Optimized (but not working) Dynamical Matrix command)

This commit is contained in:
casievers
2019-02-01 16:18:17 -08:00
parent fb30d2d078
commit 682b456aae
5 changed files with 1165 additions and 0 deletions

View File

@ -40,3 +40,7 @@ fi
action fix_phonon.cpp fft3d_wrap.h
action fix_phonon.h fft3d_wrap.h
action dynamical_matrix.cpp
action dynamical_matrix.h
action third_order.cpp
action third_order.h

View File

@ -0,0 +1,489 @@
//
// Created by charlie sievers on 6/21/18.
//
#include <mpi.h>
#include <cstdlib>
#include "dynamical_matrix.h"
#include "atom.h"
#include "modify.h"
#include "domain.h"
#include "comm.h"
#include "group.h"
#include "force.h"
#include "math_extra.h"
#include "memory.h"
#include "bond.h"
#include "angle.h"
#include "dihedral.h"
#include "improper.h"
#include "kspace.h"
#include "update.h"
#include "neighbor.h"
#include "pair.h"
#include "timer.h"
#include "finish.h"
using namespace LAMMPS_NS;
enum{REGULAR,ESKM};
/* ---------------------------------------------------------------------- */
DynamicalMatrix::DynamicalMatrix(LAMMPS *lmp) : Pointers(lmp), fp(NULL)
{
external_force_clear = 1;
}
/* ---------------------------------------------------------------------- */
DynamicalMatrix::~DynamicalMatrix()
{
if (fp && me == 0) fclose(fp);
memory->destroy(dynmat);
memory->destroy(final_dynmat);
fp = NULL;
}
/* ----------------------------------------------------------------------
setup without output or one-time post-init setup
flag = 0 = just force calculation
flag = 1 = reneighbor and force calculation
------------------------------------------------------------------------- */
void DynamicalMatrix::setup()
{
// setup domain, communication and neighboring
// acquire ghosts
// build neighbor lists
if (triclinic) domain->x2lamda(atom->nlocal);
domain->pbc();
domain->reset_box();
comm->setup();
if (neighbor->style) neighbor->setup_bins();
comm->exchange();
comm->borders();
if (triclinic) domain->lamda2x(atom->nlocal+atom->nghost);
domain->image_check();
domain->box_too_small_check();
neighbor->build(1);
neighbor->ncalls = 0;
neighbor->every = 2; // build every this many steps
neighbor->delay = 1;
neighbor->ago = 0;
neighbor->ndanger = 0;
// compute all forces
force_clear();
external_force_clear = 0;
eflag=0;
vflag=0;
if (pair_compute_flag) force->pair->compute(eflag,vflag);
else if (force->pair) force->pair->compute_dummy(eflag,vflag);
if (atom->molecular) {
if (force->bond) force->bond->compute(eflag,vflag);
if (force->angle) force->angle->compute(eflag,vflag);
if (force->dihedral) force->dihedral->compute(eflag,vflag);
if (force->improper) force->improper->compute(eflag,vflag);
}
if (force->kspace) {
force->kspace->setup();
if (kspace_compute_flag) force->kspace->compute(eflag,vflag);
else force->kspace->compute_dummy(eflag,vflag);
}
//modify->setup_pre_reverse(eflag,vflag);
if (force->newton) comm->reverse_comm();
}
/* ---------------------------------------------------------------------- */
void DynamicalMatrix::command(int narg, char **arg)
{
MPI_Comm_rank(world,&me);
if (domain->box_exist == 0)
error->all(FLERR,"Dynamical_matrix command before simulation box is defined");
if (narg < 2) error->all(FLERR,"Illegal dynamical_matrix command");
lmp->init();
// orthogonal vs triclinic simulation box
triclinic = domain->triclinic;
if (force->pair && force->pair->compute_flag) pair_compute_flag = 1;
else pair_compute_flag = 0;
if (force->kspace && force->kspace->compute_flag) kspace_compute_flag = 1;
else kspace_compute_flag = 0;
// group and style
igroup = group->find(arg[0]);
if (igroup == -1) error->all(FLERR,"Could not find dynamical matrix group ID");
groupbit = group->bitmask[igroup];
dynlen = (group->count(igroup))*3;
memory->create(dynmat,int(dynlen),int(dynlen),"dynamic_matrix:dynmat");
update->setupflag = 1;
