remove third_order command and ASE based examples to be added in a new pull request
This commit is contained in:
@ -1,39 +0,0 @@
|
||||
from ase import Atoms, Atom
|
||||
from ase.calculators.lammpslib import LAMMPSlib
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from mpi4py import MPI
|
||||
|
||||
comm = MPI.COMM_WORLD
|
||||
rank = comm.Get_rank()
|
||||
|
||||
GaAs = Atoms([Atom('Ga', (0.0, 0.0, 0.0)),
|
||||
Atom('As', (1.413425, 1.413425, 1.413425))],
|
||||
cell=[(0.0, 2.82685, 2.82685), (2.82685, 0.0, 2.82685), (2.82685, 2.82685, 0.0)],
|
||||
pbc=True,)
|
||||
|
||||
cmds = ["pair_style bop", "pair_coeff * * ../../../../../potentials/GaAs.bop.table Ga As",
|
||||
"comm_modify cutoff 12"]
|
||||
|
||||
mends = ["info system",
|
||||
"dynamical_matrix all eskm 0.000001 file dynmat.dat binary no",
|
||||
"neigh_modify delay 0"]
|
||||
|
||||
N = 5
|
||||
GaAs = GaAs.repeat([N, N, N])
|
||||
|
||||
lammps = LAMMPSlib(lmpcmds=cmds, atom_types={'Ga': 1, 'As': 2}, amendments=mends, log_file='lammps.log')
|
||||
|
||||
GaAs.set_calculator(lammps)
|
||||
GaAs.get_potential_energy()
|
||||
|
||||
if rank == 0:
|
||||
dynmat = np.loadtxt("dynmat.dat")
|
||||
dynmat = dynmat.reshape(([int(3*(len(dynmat)/3)**0.5), int(3*(len(dynmat)/3)**0.5)]))
|
||||
eigv = np.linalg.eigvals(dynmat)
|
||||
eigv.sort()
|
||||
eigv = np.sqrt(np.abs(eigv))/(2*np.pi)
|
||||
plt.hist(eigv, 80)
|
||||
plt.xlabel('Frequency (THz)')
|
||||
plt.show()
|
||||
|
||||
@ -1,39 +0,0 @@
|
||||
from ase import Atoms, Atom
|
||||
from ase.calculators.lammpslib import LAMMPSlib
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from mpi4py import MPI
|
||||
|
||||
comm = MPI.COMM_WORLD
|
||||
rank = comm.Get_rank()
|
||||
|
||||
GaN = Atoms([Atom('Ga', (1.59, 0.917986928012, 0.0)),
|
||||
Atom('Ga', (1.59, -0.917986928012, 2.583)),
|
||||
Atom('N', (1.59, 0.917986928012, 1.98891)),
|
||||
Atom('N', (1.59, -0.917986928012, 4.57191))],
|
||||
cell=[(1.59, -2.75396078403, 0.0), (1.59, 2.75396078403, 0.0), (0.0, 0.0, 5.166)],
|
||||
pbc=True)
|
||||
|
||||
cmds = ["pair_style tersoff", "pair_coeff * * ../../../../../potentials/GaN.tersoff Ga N"]
|
||||
|
||||
mends = ["info system",
|
||||
"dynamical_matrix all eskm 0.000001 file dynmat.dat binary no",
|
||||
"neigh_modify delay 0"]
|
||||
|
||||
N = 6
|
||||
GaN = GaN.repeat([N, N, N])
|
||||
|
||||
lammps = LAMMPSlib(lmpcmds=cmds, atom_types={'Ga': 1, 'N': 2}, amendments=mends, log_file='lammps.log')
|
||||
|
||||
GaN.set_calculator(lammps)
|
||||
GaN.get_potential_energy()
|
||||
|
||||
if rank == 0:
|
||||
dynmat = np.loadtxt("dynmat.dat")
|
||||
dynmat = dynmat.reshape(([int(3*(len(dynmat)/3)**0.5), int(3*(len(dynmat)/3)**0.5)]))
|
||||
eigv = np.linalg.eigvals(dynmat)
|
||||
eigv.sort()
|
||||
eigv = np.sqrt(np.abs(eigv))/(2*np.pi)
|
||||
plt.hist(eigv, 80)
|
||||
plt.xlabel('Frequency (THz)')
|
||||
plt.show()
|
||||
@ -1,57 +0,0 @@
|
||||
from ase import Atoms, Atom
|
||||
from ase.calculators.lammpslib import LAMMPSlib
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from mpi4py import MPI
|
||||
|
||||
comm = MPI.COMM_WORLD
|
||||
rank = comm.Get_rank()
|
||||
|
||||
quartz = Atoms(
|
||||
[Atom('Si', (1.1545226, -1.99969180169, 0.0)),
|
||||
Atom('Si', (1.1545226, 1.99969180169, 3.6036)),
|
||||
Atom('Si', (2.6069548, 2.15247249027e-16, 1.8018)),
|
||||
Atom('O', (1.6724232, -0.624132037742, 0.64378314)),
|
||||
Atom('O', (1.6724232, 0.624132037742, 2.9598186618)),
|
||||
Atom('O', (2.1623026, -2.49695388906, 4.2473849418)),
|
||||
Atom('O', (3.5392742, 1.13629495821, 1.1580150582)),
|
||||
Atom('O', (3.5392742, -1.13629495821, 2.4455813382)),
|
||||
Atom('O', (2.1623026, 2.49695388906, 4.76161686))],
|
||||
cell=[(2.458, -4.257380885, 0.0), (2.458, 4.257380885, 0.0), (0.0, 0.0, 5.4054)],
|
||||
pbc=True,
|
||||
)
|
||||
|
||||
# number of repeats
|
||||
N = 3
|
||||
quartz = quartz.repeat([N, N, N])
|
||||
|
||||
header = ['units metal',
|
||||
'atom_style charge',
|
||||
'atom_modify map array sort 0 0']
|
||||
|
||||
cmds = ["pair_style buck/coul/long 10.0 8.0",
|
||||
"pair_coeff 1 1 0 1 0",
|
||||
"pair_coeff 1 2 18003.7572 0.20520 133.5381",
|
||||
"pair_coeff 2 2 1388.7730 0.36232 175.0000",
|
||||
"kspace_style ewald 1.0e-12",
|
||||
"set type 1 charge 2.4",
|
||||
"set type 2 charge -1.2"]
|
||||
|
||||
mends = ["dynamical_matrix all eskm 0.000001 file dynmat.dat binary no",
|
||||
"neigh_modify delay 0"]
|
||||
|
||||
|
||||
lammps = LAMMPSlib(lmpcmds=cmds, lammps_header=header, amendments=mends, log_file='lammps.log')
|
||||
|
||||
quartz.set_calculator(lammps)
|
||||
quartz.get_potential_energy()
|
||||
|
||||
if rank == 0:
|
||||
dynmat = np.loadtxt("dynmat.dat")
|
||||
dynmat = dynmat.reshape(([int(3*(len(dynmat)/3)**0.5), int(3*(len(dynmat)/3)**0.5)]))
|
||||
eigv = np.linalg.eigvals(dynmat)
|
||||
eigv.sort()
|
||||
plt.hist(33*np.sqrt(np.abs(eigv))/(2*np.pi), 80)
|
||||
plt.xlabel('Frequency (cm-1)')
|
||||
plt.show()
|
||||
|
||||
@ -1,48 +0,0 @@
|
||||
# third_order command
|
||||
|
||||
## Syntax
|
||||
|
||||
```
|
||||
third_order group-ID style args keyword value ...
