remove third_order command and ASE based examples to be added in a new pull request

This commit is contained in:
Axel Kohlmeyer
2019-02-28 15:21:48 -05:00
parent 9298fe7868
commit 7062bc862e
18 changed files with 5 additions and 6532 deletions

View File

@ -1,39 +0,0 @@
from ase import Atoms, Atom
from ase.calculators.lammpslib import LAMMPSlib
import numpy as np
import matplotlib.pyplot as plt
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
GaAs = Atoms([Atom('Ga', (0.0, 0.0, 0.0)),
Atom('As', (1.413425, 1.413425, 1.413425))],
cell=[(0.0, 2.82685, 2.82685), (2.82685, 0.0, 2.82685), (2.82685, 2.82685, 0.0)],
pbc=True,)
cmds = ["pair_style bop", "pair_coeff * * ../../../../../potentials/GaAs.bop.table Ga As",
"comm_modify cutoff 12"]
mends = ["info system",
"dynamical_matrix all eskm 0.000001 file dynmat.dat binary no",
"neigh_modify delay 0"]
N = 5
GaAs = GaAs.repeat([N, N, N])
lammps = LAMMPSlib(lmpcmds=cmds, atom_types={'Ga': 1, 'As': 2}, amendments=mends, log_file='lammps.log')
GaAs.set_calculator(lammps)
GaAs.get_potential_energy()
if rank == 0:
dynmat = np.loadtxt("dynmat.dat")
dynmat = dynmat.reshape(([int(3*(len(dynmat)/3)**0.5), int(3*(len(dynmat)/3)**0.5)]))
eigv = np.linalg.eigvals(dynmat)
eigv.sort()
eigv = np.sqrt(np.abs(eigv))/(2*np.pi)
plt.hist(eigv, 80)
plt.xlabel('Frequency (THz)')
plt.show()

View File

@ -1,39 +0,0 @@
from ase import Atoms, Atom
from ase.calculators.lammpslib import LAMMPSlib
import numpy as np
import matplotlib.pyplot as plt
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
GaN = Atoms([Atom('Ga', (1.59, 0.917986928012, 0.0)),
Atom('Ga', (1.59, -0.917986928012, 2.583)),
Atom('N', (1.59, 0.917986928012, 1.98891)),
Atom('N', (1.59, -0.917986928012, 4.57191))],
cell=[(1.59, -2.75396078403, 0.0), (1.59, 2.75396078403, 0.0), (0.0, 0.0, 5.166)],
pbc=True)
cmds = ["pair_style tersoff", "pair_coeff * * ../../../../../potentials/GaN.tersoff Ga N"]
mends = ["info system",
"dynamical_matrix all eskm 0.000001 file dynmat.dat binary no",
"neigh_modify delay 0"]
N = 6
GaN = GaN.repeat([N, N, N])
lammps = LAMMPSlib(lmpcmds=cmds, atom_types={'Ga': 1, 'N': 2}, amendments=mends, log_file='lammps.log')
GaN.set_calculator(lammps)
GaN.get_potential_energy()
if rank == 0:
dynmat = np.loadtxt("dynmat.dat")
dynmat = dynmat.reshape(([int(3*(len(dynmat)/3)**0.5), int(3*(len(dynmat)/3)**0.5)]))
eigv = np.linalg.eigvals(dynmat)
eigv.sort()
eigv = np.sqrt(np.abs(eigv))/(2*np.pi)
plt.hist(eigv, 80)
plt.xlabel('Frequency (THz)')
plt.show()

View File

@ -1,57 +0,0 @@
from ase import Atoms, Atom
from ase.calculators.lammpslib import LAMMPSlib
import numpy as np
import matplotlib.pyplot as plt
from mpi4py import MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
quartz = Atoms(
[Atom('Si', (1.1545226, -1.99969180169, 0.0)),
Atom('Si', (1.1545226, 1.99969180169, 3.6036)),
Atom('Si', (2.6069548, 2.15247249027e-16, 1.8018)),
Atom('O', (1.6724232, -0.624132037742, 0.64378314)),
Atom('O', (1.6724232, 0.624132037742, 2.9598186618)),
Atom('O', (2.1623026, -2.49695388906, 4.2473849418)),
Atom('O', (3.5392742, 1.13629495821, 1.1580150582)),
Atom('O', (3.5392742, -1.13629495821, 2.4455813382)),
Atom('O', (2.1623026, 2.49695388906, 4.76161686))],
cell=[(2.458, -4.257380885, 0.0), (2.458, 4.257380885, 0.0), (0.0, 0.0, 5.4054)],
pbc=True,
)
# number of repeats
N = 3
quartz = quartz.repeat([N, N, N])
header = ['units metal',
'atom_style charge',
'atom_modify map array sort 0 0']
cmds = ["pair_style buck/coul/long 10.0 8.0",
"pair_coeff 1 1 0 1 0",
"pair_coeff 1 2 18003.7572 0.20520 133.5381",
"pair_coeff 2 2 1388.7730 0.36232 175.0000",
"kspace_style ewald 1.0e-12",
"set type 1 charge 2.4",
"set type 2 charge -1.2"]
mends = ["dynamical_matrix all eskm 0.000001 file dynmat.dat binary no",
"neigh_modify delay 0"]
lammps = LAMMPSlib(lmpcmds=cmds, lammps_header=header, amendments=mends, log_file='lammps.log')
quartz.set_calculator(lammps)
quartz.get_potential_energy()
if rank == 0:
dynmat = np.loadtxt("dynmat.dat")
dynmat = dynmat.reshape(([int(3*(len(dynmat)/3)**0.5), int(3*(len(dynmat)/3)**0.5)]))
eigv = np.linalg.eigvals(dynmat)
eigv.sort()
plt.hist(33*np.sqrt(np.abs(eigv))/(2*np.pi), 80)
plt.xlabel('Frequency (cm-1)')
plt.show()

View File

@ -1,48 +0,0 @@
# third_order command
## Syntax
```
third_order group-ID style args keyword value ...
```
* group-ID = ID of group of atoms to displace
* style = *regular* or *ballistico*
```
*regular* args = gamma
gamma = finite difference displacement length
*ballistico* args = gamma
gamma = finite difference displacement length
```
* zero or more keyword/value pairs may be appended
* keyword = *file* or *binary*
```
*file* value = output_file
output_file = name of file to dump the dynamical matrix into
*binary* values = *no* or *gzip*
```
## Examples
```
third_order 1 regular 0.000001
third_order 1 ballistico 0.000001
third_order 3 regular 0.00004 file third_order.dat
third_order 5 ballistico 0.00000001 file third_order.dat binary gzip
```
## Description
Calculate the finite difference third order tensor of the selected group.
## Restrictions
None
## Related commands
None
## Default
The option defaults are file = "third_order.dat", binary = no

View File

@ -1,25 +0,0 @@
# LAMMPS LATTICE DYNAMICS COMMANDS
## THIRD ORDER TENSOR CALCULATOR
This directory contains the ingredients to calculate a third order tensor.
Example:
```
$THIRD_ORDER=third_order #tensor output file
NP=4 #number of processors
mpirun -np $NP lmp_mpi -in in.silicon -out out.silicon
combine.sh third_order
```
To test out a different silicon example:
```
$THIRD_ORDER=third_order
$LMP_FILE=amorphous_silicon.lmp
cp lmp_bank/$LMP_FILE ./silicon_input_file.lmp
NP=4 #number of processors
mpirun -np $NP lmp_mpi -in in.silicon -out out.silicon
bash combine.sh $THIRD_ORDER
```
## Requires: MANYBODY and MOLECULE packages

View File

@ -1,66 +0,0 @@
# Tersoff parameters for various elements and mixtures
# multiple entries can be added to this file, LAMMPS reads the ones it needs
# these entries are in LAMMPS "metal" units:
# A,B = eV; lambda1,lambda2,lambda3 = 1/Angstroms; R,D = Angstroms
# other quantities are unitless
# Aidan Thompson (athomps at sandia.gov) takes full blame for this
# file. It specifies various potentials published by J. Tersoff for
# silicon, carbon and germanium. Since Tersoff published several
# different silicon potentials, I refer to them using atom types
# Si(B), Si(C) and Si(D). The last two are almost almost identical but
# refer to two different publications. These names should be used in
# the LAMMPS command when the file is invoked. For example:
# pair_coeff * * SiCGe.tersoff Si(B). The Si(D), C and Ge potentials
# can be used pure silicon, pure carbon, pure germanium, binary SiC,
# and binary SiGe, but not binary GeC or ternary SiGeC. LAMMPS will
# generate an error if this file is used with any combination
# involving C and Ge, since there are no entries for the GeC
# interactions (Tersoff did not publish parameters for this
# cross-interaction.)
# format of a single entry (one or more lines):
# element 1, element 2, element 3,
# m, gamma, lambda3, c, d, costheta0, n, beta, lambda2, B, R, D, lambda1, A
# The original Tersoff potential for Silicon, Si(B)
# J. Tersoff, PRB, 37, 6991 (1988)
Si(B) Si(B) Si(B) 3.0 1.0 1.3258 4.8381 2.0417 0.0000 22.956
0.33675 1.3258 95.373 3.0 0.2 3.2394 3264.7
# The later Tersoff potential for Silicon, Si(C)
# J. Tersoff, PRB, 38, 9902 (1988)
Si(C) Si(C) Si(C) 3.0 1.0 1.7322 1.0039e5 16.218 -0.59826 0.78734
1.0999e-6 1.7322 471.18 2.85 0.15 2.4799 1830.8
# The later Tersoff potential for Carbon, Silicon, and Germanium
# J. Tersoff, PRB, 39, 5566 (1989) + errata (PRB 41, 3248)
# The Si and C parameters are very close to those in SiC.tersoff
C C C 3.0 1.0 0.0 3.8049e4 4.3484 -0.57058 0.72751 1.5724e-7 2.2119 346.74 1.95 0.15 3.4879 1393.6
Si(D) Si(D) Si(D) 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 1.1000e-6 1.7322 471.18 2.85 0.15 2.4799 1830.8
Ge Ge Ge 3.0 1.0 0.0 1.0643e5 15.652 -0.43884 0.75627 9.0166e-7 1.7047 419.23 2.95 0.15 2.4451 1769.0
C Si(D) Si(D) 3.0 1.0 0.0 3.8049e4 4.3484 -0.57058 0.72751 1.5724e-7 1.97205 395.1451 2.3573 0.1527 2.9839 1597.3111
C Si(D) C 3.0 1.0 0.0 3.8049e4 4.3484 -0.57058 0.72751 0.0 0.0 0.0 1.95 0.15 0.0 0.0
C C Si(D) 3.0 1.0 0.0 3.8049e4 4.3484 -0.57058 0.72751 0.0 0.0 0.0 2.3573 0.1527 0.0 0.0
Si(D) C C 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 1.1000e-6 1.97205 395.1451 2.3573 0.1527 2.9839 1597.3111
Si(D) Si(D) C 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 0.0 0.0 0.0 2.3573 0.1527 0.0 0.0
Si(D) C Si(D) 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 0.0 0.0 0.0 2.85 0.15 0.0 0.0
Si(D) Ge Ge 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 1.1000e-6 1.71845 444.7177 2.8996 0.1500 2.4625 1799.6347
Si(D) Si(D) Ge 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 0.0 0.0 0.0 2.8996 0.1500 0.0 0.0
Si(D) Ge Si(D) 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 0.0 0.0 0.0 2.85 0.15 0.0 0.0
Ge Si(D) Si(D) 3.0 1.0 0.0 1.0643e5 15.652 -0.43884 0.75627 9.0166e-7 1.71845 444.7177 2.8996 0.1500 2.4625 1799.6347
Ge Si(D) Ge 3.0 1.0 0.0 1.0643e5 15.652 -0.43884 0.75627 0.0 0.0 0.0 2.95 0.15 0.0 0.0
Ge Ge Si(D) 3.0 1.0 0.0 1.0643e5 15.652 -0.43884 0.75627 0.0 0.0 0.0 2.8996 0.1500 0.0 0.0
# Optimized Tersoff for Carbon: Lindsay and Broido PRB 81, 205441 (2010)
# element 1, element 2, element 3,
# m, gamma, lambda3, c, d, costheta0, n, beta, lambda2, B, R, D, lambda1, A
C(O) C(O) C(O) 3.0 1.0 0.0 3.8049e4 4.3484 -0.930 0.72751 1.5724e-7 2.2119 430.0 1.95 0.15 3.4879 1393.6