int style = -1;
if (strcmp(arg[1],"regular") == 0) style = REGULAR;
else if (strcmp(arg[1],"eskm") == 0) style = ESKM;
else error->all(FLERR,"Illegal Dynamical Matrix command");
del = force->numeric(FLERR, arg[2]);
// set option defaults
binaryflag = 0;
scaleflag = 0;
compressed = 0;
file_flag = 0;
file_opened = 0;
conversion = 1;
// read options from end of input line
if (style == REGULAR) options(narg-3,&arg[3]); //COME BACK
else if (style == ESKM) options(narg-3,&arg[3]); //COME BACK
else if (comm->me == 0 && screen) fprintf(screen,"Illegal Dynamical Matrix command\n");
// move atoms by 3-vector or specified variable(s)
if (style == REGULAR) {
setup();
calculateMatrix();
if (me ==0) writeMatrix();
}
if (style == ESKM) {
setup();
convert_units(update->unit_style);
conversion = conv_energy/conv_distance/conv_mass;
calculateMatrix();
if (me ==0) writeMatrix();
}
Finish finish(lmp);
finish.end(1);
}
/* ----------------------------------------------------------------------
parse optional parameters
------------------------------------------------------------------------- */
void DynamicalMatrix::options(int narg, char **arg)
{
if (narg < 0) error->all(FLERR,"Illegal dynamical_matrix command");
int iarg = 0;
const char* filename = "dynmat.dyn";
while (iarg < narg) {
if (strcmp(arg[iarg],"binary") == 0) {
if (iarg + 2 > narg) error->all(FLERR, "Illegal dynamical_matrix command");
if (strcmp(arg[iarg+1],"gzip") == 0) {
compressed = 1;
}
else if (strcmp(arg[iarg+1],"yes") == 0) {
binaryflag = 1;
}
iarg += 2;
}
else if (strcmp(arg[iarg],"file") == 0) {
if (iarg+2 > narg) error->all(FLERR, "Illegal dynamical_matrix command");
filename = arg[iarg + 1];
file_flag = 1;
iarg += 2;
} else error->all(FLERR,"Illegal dynamical_matrix command");
}
if (file_flag == 1) {
openfile(filename);
}
}
/* ----------------------------------------------------------------------
generic opening of a file
ASCII or binary or gzipped
some derived classes override this function
------------------------------------------------------------------------- */
void DynamicalMatrix::openfile(const char* filename)
{
// if file already opened, return
if (me!=0) return;
if (file_opened) return;
if (compressed) {
#ifdef LAMMPS_GZIP
char gzip[128];
sprintf(gzip,"gzip -6 > %s",filename);
#ifdef _WIN32
fp = _popen(gzip,"wb");
#else
fp = popen(gzip,"w");
#endif
#else
error->one(FLERR,"Cannot open gzipped file");
#endif
} else if (binaryflag) {
fp = fopen(filename,"wb");
} else {
fp = fopen(filename,"w");
}
if (fp == NULL) error->one(FLERR,"Cannot open dump file");
file_opened = 1;
}
/* ----------------------------------------------------------------------
create dynamical matrix
------------------------------------------------------------------------- */
void DynamicalMatrix::calculateMatrix()
{
int local_idx; // local index
int local_jdx; // second local index
int natoms = atom->natoms;
int *mask = atom->mask;
int *type = atom->type;
double imass; // dynamical matrix element
double *m = atom->mass;
double **f = atom->f;
//initialize dynmat to all zeros
for (int i=0; i < dynlen; i++)
for (int j=0; j < dynlen; j++)
dynmat[i][j] = 0.;
energy_force(0);
if (comm->me == 0 && screen) fprintf(screen,"Calculating Dynamical Matrix...\n");
for (int i=1; i<=natoms; i++){
local_idx = atom->map(i);
if (local_idx >= 0){
for (int alpha=0; alpha<3; alpha++){
displace_atom(local_idx, alpha, 1);
energy_force(0);
for (int j=1; j<=natoms; j++){
local_jdx = atom->map(j);
if (local_jdx >= 0){
for (int beta=0; beta<3; beta++){
dynmat[(i-1)*3+alpha][(j-1)*3+beta] += -f[j-1][beta];
}
}
}
displace_atom(local_idx,alpha,-2);
energy_force(0);
for (int j=1; j<=natoms; j++){
local_jdx = atom->map(j);
if (local_jdx >= 0){
for (int beta=0; beta<3; beta++){
if (atom->rmass_flag == 1)
imass = sqrt(m[i] * m[j]);