|
||||
```
|
||||
|
||||
* group-ID = ID of group of atoms to displace
|
||||
* style = *regular* or *ballistico*
|
||||
```
|
||||
*regular* args = gamma
|
||||
gamma = finite difference displacement length
|
||||
*ballistico* args = gamma
|
||||
gamma = finite difference displacement length
|
||||
```
|
||||
* zero or more keyword/value pairs may be appended
|
||||
* keyword = *file* or *binary*
|
||||
```
|
||||
*file* value = output_file
|
||||
output_file = name of file to dump the dynamical matrix into
|
||||
*binary* values = *no* or *gzip*
|
||||
```
|
||||
|
||||
## Examples
|
||||
|
||||
```
|
||||
third_order 1 regular 0.000001
|
||||
third_order 1 ballistico 0.000001
|
||||
third_order 3 regular 0.00004 file third_order.dat
|
||||
third_order 5 ballistico 0.00000001 file third_order.dat binary gzip
|
||||
```
|
||||
|
||||
## Description
|
||||
|
||||
Calculate the finite difference third order tensor of the selected group.
|
||||
|
||||
## Restrictions
|
||||
|
||||
None
|
||||
|
||||
## Related commands
|
||||
|
||||
None
|
||||
|
||||
## Default
|
||||
|
||||
The option defaults are file = "third_order.dat", binary = no
|
||||
@ -1,25 +0,0 @@
|
||||
# LAMMPS LATTICE DYNAMICS COMMANDS
|
||||
|
||||
## THIRD ORDER TENSOR CALCULATOR
|
||||
|
||||
This directory contains the ingredients to calculate a third order tensor.
|
||||
|
||||
Example:
|
||||
```
|
||||
$THIRD_ORDER=third_order #tensor output file
|
||||
NP=4 #number of processors
|
||||
mpirun -np $NP lmp_mpi -in in.silicon -out out.silicon
|
||||
combine.sh third_order
|
||||
```
|
||||
|
||||
To test out a different silicon example:
|
||||
```
|
||||
$THIRD_ORDER=third_order
|
||||
$LMP_FILE=amorphous_silicon.lmp
|
||||
cp lmp_bank/$LMP_FILE ./silicon_input_file.lmp
|
||||
NP=4 #number of processors
|
||||
mpirun -np $NP lmp_mpi -in in.silicon -out out.silicon
|
||||
bash combine.sh $THIRD_ORDER
|
||||
```
|
||||
|
||||
## Requires: MANYBODY and MOLECULE packages
|
||||
@ -1,66 +0,0 @@
|
||||
# Tersoff parameters for various elements and mixtures
|
||||
# multiple entries can be added to this file, LAMMPS reads the ones it needs
|
||||
# these entries are in LAMMPS "metal" units:
|
||||
# A,B = eV; lambda1,lambda2,lambda3 = 1/Angstroms; R,D = Angstroms
|
||||
# other quantities are unitless
|
||||
|
||||
# Aidan Thompson (athomps at sandia.gov) takes full blame for this
|
||||
# file. It specifies various potentials published by J. Tersoff for
|
||||
# silicon, carbon and germanium. Since Tersoff published several
|
||||
# different silicon potentials, I refer to them using atom types
|
||||
# Si(B), Si(C) and Si(D). The last two are almost almost identical but
|
||||
# refer to two different publications. These names should be used in
|
||||
# the LAMMPS command when the file is invoked. For example:
|
||||
# pair_coeff * * SiCGe.tersoff Si(B). The Si(D), C and Ge potentials
|
||||
# can be used pure silicon, pure carbon, pure germanium, binary SiC,
|
||||
# and binary SiGe, but not binary GeC or ternary SiGeC. LAMMPS will
|
||||
# generate an error if this file is used with any combination
|
||||
# involving C and Ge, since there are no entries for the GeC
|
||||
# interactions (Tersoff did not publish parameters for this
|
||||
# cross-interaction.)
|
||||
|
||||
# format of a single entry (one or more lines):
|
||||
# element 1, element 2, element 3,
|
||||
# m, gamma, lambda3, c, d, costheta0, n, beta, lambda2, B, R, D, lambda1, A
|
||||
|
||||
# The original Tersoff potential for Silicon, Si(B)
|
||||
# J. Tersoff, PRB, 37, 6991 (1988)
|
||||
|
||||
Si(B) Si(B) Si(B) 3.0 1.0 1.3258 4.8381 2.0417 0.0000 22.956
|
||||
0.33675 1.3258 95.373 3.0 0.2 3.2394 3264.7
|
||||
|
||||
# The later Tersoff potential for Silicon, Si(C)
|
||||
# J. Tersoff, PRB, 38, 9902 (1988)
|
||||
|
||||
Si(C) Si(C) Si(C) 3.0 1.0 1.7322 1.0039e5 16.218 -0.59826 0.78734
|
||||
1.0999e-6 1.7322 471.18 2.85 0.15 2.4799 1830.8
|
||||
|
||||
# The later Tersoff potential for Carbon, Silicon, and Germanium
|
||||
# J. Tersoff, PRB, 39, 5566 (1989) + errata (PRB 41, 3248)
|
||||
# The Si and C parameters are very close to those in SiC.tersoff
|
||||
|
||||
C C C 3.0 1.0 0.0 3.8049e4 4.3484 -0.57058 0.72751 1.5724e-7 2.2119 346.74 1.95 0.15 3.4879 1393.6
|
||||
Si(D) Si(D) Si(D) 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 1.1000e-6 1.7322 471.18 2.85 0.15 2.4799 1830.8
|
||||
Ge Ge Ge 3.0 1.0 0.0 1.0643e5 15.652 -0.43884 0.75627 9.0166e-7 1.7047 419.23 2.95 0.15 2.4451 1769.0
|
||||
|
||||
C Si(D) Si(D) 3.0 1.0 0.0 3.8049e4 4.3484 -0.57058 0.72751 1.5724e-7 1.97205 395.1451 2.3573 0.1527 2.9839 1597.3111
|
||||
C Si(D) C 3.0 1.0 0.0 3.8049e4 4.3484 -0.57058 0.72751 0.0 0.0 0.0 1.95 0.15 0.0 0.0
|
||||
C C Si(D) 3.0 1.0 0.0 3.8049e4 4.3484 -0.57058 0.72751 0.0 0.0 0.0 2.3573 0.1527 0.0 0.0
|
||||
|
||||
Si(D) C C 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 1.1000e-6 1.97205 395.1451 2.3573 0.1527 2.9839 1597.3111
|
||||
Si(D) Si(D) C 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 0.0 0.0 0.0 2.3573 0.1527 0.0 0.0
|
||||
Si(D) C Si(D) 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 0.0 0.0 0.0 2.85 0.15 0.0 0.0
|
||||
|
||||
Si(D) Ge Ge 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 1.1000e-6 1.71845 444.7177 2.8996 0.1500 2.4625 1799.6347
|
||||
Si(D) Si(D) Ge 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 0.0 0.0 0.0 2.8996 0.1500 0.0 0.0
|
||||
Si(D) Ge Si(D) 3.0 1.0 0.0 1.0039e5 16.217 -0.59825 0.78734 0.0 0.0 0.0 2.85 0.15 0.0 0.0
|
||||
|
||||
Ge Si(D) Si(D) 3.0 1.0 0.0 1.0643e5 15.652 -0.43884 0.75627 9.0166e-7 1.71845 444.7177 2.8996 0.1500 2.4625 1799.6347
|
||||
Ge Si(D) Ge 3.0 1.0 0.0 1.0643e5 15.652 -0.43884 0.75627 0.0 0.0 0.0 2.95 0.15 0.0 0.0
|
||||
Ge Ge Si(D) 3.0 1.0 0.0 1.0643e5 15.652 -0.43884 0.75627 0.0 0.0 0.0 2.8996 0.1500 0.0 0.0
|
||||
|
||||
# Optimized Tersoff for Carbon: Lindsay and Broido PRB 81, 205441 (2010)
|
||||
# element 1, element 2, element 3,
|
||||
# m, gamma, lambda3, c, d, costheta0, n, beta, lambda2, B, R, D, lambda1, A
|
||||
C(O) C(O) C(O) 3.0 1.0 0.0 3.8049e4 4.3484 -0.930 0.72751 1.5724e-7 2.2119 430.0 1.95 0.15 3.4879 1393.6
|
||||
|
||||
@ -1,17 +0,0 @@
|
||||
#!/bin/bash
|
||||
|
||||
#This script takes one argument
|
||||
#The argument is the base name for the split up tensor
|
||||
#The script then combines and sorts the tensor
|
||||
#$1 file name
|
||||
|
||||
echo "$1"
|
||||
[ -f $1 ] && rm $1
|
||||
|
||||
for i in $(ls ./$1*); do
|
||||
cat $i >> temp
|
||||
rm $i
|
||||
done
|
||||
|
||||
sort temp | sort -s -n -k 3 | sort -s -n -k 1 > $1
|
||||
rm temp
|
||||
@ -1,19 +0,0 @@
|
||||
#############################
|
||||
#Atoms types - mass - charge#
|
||||
#############################
|
||||
#@ 1 atom types #!THIS LINE IS NECESSARY DON'T SPEND HOURS FINDING THAT OUT!#
|
||||
|
||||
variable Si equal 1
|
||||
|
||||
#############
|
||||
#Atom Masses#
|
||||
#############
|
||||
|
||||
mass ${Si} 28.08550
|
||||
|
||||
###########################
|
||||
#Pair Potentials - Tersoff#
|
||||
###########################
|
||||
|
||||
pair_style tersoff
|
||||
pair_coeff * * Si.opt.tersoff Si(D)
|
||||
@ -1,84 +0,0 @@
|
||||
###############################mm
|
||||
# Atom style - charge/vdw/bonded#
|
||||
#################################
|
||||
atom_style full
|
||||
|
||||
##############################################
|
||||
#Units Metal : eV - ps - angstrom - bar#
|
||||
# Real : kcal/mol - fs - angstrom - atm#
|
||||
##############################################
|
||||
units metal
|
||||
|
||||
############
|
||||
#Run number#
|
||||
############
|
||||
variable run_no equal 0 # is it a restart?