View File

@ -1,17 +0,0 @@
#!/bin/bash
#This script takes one argument
#The argument is the base name for the split up tensor
#The script then combines and sorts the tensor
#$1 file name
echo "$1"
[ -f $1 ] && rm $1
for i in $(ls ./$1*); do
cat $i >> temp
rm $i
done
sort temp | sort -s -n -k 3 | sort -s -n -k 1 > $1
rm temp

View File

@ -1,19 +0,0 @@
#############################
#Atoms types - mass - charge#
#############################
#@ 1 atom types #!THIS LINE IS NECESSARY DON'T SPEND HOURS FINDING THAT OUT!#
variable Si equal 1
#############
#Atom Masses#
#############
mass ${Si} 28.08550
###########################
#Pair Potentials - Tersoff#
###########################
pair_style tersoff
pair_coeff * * Si.opt.tersoff Si(D)

View File

@ -1,84 +0,0 @@
###############################mm
# Atom style - charge/vdw/bonded#
#################################
atom_style full
##############################################
#Units Metal : eV - ps - angstrom - bar#
# Real : kcal/mol - fs - angstrom - atm#
##############################################
units metal
############
#Run number#
############
variable run_no equal 0 # is it a restart?
variable res_no equal ${run_no}-1 # restart file number
#######################################
#Random Seeds and Domain Decomposition#
#######################################
variable iseed0 equal 2357
variable iseed1 equal 26488
variable iseed2 equal 10669
processors * * 1
###########
#Data File#
###########
variable inpfile string silicon_input_file.lmp
variable resfile string final_restart.${res_no}
variable ff_file string ff-silicon.lmp
##########
#Run Type#
##########
variable minimise equal 0 #Energy Minimization
###############################
#Molecular Dynamics Parameters#
###############################
neighbor 1 bin
################################
#Energy Minimization Parameters#
################################
variable mtraj equal 1 # trajectory output frequency - all system
variable etol equal 1e-5 # % change in energy
variable ftol equal 1e-5 # max force threshold (force units)
variable maxiter equal 10000 # max # of iterations
########################
#3D Periodic Simulation#
########################
boundary p p p
#############################
#Reading the input structure#
#############################
if "${run_no} == 0" then "read_data ${inpfile}" else "read_restart ${resfile}"
#############
#Force Field#
#############
include ${ff_file}
#####################
#Energy Minimization#
#####################
if "${minimise} <= 0 || ${run_no} > 0" then "jump SELF end_minimise"
print "Doing CG minimisation"
dump mdcd all dcd ${mtraj} min.dcd
dump_modify mdcd unwrap yes
min_style cg
min_modify line quadratic
minimize ${etol} ${ftol} ${maxiter} ${maxiter}
reset_timestep 0
undump mdcd
label end_minimise
##################
#Dynamical Matrix#
##################
third_order all ballistico 0.00001 file third_order binary no