else
imass = sqrt(m[type[i]] * m[type[j]]);
//dynmat has length dynlen
//dynlen = (group->count(igroup))*3;
//currently dynmat is being called to natoms*3
//Also with this implementation
//I am not recovering the correct dynamical matrix
//if I have more than 1 core
dynmat[(i-1)*3+alpha][(j-1)*3+beta] -= -f[j-1][beta];
dynmat[(i-1)*3+alpha][(j-1)*3+beta] /= (2 * del * imass);
dynmat[(i-1)*3+alpha][(j-1)*3+beta] *= conversion;
}
}
}
displace_atom(local_idx,alpha,1);
}
}
}
memory->create(final_dynmat,int(dynlen),int(dynlen),"dynamic_matrix_buffer:buf");
for (int i = 0; i < dynlen; i++)
MPI_Reduce(dynmat[i], final_dynmat[i], int(dynlen), MPI_DOUBLE, MPI_SUM, 0, world);
if (screen && me ==0 ) fprintf(screen,"Finished Calculating Dynamical Matrix\n");
}
/* ----------------------------------------------------------------------
write dynamical matrix
------------------------------------------------------------------------- */
void DynamicalMatrix::writeMatrix()
{
// print file comment lines
if (!binaryflag && fp) {
clearerr(fp);
for (int i = 0; i < dynlen; i++) {
for (int j = 0; j < dynlen; j++) {
if ((j+1)%3==0) fprintf(fp, "%4.8f\n", final_dynmat[j][i]);
else fprintf(fp, "%4.8f ",final_dynmat[j][i]);
}
}
}
if (ferror(fp))
error->one(FLERR,"Error writing to file");
if (binaryflag && fp) {
clearerr(fp);
fwrite(&final_dynmat[0], sizeof(double), dynlen * dynlen, fp);
if (ferror(fp))
error->one(FLERR, "Error writing to binary file");
}
}
/* ----------------------------------------------------------------------
Displace atoms
---------------------------------------------------------------------- */
void DynamicalMatrix::displace_atom(int local_idx, int direction, int magnitude)
{
double **x = atom->x;
int *sametag = atom->sametag;
int j = local_idx;
x[local_idx][direction] += del*magnitude;
while (sametag[j] >= 0){
j = sametag[j];
x[j][direction] += del*magnitude;
}
}
/* ----------------------------------------------------------------------
evaluate potential energy and forces
may migrate atoms due to reneighboring
return new energy, which should include nextra_global dof
return negative gradient stored in atom->f
return negative gradient for nextra_global dof in fextra
------------------------------------------------------------------------- */
void DynamicalMatrix::energy_force(int resetflag)
{
// check for reneighboring
// always communicate since atoms move
int nflag = neighbor->check_distance();
if (nflag == 0) {
//if (comm->me == 0 && screen) fprintf(screen,"b\n");
timer->stamp();
comm->forward_comm();
timer->stamp(Timer::COMM);
//if (comm->me == 0 && screen) fprintf(screen,"c\n");
} else {
if (triclinic) domain->x2lamda(atom->nlocal);
domain->pbc();
if (domain->box_change) {
domain->reset_box();
comm->setup();
if (neighbor->style) neighbor->setup_bins();
}
timer->stamp();
comm->borders();
if (triclinic) domain->lamda2x(atom->nlocal+atom->nghost);
timer->stamp(Timer::COMM);
neighbor->build(1);
timer->stamp(Timer::NEIGH);
}
force_clear();
if (pair_compute_flag) {
force->pair->compute(eflag,vflag);
timer->stamp(Timer::PAIR);
}
if (atom->molecular) {
if (force->bond) force->bond->compute(eflag,vflag);
if (force->angle) force->angle->compute(eflag,vflag);
if (force->dihedral) force->dihedral->compute(eflag,vflag);
if (force->improper) force->improper->compute(eflag,vflag);
timer->stamp(Timer::BOND);
}
if (kspace_compute_flag) {
force->kspace->compute(eflag,vflag);
timer->stamp(Timer::KSPACE);
}
if (force->newton) {
comm->reverse_comm();
timer->stamp(Timer::COMM);
}
}
/* ----------------------------------------------------------------------
clear force on own & ghost atoms
clear other arrays as needed
------------------------------------------------------------------------- */
void DynamicalMatrix::force_clear()
{