|
||||
variable res_no equal ${run_no}-1 # restart file number
|
||||
|
||||
#######################################
|
||||
#Random Seeds and Domain Decomposition#
|
||||
#######################################
|
||||
variable iseed0 equal 2357
|
||||
variable iseed1 equal 26488
|
||||
variable iseed2 equal 10669
|
||||
processors * * 1
|
||||
|
||||
###########
|
||||
#Data File#
|
||||
###########
|
||||
variable inpfile string silicon_input_file.lmp
|
||||
variable resfile string final_restart.${res_no}
|
||||
variable ff_file string ff-silicon.lmp
|
||||
|
||||
##########
|
||||
#Run Type#
|
||||
##########
|
||||
variable minimise equal 0 #Energy Minimization
|
||||
|
||||
###############################
|
||||
#Molecular Dynamics Parameters#
|
||||
###############################
|
||||
neighbor 1 bin
|
||||
|
||||
################################
|
||||
#Energy Minimization Parameters#
|
||||
################################
|
||||
variable mtraj equal 1 # trajectory output frequency - all system
|
||||
variable etol equal 1e-5 # % change in energy
|
||||
variable ftol equal 1e-5 # max force threshold (force units)
|
||||
variable maxiter equal 10000 # max # of iterations
|
||||
|
||||
########################
|
||||
#3D Periodic Simulation#
|
||||
########################
|
||||
boundary p p p
|
||||
|
||||
#############################
|
||||
#Reading the input structure#
|
||||
#############################
|
||||
if "${run_no} == 0" then "read_data ${inpfile}" else "read_restart ${resfile}"
|
||||
|
||||
#############
|
||||
#Force Field#
|
||||
#############
|
||||
include ${ff_file}
|
||||
|
||||
#####################
|
||||
#Energy Minimization#
|
||||
#####################
|
||||
if "${minimise} <= 0 || ${run_no} > 0" then "jump SELF end_minimise"
|
||||
print "Doing CG minimisation"
|
||||
dump mdcd all dcd ${mtraj} min.dcd
|
||||
dump_modify mdcd unwrap yes
|
||||
min_style cg
|
||||
min_modify line quadratic
|
||||
minimize ${etol} ${ftol} ${maxiter} ${maxiter}
|
||||
reset_timestep 0
|
||||
undump mdcd
|
||||
label end_minimise
|
||||
|
||||
##################
|
||||
#Dynamical Matrix#
|
||||
##################
|
||||
third_order all ballistico 0.00001 file third_order binary no
|
||||
|
||||
@ -1,238 +0,0 @@
|
||||
LAMMPS description
|
||||
|
||||
216 atoms
|
||||
0 bonds
|
||||
0 angles
|
||||
0 dihedrals
|
||||
0 impropers
|
||||
|
||||
1 atom types
|
||||
0 bond types
|
||||
0 angle types
|
||||
0 dihedral types
|
||||
0 improper types
|
||||
|
||||
|
||||
0.0000000 16.293000 xlo xhi
|
||||
0.0000000 16.293000 ylo yhi
|
||||
0.0000000 16.293000 zlo zhi
|
||||
|
||||
Atoms
|
||||
|
||||
1 1 1 0.0000000 0.0000000 0.0000000 0.0000000
|
||||
2 2 1 0.0000000 0.0000000 2.7160000 2.7160000
|
||||
3 3 1 0.0000000 2.7160000 2.7160000 0.0000000
|
||||
4 4 1 0.0000000 2.7160000 0.0000000 2.7160000
|
||||
5 5 1 0.0000000 4.0730000 1.3580000 4.0730000
|
||||
6 6 1 0.0000000 1.3580000 1.3580000 1.3580000
|
||||
7 7 1 0.0000000 1.3580000 4.0730000 4.0730000
|
||||
8 8 1 0.0000000 4.0730000 4.0730000 1.3580000
|
||||
9 9 1 0.0000000 0.0000000 0.0000000 5.4310000
|
||||
10 10 1 0.0000000 0.0000000 2.7160000 8.1460000
|
||||
11 11 1 0.0000000 2.7160000 2.7160000 5.4310000
|
||||
12 12 1 0.0000000 2.7160000 0.0000000 8.1460000
|
||||
13 13 1 0.0000000 4.0730000 1.3580000 9.5040000
|
||||
14 14 1 0.0000000 1.3580000 1.3580000 6.7890000
|
||||
15 15 1 0.0000000 1.3580000 4.0730000 9.5040000
|
||||
16 16 1 0.0000000 4.0730000 4.0730000 6.7890000
|
||||
17 17 1 0.0000000 0.0000000 0.0000000 10.8620000
|
||||
18 18 1 0.0000000 0.0000000 2.7160000 13.5780000
|
||||
19 19 1 0.0000000 2.7160000 2.7160000 10.8620000
|
||||
20 20 1 0.0000000 2.7160000 0.0000000 13.5780000
|
||||
21 21 1 0.0000000 4.0730000 1.3580000 14.9350000
|
||||
22 22 1 0.0000000 1.3580000 1.3580000 12.2200000
|
||||
23 23 1 0.0000000 1.3580000 4.0730000 14.9350000
|
||||
24 24 1 0.0000000 4.0730000 4.0730000 12.2200000
|
||||
25 25 1 0.0000000 0.0000000 5.4310000 0.0000000
|
||||
26 26 1 0.0000000 0.0000000 8.1460000 2.7160000
|
||||
27 27 1 0.0000000 2.7160000 8.1460000 0.0000000
|
||||
28 28 1 0.0000000 2.7160000 5.4310000 2.7160000
|
||||
29 29 1 0.0000000 4.0730000 6.7890000 4.0730000
|
||||
30 30 1 0.0000000 1.3580000 6.7890000 1.3580000
|
||||
31 31 1 0.0000000 1.3580000 9.5040000 4.0730000
|