View File

@ -1,238 +0,0 @@
LAMMPS description
216 atoms
0 bonds
0 angles
0 dihedrals
0 impropers
1 atom types
0 bond types
0 angle types
0 dihedral types
0 improper types
0.0000000 16.293000 xlo xhi
0.0000000 16.293000 ylo yhi
0.0000000 16.293000 zlo zhi
Atoms
1 1 1 0.0000000 0.0000000 0.0000000 0.0000000
2 2 1 0.0000000 0.0000000 2.7160000 2.7160000
3 3 1 0.0000000 2.7160000 2.7160000 0.0000000
4 4 1 0.0000000 2.7160000 0.0000000 2.7160000
5 5 1 0.0000000 4.0730000 1.3580000 4.0730000
6 6 1 0.0000000 1.3580000 1.3580000 1.3580000
7 7 1 0.0000000 1.3580000 4.0730000 4.0730000
8 8 1 0.0000000 4.0730000 4.0730000 1.3580000
9 9 1 0.0000000 0.0000000 0.0000000 5.4310000
10 10 1 0.0000000 0.0000000 2.7160000 8.1460000
11 11 1 0.0000000 2.7160000 2.7160000 5.4310000
12 12 1 0.0000000 2.7160000 0.0000000 8.1460000
13 13 1 0.0000000 4.0730000 1.3580000 9.5040000
14 14 1 0.0000000 1.3580000 1.3580000 6.7890000
15 15 1 0.0000000 1.3580000 4.0730000 9.5040000
16 16 1 0.0000000 4.0730000 4.0730000 6.7890000
17 17 1 0.0000000 0.0000000 0.0000000 10.8620000
18 18 1 0.0000000 0.0000000 2.7160000 13.5780000
19 19 1 0.0000000 2.7160000 2.7160000 10.8620000
20 20 1 0.0000000 2.7160000 0.0000000 13.5780000
21 21 1 0.0000000 4.0730000 1.3580000 14.9350000
22 22 1 0.0000000 1.3580000 1.3580000 12.2200000
23 23 1 0.0000000 1.3580000 4.0730000 14.9350000
24 24 1 0.0000000 4.0730000 4.0730000 12.2200000
25 25 1 0.0000000 0.0000000 5.4310000 0.0000000
26 26 1 0.0000000 0.0000000 8.1460000 2.7160000
27 27 1 0.0000000 2.7160000 8.1460000 0.0000000
28 28 1 0.0000000 2.7160000 5.4310000 2.7160000
29 29 1 0.0000000 4.0730000 6.7890000 4.0730000
30 30 1 0.0000000 1.3580000 6.7890000 1.3580000
31 31 1 0.0000000 1.3580000 9.5040000 4.0730000
32 32 1 0.0000000 4.0730000 9.5040000 1.3580000
33 33 1 0.0000000 0.0000000 5.4310000 5.4310000
34 34 1 0.0000000 0.0000000 8.1460000 8.1460000
35 35 1 0.0000000 2.7160000 8.1460000 5.4310000
36 36 1 0.0000000 2.7160000 5.4310000 8.1460000
37 37 1 0.0000000 4.0730000 6.7890000 9.5040000
38 38 1 0.0000000 1.3580000 6.7890000 6.7890000
39 39 1 0.0000000 1.3580000 9.5040000 9.5040000
40 40 1 0.0000000 4.0730000 9.5040000 6.7890000
41 41 1 0.0000000 0.0000000 5.4310000 10.8620000
42 42 1 0.0000000 0.0000000 8.1460000 13.5780000
43 43 1 0.0000000 2.7160000 8.1460000 10.8620000
44 44 1 0.0000000 2.7160000 5.4310000 13.5780000
45 45 1 0.0000000 4.0730000 6.7890000 14.9350000
46 46 1 0.0000000 1.3580000 6.7890000 12.2200000
47 47 1 0.0000000 1.3580000 9.5040000 14.9350000
48 48 1 0.0000000 4.0730000 9.5040000 12.2200000
49 49 1 0.0000000 0.0000000 10.8620000 0.0000000
50 50 1 0.0000000 0.0000000 13.5780000 2.7160000
51 51 1 0.0000000 2.7160000 13.5780000 0.0000000
52 52 1 0.0000000 2.7160000 10.8620000 2.7160000
53 53 1 0.0000000 4.0730000 12.2200000 4.0730000
54 54 1 0.0000000 1.3580000 12.2200000 1.3580000
55 55 1 0.0000000 1.3580000 14.9350000 4.0730000
56 56 1 0.0000000 4.0730000 14.9350000 1.3580000
57 57 1 0.0000000 0.0000000 10.8620000 5.4310000
58 58 1 0.0000000 0.0000000 13.5780000 8.1460000
59 59 1 0.0000000 2.7160000 13.5780000 5.4310000
60 60 1 0.0000000 2.7160000 10.8620000 8.1460000
61 61 1 0.0000000 4.0730000 12.2200000 9.5040000
62 62 1 0.0000000 1.3580000 12.2200000 6.7890000
63 63 1 0.0000000 1.3580000 14.9350000 9.5040000
64 64 1 0.0000000 4.0730000 14.9350000 6.7890000
65 65 1 0.0000000 0.0000000 10.8620000 10.8620000
66 66 1 0.0000000 0.0000000 13.5780000 13.5780000
67 67 1 0.0000000 2.7160000 13.5780000 10.8620000
68 68 1 0.0000000 2.7160000 10.8620000 13.5780000
69 69 1 0.0000000 4.0730000 12.2200000 14.9350000
70 70 1 0.0000000 1.3580000 12.2200000 12.2200000
71 71 1 0.0000000 1.3580000 14.9350000 14.9350000
72 72 1 0.0000000 4.0730000 14.9350000 12.2200000
73 73 1 0.0000000 5.4310000 0.0000000 0.0000000
74 74 1 0.0000000 5.4310000 2.7160000 2.7160000
75 75 1 0.0000000 8.1460000 2.7160000 0.0000000
76 76 1 0.0000000 8.1460000 0.0000000 2.7160000
77 77 1 0.0000000 9.5040000 1.3580000 4.0730000
78 78 1 0.0000000 6.7890000 1.3580000 1.3580000
79 79 1 0.0000000 6.7890000 4.0730000 4.0730000
80 80 1 0.0000000 9.5040000 4.0730000 1.3580000
81 81 1 0.0000000 5.4310000 0.0000000 5.4310000
82 82 1 0.0000000 5.4310000 2.7160000 8.1460000
83 83 1 0.0000000 8.1460000 2.7160000 5.4310000
84 84 1 0.0000000 8.1460000 0.0000000 8.1460000
85 85 1 0.0000000 9.5040000 1.3580000 9.5040000
86 86 1 0.0000000 6.7890000 1.3580000 6.7890000
87 87 1 0.0000000 6.7890000 4.0730000 9.5040000
88 88 1 0.0000000 9.5040000 4.0730000 6.7890000
89 89 1 0.0000000 5.4310000 0.0000000 10.8620000
90 90 1 0.0000000 5.4310000 2.7160000 13.5780000
91 91 1 0.0000000 8.1460000 2.7160000 10.8620000
92 92 1 0.0000000 8.1460000 0.0000000 13.5780000
93 93 1 0.0000000 9.5040000 1.3580000 14.9350000
94 94 1 0.0000000 6.7890000 1.3580000 12.2200000
95 95 1 0.0000000 6.7890000 4.0730000 14.9350000
96 96 1 0.0000000 9.5040000 4.0730000 12.2200000
97 97 1 0.0000000 5.4310000 5.4310000 0.0000000
98 98 1 0.0000000 5.4310000 8.1460000 2.7160000
99 99 1 0.0000000 8.1460000 8.1460000 0.0000000
100 100 1 0.0000000 8.1460000 5.4310000 2.7160000
101 101 1 0.0000000 9.5040000 6.7890000 4.0730000
102 102 1 0.0000000 6.7890000 6.7890000 1.3580000
103 103 1 0.0000000 6.7890000 9.5040000 4.0730000
104 104 1 0.0000000 9.5040000 9.5040000 1.3580000
105 105 1 0.0000000 5.4310000 5.4310000 5.4310000
106 106 1 0.0000000 5.4310000 8.1460000 8.1460000
107 107 1 0.0000000 8.1460000 8.1460000 5.4310000
108 108 1 0.0000000 8.1460000 5.4310000 8.1460000
109 109 1 0.0000000 9.5040000 6.7890000 9.5040000
110 110 1 0.0000000 6.7890000 6.7890000 6.7890000
111 111 1 0.0000000 6.7890000 9.5040000 9.5040000
112 112 1 0.0000000 9.5040000 9.5040000 6.7890000
113 113 1 0.0000000 5.4310000 5.4310000 10.8620000
114 114 1 0.0000000 5.4310000 8.1460000 13.5780000
115 115 1 0.0000000 8.1460000 8.1460000 10.8620000
116 116 1 0.0000000 8.1460000 5.4310000 13.5780000
117 117 1 0.0000000 9.5040000 6.7890000 14.9350000
118 118 1 0.0000000 6.7890000 6.7890000 12.2200000
119 119 1 0.0000000 6.7890000 9.5040000 14.9350000
120 120 1 0.0000000 9.5040000 9.5040000 12.2200000
121 121 1 0.0000000 5.4310000 10.8620000 0.0000000
122 122 1 0.0000000 5.4310000 13.5780000 2.7160000
123 123 1 0.0000000 8.1460000 13.5780000 0.0000000
124 124 1 0.0000000 8.1460000 10.8620000 2.7160000
125 125 1 0.0000000 9.5040000 12.2200000 4.0730000
126 126 1 0.0000000 6.7890000 12.2200000 1.3580000
127 127 1 0.0000000 6.7890000 14.9350000 4.0730000
128 128 1 0.0000000 9.5040000 14.9350000 1.3580000
129 129 1 0.0000000 5.4310000 10.8620000 5.4310000
130 130 1 0.0000000 5.4310000 13.5780000 8.1460000
131 131 1 0.0000000 8.1460000 13.5780000 5.4310000
132 132 1 0.0000000 8.1460000 10.8620000 8.1460000
133 133 1 0.0000000 9.5040000 12.2200000 9.5040000
134 134 1 0.0000000 6.7890000 12.2200000 6.7890000
135 135 1 0.0000000 6.7890000 14.9350000 9.5040000
136 136 1 0.0000000 9.5040000 14.9350000 6.7890000
137 137 1 0.0000000 5.4310000 10.8620000 10.8620000
138 138 1 0.0000000 5.4310000 13.5780000 13.5780000
139 139 1 0.0000000 8.1460000 13.5780000 10.8620000
140 140 1 0.0000000 8.1460000 10.8620000 13.5780000
141 141 1 0.0000000 9.5040000 12.2200000 14.9350000
142 142 1 0.0000000 6.7890000 12.2200000 12.2200000
143 143 1 0.0000000 6.7890000 14.9350000 14.9350000
144 144 1 0.0000000 9.5040000 14.9350000 12.2200000
145 145 1 0.0000000 10.8620000 0.0000000 0.0000000
146 146 1 0.0000000 10.8620000 2.7160000 2.7160000
147 147 1 0.0000000 13.5780000 2.7160000 0.0000000
148 148 1 0.0000000 13.5780000 0.0000000 2.7160000
149 149 1 0.0000000 14.9350000 1.3580000 4.0730000
150 150 1 0.0000000 12.2200000 1.3580000 1.3580000
151 151 1 0.0000000 12.2200000 4.0730000 4.0730000
152 152 1 0.0000000 14.9350000 4.0730000 1.3580000
153 153 1 0.0000000 10.8620000 0.0000000 5.4310000
154 154 1 0.0000000 10.8620000 2.7160000 8.1460000
155 155 1 0.0000000 13.5780000 2.7160000 5.4310000
156 156 1 0.0000000 13.5780000 0.0000000 8.1460000
157 157 1 0.0000000 14.9350000 1.3580000 9.5040000
158 158 1 0.0000000 12.2200000 1.3580000 6.7890000
159 159 1 0.0000000 12.2200000 4.0730000 9.5040000
160 160 1 0.0000000 14.9350000 4.0730000 6.7890000
161 161 1 0.0000000 10.8620000 0.0000000 10.8620000
162 162 1 0.0000000 10.8620000 2.7160000 13.5780000
163 163 1 0.0000000 13.5780000 2.7160000 10.8620000
164 164 1 0.0000000 13.5780000 0.0000000 13.5780000
165 165 1 0.0000000 14.9350000 1.3580000 14.9350000
166 166 1 0.0000000 12.2200000 1.3580000 12.2200000
167 167 1 0.0000000 12.2200000 4.0730000 14.9350000
168 168 1 0.0000000 14.9350000 4.0730000 12.2200000
169 169 1 0.0000000 10.8620000 5.4310000 0.0000000
170 170 1 0.0000000 10.8620000 8.1460000 2.7160000
171 171 1 0.0000000 13.5780000 8.1460000 0.0000000
172 172 1 0.0000000 13.5780000 5.4310000 2.7160000
173 173 1 0.0000000 14.9350000 6.7890000 4.0730000
174 174 1 0.0000000 12.2200000 6.7890000 1.3580000
175 175 1 0.0000000 12.2200000 9.5040000 4.0730000
176 176 1 0.0000000 14.9350000 9.5040000 1.3580000
177 177 1 0.0000000 10.8620000 5.4310000 5.4310000
178 178 1 0.0000000 10.8620000 8.1460000 8.1460000
179 179 1 0.0000000 13.5780000 8.1460000 5.4310000
180 180 1 0.0000000 13.5780000 5.4310000 8.1460000
181 181 1 0.0000000 14.9350000 6.7890000 9.5040000
182 182 1 0.0000000 12.2200000 6.7890000 6.7890000
183 183 1 0.0000000 12.2200000 9.5040000 9.5040000
184 184 1 0.0000000 14.9350000 9.5040000 6.7890000
185 185 1 0.0000000 10.8620000 5.4310000 10.8620000
186 186 1 0.0000000 10.8620000 8.1460000 13.5780000
187 187 1 0.0000000 13.5780000 8.1460000 10.8620000
188 188 1 0.0000000 13.5780000 5.4310000 13.5780000
189 189 1 0.0000000 14.9350000 6.7890000 14.9350000
190 190 1 0.0000000 12.2200000 6.7890000 12.2200000
191 191 1 0.0000000 12.2200000 9.5040000 14.9350000
192 192 1 0.0000000 14.9350000 9.5040000 12.2200000
193 193 1 0.0000000 10.8620000 10.8620000 0.0000000
194 194 1 0.0000000 10.8620000 13.5780000 2.7160000
195 195 1 0.0000000 13.5780000 13.5780000 0.0000000
196 196 1 0.0000000 13.5780000 10.8620000 2.7160000
197 197 1 0.0000000 14.9350000 12.2200000 4.0730000
198 198 1 0.0000000 12.2200000 12.2200000 1.3580000
199 199 1 0.0000000 12.2200000 14.9350000 4.0730000
200 200 1 0.0000000 14.9350000 14.9350000 1.3580000
201 201 1 0.0000000 10.8620000 10.8620000 5.4310000
202 202 1 0.0000000 10.8620000 13.5780000 8.1460000
203 203 1 0.0000000 13.5780000 13.5780000 5.4310000
204 204 1 0.0000000 13.5780000 10.8620000 8.1460000
205 205 1 0.0000000 14.9350000 12.2200000 9.5040000
206 206 1 0.0000000 12.2200000 12.2200000 6.7890000
207 207 1 0.0000000 12.2200000 14.9350000 9.5040000
208 208 1 0.0000000 14.9350000 14.9350000 6.7890000
209 209 1 0.0000000 10.8620000 10.8620000 10.8620000
210 210 1 0.0000000 10.8620000 13.5780000 13.5780000
211 211 1 0.0000000 13.5780000 13.5780000 10.8620000
212 212 1 0.0000000 13.5780000 10.8620000 13.5780000
213 213 1 0.0000000 14.9350000 12.2200000 14.9350000
214 214 1 0.0000000 12.2200000 12.2200000 12.2200000
215 215 1 0.0000000 12.2200000 14.9350000 14.9350000
216 216 1 0.0000000 14.9350000 14.9350000 12.2200000