if (external_force_clear) return;
// clear global force array
// if either newton flag is set, also include ghosts
size_t nbytes = sizeof(double) * atom->nlocal;
if (force->newton) nbytes += sizeof(double) * atom->nghost;
if (nbytes) {
memset(&atom->f[0][0],0,3*nbytes);
}
}
/* ---------------------------------------------------------------------- */
void DynamicalMatrix::convert_units(const char *style)
{
// physical constants from:
// http://physics.nist.gov/cuu/Constants/Table/allascii.txt
// using thermochemical calorie = 4.184 J
if (strcmp(style,"lj") == 0) {
error->all(FLERR,"Conversion Not Set");
//conversion = 1; // lj -> 10 J/mol
} else if (strcmp(style,"real") == 0) {
conv_energy = 418.4; // kcal/mol -> 10 J/mol
conv_mass = 1; // g/mol -> g/mol
conv_distance = 1; // angstrom -> angstrom
} else if (strcmp(style,"metal") == 0) {
conv_energy = 9648.5; // eV -> 10 J/mol
conv_mass = 1; // g/mol -> g/mol
conv_distance = 1; // angstrom -> angstrom
} else if (strcmp(style,"si") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Multiplication by Large Float");
conv_energy = 6.022E22; // J -> 10 J/mol
conv_mass = 6.022E26; // kg -> g/mol
conv_distance = 1E-10; // meter -> angstrom
} else if (strcmp(style,"cgs") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Multiplication by Large Float");
conv_energy = 6.022E12; // Erg -> 10 J/mol
conv_mass = 6.022E23; // g -> g/mol
conv_distance = 1E-7; // centimeter -> angstrom
} else if (strcmp(style,"electron") == 0) {
conv_energy = 262550; // Hartree -> 10 J/mol
conv_mass = 1; // amu -> g/mol
conv_distance = 0.529177249; // bohr -> angstrom
} else if (strcmp(style,"micro") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Untested Conversion");
conv_energy = 6.022E10; // picogram-micrometer^2/microsecond^2 -> 10 J/mol
conv_mass = 6.022E11; // pg -> g/mol
conv_distance = 1E-4; // micrometer -> angstrom
} else if (strcmp(style,"nano") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Untested Conversion");
conv_energy = 6.022E4; // attogram-nanometer^2/nanosecond^2 -> 10 J/mol
conv_mass = 6.022E5; // ag -> g/mol
conv_distance = 0.1; // angstrom -> angstrom
} else error->all(FLERR,"Units Type Conversion Not Found");
}

View File

@ -0,0 +1,72 @@
//
// Created by charlie sievers on 6/21/18.
//
#ifdef COMMAND_CLASS
CommandStyle(dynamical_matrix,DynamicalMatrix)
#else
#ifndef LMP_DYNAMICAL_MATRIX_H
#define LMP_DYNAMICAL_MATRIX_H
#include "pointers.h"
namespace LAMMPS_NS {
class DynamicalMatrix : protected Pointers {
public:
DynamicalMatrix(class LAMMPS *);
virtual ~DynamicalMatrix();
void command(int, char **);
void setup();
protected:
int eflag,vflag; // flags for energy/virial computation
int external_force_clear; // clear forces locally or externally
int triclinic; // 0 if domain is orthog, 1 if triclinic
int pairflag;
int pair_compute_flag; // 0 if pair->compute is skipped
int kspace_compute_flag; // 0 if kspace->compute is skipped
int nvec; // local atomic dof = length of xvec
void energy_force(int);
void force_clear();
virtual void openfile(const char* filename);
private:
void options(int, char **);
void calculateMatrix();
void writeMatrix();
void convert_units(const char *style);
void displace_atom(int local_idx, int direction, int magnitude);
double conversion;
double conv_energy;
double conv_distance;
double conv_mass;
double del;
int igroup,groupbit;
int scaleflag;
int me;
bigint dynlen;
double **dynmat;
double **final_dynmat;
int compressed; // 1 if dump file is written compressed, 0 no
int binaryflag; // 1 if dump file is written binary, 0 no
int file_opened; // 1 if openfile method has been called, 0 no
int file_flag; // 1 custom file name, 0 dynmat.dat
FILE *fp;
};
}
#endif //LMP_DYNAMICAL_MATRIX_H
#endif

View File

@ -0,0 +1,529 @@
//
// Created by charlie sievers on 7/5/18.