||||
32 32 1 0.0000000 4.0730000 9.5040000 1.3580000
|
||||
33 33 1 0.0000000 0.0000000 5.4310000 5.4310000
|
||||
34 34 1 0.0000000 0.0000000 8.1460000 8.1460000
|
||||
35 35 1 0.0000000 2.7160000 8.1460000 5.4310000
|
||||
36 36 1 0.0000000 2.7160000 5.4310000 8.1460000
|
||||
37 37 1 0.0000000 4.0730000 6.7890000 9.5040000
|
||||
38 38 1 0.0000000 1.3580000 6.7890000 6.7890000
|
||||
39 39 1 0.0000000 1.3580000 9.5040000 9.5040000
|
||||
40 40 1 0.0000000 4.0730000 9.5040000 6.7890000
|
||||
41 41 1 0.0000000 0.0000000 5.4310000 10.8620000
|
||||
42 42 1 0.0000000 0.0000000 8.1460000 13.5780000
|
||||
43 43 1 0.0000000 2.7160000 8.1460000 10.8620000
|
||||
44 44 1 0.0000000 2.7160000 5.4310000 13.5780000
|
||||
45 45 1 0.0000000 4.0730000 6.7890000 14.9350000
|
||||
46 46 1 0.0000000 1.3580000 6.7890000 12.2200000
|
||||
47 47 1 0.0000000 1.3580000 9.5040000 14.9350000
|
||||
48 48 1 0.0000000 4.0730000 9.5040000 12.2200000
|
||||
49 49 1 0.0000000 0.0000000 10.8620000 0.0000000
|
||||
50 50 1 0.0000000 0.0000000 13.5780000 2.7160000
|
||||
51 51 1 0.0000000 2.7160000 13.5780000 0.0000000
|
||||
52 52 1 0.0000000 2.7160000 10.8620000 2.7160000
|
||||
53 53 1 0.0000000 4.0730000 12.2200000 4.0730000
|
||||
54 54 1 0.0000000 1.3580000 12.2200000 1.3580000
|
||||
55 55 1 0.0000000 1.3580000 14.9350000 4.0730000
|
||||
56 56 1 0.0000000 4.0730000 14.9350000 1.3580000
|
||||
57 57 1 0.0000000 0.0000000 10.8620000 5.4310000
|
||||
58 58 1 0.0000000 0.0000000 13.5780000 8.1460000
|
||||
59 59 1 0.0000000 2.7160000 13.5780000 5.4310000
|
||||
60 60 1 0.0000000 2.7160000 10.8620000 8.1460000
|
||||
61 61 1 0.0000000 4.0730000 12.2200000 9.5040000
|
||||
62 62 1 0.0000000 1.3580000 12.2200000 6.7890000
|
||||
63 63 1 0.0000000 1.3580000 14.9350000 9.5040000
|
||||
64 64 1 0.0000000 4.0730000 14.9350000 6.7890000
|
||||
65 65 1 0.0000000 0.0000000 10.8620000 10.8620000
|
||||
66 66 1 0.0000000 0.0000000 13.5780000 13.5780000
|
||||
67 67 1 0.0000000 2.7160000 13.5780000 10.8620000
|
||||
68 68 1 0.0000000 2.7160000 10.8620000 13.5780000
|
||||
69 69 1 0.0000000 4.0730000 12.2200000 14.9350000
|
||||
70 70 1 0.0000000 1.3580000 12.2200000 12.2200000
|
||||
71 71 1 0.0000000 1.3580000 14.9350000 14.9350000
|
||||
72 72 1 0.0000000 4.0730000 14.9350000 12.2200000
|
||||
73 73 1 0.0000000 5.4310000 0.0000000 0.0000000
|
||||
74 74 1 0.0000000 5.4310000 2.7160000 2.7160000
|
||||
75 75 1 0.0000000 8.1460000 2.7160000 0.0000000
|
||||
76 76 1 0.0000000 8.1460000 0.0000000 2.7160000
|
||||
77 77 1 0.0000000 9.5040000 1.3580000 4.0730000
|
||||
78 78 1 0.0000000 6.7890000 1.3580000 1.3580000
|
||||
79 79 1 0.0000000 6.7890000 4.0730000 4.0730000
|
||||
80 80 1 0.0000000 9.5040000 4.0730000 1.3580000
|
||||
81 81 1 0.0000000 5.4310000 0.0000000 5.4310000
|
||||
82 82 1 0.0000000 5.4310000 2.7160000 8.1460000
|
||||
83 83 1 0.0000000 8.1460000 2.7160000 5.4310000
|
||||
84 84 1 0.0000000 8.1460000 0.0000000 8.1460000
|
||||
85 85 1 0.0000000 9.5040000 1.3580000 9.5040000
|
||||
86 86 1 0.0000000 6.7890000 1.3580000 6.7890000
|
||||
87 87 1 0.0000000 6.7890000 4.0730000 9.5040000
|
||||
88 88 1 0.0000000 9.5040000 4.0730000 6.7890000
|
||||
89 89 1 0.0000000 5.4310000 0.0000000 10.8620000
|
||||
90 90 1 0.0000000 5.4310000 2.7160000 13.5780000
|
||||
91 91 1 0.0000000 8.1460000 2.7160000 10.8620000
|
||||
92 92 1 0.0000000 8.1460000 0.0000000 13.5780000
|
||||
93 93 1 0.0000000 9.5040000 1.3580000 14.9350000
|
||||
94 94 1 0.0000000 6.7890000 1.3580000 12.2200000
|
||||
95 95 1 0.0000000 6.7890000 4.0730000 14.9350000
|
||||
96 96 1 0.0000000 9.5040000 4.0730000 12.2200000
|
||||
97 97 1 0.0000000 5.4310000 5.4310000 0.0000000
|
||||
98 98 1 0.0000000 5.4310000 8.1460000 2.7160000
|
||||
99 99 1 0.0000000 8.1460000 8.1460000 0.0000000
|
||||
100 100 1 0.0000000 8.1460000 5.4310000 2.7160000
|
||||
101 101 1 0.0000000 9.5040000 6.7890000 4.0730000
|
||||
102 102 1 0.0000000 6.7890000 6.7890000 1.3580000
|
||||
103 103 1 0.0000000 6.7890000 9.5040000 4.0730000
|
||||
104 104 1 0.0000000 9.5040000 9.5040000 1.3580000
|
||||
105 105 1 0.0000000 5.4310000 5.4310000 5.4310000
|
||||
106 106 1 0.0000000 5.4310000 8.1460000 8.1460000
|
||||
107 107 1 0.0000000 8.1460000 8.1460000 5.4310000
|
||||
108 108 1 0.0000000 8.1460000 5.4310000 8.1460000
|
||||
109 109 1 0.0000000 9.5040000 6.7890000 9.5040000