View File

@ -1,534 +0,0 @@
LAMMPS description
512 atoms
0 bonds
0 angles
0 dihedrals
0 impropers
1 atom types
0 bond types
0 angle types
0 dihedral types
0 improper types
0.0000000 21.724000 xlo xhi
0.0000000 21.724000 ylo yhi
0.0000000 21.724000 zlo zhi
Atoms
1 1 1 0.0000000 0.0000000 0.0000000 0.0000000
2 2 1 0.0000000 0.0000000 2.7150000 2.7150000
3 3 1 0.0000000 2.7150000 2.7150000 0.0000000
4 4 1 0.0000000 2.7150000 0.0000000 2.7150000
5 5 1 0.0000000 4.0730000 1.3580000 4.0730000
6 6 1 0.0000000 1.3580000 1.3580000 1.3580000
7 7 1 0.0000000 1.3580000 4.0730000 4.0730000
8 8 1 0.0000000 4.0730000 4.0730000 1.3580000
9 9 1 0.0000000 0.0000000 0.0000000 5.4310000
10 10 1 0.0000000 0.0000000 2.7150000 8.1460000
11 11 1 0.0000000 2.7150000 2.7150000 5.4310000
12 12 1 0.0000000 2.7150000 0.0000000 8.1460000
13 13 1 0.0000000 4.0730000 1.3580000 9.5040000
14 14 1 0.0000000 1.3580000 1.3580000 6.7890000
15 15 1 0.0000000 1.3580000 4.0730000 9.5040000
16 16 1 0.0000000 4.0730000 4.0730000 6.7890000
17 17 1 0.0000000 0.0000000 0.0000000 10.8620000
18 18 1 0.0000000 0.0000000 2.7150000 13.5770000
19 19 1 0.0000000 2.7150000 2.7150000 10.8620000
20 20 1 0.0000000 2.7150000 0.0000000 13.5770000
21 21 1 0.0000000 4.0730000 1.3580000 14.9350000
22 22 1 0.0000000 1.3580000 1.3580000 12.2200000
23 23 1 0.0000000 1.3580000 4.0730000 14.9350000
24 24 1 0.0000000 4.0730000 4.0730000 12.2200000
25 25 1 0.0000000 0.0000000 0.0000000 16.2930000
26 26 1 0.0000000 0.0000000 2.7150000 19.0080000
27 27 1 0.0000000 2.7150000 2.7150000 16.2930000
28 28 1 0.0000000 2.7150000 0.0000000 19.0080000
29 29 1 0.0000000 4.0730000 1.3580000 20.3660000
30 30 1 0.0000000 1.3580000 1.3580000 17.6510000
31 31 1 0.0000000 1.3580000 4.0730000 20.3660000
32 32 1 0.0000000 4.0730000 4.0730000 17.6510000
33 33 1 0.0000000 0.0000000 5.4310000 0.0000000
34 34 1 0.0000000 0.0000000 8.1460000 2.7150000
35 35 1 0.0000000 2.7150000 8.1460000 0.0000000
36 36 1 0.0000000 2.7150000 5.4310000 2.7150000
37 37 1 0.0000000 4.0730000 6.7890000 4.0730000
38 38 1 0.0000000 1.3580000 6.7890000 1.3580000
39 39 1 0.0000000 1.3580000 9.5040000 4.0730000
40 40 1 0.0000000 4.0730000 9.5040000 1.3580000
41 41 1 0.0000000 0.0000000 5.4310000 5.4310000
42 42 1 0.0000000 0.0000000 8.1460000 8.1460000
43 43 1 0.0000000 2.7150000 8.1460000 5.4310000
44 44 1 0.0000000 2.7150000 5.4310000 8.1460000
45 45 1 0.0000000 4.0730000 6.7890000 9.5040000
46 46 1 0.0000000 1.3580000 6.7890000 6.7890000
47 47 1 0.0000000 1.3580000 9.5040000 9.5040000
48 48 1 0.0000000 4.0730000 9.5040000 6.7890000
49 49 1 0.0000000 0.0000000 5.4310000 10.8620000
50 50 1 0.0000000 0.0000000 8.1460000 13.5770000
51 51 1 0.0000000 2.7150000 8.1460000 10.8620000
52 52 1 0.0000000 2.7150000 5.4310000 13.5770000
53 53 1 0.0000000 4.0730000 6.7890000 14.9350000
54 54 1 0.0000000 1.3580000 6.7890000 12.2200000
55 55 1 0.0000000 1.3580000 9.5040000 14.9350000
56 56 1 0.0000000 4.0730000 9.5040000 12.2200000
57 57 1 0.0000000 0.0000000 5.4310000 16.2930000
58 58 1 0.0000000 0.0000000 8.1460000 19.0080000
59 59 1 0.0000000 2.7150000 8.1460000 16.2930000
60 60 1 0.0000000 2.7150000 5.4310000 19.0080000
61 61 1 0.0000000 4.0730000 6.7890000 20.3660000
62 62 1 0.0000000 1.3580000 6.7890000 17.6510000
63 63 1 0.0000000 1.3580000 9.5040000 20.3660000
64 64 1 0.0000000 4.0730000 9.5040000 17.6510000
65 65 1 0.0000000 0.0000000 10.8620000 0.0000000
66 66 1 0.0000000 0.0000000 13.5770000 2.7150000
67 67 1 0.0000000 2.7150000 13.5770000 0.0000000
68 68 1 0.0000000 2.7150000 10.8620000 2.7150000
69 69 1 0.0000000 4.0730000 12.2200000 4.0730000
70 70 1 0.0000000 1.3580000 12.2200000 1.3580000
71 71 1 0.0000000 1.3580000 14.9350000 4.0730000
72 72 1 0.0000000 4.0730000 14.9350000 1.3580000
73 73 1 0.0000000 0.0000000 10.8620000 5.4310000
74 74 1 0.0000000 0.0000000 13.5770000 8.1460000
75 75 1 0.0000000 2.7150000 13.5770000 5.4310000
76 76 1 0.0000000 2.7150000 10.8620000 8.1460000
77 77 1 0.0000000 4.0730000 12.2200000 9.5040000
78 78 1 0.0000000 1.3580000 12.2200000 6.7890000
79 79 1 0.0000000 1.3580000 14.9350000 9.5040000
80 80 1 0.0000000 4.0730000 14.9350000 6.7890000
81 81 1 0.0000000 0.0000000 10.8620000 10.8620000
82 82 1 0.0000000 0.0000000 13.5770000 13.5770000
83 83 1 0.0000000 2.7150000 13.5770000 10.8620000
84 84 1 0.0000000 2.7150000 10.8620000 13.5770000
85 85 1 0.0000000 4.0730000 12.2200000 14.9350000
86 86 1 0.0000000 1.3580000 12.2200000 12.2200000
87 87 1 0.0000000 1.3580000 14.9350000 14.9350000
88 88 1 0.0000000 4.0730000 14.9350000 12.2200000
89 89 1 0.0000000 0.0000000 10.8620000 16.2930000
90 90 1 0.0000000 0.0000000 13.5770000 19.0080000
91 91 1 0.0000000 2.7150000 13.5770000 16.2930000
92 92 1 0.0000000 2.7150000 10.8620000 19.0080000
93 93 1 0.0000000 4.0730000 12.2200000 20.3660000
94 94 1 0.0000000 1.3580000 12.2200000 17.6510000
95 95 1 0.0000000 1.3580000 14.9350000 20.3660000
96 96 1 0.0000000 4.0730000 14.9350000 17.6510000
97 97 1 0.0000000 0.0000000 16.2930000 0.0000000
98 98 1 0.0000000 0.0000000 19.0080000 2.7150000
99 99 1 0.0000000 2.7150000 19.0080000 0.0000000
100 100 1 0.0000000 2.7150000 16.2930000 2.7150000
101 101 1 0.0000000 4.0730000 17.6510000 4.0730000
102 102 1 0.0000000 1.3580000 17.6510000 1.3580000
103 103 1 0.0000000 1.3580000 20.3660000 4.0730000
104 104 1 0.0000000 4.0730000 20.3660000 1.3580000
105 105 1 0.0000000 0.0000000 16.2930000 5.4310000
106 106 1 0.0000000 0.0000000 19.0080000 8.1460000
107 107 1 0.0000000 2.7150000 19.0080000 5.4310000
108 108 1 0.0000000 2.7150000 16.2930000 8.1460000
109 109 1 0.0000000 4.0730000 17.6510000 9.5040000
110 110 1 0.0000000 1.3580000 17.6510000 6.7890000
111 111 1 0.0000000 1.3580000 20.3660000 9.5040000
112 112 1 0.0000000 4.0730000 20.3660000 6.7890000
113 113 1 0.0000000 0.0000000 16.2930000 10.8620000
114 114 1 0.0000000 0.0000000 19.0080000 13.5770000
115 115 1 0.0000000 2.7150000 19.0080000 10.8620000
116 116 1 0.0000000 2.7150000 16.2930000 13.5770000
117 117 1 0.0000000 4.0730000 17.6510000 14.9350000
118 118 1 0.0000000 1.3580000 17.6510000 12.2200000
119 119 1 0.0000000 1.3580000 20.3660000 14.9350000
120 120 1 0.0000000 4.0730000 20.3660000 12.2200000
121 121 1 0.0000000 0.0000000 16.2930000 16.2930000
122 122 1 0.0000000 0.0000000 19.0080000 19.0080000
123 123 1 0.0000000 2.7150000 19.0080000 16.2930000
124 124 1 0.0000000 2.7150000 16.2930000 19.0080000
125 125 1 0.0000000 4.0730000 17.6510000 20.3660000
126 126 1 0.0000000 1.3580000 17.6510000 17.6510000
127 127 1 0.0000000 1.3580000 20.3660000 20.3660000
128 128 1 0.0000000 4.0730000 20.3660000 17.6510000
129 129 1 0.0000000 5.4310000 0.0000000 0.0000000
130 130 1 0.0000000 5.4310000 2.7150000 2.7150000
131 131 1 0.0000000 8.1460000 2.7150000 0.0000000
132 132 1 0.0000000 8.1460000 0.0000000 2.7150000
133 133 1 0.0000000 9.5040000 1.3580000 4.0730000
134 134 1 0.0000000 6.7890000 1.3580000 1.3580000
135 135 1 0.0000000 6.7890000 4.0730000 4.0730000
136 136 1 0.0000000 9.5040000 4.0730000 1.3580000
137 137 1 0.0000000 5.4310000 0.0000000 5.4310000
138 138 1 0.0000000 5.4310000 2.7150000 8.1460000
139 139 1 0.0000000 8.1460000 2.7150000 5.4310000
140 140 1 0.0000000 8.1460000 0.0000000 8.1460000
141 141 1 0.0000000 9.5040000 1.3580000 9.5040000
142 142 1 0.0000000 6.7890000 1.3580000 6.7890000
143 143 1 0.0000000 6.7890000 4.0730000 9.5040000
144 144 1 0.0000000 9.5040000 4.0730000 6.7890000
145 145 1 0.0000000 5.4310000 0.0000000 10.8620000
146 146 1 0.0000000 5.4310000 2.7150000 13.5770000
147 147 1 0.0000000 8.1460000 2.7150000 10.8620000
148 148 1 0.0000000 8.1460000 0.0000000 13.5770000
149 149 1 0.0000000 9.5040000 1.3580000 14.9350000
150 150 1 0.0000000 6.7890000 1.3580000 12.2200000
151 151 1 0.0000000 6.7890000 4.0730000 14.9350000
152 152 1 0.0000000 9.5040000 4.0730000 12.2200000
153 153 1 0.0000000 5.4310000 0.0000000 16.2930000
154 154 1 0.0000000 5.4310000 2.7150000 19.0080000
155 155 1 0.0000000 8.1460000 2.7150000 16.2930000
156 156 1 0.0000000 8.1460000 0.0000000 19.0080000
157 157 1 0.0000000 9.5040000 1.3580000 20.3660000
158 158 1 0.0000000 6.7890000 1.3580000 17.6510000
159 159 1 0.0000000 6.7890000 4.0730000 20.3660000
160 160 1 0.0000000 9.5040000 4.0730000 17.6510000
161 161 1 0.0000000 5.4310000 5.4310000 0.0000000
162 162 1 0.0000000 5.4310000 8.1460000 2.7150000
163 163 1 0.0000000 8.1460000 8.1460000 0.0000000
164 164 1 0.0000000 8.1460000 5.4310000 2.7150000
165 165 1 0.0000000 9.5040000 6.7890000 4.0730000
166 166 1 0.0000000 6.7890000 6.7890000 1.3580000
167 167 1 0.0000000 6.7890000 9.5040000 4.0730000
168 168 1 0.0000000 9.5040000 9.5040000 1.3580000
169 169 1 0.0000000 5.4310000 5.4310000 5.4310000
170 170 1 0.0000000 5.4310000 8.1460000 8.1460000
171 171 1 0.0000000 8.1460000 8.1460000 5.4310000
172 172 1 0.0000000 8.1460000 5.4310000 8.1460000