//
#include <mpi.h>
#include <cstdlib>
#include "third_order.h"
#include "atom.h"
#include "complex"
#include "domain.h"
#include "comm.h"
#include "group.h"
#include "force.h"
#include "math_extra.h"
#include "bond.h"
#include "angle.h"
#include "dihedral.h"
#include "improper.h"
#include "kspace.h"
#include "update.h"
#include "neighbor.h"
#include "pair.h"
#include "timer.h"
#include "finish.h"
using namespace LAMMPS_NS;
enum{REGULAR,BALLISTICO};
/* ---------------------------------------------------------------------- */
ThirdOrder::ThirdOrder(LAMMPS *lmp) : Pointers(lmp), fp(NULL)
{
external_force_clear = 1;
}
/* ---------------------------------------------------------------------- */
ThirdOrder::~ThirdOrder()
{
if (fp) fclose(fp);
fp = NULL;
}
/* ----------------------------------------------------------------------
setup without output or one-time post-init setup
flag = 0 = just force calculation
flag = 1 = reneighbor and force calculation
------------------------------------------------------------------------- */
void ThirdOrder::setup()
{
// setup domain, communication and neighboring
// acquire ghosts
// build neighbor lists
if (triclinic) domain->x2lamda(atom->nlocal);
domain->pbc();
domain->reset_box();
comm->setup();
if (neighbor->style) neighbor->setup_bins();
comm->exchange();
comm->borders();
if (triclinic) domain->lamda2x(atom->nlocal+atom->nghost);
domain->image_check();
domain->box_too_small_check();
neighbor->build(1);
neighbor->ncalls = 0;
neighbor->every = 3; // build every this many steps
neighbor->delay = 1;
neighbor->ago = 0;
neighbor->ndanger = 0;
// compute all forces
force_clear();
external_force_clear = 0;
eflag=0;
vflag=0;
if (pair_compute_flag) force->pair->compute(eflag,vflag);
else if (force->pair) force->pair->compute_dummy(eflag,vflag);
if (atom->molecular) {
if (force->bond) force->bond->compute(eflag,vflag);
if (force->angle) force->angle->compute(eflag,vflag);
if (force->dihedral) force->dihedral->compute(eflag,vflag);
if (force->improper) force->improper->compute(eflag,vflag);
}
if (force->kspace) {
force->kspace->setup();
if (kspace_compute_flag) force->kspace->compute(eflag,vflag);
else force->kspace->compute_dummy(eflag,vflag);
}
if (force->newton) comm->reverse_comm();
}
/* ---------------------------------------------------------------------- */
void ThirdOrder::command(int narg, char **arg)
{
MPI_Comm_rank(world,&me);
if (domain->box_exist == 0)
error->all(FLERR,"Dynamical_matrix command before simulation box is defined");
if (narg < 2) error->all(FLERR,"Illegal dynamical_matrix command");
lmp->init();
// orthogonal vs triclinic simulation box
triclinic = domain->triclinic;
if (force->pair && force->pair->compute_flag) pair_compute_flag = 1;
else pair_compute_flag = 0;
if (force->kspace && force->kspace->compute_flag) kspace_compute_flag = 1;
else kspace_compute_flag = 0;
// group and style
igroup = group->find(arg[0]);
if (igroup == -1) error->all(FLERR,"Could not find dynamical matrix group ID");
groupbit = group->bitmask[igroup];
update->setupflag = 1;
int style = -1;
if (strcmp(arg[1],"regular") == 0) style = REGULAR;
else if (strcmp(arg[1],"ballistico") == 0) style = BALLISTICO;
else error->all(FLERR,"Illegal Dynamical Matrix command");
// set option defaults
binaryflag = 0;
scaleflag = 0;
compressed = 0;
file_flag = 0;
file_opened = 0;
conversion = 1;
// read options from end of input line
if (style == REGULAR) options(narg-3,&arg[3]); //COME BACK
else if (style == BALLISTICO) options(narg-3,&arg[3]); //COME BACK
else if (comm->me == 0 && screen) fprintf(screen,"Illegal Dynamical Matrix command\n");
del = force->numeric(FLERR, arg[2]);
// move atoms by 3-vector or specified variable(s)
if (style == REGULAR) {
setup();
calculateMatrix();
}
