; y[1] = k*x[1]; y[2] = k*x[2];
|
||||
}
|
||||
|
||||
inline void vec3_scaleadd(const double k, const double x[3],
|
||||
const double y[3], double * const z) const {
|
||||
z[0] = k*x[0]+y[0];
|
||||
z[1] = k*x[1]+y[1];
|
||||
z[2] = k*x[2]+y[2];
|
||||
}
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/* ERROR/WARNING messages:
|
||||
|
||||
E: Illegal ... command
|
||||
|
||||
Self-explanatory. Check the input script syntax and compare to the
|
||||
documentation for the command. You can use -echo screen as a
|
||||
command-line option when running LAMMPS to see the offending line.
|
||||
|
||||
E: Incorrect args for pair coefficients
|
||||
|
||||
Self-explanatory. Check the input script or data file.
|
||||
|
||||
E: Pair style Tersoff requires atom IDs
|
||||
|
||||
This is a requirement to use the Tersoff potential.
|
||||
|
||||
E: Pair style Tersoff requires newton pair on
|
||||
|
||||
See the newton command. This is a restriction to use the Tersoff
|
||||
potential.
|
||||
|
||||
E: All pair coeffs are not set
|
||||
|
||||
All pair coefficients must be set in the data file or by the
|
||||
pair_coeff command before running a simulation.
|
||||
|
||||
E: Cannot open Tersoff potential file %s
|
||||
|
||||
The specified potential file cannot be opened. Check that the path
|
||||
and name are correct.
|
||||
|
||||
E: Incorrect format in Tersoff potential file
|
||||
|
||||
Incorrect number of words per line in the potential file.
|
||||
|
||||
E: Illegal Tersoff parameter
|
||||
|
||||
One or more of the coefficients defined in the potential file is
|
||||
invalid.
|
||||
|
||||
E: Potential file has duplicate entry
|
||||
|
||||
The potential file has more than one entry for the same element.
|
||||
|
||||
E: Potential file is missing an entry
|
||||
|
||||
The potential file does not have a needed entry.
|
||||
|
||||
*/
|
||||
Reference in New Issue
Block a user