|
||||
110 110 1 0.0000000 6.7890000 6.7890000 6.7890000
|
||||
111 111 1 0.0000000 6.7890000 9.5040000 9.5040000
|
||||
112 112 1 0.0000000 9.5040000 9.5040000 6.7890000
|
||||
113 113 1 0.0000000 5.4310000 5.4310000 10.8620000
|
||||
114 114 1 0.0000000 5.4310000 8.1460000 13.5780000
|
||||
115 115 1 0.0000000 8.1460000 8.1460000 10.8620000
|
||||
116 116 1 0.0000000 8.1460000 5.4310000 13.5780000
|
||||
117 117 1 0.0000000 9.5040000 6.7890000 14.9350000
|
||||
118 118 1 0.0000000 6.7890000 6.7890000 12.2200000
|
||||
119 119 1 0.0000000 6.7890000 9.5040000 14.9350000
|
||||
120 120 1 0.0000000 9.5040000 9.5040000 12.2200000
|
||||
121 121 1 0.0000000 5.4310000 10.8620000 0.0000000
|
||||
122 122 1 0.0000000 5.4310000 13.5780000 2.7160000
|
||||
123 123 1 0.0000000 8.1460000 13.5780000 0.0000000
|
||||
124 124 1 0.0000000 8.1460000 10.8620000 2.7160000
|
||||
125 125 1 0.0000000 9.5040000 12.2200000 4.0730000
|
||||
126 126 1 0.0000000 6.7890000 12.2200000 1.3580000
|
||||
127 127 1 0.0000000 6.7890000 14.9350000 4.0730000
|
||||
128 128 1 0.0000000 9.5040000 14.9350000 1.3580000
|
||||
129 129 1 0.0000000 5.4310000 10.8620000 5.4310000
|
||||
130 130 1 0.0000000 5.4310000 13.5780000 8.1460000
|
||||
131 131 1 0.0000000 8.1460000 13.5780000 5.4310000
|
||||
132 132 1 0.0000000 8.1460000 10.8620000 8.1460000
|
||||
133 133 1 0.0000000 9.5040000 12.2200000 9.5040000
|
||||
134 134 1 0.0000000 6.7890000 12.2200000 6.7890000
|
||||
135 135 1 0.0000000 6.7890000 14.9350000 9.5040000
|
||||
136 136 1 0.0000000 9.5040000 14.9350000 6.7890000
|
||||
137 137 1 0.0000000 5.4310000 10.8620000 10.8620000
|
||||
138 138 1 0.0000000 5.4310000 13.5780000 13.5780000
|
||||
139 139 1 0.0000000 8.1460000 13.5780000 10.8620000
|
||||
140 140 1 0.0000000 8.1460000 10.8620000 13.5780000
|
||||
141 141 1 0.0000000 9.5040000 12.2200000 14.9350000
|
||||
142 142 1 0.0000000 6.7890000 12.2200000 12.2200000
|
||||
143 143 1 0.0000000 6.7890000 14.9350000 14.9350000
|
||||
144 144 1 0.0000000 9.5040000 14.9350000 12.2200000
|
||||
145 145 1 0.0000000 10.8620000 0.0000000 0.0000000
|
||||
146 146 1 0.0000000 10.8620000 2.7160000 2.7160000
|
||||
147 147 1 0.0000000 13.5780000 2.7160000 0.0000000
|
||||
148 148 1 0.0000000 13.5780000 0.0000000 2.7160000
|
||||
149 149 1 0.0000000 14.9350000 1.3580000 4.0730000
|
||||
150 150 1 0.0000000 12.2200000 1.3580000 1.3580000
|
||||
151 151 1 0.0000000 12.2200000 4.0730000 4.0730000
|
||||
152 152 1 0.0000000 14.9350000 4.0730000 1.3580000
|
||||
153 153 1 0.0000000 10.8620000 0.0000000 5.4310000
|
||||
154 154 1 0.0000000 10.8620000 2.7160000 8.1460000
|
||||
155 155 1 0.0000000 13.5780000 2.7160000 5.4310000
|
||||
156 156 1 0.0000000 13.5780000 0.0000000 8.1460000
|
||||
157 157 1 0.0000000 14.9350000 1.3580000 9.5040000
|
||||
158 158 1 0.0000000 12.2200000 1.3580000 6.7890000
|
||||
159 159 1 0.0000000 12.2200000 4.0730000 9.5040000
|
||||
160 160 1 0.0000000 14.9350000 4.0730000 6.7890000
|
||||
161 161 1 0.0000000 10.8620000 0.0000000 10.8620000
|
||||
162 162 1 0.0000000 10.8620000 2.7160000 13.5780000
|
||||
163 163 1 0.0000000 13.5780000 2.7160000 10.8620000
|
||||
164 164 1 0.0000000 13.5780000 0.0000000 13.5780000
|
||||
165 165 1 0.0000000 14.9350000 1.3580000 14.9350000
|
||||
166 166 1 0.0000000 12.2200000 1.3580000 12.2200000
|
||||
167 167 1 0.0000000 12.2200000 4.0730000 14.9350000
|
||||
168 168 1 0.0000000 14.9350000 4.0730000 12.2200000
|
||||
169 169 1 0.0000000 10.8620000 5.4310000 0.0000000
|
||||
170 170 1 0.0000000 10.8620000 8.1460000 2.7160000
|
||||
171 171 1 0.0000000 13.5780000 8.1460000 0.0000000
|
||||
172 172 1 0.0000000 13.5780000 5.4310000 2.7160000
|
||||
173 173 1 0.0000000 14.9350000 6.7890000 4.0730000
|
||||
174 174 1 0.0000000 12.2200000 6.7890000 1.3580000
|
||||
175 175 1 0.0000000 12.2200000 9.5040000 4.0730000
|
||||
176 176 1 0.0000000 14.9350000 9.5040000 1.3580000
|
||||
177 177 1 0.0000000 10.8620000 5.4310000 5.4310000
|
||||
178 178 1 0.0000000 10.8620000 8.1460000 8.1460000
|
||||
179 179 1 0.0000000 13.5780000 8.1460000 5.4310000
|
||||
180 180 1 0.0000000 13.5780000 5.4310000 8.1460000
|
||||
181 181 1 0.0000000 14.9350000 6.7890000 9.5040000
|
||||
182 182 1 0.0000000 12.2200000 6.7890000 6.7890000
|
||||
183 183 1 0.0000000 12.2200000 9.5040000 9.5040000
|
||||
184 184 1 0.0000000 14.9350000 9.5040000 6.7890000