if (style == BALLISTICO) {
setup();
convert_units(update->unit_style);
conversion = conv_energy/conv_distance/conv_distance;
calculateMatrix();
}
Finish finish(lmp);
finish.end(1);
}
/* ----------------------------------------------------------------------
parse optional parameters
------------------------------------------------------------------------- */
void ThirdOrder::options(int narg, char **arg)
{
if (narg < 0) error->all(FLERR,"Illegal dynamical_matrix command");
int iarg = 0;
const char *filename = "third_order.txt";
std::stringstream fss;
while (iarg < narg) {
if (strcmp(arg[iarg],"file") == 0) {
if (iarg+2 > narg) error->all(FLERR, "Illegal dynamical_matrix command");
fss << arg[iarg + 1] << me;
filename = fss.str().c_str();
file_flag = 1;
iarg += 2;
}
else if (strcmp(arg[iarg],"binary") == 0) {
if (iarg + 2 > narg) error->all(FLERR, "Illegal dynamical_matrix command");
if (strcmp(arg[iarg+1],"gzip") == 0) {
compressed = 1;
}
else if (strcmp(arg[iarg+1],"yes") == 0) {
binaryflag = 1;
}
iarg += 2;
} else error->all(FLERR,"Illegal dynamical_matrix command");
}
if (file_flag == 1) {
openfile(filename);
}
}
/* ----------------------------------------------------------------------
generic opening of a file
ASCII or binary or gzipped
some derived classes override this function
------------------------------------------------------------------------- */
void ThirdOrder::openfile(const char* filename)
{
// if file already opened, return
if (file_opened) return;
if (compressed) {
#ifdef LAMMPS_GZIP
char gzip[128];
sprintf(gzip,"gzip -6 > %s",filename);
#ifdef _WIN32
fp = _popen(gzip,"wb");
#else
fp = popen(gzip,"w");
#endif
#else
error->one(FLERR,"Cannot open gzipped file");
#endif
} else if (binaryflag) {
fp = fopen(filename,"wb");
} else {
fp = fopen(filename,"w");
}
if (fp == NULL) error->one(FLERR,"Cannot open dump file");
file_opened = 1;
}
/* ----------------------------------------------------------------------
create dynamical matrix
------------------------------------------------------------------------- */
void ThirdOrder::calculateMatrix()
{
int local_idx; // local index
int local_jdx; // second local index
int local_kdx; // third local index
int natoms = atom->natoms;
int *mask = atom->mask;
double **f = atom->f;
energy_force(0);
if (comm->me == 0 && screen) fprintf(screen,"Calculating Anharmonic Dynamical Matrix...\n");
for (int i=1; i<=natoms; i++){
local_idx = atom->map(i);
if (local_idx >= 0 && mask[local_idx] && groupbit){
for (int alpha=0; alpha<3; alpha++){
displace_atom(local_idx, alpha, 1);
for (int j=1; j<=natoms; j++){
local_jdx = atom->map(j);
if (local_jdx >= 0&& mask[local_jdx] && groupbit){
for (int beta=0; beta<3; beta++){
}
}
}
displace_atom(local_idx,alpha,-2);
for (int j=1; j<=natoms; j++){
local_jdx = atom->map(j);
if (local_jdx >= 0 && mask[local_jdx] && groupbit){
for (int beta=0; beta<3; beta++){
}
}
}
displace_atom(local_idx,alpha,1);
}
}
}
//for (int proc1=0; proc1 < comm->nprocs; proc1++) {
// plocal1 = atom->nlocal; // 1 proc nlocal = 8
// MPI_Bcast(&plocal1, 1, MPI_INT, proc1, MPI_COMM_WORLD); // plocal1 = 8
// for (int i = 0; i < plocal1; i++) {
// if (me==proc1 & mask[i] & groupbit)
// group_flag_1 = 1;
// MPI_Bcast(&group_flag_1, 1, MPI_INT, proc1, MPI_COMM_WORLD);
// if (group_flag_1) {
// if (me == proc1) id1 = aid[i];
// MPI_Bcast(&id1, 1, MPI_INT, proc1, MPI_COMM_WORLD);
// for (int alpha = 0; alpha < 3; alpha++) {
// for (int proc2 = 0; proc2 < comm->nprocs; proc2++) {
// plocal2 = atom->nlocal;
// MPI_Bcast(&plocal2, 1, MPI_INT, proc2, MPI_COMM_WORLD);
// for (int j = 0; j < plocal2; j++) {
// if (me==proc2 & mask[j] & groupbit)
// group_flag_2 = 1;
// MPI_Bcast(&group_flag_2, 1, MPI_INT, proc2, MPI_COMM_WORLD);
// if (mask[j] & groupbit) {
// if (me == proc2) id2 = aid[j];