173 173 1 0.0000000 9.5040000 6.7890000 9.5040000
174 174 1 0.0000000 6.7890000 6.7890000 6.7890000
175 175 1 0.0000000 6.7890000 9.5040000 9.5040000
176 176 1 0.0000000 9.5040000 9.5040000 6.7890000
177 177 1 0.0000000 5.4310000 5.4310000 10.8620000
178 178 1 0.0000000 5.4310000 8.1460000 13.5770000
179 179 1 0.0000000 8.1460000 8.1460000 10.8620000
180 180 1 0.0000000 8.1460000 5.4310000 13.5770000
181 181 1 0.0000000 9.5040000 6.7890000 14.9350000
182 182 1 0.0000000 6.7890000 6.7890000 12.2200000
183 183 1 0.0000000 6.7890000 9.5040000 14.9350000
184 184 1 0.0000000 9.5040000 9.5040000 12.2200000
185 185 1 0.0000000 5.4310000 5.4310000 16.2930000
186 186 1 0.0000000 5.4310000 8.1460000 19.0080000
187 187 1 0.0000000 8.1460000 8.1460000 16.2930000
188 188 1 0.0000000 8.1460000 5.4310000 19.0080000
189 189 1 0.0000000 9.5040000 6.7890000 20.3660000
190 190 1 0.0000000 6.7890000 6.7890000 17.6510000
191 191 1 0.0000000 6.7890000 9.5040000 20.3660000
192 192 1 0.0000000 9.5040000 9.5040000 17.6510000
193 193 1 0.0000000 5.4310000 10.8620000 0.0000000
194 194 1 0.0000000 5.4310000 13.5770000 2.7150000
195 195 1 0.0000000 8.1460000 13.5770000 0.0000000
196 196 1 0.0000000 8.1460000 10.8620000 2.7150000
197 197 1 0.0000000 9.5040000 12.2200000 4.0730000
198 198 1 0.0000000 6.7890000 12.2200000 1.3580000
199 199 1 0.0000000 6.7890000 14.9350000 4.0730000
200 200 1 0.0000000 9.5040000 14.9350000 1.3580000
201 201 1 0.0000000 5.4310000 10.8620000 5.4310000
202 202 1 0.0000000 5.4310000 13.5770000 8.1460000
203 203 1 0.0000000 8.1460000 13.5770000 5.4310000
204 204 1 0.0000000 8.1460000 10.8620000 8.1460000
205 205 1 0.0000000 9.5040000 12.2200000 9.5040000
206 206 1 0.0000000 6.7890000 12.2200000 6.7890000
207 207 1 0.0000000 6.7890000 14.9350000 9.5040000
208 208 1 0.0000000 9.5040000 14.9350000 6.7890000
209 209 1 0.0000000 5.4310000 10.8620000 10.8620000
210 210 1 0.0000000 5.4310000 13.5770000 13.5770000
211 211 1 0.0000000 8.1460000 13.5770000 10.8620000
212 212 1 0.0000000 8.1460000 10.8620000 13.5770000
213 213 1 0.0000000 9.5040000 12.2200000 14.9350000
214 214 1 0.0000000 6.7890000 12.2200000 12.2200000
215 215 1 0.0000000 6.7890000 14.9350000 14.9350000
216 216 1 0.0000000 9.5040000 14.9350000 12.2200000
217 217 1 0.0000000 5.4310000 10.8620000 16.2930000
218 218 1 0.0000000 5.4310000 13.5770000 19.0080000
219 219 1 0.0000000 8.1460000 13.5770000 16.2930000
220 220 1 0.0000000 8.1460000 10.8620000 19.0080000
221 221 1 0.0000000 9.5040000 12.2200000 20.3660000
222 222 1 0.0000000 6.7890000 12.2200000 17.6510000
223 223 1 0.0000000 6.7890000 14.9350000 20.3660000
224 224 1 0.0000000 9.5040000 14.9350000 17.6510000
225 225 1 0.0000000 5.4310000 16.2930000 0.0000000
226 226 1 0.0000000 5.4310000 19.0080000 2.7150000
227 227 1 0.0000000 8.1460000 19.0080000 0.0000000
228 228 1 0.0000000 8.1460000 16.2930000 2.7150000
229 229 1 0.0000000 9.5040000 17.6510000 4.0730000
230 230 1 0.0000000 6.7890000 17.6510000 1.3580000
231 231 1 0.0000000 6.7890000 20.3660000 4.0730000
232 232 1 0.0000000 9.5040000 20.3660000 1.3580000
233 233 1 0.0000000 5.4310000 16.2930000 5.4310000
234 234 1 0.0000000 5.4310000 19.0080000 8.1460000
235 235 1 0.0000000 8.1460000 19.0080000 5.4310000
236 236 1 0.0000000 8.1460000 16.2930000 8.1460000
237 237 1 0.0000000 9.5040000 17.6510000 9.5040000
238 238 1 0.0000000 6.7890000 17.6510000 6.7890000
239 239 1 0.0000000 6.7890000 20.3660000 9.5040000
240 240 1 0.0000000 9.5040000 20.3660000 6.7890000
241 241 1 0.0000000 5.4310000 16.2930000 10.8620000
242 242 1 0.0000000 5.4310000 19.0080000 13.5770000
243 243 1 0.0000000 8.1460000 19.0080000 10.8620000
244 244 1 0.0000000 8.1460000 16.2930000 13.5770000
245 245 1 0.0000000 9.5040000 17.6510000 14.9350000
246 246 1 0.0000000 6.7890000 17.6510000 12.2200000
247 247 1 0.0000000 6.7890000 20.3660000 14.9350000
248 248 1 0.0000000 9.5040000 20.3660000 12.2200000
249 249 1 0.0000000 5.4310000 16.2930000 16.2930000
250 250 1 0.0000000 5.4310000 19.0080000 19.0080000
251 251 1 0.0000000 8.1460000 19.0080000 16.2930000
252 252 1 0.0000000 8.1460000 16.2930000 19.0080000
253 253 1 0.0000000 9.5040000 17.6510000 20.3660000
254 254 1 0.0000000 6.7890000 17.6510000 17.6510000
255 255 1 0.0000000 6.7890000 20.3660000 20.3660000
256 256 1 0.0000000 9.5040000 20.3660000 17.6510000
257 257 1 0.0000000 10.8620000 0.0000000 0.0000000
258 258 1 0.0000000 10.8620000 2.7150000 2.7150000
259 259 1 0.0000000 13.5770000 2.7150000 0.0000000
260 260 1 0.0000000 13.5770000 0.0000000 2.7150000
261 261 1 0.0000000 14.9350000 1.3580000 4.0730000
262 262 1 0.0000000 12.2200000 1.3580000 1.3580000
263 263 1 0.0000000 12.2200000 4.0730000 4.0730000
264 264 1 0.0000000 14.9350000 4.0730000 1.3580000
265 265 1 0.0000000 10.8620000 0.0000000 5.4310000
266 266 1 0.0000000 10.8620000 2.7150000 8.1460000
267 267 1 0.0000000 13.5770000 2.7150000 5.4310000
268 268 1 0.0000000 13.5770000 0.0000000 8.1460000
269 269 1 0.0000000 14.9350000 1.3580000 9.5040000
270 270 1 0.0000000 12.2200000 1.3580000 6.7890000
271 271 1 0.0000000 12.2200000 4.0730000 9.5040000
272 272 1 0.0000000 14.9350000 4.0730000 6.7890000
273 273 1 0.0000000 10.8620000 0.0000000 10.8620000
274 274 1 0.0000000 10.8620000 2.7150000 13.5770000
275 275 1 0.0000000 13.5770000 2.7150000 10.8620000
276 276 1 0.0000000 13.5770000 0.0000000 13.5770000
277 277 1 0.0000000 14.9350000 1.3580000 14.9350000
278 278 1 0.0000000 12.2200000 1.3580000 12.2200000
279 279 1 0.0000000 12.2200000 4.0730000 14.9350000
280 280 1 0.0000000 14.9350000 4.0730000 12.2200000
281 281 1 0.0000000 10.8620000 0.0000000 16.2930000
282 282 1 0.0000000 10.8620000 2.7150000 19.0080000
283 283 1 0.0000000 13.5770000 2.7150000 16.2930000
284 284 1 0.0000000 13.5770000 0.0000000 19.0080000
285 285 1 0.0000000 14.9350000 1.3580000 20.3660000
286 286 1 0.0000000 12.2200000 1.3580000 17.6510000
287 287 1 0.0000000 12.2200000 4.0730000 20.3660000
288 288 1 0.0000000 14.9350000 4.0730000 17.6510000
289 289 1 0.0000000 10.8620000 5.4310000 0.0000000
290 290 1 0.0000000 10.8620000 8.1460000 2.7150000
291 291 1 0.0000000 13.5770000 8.1460000 0.0000000
292 292 1 0.0000000 13.5770000 5.4310000 2.7150000
293 293 1 0.0000000 14.9350000 6.7890000 4.0730000
294 294 1 0.0000000 12.2200000 6.7890000 1.3580000
295 295 1 0.0000000 12.2200000 9.5040000 4.0730000
296 296 1 0.0000000 14.9350000 9.5040000 1.3580000
297 297 1 0.0000000 10.8620000 5.4310000 5.4310000
298 298 1 0.0000000 10.8620000 8.1460000 8.1460000
299 299 1 0.0000000 13.5770000 8.1460000 5.4310000
300 300 1 0.0000000 13.5770000 5.4310000 8.1460000
301 301 1 0.0000000 14.9350000 6.7890000 9.5040000
302 302 1 0.0000000 12.2200000 6.7890000 6.7890000
303 303 1 0.0000000 12.2200000 9.5040000 9.5040000
304 304 1 0.0000000 14.9350000 9.5040000 6.7890000
305 305 1 0.0000000 10.8620000 5.4310000 10.8620000
306 306 1 0.0000000 10.8620000 8.1460000 13.5770000
307 307 1 0.0000000 13.5770000 8.1460000 10.8620000
308 308 1 0.0000000 13.5770000 5.4310000 13.5770000
309 309 1 0.0000000 14.9350000 6.7890000 14.9350000
310 310 1 0.0000000 12.2200000 6.7890000 12.2200000
311 311 1 0.0000000 12.2200000 9.5040000 14.9350000
312 312 1 0.0000000 14.9350000 9.5040000 12.2200000
313 313 1 0.0000000 10.8620000 5.4310000 16.2930000
314 314 1 0.0000000 10.8620000 8.1460000 19.0080000
315 315 1 0.0000000 13.5770000 8.1460000 16.2930000
316 316 1 0.0000000 13.5770000 5.4310000 19.0080000
317 317 1 0.0000000 14.9350000 6.7890000 20.3660000
318 318 1 0.0000000 12.2200000 6.7890000 17.6510000
319 319 1 0.0000000 12.2200000 9.5040000 20.3660000
320 320 1 0.0000000 14.9350000 9.5040000 17.6510000
321 321 1 0.0000000 10.8620000 10.8620000 0.0000000
322 322 1 0.0000000 10.8620000 13.5770000 2.7150000
323 323 1 0.0000000 13.5770000 13.5770000 0.0000000
324 324 1 0.0000000 13.5770000 10.8620000 2.7150000
325 325 1 0.0000000 14.9350000 12.2200000 4.0730000
326 326 1 0.0000000 12.2200000 12.2200000 1.3580000
327 327 1 0.0000000 12.2200000 14.9350000 4.0730000
328 328 1 0.0000000 14.9350000 14.9350000 1.3580000
329 329 1 0.0000000 10.8620000 10.8620000 5.4310000
330 330 1 0.0000000 10.8620000 13.5770000 8.1460000
331 331 1 0.0000000 13.5770000 13.5770000 5.4310000
332 332 1 0.0000000 13.5770000 10.8620000 8.1460000
333 333 1 0.0000000 14.9350000 12.2200000 9.5040000
334 334 1 0.0000000 12.2200000 12.2200000 6.7890000
335 335 1 0.0000000 12.2200000 14.9350000 9.5040000
336 336 1 0.0000000 14.9350000 14.9350000 6.7890000
337 337 1 0.0000000 10.8620000 10.8620000 10.8620000
338 338 1 0.0000000 10.8620000 13.5770000 13.5770000
339 339 1 0.0000000 13.5770000 13.5770000 10.8620000
340 340 1 0.0000000 13.5770000 10.8620000 13.5770000
341 341 1 0.0000000 14.9350000 12.2200000 14.9350000
342 342 1 0.0000000 12.2200000 12.2200000 12.2200000
343 343 1 0.0000000 12.2200000 14.9350000 14.9350000