|
||||
185 185 1 0.0000000 10.8620000 5.4310000 10.8620000
|
||||
186 186 1 0.0000000 10.8620000 8.1460000 13.5780000
|
||||
187 187 1 0.0000000 13.5780000 8.1460000 10.8620000
|
||||
188 188 1 0.0000000 13.5780000 5.4310000 13.5780000
|
||||
189 189 1 0.0000000 14.9350000 6.7890000 14.9350000
|
||||
190 190 1 0.0000000 12.2200000 6.7890000 12.2200000
|
||||
191 191 1 0.0000000 12.2200000 9.5040000 14.9350000
|
||||
192 192 1 0.0000000 14.9350000 9.5040000 12.2200000
|
||||
193 193 1 0.0000000 10.8620000 10.8620000 0.0000000
|
||||
194 194 1 0.0000000 10.8620000 13.5780000 2.7160000
|
||||
195 195 1 0.0000000 13.5780000 13.5780000 0.0000000
|
||||
196 196 1 0.0000000 13.5780000 10.8620000 2.7160000
|
||||
197 197 1 0.0000000 14.9350000 12.2200000 4.0730000
|
||||
198 198 1 0.0000000 12.2200000 12.2200000 1.3580000
|
||||
199 199 1 0.0000000 12.2200000 14.9350000 4.0730000
|
||||
200 200 1 0.0000000 14.9350000 14.9350000 1.3580000
|
||||
201 201 1 0.0000000 10.8620000 10.8620000 5.4310000
|
||||
202 202 1 0.0000000 10.8620000 13.5780000 8.1460000
|
||||
203 203 1 0.0000000 13.5780000 13.5780000 5.4310000
|
||||
204 204 1 0.0000000 13.5780000 10.8620000 8.1460000
|
||||
205 205 1 0.0000000 14.9350000 12.2200000 9.5040000
|
||||
206 206 1 0.0000000 12.2200000 12.2200000 6.7890000
|
||||
207 207 1 0.0000000 12.2200000 14.9350000 9.5040000
|
||||
208 208 1 0.0000000 14.9350000 14.9350000 6.7890000
|
||||
209 209 1 0.0000000 10.8620000 10.8620000 10.8620000
|
||||
210 210 1 0.0000000 10.8620000 13.5780000 13.5780000
|
||||
211 211 1 0.0000000 13.5780000 13.5780000 10.8620000
|
||||
212 212 1 0.0000000 13.5780000 10.8620000 13.5780000
|
||||
213 213 1 0.0000000 14.9350000 12.2200000 14.9350000
|
||||
214 214 1 0.0000000 12.2200000 12.2200000 12.2200000
|
||||
215 215 1 0.0000000 12.2200000 14.9350000 14.9350000
|
||||
216 216 1 0.0000000 14.9350000 14.9350000 12.2200000
|
||||
|
||||
@ -1,534 +0,0 @@
|
||||
LAMMPS description
|
||||
|
||||
512 atoms
|
||||
0 bonds
|
||||
0 angles
|
||||
0 dihedrals
|
||||
0 impropers
|
||||
|
||||
1 atom types
|
||||
0 bond types
|
||||
0 angle types
|
||||
0 dihedral types
|
||||
0 improper types
|
||||
|
||||
|
||||
0.0000000 21.724000 xlo xhi
|
||||
0.0000000 21.724000 ylo yhi
|
||||
0.0000000 21.724000 zlo zhi
|
||||
|
||||
Atoms
|
||||
|
||||
1 1 1 0.0000000 0.0000000 0.0000000 0.0000000
|
||||
2 2 1 0.0000000 0.0000000 2.7150000 2.7150000
|
||||
3 3 1 0.0000000 2.7150000 2.7150000 0.0000000
|
||||
4 4 1 0.0000000 2.7150000 0.0000000 2.7150000
|
||||
5 5 1 0.0000000 4.0730000 1.3580000 4.0730000
|
||||
6 6 1 0.0000000 1.3580000 1.3580000 1.3580000
|
||||
7 7 1 0.0000000 1.3580000 4.0730000 4.0730000
|
||||
8 8 1 0.0000000 4.0730000 4.0730000 1.3580000
|
||||
9 9 1 0.0000000 0.0000000 0.0000000 5.4310000
|
||||
10 10 1 0.0000000 0.0000000 2.7150000 8.1460000
|
||||
11 11 1 0.0000000 2.7150000 2.7150000 5.4310000
|
||||
12 12 1 0.0000000 2.7150000 0.0000000 8.1460000
|
||||
13 13 1 0.0000000 4.0730000 1.3580000 9.5040000
|
||||
14 14 1 0.0000000 1.3580000 1.3580000 6.7890000
|
||||
15 15 1 0.0000000 1.3580000 4.0730000 9.5040000
|
||||
16 16 1 0.0000000 4.0730000 4.0730000 6.7890000
|
||||
17 17 1 0.0000000 0.0000000 0.0000000 10.8620000
|
||||
18 18 1 0.0000000 0.0000000 2.7150000 13.5770000
|
||||
19 19 1 0.0000000 2.7150000 2.7150000 10.8620000
|
||||
20 20 1 0.0000000 2.7150000 0.0000000 13.5770000
|
||||
21 21 1 0.0000000 4.0730000 1.3580000 14.9350000
|
||||
22 22 1 0.0000000 1.3580000 1.3580000 12.2200000
|
||||
23 23 1 0.0000000 1.3580000 4.0730000 14.9350000
|
||||
24 24 1 0.0000000 4.0730000 4.0730000 12.2200000
|
||||
25 25 1 0.0000000 0.0000000 0.0000000 16.2930000
|
||||
26 26 1 0.0000000 0.0000000 2.7150000 19.0080000
|
||||
27 27 1 0.0000000 2.7150000 2.7150000 16.2930000
|
||||
28 28 1 0.0000000 2.7150000 0.0000000 19.0080000
|
||||
29 29 1 0.0000000 4.0730000 1.3580000 20.3660000
|
||||
30 30 1 0.0000000 1.3580000 1.3580000 17.6510000
|
||||
31 31 1 0.0000000 1.3580000 4.0730000 20.3660000
|
||||
32 32 1 0.0000000 4.0730000 4.0730000 17.6510000
|
||||
33 33 1 0.0000000 0.0000000 5.4310000 0.0000000
|
||||
34 34 1 0.0000000 0.0000000 8.1460000 2.7150000
|
||||
35 35 1 0.0000000 2.7150000 8.1460000 0.0000000
|
||||
36 36 1 0.0000000 2.7150000 5.4310000 2.7150000
|
||||
37 37 1 0.0000000 4.0730000 6.7890000 4.0730000