// MPI_Bcast(&id2, 1, MPI_INT, proc2, MPI_COMM_WORLD);
// for (int beta = 0; beta < 3; beta++) {
//
// if (me == proc1) x[i][alpha] += del;
//
// if (me == proc2) x[j][beta] += del;
// energy_force(0);
////
// for (int gamma = 0; gamma < 3; gamma++) {
// for (int k = 0; k < nlocal; k++)
// if (mask[k] & groupbit) {
// first_derv[k*3+gamma] = f[k][gamma];
// }
// }
//
// if (me == proc2) x[j][beta] -= 2 * del;
// energy_force(0);
////
// for (int gamma = 0; gamma < 3; gamma++) {
// for (int k = 0; k < nlocal; k++)
// if (mask[k] & groupbit) {
// first_derv[k*3+gamma] -= f[k][gamma];
// }
// }
//
// if (me == proc2) x[j][beta] += 2 * del;
//
// if (me == proc1) x[i][alpha] -= 2 * del;
//
// energy_force(0);
////
// for (int gamma = 0; gamma < 3; gamma++) {
// for (int k = 0; k < nlocal; k++)
// if (mask[k] & groupbit) {
// first_derv[k*3+gamma] -= f[k][gamma];
// }
// }
////
// if (me == proc2) x[j][beta] -= 2 * del;
// energy_force(0);
////
// for (int k = 0; k < nlocal; k++)
// if (mask[k] & groupbit) {
// for (int gamma = 0; gamma < 3; gamma++) {
// first_derv[k*3+gamma] += f[k][gamma];
// first_derv[k*3+gamma] /= -4*del*del;
// }
// double norm = pow(first_derv[k*3], 2)
// + pow(first_derv[k*3+1], 2)
// + pow(first_derv[k+3+2], 2);
// if (fp && norm > 1.0e-16)
// fprintf(fp,
// "%d %d %d %d %d %7.8f %7.8f %7.8f\n",
// id1, alpha + 1, id2, beta + 1, aid[k],
// first_derv[k*3] * conversion,
// first_derv[k*3+1] * conversion,
// first_derv[k*3+2] * conversion);
// }
////
// if (me == proc2) x[j][beta] += del;
//
// if (me == proc1) x[i][alpha] += del;
// }
// }
// }
// }
////
// }
// }
// }
//}
//
if (screen && me ==0 ) fprintf(screen,"Finished Calculating Third Order Tensor\n");
}
/* ----------------------------------------------------------------------
Displace atoms
---------------------------------------------------------------------- */
void ThirdOrder::displace_atom(int local_idx, int direction, int magnitude)
{
double **x = atom->x;
int *sametag = atom->sametag;
int j = local_idx;
x[local_idx][direction] += del*magnitude;
while (sametag[j] >= 0){
j = sametag[j];
x[j][direction] += del*magnitude;
}
}
/* ----------------------------------------------------------------------
evaluate potential energy and forces
may migrate atoms due to reneighboring
return new energy, which should include nextra_global dof
return negative gradient stored in atom->f
return negative gradient for nextra_global dof in fextra
------------------------------------------------------------------------- */
void ThirdOrder::energy_force(int resetflag)
{
// check for reneighboring
// always communicate since atoms move
int nflag = neighbor->decide();
if (nflag == 0) {
timer->stamp();
comm->forward_comm();
timer->stamp(Timer::COMM);
} else {
if (triclinic) domain->x2lamda(atom->nlocal);
domain->pbc();
if (domain->box_change) {
domain->reset_box();
comm->setup();
if (neighbor->style) neighbor->setup_bins();
}
timer->stamp();
comm->borders();
if (triclinic) domain->lamda2x(atom->nlocal+atom->nghost);
timer->stamp(Timer::COMM);
neighbor->build(1);
timer->stamp(Timer::NEIGH);
}
force_clear();
timer->stamp();
if (pair_compute_flag) {
force->pair->compute(eflag,vflag);
timer->stamp(Timer::PAIR);
}
if (atom->molecular) {
if (force->bond) force->bond->compute(eflag,vflag);
if (force->angle) force->angle->compute(eflag,vflag);
if (force->dihedral) force->dihedral->compute(eflag,vflag);
if (force->improper) force->improper->compute(eflag,vflag);
timer->stamp(Timer::BOND);
}
if (kspace_compute_flag) {
force->kspace->compute(eflag,vflag);
timer->stamp(Timer::KSPACE);
}
if (force->newton) {
comm->reverse_comm();
timer->stamp(Timer::COMM);
}
}
/* ----------------------------------------------------------------------