344 344 1 0.0000000 14.9350000 14.9350000 12.2200000
345 345 1 0.0000000 10.8620000 10.8620000 16.2930000
346 346 1 0.0000000 10.8620000 13.5770000 19.0080000
347 347 1 0.0000000 13.5770000 13.5770000 16.2930000
348 348 1 0.0000000 13.5770000 10.8620000 19.0080000
349 349 1 0.0000000 14.9350000 12.2200000 20.3660000
350 350 1 0.0000000 12.2200000 12.2200000 17.6510000
351 351 1 0.0000000 12.2200000 14.9350000 20.3660000
352 352 1 0.0000000 14.9350000 14.9350000 17.6510000
353 353 1 0.0000000 10.8620000 16.2930000 0.0000000
354 354 1 0.0000000 10.8620000 19.0080000 2.7150000
355 355 1 0.0000000 13.5770000 19.0080000 0.0000000
356 356 1 0.0000000 13.5770000 16.2930000 2.7150000
357 357 1 0.0000000 14.9350000 17.6510000 4.0730000
358 358 1 0.0000000 12.2200000 17.6510000 1.3580000
359 359 1 0.0000000 12.2200000 20.3660000 4.0730000
360 360 1 0.0000000 14.9350000 20.3660000 1.3580000
361 361 1 0.0000000 10.8620000 16.2930000 5.4310000
362 362 1 0.0000000 10.8620000 19.0080000 8.1460000
363 363 1 0.0000000 13.5770000 19.0080000 5.4310000
364 364 1 0.0000000 13.5770000 16.2930000 8.1460000
365 365 1 0.0000000 14.9350000 17.6510000 9.5040000
366 366 1 0.0000000 12.2200000 17.6510000 6.7890000
367 367 1 0.0000000 12.2200000 20.3660000 9.5040000
368 368 1 0.0000000 14.9350000 20.3660000 6.7890000
369 369 1 0.0000000 10.8620000 16.2930000 10.8620000
370 370 1 0.0000000 10.8620000 19.0080000 13.5770000
371 371 1 0.0000000 13.5770000 19.0080000 10.8620000
372 372 1 0.0000000 13.5770000 16.2930000 13.5770000
373 373 1 0.0000000 14.9350000 17.6510000 14.9350000
374 374 1 0.0000000 12.2200000 17.6510000 12.2200000
375 375 1 0.0000000 12.2200000 20.3660000 14.9350000
376 376 1 0.0000000 14.9350000 20.3660000 12.2200000
377 377 1 0.0000000 10.8620000 16.2930000 16.2930000
378 378 1 0.0000000 10.8620000 19.0080000 19.0080000
379 379 1 0.0000000 13.5770000 19.0080000 16.2930000
380 380 1 0.0000000 13.5770000 16.2930000 19.0080000
381 381 1 0.0000000 14.9350000 17.6510000 20.3660000
382 382 1 0.0000000 12.2200000 17.6510000 17.6510000
383 383 1 0.0000000 12.2200000 20.3660000 20.3660000
384 384 1 0.0000000 14.9350000 20.3660000 17.6510000
385 385 1 0.0000000 16.2930000 0.0000000 0.0000000
386 386 1 0.0000000 16.2930000 2.7150000 2.7150000
387 387 1 0.0000000 19.0080000 2.7150000 0.0000000
388 388 1 0.0000000 19.0080000 0.0000000 2.7150000
389 389 1 0.0000000 20.3660000 1.3580000 4.0730000
390 390 1 0.0000000 17.6510000 1.3580000 1.3580000
391 391 1 0.0000000 17.6510000 4.0730000 4.0730000
392 392 1 0.0000000 20.3660000 4.0730000 1.3580000
393 393 1 0.0000000 16.2930000 0.0000000 5.4310000
394 394 1 0.0000000 16.2930000 2.7150000 8.1460000
395 395 1 0.0000000 19.0080000 2.7150000 5.4310000
396 396 1 0.0000000 19.0080000 0.0000000 8.1460000
397 397 1 0.0000000 20.3660000 1.3580000 9.5040000
398 398 1 0.0000000 17.6510000 1.3580000 6.7890000
399 399 1 0.0000000 17.6510000 4.0730000 9.5040000
400 400 1 0.0000000 20.3660000 4.0730000 6.7890000
401 401 1 0.0000000 16.2930000 0.0000000 10.8620000
402 402 1 0.0000000 16.2930000 2.7150000 13.5770000
403 403 1 0.0000000 19.0080000 2.7150000 10.8620000
404 404 1 0.0000000 19.0080000 0.0000000 13.5770000
405 405 1 0.0000000 20.3660000 1.3580000 14.9350000
406 406 1 0.0000000 17.6510000 1.3580000 12.2200000
407 407 1 0.0000000 17.6510000 4.0730000 14.9350000
408 408 1 0.0000000 20.3660000 4.0730000 12.2200000
409 409 1 0.0000000 16.2930000 0.0000000 16.2930000
410 410 1 0.0000000 16.2930000 2.7150000 19.0080000
411 411 1 0.0000000 19.0080000 2.7150000 16.2930000
412 412 1 0.0000000 19.0080000 0.0000000 19.0080000
413 413 1 0.0000000 20.3660000 1.3580000 20.3660000
414 414 1 0.0000000 17.6510000 1.3580000 17.6510000
415 415 1 0.0000000 17.6510000 4.0730000 20.3660000
416 416 1 0.0000000 20.3660000 4.0730000 17.6510000
417 417 1 0.0000000 16.2930000 5.4310000 0.0000000
418 418 1 0.0000000 16.2930000 8.1460000 2.7150000
419 419 1 0.0000000 19.0080000 8.1460000 0.0000000
420 420 1 0.0000000 19.0080000 5.4310000 2.7150000
421 421 1 0.0000000 20.3660000 6.7890000 4.0730000
422 422 1 0.0000000 17.6510000 6.7890000 1.3580000
423 423 1 0.0000000 17.6510000 9.5040000 4.0730000
424 424 1 0.0000000 20.3660000 9.5040000 1.3580000
425 425 1 0.0000000 16.2930000 5.4310000 5.4310000
426 426 1 0.0000000 16.2930000 8.1460000 8.1460000
427 427 1 0.0000000 19.0080000 8.1460000 5.4310000
428 428 1 0.0000000 19.0080000 5.4310000 8.1460000
429 429 1 0.0000000 20.3660000 6.7890000 9.5040000
430 430 1 0.0000000 17.6510000 6.7890000 6.7890000
431 431 1 0.0000000 17.6510000 9.5040000 9.5040000
432 432 1 0.0000000 20.3660000 9.5040000 6.7890000
433 433 1 0.0000000 16.2930000 5.4310000 10.8620000
434 434 1 0.0000000 16.2930000 8.1460000 13.5770000
435 435 1 0.0000000 19.0080000 8.1460000 10.8620000
436 436 1 0.0000000 19.0080000 5.4310000 13.5770000
437 437 1 0.0000000 20.3660000 6.7890000 14.9350000
438 438 1 0.0000000 17.6510000 6.7890000 12.2200000
439 439 1 0.0000000 17.6510000 9.5040000 14.9350000
440 440 1 0.0000000 20.3660000 9.5040000 12.2200000
441 441 1 0.0000000 16.2930000 5.4310000 16.2930000
442 442 1 0.0000000 16.2930000 8.1460000 19.0080000
443 443 1 0.0000000 19.0080000 8.1460000 16.2930000
444 444 1 0.0000000 19.0080000 5.4310000 19.0080000
445 445 1 0.0000000 20.3660000 6.7890000 20.3660000
446 446 1 0.0000000 17.6510000 6.7890000 17.6510000
447 447 1 0.0000000 17.6510000 9.5040000 20.3660000
448 448 1 0.0000000 20.3660000 9.5040000 17.6510000
449 449 1 0.0000000 16.2930000 10.8620000 0.0000000
450 450 1 0.0000000 16.2930000 13.5770000 2.7150000
451 451 1 0.0000000 19.0080000 13.5770000 0.0000000
452 452 1 0.0000000 19.0080000 10.8620000 2.7150000
453 453 1 0.0000000 20.3660000 12.2200000 4.0730000
454 454 1 0.0000000 17.6510000 12.2200000 1.3580000
455 455 1 0.0000000 17.6510000 14.9350000 4.0730000
456 456 1 0.0000000 20.3660000 14.9350000 1.3580000
457 457 1 0.0000000 16.2930000 10.8620000 5.4310000
458 458 1 0.0000000 16.2930000 13.5770000 8.1460000
459 459 1 0.0000000 19.0080000 13.5770000 5.4310000
460 460 1 0.0000000 19.0080000 10.8620000 8.1460000
461 461 1 0.0000000 20.3660000 12.2200000 9.5040000
462 462 1 0.0000000 17.6510000 12.2200000 6.7890000
463 463 1 0.0000000 17.6510000 14.9350000 9.5040000
464 464 1 0.0000000 20.3660000 14.9350000 6.7890000
465 465 1 0.0000000 16.2930000 10.8620000 10.8620000
466 466 1 0.0000000 16.2930000 13.5770000 13.5770000
467 467 1 0.0000000 19.0080000 13.5770000 10.8620000
468 468 1 0.0000000 19.0080000 10.8620000 13.5770000
469 469 1 0.0000000 20.3660000 12.2200000 14.9350000
470 470 1 0.0000000 17.6510000 12.2200000 12.2200000
471 471 1 0.0000000 17.6510000 14.9350000 14.9350000
472 472 1 0.0000000 20.3660000 14.9350000 12.2200000
473 473 1 0.0000000 16.2930000 10.8620000 16.2930000
474 474 1 0.0000000 16.2930000 13.5770000 19.0080000
475 475 1 0.0000000 19.0080000 13.5770000 16.2930000
476 476 1 0.0000000 19.0080000 10.8620000 19.0080000
477 477 1 0.0000000 20.3660000 12.2200000 20.3660000
478 478 1 0.0000000 17.6510000 12.2200000 17.6510000
479 479 1 0.0000000 17.6510000 14.9350000 20.3660000
480 480 1 0.0000000 20.3660000 14.9350000 17.6510000
481 481 1 0.0000000 16.2930000 16.2930000 0.0000000
482 482 1 0.0000000 16.2930000 19.0080000 2.7150000
483 483 1 0.0000000 19.0080000 19.0080000 0.0000000
484 484 1 0.0000000 19.0080000 16.2930000 2.7150000
485 485 1 0.0000000 20.3660000 17.6510000 4.0730000
486 486 1 0.0000000 17.6510000 17.6510000 1.3580000
487 487 1 0.0000000 17.6510000 20.3660000 4.0730000
488 488 1 0.0000000 20.3660000 20.3660000 1.3580000
489 489 1 0.0000000 16.2930000 16.2930000 5.4310000
490 490 1 0.0000000 16.2930000 19.0080000 8.1460000
491 491 1 0.0000000 19.0080000 19.0080000 5.4310000
492 492 1 0.0000000 19.0080000 16.2930000 8.1460000
493 493 1 0.0000000 20.3660000 17.6510000 9.5040000
494 494 1 0.0000000 17.6510000 17.6510000 6.7890000
495 495 1 0.0000000 17.6510000 20.3660000 9.5040000
496 496 1 0.0000000 20.3660000 20.3660000 6.7890000
497 497 1 0.0000000 16.2930000 16.2930000 10.8620000
498 498 1 0.0000000 16.2930000 19.0080000 13.5770000
499 499 1 0.0000000 19.0080000 19.0080000 10.8620000
500 500 1 0.0000000 19.0080000 16.2930000 13.5770000
501 501 1 0.0000000 20.3660000 17.6510000 14.9350000
502 502 1 0.0000000 17.6510000 17.6510000 12.2200000
503 503 1 0.0000000 17.6510000 20.3660000 14.9350000
504 504 1 0.0000000 20.3660000 20.3660000 12.2200000
505 505 1 0.0000000 16.2930000 16.2930000 16.2930000
506 506 1 0.0000000 16.2930000 19.0080000 19.0080000
507 507 1 0.0000000 19.0080000 19.0080000 16.2930000
508 508 1 0.0000000 19.0080000 16.2930000 19.0080000
509 509 1 0.0000000 20.3660000 17.6510000 20.3660000
510 510 1 0.0000000 17.6510000 17.6510000 17.6510000
511 511 1 0.0000000 17.6510000 20.3660000 20.3660000
512 512 1 0.0000000 20.3660000 20.3660000 17.6510000