clear force on own & ghost atoms
clear other arrays as needed
------------------------------------------------------------------------- */
void ThirdOrder::force_clear()
{
if (external_force_clear) return;
// clear global force array
// if either newton flag is set, also include ghosts
size_t nbytes = sizeof(double) * atom->nlocal;
if (force->newton) nbytes += sizeof(double) * atom->nghost;
if (nbytes) {
memset(&atom->f[0][0],0,3*nbytes);
}
}
/* ---------------------------------------------------------------------- */
void ThirdOrder::convert_units(const char *style)
{
// physical constants from:
// http://physics.nist.gov/cuu/Constants/Table/allascii.txt
// using thermochemical calorie = 4.184 J
if (strcmp(style,"lj") == 0) {
error->all(FLERR,"Conversion Not Set");
//conversion = 1; // lj -> 10 J/mol
} else if (strcmp(style,"real") == 0) {
conv_energy = 418.4; // kcal/mol -> 10 J/mol
conv_mass = 1; // g/mol -> g/mol
conv_distance = 1; // angstrom -> angstrom
} else if (strcmp(style,"metal") == 0) {
conv_energy = 9648.5; // eV -> 10 J/mol
conv_mass = 1; // g/mol -> g/mol
conv_distance = 1; // angstrom -> angstrom
} else if (strcmp(style,"si") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Multiplication by Large Float");
conv_energy = 6.022E22; // J -> 10 J/mol
conv_mass = 6.022E26; // kg -> g/mol
conv_distance = 1E-10; // meter -> angstrom
} else if (strcmp(style,"cgs") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Multiplication by Large Float");
conv_energy = 6.022E12; // Erg -> 10 J/mol
conv_mass = 6.022E23; // g -> g/mol
conv_distance = 1E-7; // centimeter -> angstrom
} else if (strcmp(style,"electron") == 0) {
conv_energy = 262550; // Hartree -> 10 J/mol
conv_mass = 1; // amu -> g/mol
conv_distance = 0.529177249; // bohr -> angstrom
} else if (strcmp(style,"micro") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Untested Conversion");
conv_energy = 6.022E10; // picogram-micrometer^2/microsecond^2 -> 10 J/mol
conv_mass = 6.022E11; // pg -> g/mol
conv_distance = 1E-4; // micrometer -> angstrom
} else if (strcmp(style,"nano") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Untested Conversion");
conv_energy = 6.022E4; // attogram-nanometer^2/nanosecond^2 -> 10 J/mol
conv_mass = 6.022E5; // ag -> g/mol
conv_distance = 0.1; // angstrom -> angstrom
} else error->all(FLERR,"Units Type Conversion Not Found");
}

View File

@ -0,0 +1,71 @@
//
// Created by charlie sievers on 7/5/18.
//
#ifdef COMMAND_CLASS
CommandStyle(third_order,ThirdOrder)
#else
#ifndef LMP_THIRD_ORDER_H
#define LMP_THIRD_ORDER_H
#include "pointers.h"
namespace LAMMPS_NS {
class ThirdOrder : protected Pointers {
public:
ThirdOrder(class LAMMPS *);
virtual ~ThirdOrder();
void command(int, char **);
void setup();
protected:
int eflag,vflag; // flags for energy/virial computation
int external_force_clear; // clear forces locally or externally
int triclinic; // 0 if domain is orthog, 1 if triclinic
int pairflag;
int pair_compute_flag; // 0 if pair->compute is skipped
int kspace_compute_flag; // 0 if kspace->compute is skipped
int nvec; // local atomic dof = length of xvec
void energy_force(int);
void force_clear();
virtual void openfile(const char* filename);
private:
void options(int, char **);
void calculateMatrix();
void convert_units(const char *style);
void displace_atom(int local_idx, int direction, int magnitude);
double conversion;
double conv_energy;
double conv_distance;
double conv_mass;
double del;
int igroup,groupbit;
int scaleflag;
int me;
int compressed; // 1 if dump file is written compressed, 0 no
int binaryflag; // 1 if dump file is written binary, 0 no
int file_opened; // 1 if openfile method has been called, 0 no
int file_flag; // 1 custom file name, 0 dynmat.dat
FILE *fp;
};
}
#endif //LMP_THIRD_ORDER_H
#endif