View File

@ -1,29 +0,0 @@
LAMMPS description
8 atoms
0 bonds
0 angles
0 dihedrals
0 impropers
1 atom types
0 bond types
0 angle types
0 dihedral types
0 improper types
0.0000000 5.4310000 xlo xhi
0.0000000 5.4310000 ylo yhi
0.0000000 5.4310000 zlo zhi
Atoms
1 1 1 0.0000000 0.0000000 0.0000000 0.0000000
2 2 1 0.0000000 1.3577500 1.3577500 1.3572000
3 3 1 0.0000000 2.7155000 2.7155000 0.0000000
4 4 1 0.0000000 4.0732500 4.0732500 1.3572000
5 5 1 0.0000000 2.7155000 0.0000000 2.7144000
6 6 1 0.0000000 4.0732500 1.3577500 4.0732500
7 7 1 0.0000000 0.0000000 2.7155000 2.7155000
8 8 1 0.0000000 1.3577500 4.0732500 4.0732500

View File

@ -1,58 +0,0 @@
LAMMPS (16 Jul 2018)
Reading data file ...
orthogonal box = (0 0 0) to (5.431 5.431 5.431)
2 by 2 by 1 MPI processor grid
reading atoms ...
8 atoms
Finding 1-2 1-3 1-4 neighbors ...
special bond factors lj: 0 0 0
special bond factors coul: 0 0 0
0 = max # of 1-2 neighbors
0 = max # of 1-3 neighbors
0 = max # of 1-4 neighbors
1 = max # of special neighbors
Neighbor list info ...
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 4
ghost atom cutoff = 4
binsize = 2, bins = 3 3 3
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair tersoff, perpetual
attributes: full, newton on
pair build: full/bin
stencil: full/bin/3d
bin: standard
Calculating Anharmonic Dynamical Matrix...
Third Order calculation took 0.043923 seconds
Finished Calculating Third Order Tensor
Loop time of 1.22619e+06 on 4 procs for 0 steps with 8 atoms
0.0% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.013707 | 0.016582 | 0.019588 | 2.2 | 0.00
Bond | 8.1341e-05 | 8.7207e-05 | 9.3228e-05 | 0.0 | 0.00
Neigh | 0 | 0 | 0 | 0.0 | 0.00
Comm | 0.019285 | 0.022435 | 0.025684 | 2.0 | 0.00
Output | 0 | 0 | 0 | 0.0 | 0.00
Modify | 0 | 0 | 0 | 0.0 | 0.00
Other | | 1.226e+06 | | |100.00
Nlocal: 2 ave 2 max 2 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Nghost: 56 ave 56 max 56 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Neighs: 0 ave 0 max 0 min
Histogram: 4 0 0 0 0 0 0 0 0 0
FullNghs: 32 ave 32 max 32 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Total # of neighbors = 128
Ave neighs/atom = 16
Ave special neighs/atom = 0
Neighbor list builds = 0
Dangerous builds = 0
Total wall time: 0:00:00

View File

@ -1,29 +0,0 @@
LAMMPS description
8 atoms
0 bonds
0 angles
0 dihedrals
0 impropers
1 atom types
0 bond types
0 angle types
0 dihedral types
0 improper types
0.0000000 5.4310000 xlo xhi
0.0000000 5.4310000 ylo yhi
0.0000000 5.4310000 zlo zhi
Atoms
1 1 1 0.0000000 0.0000000 0.0000000 0.0000000
2 2 1 0.0000000 1.3577500 1.3577500 1.3572000
3 3 1 0.0000000 2.7155000 2.7155000 0.0000000
4 4 1 0.0000000 4.0732500 4.0732500 1.3572000
5 5 1 0.0000000 2.7155000 0.0000000 2.7144000
6 6 1 0.0000000 4.0732500 1.3577500 4.0732500
7 7 1 0.0000000 0.0000000 2.7155000 2.7155000
8 8 1 0.0000000 1.3577500 4.0732500 4.0732500

View File

@ -3,12 +3,11 @@ matrices from finite temperature MD simulations, which can then be
used to compute phonon dispersion relations, directly from molecular
dynamics simulations.
It also contains two commands to compute the dynamical matrix and
the corresponding third order matrix at pre-optimized positions
through finite differences.
It also contains a command to compute the dynamical matrix at
pre-optimized positions through finite differences.
See the doc page for the fix phonon command or the dynamical_matrix
third_order commands for detailed usage instructions.
command for detailed usage instructions.
Use of this package requires building LAMMPS with FFT suppport, as
described in doc/Section_start.html.
@ -30,5 +29,5 @@ The person who created fix phonon is Ling-Ti Kong (konglt at
sjtu.edu.cn) at Shanghai Jiao Tong University. Contact him directly
if you have questions.
The person who created dynamical_matrix and third_order is
Charlie Sievers at UC Davis.
The person who created the dynamical_matrix command is Charlie Sievers
at UC Davis. Contact him directly if you have questions about his code.

View File

@ -1,560 +0,0 @@
//
// Created by charlie sievers on 7/5/18.
//
#include <mpi.h>
#include <cstdlib>
#include "third_order.h"
#include "atom.h"
#include "complex"
#include "domain.h"
#include "comm.h"
#include "group.h"
#include "force.h"
#include "math_extra.h"
#include "memory.h"
#include "bond.h"
#include "angle.h"
#include "dihedral.h"
#include "improper.h"
#include "kspace.h"
#include "update.h"
#include "neighbor.h"
#include "pair.h"
#include "timer.h"
#include "finish.h"
#include <algorithm>
using namespace LAMMPS_NS;
enum{REGULAR,BALLISTICO};
/* ---------------------------------------------------------------------- */
ThirdOrder::ThirdOrder(LAMMPS *lmp) : Pointers(lmp), fp(NULL)
{
external_force_clear = 1;
}
/* ---------------------------------------------------------------------- */
ThirdOrder::~ThirdOrder()
{
if (fp && me == 0) fclose(fp);
memory->destroy(groupmap);
fp = NULL;
}
/* ----------------------------------------------------------------------
setup without output or one-time post-init setup
flag = 0 = just force calculation
flag = 1 = reneighbor and force calculation
------------------------------------------------------------------------- */
void ThirdOrder::setup()
{
// setup domain, communication and neighboring
// acquire ghosts
// build neighbor lists
if (triclinic) domain->x2lamda(atom->nlocal);
domain->pbc();
domain->reset_box();
comm->setup();
if (neighbor->style) neighbor->setup_bins();
comm->exchange();
comm->borders();
if (triclinic) domain->lamda2x(atom->nlocal+atom->nghost);
domain->image_check();
domain->box_too_small_check();
neighbor->build(1);
neighbor->ncalls = 0;
neighbor->every = 3; // build every this many steps
neighbor->delay = 1;
neighbor->ago = 0;
neighbor->ndanger = 0;
// compute all forces
external_force_clear = 0;
eflag=0;
vflag=0;
update_force();
if (gcount == atom->natoms)
for (bigint i=0; i<atom->natoms; i++)
groupmap[i] = i;
else
create_groupmap();
}
/* ---------------------------------------------------------------------- */
void ThirdOrder::command(int narg, char **arg)
{
MPI_Comm_rank(world,&me);
if (domain->box_exist == 0)
error->all(FLERR,"Third_order command before simulation box is defined");
if (narg < 2) error->all(FLERR,"Illegal third_oreder command");
lmp->init();
// orthogonal vs triclinic simulation box
triclinic = domain->triclinic;
if (force->pair && force->pair->compute_flag) pair_compute_flag = 1;
else pair_compute_flag = 0;
if (force->kspace && force->kspace->compute_flag) kspace_compute_flag = 1;
else kspace_compute_flag = 0;
// group and style
igroup = group->find(arg[0]);
if (igroup == -1) error->all(FLERR,"Could not find third_order group ID");
groupbit = group->bitmask[igroup];
gcount = group->count(igroup);
dynlen = (gcount)*3;
memory->create(groupmap,atom->natoms,"total_group_map:totalgm");
update->setupflag = 1;
int style = -1;
if (strcmp(arg[1],"regular") == 0) style = REGULAR;
else if (strcmp(arg[1],"ballistico") == 0) style = BALLISTICO;
else error->all(FLERR,"Illegal Dynamical Matrix command");
// set option defaults
binaryflag = 0;
scaleflag = 0;
compressed = 0;
file_flag = 0;
file_opened = 0;
conversion = 1;
// read options from end of input line
if (style == REGULAR) options(narg-3,&arg[3]); //COME BACK
else if (style == BALLISTICO) options(narg-3,&arg[3]); //COME BACK
else if (comm->me == 0 && screen) fprintf(screen,"Illegal Dynamical Matrix command\n");
del = force->numeric(FLERR, arg[2]);
// move atoms by 3-vector or specified variable(s)
if (style == REGULAR) {
setup();
timer->init();
timer->barrier_start();
calculateMatrix();
timer->barrier_stop();
}
if (style == BALLISTICO) {
setup();
convert_units(update->unit_style);
conversion = conv_energy/conv_distance/conv_distance;
timer->init();
timer->barrier_start();
calculateMatrix();
timer->barrier_stop();
}
Finish finish(lmp);
finish.end(1);
}
/* ----------------------------------------------------------------------
parse optional parameters
------------------------------------------------------------------------- */
void ThirdOrder::options(int narg, char **arg)
{
if (narg < 0) error->all(FLERR,"Illegal dynamical_matrix command");
int iarg = 0;
const char *filename = "third_order.txt";
while (iarg < narg) {
if (strcmp(arg[iarg],"file") == 0) {
if (iarg+2 > narg) error->all(FLERR, "Illegal dynamical_matrix command");
filename = arg[iarg + 1];
file_flag = 1;
iarg += 2;
}
else if (strcmp(arg[iarg],"binary") == 0) {
if (iarg + 2 > narg) error->all(FLERR, "Illegal dynamical_matrix command");
if (strcmp(arg[iarg+1],"gzip") == 0) {
compressed = 1;
}
else if (strcmp(arg[iarg+1],"yes") == 0) {
binaryflag = 1;
}
iarg += 2;
} else error->all(FLERR,"Illegal dynamical_matrix command");
}
if (file_flag == 1 && me == 0) {
openfile(filename);
}
}
/* ----------------------------------------------------------------------
generic opening of a file
ASCII or binary or gzipped
some derived classes override this function
------------------------------------------------------------------------- */
void ThirdOrder::openfile(const char* filename)
{
// if file already opened, return
if (file_opened) return;
if (compressed) {
#ifdef LAMMPS_GZIP
char gzip[128];
sprintf(gzip,"gzip -6 > %s",filename);
#ifdef _WIN32
fp = _popen(gzip,"wb");
#else
fp = popen(gzip,"w");
#endif
#else
error->one(FLERR,"Cannot open gzipped file");
#endif
} else if (binaryflag) {
fp = fopen(filename,"wb");
} else {
fp = fopen(filename,"w");
}
if (fp == NULL) error->one(FLERR,"Cannot open dump file");
file_opened = 1;
}
/* ----------------------------------------------------------------------
create dynamical matrix
------------------------------------------------------------------------- */
void ThirdOrder::calculateMatrix()
{
int local_idx; // local index
int local_jdx; // second local index
int local_kdx; // third local index
int nlocal = atom->nlocal;
int natoms = atom->natoms;
int *gm = groupmap;
double **f = atom->f;
double *dynmat = new double[3*dynlen];
double *fdynmat = new double[3*dynlen];
memset(&dynmat[0],0,dynlen*sizeof(double));
memset(&fdynmat[0],0,dynlen*sizeof(double));
if (comm->me == 0 && screen) fprintf(screen,"Calculating Anharmonic Dynamical Matrix...\n");
update->nsteps = 0;
for (bigint i=1; i<=natoms; i++){
local_idx = atom->map(i);
for (bigint alpha=0; alpha<3; alpha++){
for (bigint j=1; j<=natoms; j++){
local_jdx = atom->map(j);
for (int beta=0; beta<3; beta++){
displace_atom(local_idx, alpha, 1);
displace_atom(local_jdx, beta, 1);
update_force();
for (bigint k=1; k<=natoms; k++){
local_kdx = atom->map(k);
for (int gamma=0; gamma<3; gamma++){
if (local_idx >= 0 && local_jdx >= 0 && local_kdx >= 0
&& gm[i-1] >= 0 && gm[j-1] >= 0 && gm[k-1] >= 0
&& local_kdx < nlocal) {
dynmat[gm[k-1]*3+gamma] += f[local_kdx][gamma];
}
}
}
displace_atom(local_jdx, beta, -2);
update_force();
for (bigint k=1; k<=natoms; k++){
local_kdx = atom->map(k);
for (int gamma=0; gamma<3; gamma++){
if (local_idx >= 0 && local_jdx >= 0 && local_kdx >= 0
&& gm[i-1] >= 0 && gm[j-1] >= 0 && gm[k-1] >= 0
&& local_kdx < nlocal) {
dynmat[gm[k-1]*3+gamma] -= f[local_kdx][gamma];
}
}
}
displace_atom(local_jdx, beta, 1);
displace_atom(local_idx,alpha,-2);
displace_atom(local_jdx, beta, 1);
update_force();
for (bigint k=1; k<=natoms; k++){
local_kdx = atom->map(k);
for (int gamma=0; gamma<3; gamma++){
if (local_idx >= 0 && local_jdx >= 0 && local_kdx >= 0
&& gm[i-1] >= 0 && gm[j-1] >= 0 && gm[k-1] >= 0
&& local_kdx < nlocal) {
dynmat[gm[k-1]*3+gamma] -= f[local_kdx][gamma];
}
}
}
displace_atom(local_jdx, beta, -2);
update_force();
for (bigint k=1; k<=natoms; k++){
local_kdx = atom->map(k);
for (int gamma=0; gamma<3; gamma++){
if (local_idx >= 0 && local_jdx >= 0 && local_kdx >= 0
&& gm[i-1] >= 0 && gm[j-1] >= 0 && gm[k-1] >= 0
&& local_kdx < nlocal) {
dynmat[gm[k-1]*3+gamma] += f[local_kdx][gamma];
dynmat[gm[k-1]*3+gamma] /= -(4 * del * del);
}
}
}
displace_atom(local_jdx, beta, 1);
displace_atom(local_idx, alpha, 1);
MPI_Reduce(dynmat,fdynmat,3*dynlen,MPI_DOUBLE,MPI_SUM,0,world);
if (me == 0){
writeMatrix(fdynmat, gm[i-1], alpha, gm[j-1], beta);
}
memset(&dynmat[0],0,dynlen*sizeof(double));
}
}
}
}
delete [] dynmat;
delete [] fdynmat;
if (screen && me ==0 ) fprintf(screen,"Finished Calculating Third Order Tensor\n");
}
/* ----------------------------------------------------------------------
write dynamical matrix
------------------------------------------------------------------------- */
void ThirdOrder::writeMatrix(double *dynmat, int i, int a, int j, int b)
{
if (me != 0)
return;
if (!binaryflag && fp) {
clearerr(fp);
for (int k = 0; k < gcount; k++){
if (dynmat[k*3] > 1.0e-16
&& dynmat[k*3+1] > 1.0e-16
&& dynmat[k*3+2] > 1.0e-16)
fprintf(fp,
"%d %d %d %d %d %7.8f %7.8f %7.8f\n",
i+1, a + 1, j+1, b + 1, groupmap[k]+1,
dynmat[k*3] * conversion,
dynmat[k*3+1] * conversion,
dynmat[k*3+2] * conversion);
}
}
else if (binaryflag && fp){
clearerr(fp);
fwrite(&dynmat[0], sizeof(double), dynlen, fp);
}
if (ferror(fp)) error->one(FLERR,"Error writing to file");
}
/* ----------------------------------------------------------------------
Displace atoms
---------------------------------------------------------------------- */
void ThirdOrder::displace_atom(int local_idx, int direction, int magnitude)
{
if (local_idx < 0) return;
double **x = atom->x;
int *sametag = atom->sametag;
int j = local_idx;
x[local_idx][direction] += del*magnitude;
while (sametag[j] >= 0){
j = sametag[j];
x[j][direction] += del*magnitude;
}
}
/* ----------------------------------------------------------------------
evaluate potential energy and forces
may migrate atoms due to reneighboring
return new energy, which should include nextra_global dof
return negative gradient stored in atom->f
return negative gradient for nextra_global dof in fextra
------------------------------------------------------------------------- */
void ThirdOrder::update_force()
{
force_clear();
timer->stamp();
if (pair_compute_flag) {
force->pair->compute(eflag,vflag);
timer->stamp(Timer::PAIR);
}
if (atom->molecular) {
if (force->bond) force->bond->compute(eflag,vflag);
if (force->angle) force->angle->compute(eflag,vflag);
if (force->dihedral) force->dihedral->compute(eflag,vflag);
if (force->improper) force->improper->compute(eflag,vflag);
timer->stamp(Timer::BOND);
}
if (kspace_compute_flag) {
force->kspace->compute(eflag,vflag);
timer->stamp(Timer::KSPACE);
}
if (force->newton) {
comm->reverse_comm();
timer->stamp(Timer::COMM);
}
++ update->nsteps;
}
/* ----------------------------------------------------------------------
clear force on own & ghost atoms
clear other arrays as needed
------------------------------------------------------------------------- */
void ThirdOrder::force_clear()
{
if (external_force_clear) return;
// clear global force array
// if either newton flag is set, also include ghosts
size_t nbytes = sizeof(double) * atom->nlocal;
if (force->newton) nbytes += sizeof(double) * atom->nghost;
if (nbytes) {
memset(&atom->f[0][0],0,3*nbytes);
}
}
/* ---------------------------------------------------------------------- */
void ThirdOrder::convert_units(const char *style)
{
// physical constants from:
// http://physics.nist.gov/cuu/Constants/Table/allascii.txt
// using thermochemical calorie = 4.184 J
if (strcmp(style,"lj") == 0) {
error->all(FLERR,"Conversion Not Set");
//conversion = 1; // lj -> 10 J/mol
} else if (strcmp(style,"real") == 0) {
conv_energy = 418.4; // kcal/mol -> 10 J/mol
conv_mass = 1; // g/mol -> g/mol
conv_distance = 1; // angstrom -> angstrom
} else if (strcmp(style,"metal") == 0) {
conv_energy = 9648.5; // eV -> 10 J/mol
conv_mass = 1; // g/mol -> g/mol
conv_distance = 1; // angstrom -> angstrom
} else if (strcmp(style,"si") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Multiplication by Large Float");
conv_energy = 6.022E22; // J -> 10 J/mol
conv_mass = 6.022E26; // kg -> g/mol
conv_distance = 1E-10; // meter -> angstrom
} else if (strcmp(style,"cgs") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Multiplication by Large Float");
conv_energy = 6.022E12; // Erg -> 10 J/mol
conv_mass = 6.022E23; // g -> g/mol
conv_distance = 1E-7; // centimeter -> angstrom
} else if (strcmp(style,"electron") == 0) {
conv_energy = 262550; // Hartree -> 10 J/mol
conv_mass = 1; // amu -> g/mol
conv_distance = 0.529177249; // bohr -> angstrom
} else if (strcmp(style,"micro") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Untested Conversion");
conv_energy = 6.022E10; // picogram-micrometer^2/microsecond^2 -> 10 J/mol
conv_mass = 6.022E11; // pg -> g/mol
conv_distance = 1E-4; // micrometer -> angstrom
} else if (strcmp(style,"nano") == 0) {
if (comm->me) error->warning(FLERR,"Conversion Warning: Untested Conversion");
conv_energy = 6.022E4; // attogram-nanometer^2/nanosecond^2 -> 10 J/mol
conv_mass = 6.022E5; // ag -> g/mol
conv_distance = 0.1; // angstrom -> angstrom
} else error->all(FLERR,"Units Type Conversion Not Found");
}
/* ---------------------------------------------------------------------- */
void ThirdOrder::create_groupmap()
{
//Create a group map which maps atom order onto group
int local_idx; // local index
int gid = 0; //group index
int nlocal = atom->nlocal;
int *mask = atom->mask;
bigint natoms = atom->natoms;
int *recv = new int[comm->nprocs];
int *displs = new int[comm->nprocs];
int *temp_groupmap = new int[natoms];
//find number of local atoms in the group (final_gid)
for (bigint i=1; i<=natoms; i++){
local_idx = atom->map(i);
if ((local_idx >= 0) && (local_idx < nlocal) && mask[local_idx] & groupbit)
gid += 1; // gid at the end of loop is final_Gid
}
//create an array of length final_gid
int *sub_groupmap = new int[gid];
gid = 0;
//create a map between global atom id and group atom id for each proc
for (bigint i=1; i<=natoms; i++){
local_idx = atom->map(i);
if ((local_idx >= 0) && (local_idx < nlocal) && mask[local_idx] & groupbit){
sub_groupmap[gid] = i;
gid += 1;
}
}
//populate arrays for Allgatherv
for (int i=0; i<comm->nprocs; i++){
recv[i] = 0;
}
recv[comm->me] = gid;
MPI_Allreduce(recv,displs,4,MPI_INT,MPI_SUM,world);
for (int i=0; i<comm->nprocs; i++){
recv[i]=displs[i];
if (i>0) displs[i] = displs[i-1]+recv[i-1];
else displs[i] = 0;
}
//combine subgroup maps into total temporary groupmap
MPI_Allgatherv(sub_groupmap,gid,MPI_INT,temp_groupmap,recv,displs,MPI_INT,world);
std::sort(temp_groupmap,temp_groupmap+gcount);
//populate member groupmap based on temp groupmap
for (bigint i=0; i<natoms; i++){
if (i==temp_groupmap[i]-1)
groupmap[i] = temp_groupmap[i]-1;
else
groupmap[i] = -1;
}
//free that memory!
delete[] recv;
delete[] displs;
delete[] sub_groupmap;
delete[] temp_groupmap;
}

View File

@ -1,76 +0,0 @@
//
// Created by charlie sievers on 7/5/18.
//
#ifdef COMMAND_CLASS
CommandStyle(third_order,ThirdOrder)
#else
#ifndef LMP_THIRD_ORDER_H
#define LMP_THIRD_ORDER_H
#include "pointers.h"
namespace LAMMPS_NS {
class ThirdOrder : protected Pointers {
public:
ThirdOrder(class LAMMPS *);
virtual ~ThirdOrder();
void command(int, char **);
void setup();
protected:
int eflag,vflag; // flags for energy/virial computation
int external_force_clear; // clear forces locally or externally
int triclinic; // 0 if domain is orthog, 1 if triclinic
int pairflag;
int pair_compute_flag; // 0 if pair->compute is skipped
int kspace_compute_flag; // 0 if kspace->compute is skipped
int nvec; // local atomic dof = length of xvec
void update_force();
void force_clear();
virtual void openfile(const char* filename);
private:
void options(int, char **);
void create_groupmap();
void calculateMatrix();
void convert_units(const char *style);
void displace_atom(int local_idx, int direction, int magnitude);
void writeMatrix(double *, int, int, int, int);
double conversion;
double conv_energy;
double conv_distance;
double conv_mass;
double del;
int igroup,groupbit;
bigint dynlen;
int scaleflag;
int me;
int gcount; // number of atoms in group
int *groupmap;
int compressed; // 1 if dump file is written compressed, 0 no
int binaryflag; // 1 if dump file is written binary, 0 no
int file_opened; // 1 if openfile method has been called, 0 no
int file_flag; // 1 custom file name, 0 dynmat.dat
FILE *fp;
};
}
#endif //LMP_THIRD_ORDER_H
#endif