|
||||
38 38 1 0.0000000 1.3580000 6.7890000 1.3580000
|
||||
39 39 1 0.0000000 1.3580000 9.5040000 4.0730000
|
||||
40 40 1 0.0000000 4.0730000 9.5040000 1.3580000
|
||||
41 41 1 0.0000000 0.0000000 5.4310000 5.4310000
|
||||
42 42 1 0.0000000 0.0000000 8.1460000 8.1460000
|
||||
43 43 1 0.0000000 2.7150000 8.1460000 5.4310000
|
||||
44 44 1 0.0000000 2.7150000 5.4310000 8.1460000
|
||||
45 45 1 0.0000000 4.0730000 6.7890000 9.5040000
|
||||
46 46 1 0.0000000 1.3580000 6.7890000 6.7890000
|
||||
47 47 1 0.0000000 1.3580000 9.5040000 9.5040000
|
||||
48 48 1 0.0000000 4.0730000 9.5040000 6.7890000
|
||||
49 49 1 0.0000000 0.0000000 5.4310000 10.8620000
|
||||
50 50 1 0.0000000 0.0000000 8.1460000 13.5770000
|
||||
51 51 1 0.0000000 2.7150000 8.1460000 10.8620000
|
||||
52 52 1 0.0000000 2.7150000 5.4310000 13.5770000
|
||||
53 53 1 0.0000000 4.0730000 6.7890000 14.9350000
|
||||
54 54 1 0.0000000 1.3580000 6.7890000 12.2200000
|
||||
55 55 1 0.0000000 1.3580000 9.5040000 14.9350000
|
||||
56 56 1 0.0000000 4.0730000 9.5040000 12.2200000
|
||||
57 57 1 0.0000000 0.0000000 5.4310000 16.2930000
|
||||
58 58 1 0.0000000 0.0000000 8.1460000 19.0080000
|
||||
59 59 1 0.0000000 2.7150000 8.1460000 16.2930000
|
||||
60 60 1 0.0000000 2.7150000 5.4310000 19.0080000
|
||||
61 61 1 0.0000000 4.0730000 6.7890000 20.3660000
|
||||
62 62 1 0.0000000 1.3580000 6.7890000 17.6510000
|
||||
63 63 1 0.0000000 1.3580000 9.5040000 20.3660000
|
||||
64 64 1 0.0000000 4.0730000 9.5040000 17.6510000
|
||||
65 65 1 0.0000000 0.0000000 10.8620000 0.0000000
|
||||
66 66 1 0.0000000 0.0000000 13.5770000 2.7150000
|
||||
67 67 1 0.0000000 2.7150000 13.5770000 0.0000000
|
||||
68 68 1 0.0000000 2.7150000 10.8620000 2.7150000
|
||||
69 69 1 0.0000000 4.0730000 12.2200000 4.0730000
|
||||
70 70 1 0.0000000 1.3580000 12.2200000 1.3580000
|
||||
71 71 1 0.0000000 1.3580000 14.9350000 4.0730000
|
||||
72 72 1 0.0000000 4.0730000 14.9350000 1.3580000
|
||||
73 73 1 0.0000000 0.0000000 10.8620000 5.4310000
|
||||
74 74 1 0.0000000 0.0000000 13.5770000 8.1460000
|
||||
75 75 1 0.0000000 2.7150000 13.5770000 5.4310000
|
||||
76 76 1 0.0000000 2.7150000 10.8620000 8.1460000
|
||||
77 77 1 0.0000000 4.0730000 12.2200000 9.5040000
|
||||
78 78 1 0.0000000 1.3580000 12.2200000 6.7890000
|
||||
79 79 1 0.0000000 1.3580000 14.9350000 9.5040000
|
||||
80 80 1 0.0000000 4.0730000 14.9350000 6.7890000
|
||||
81 81 1 0.0000000 0.0000000 10.8620000 10.8620000
|
||||
82 82 1 0.0000000 0.0000000 13.5770000 13.5770000
|
||||
83 83 1 0.0000000 2.7150000 13.5770000 10.8620000
|
||||
84 84 1 0.0000000 2.7150000 10.8620000 13.5770000
|
||||
85 85 1 0.0000000 4.0730000 12.2200000 14.9350000
|
||||
86 86 1 0.0000000 1.3580000 12.2200000 12.2200000
|
||||
87 87 1 0.0000000 1.3580000 14.9350000 14.9350000
|
||||
88 88 1 0.0000000 4.0730000 14.9350000 12.2200000
|
||||
89 89 1 0.0000000 0.0000000 10.8620000 16.2930000
|
||||
90 90 1 0.0000000 0.0000000 13.5770000 19.0080000
|
||||
91 91 1 0.0000000 2.7150000 13.5770000 16.2930000
|
||||
92 92 1 0.0000000 2.7150000 10.8620000 19.0080000
|
||||
93 93 1 0.0000000 4.0730000 12.2200000 20.3660000
|
||||
94 94 1 0.0000000 1.3580000 12.2200000 17.6510000
|
||||
95 95 1 0.0000000 1.3580000 14.9350000 20.3660000
|
||||
96 96 1 0.0000000 4.0730000 14.9350000 17.6510000
|
||||
97 97 1 0.0000000 0.0000000 16.2930000 0.0000000
|
||||
98 98 1 0.0000000 0.0000000 19.0080000 2.7150000
|
||||
99 99 1 0.0000000 2.7150000 19.0080000 0.0000000
|
||||
100 100 1 0.0000000 2.7150000 16.2930000 2.7150000
|
||||
101 101 1 0.0000000 4.0730000 17.6510000 4.0730000
|
||||
102 102 1 0.0000000 1.3580000 17.6510000 1.3580000
|
||||
103 103 1 0.0000000 1.3580000 20.3660000 4.0730000
|
||||
104 104 1 0.0000000 4.0730000 20.3660000 1.3580000
|
||||
105 105 1 0.0000000 0.0000000 16.2930000 5.4310000
|
||||
106 106 1 0.0000000 0.0000000 19.0080000 8.1460000
|
||||
107 107 1 0.0000000 2.7150000 19.0080000 5.4310000
|
||||
108 108 1 0.0000000 2.7150000 16.2930000 8.1460000
|
||||
109 109 1 0.0000000 4.0730000 17.6510000 9.5040000
|
||||
110 110 1 0.0000000 1.3580000 17.6510000 6.7890000
|
||||
111 111 1 0.0000000 1.3580000 20.3660000 9.5040000
|
||||
112 112 1 0.0000000 4.0730000 20.3660000 6.7890000
|
||||
113 113 1 0.0000000 0.0000000 16.2930000 10.8620000
|
||||
114 114 1 0.0000000 0.0000000 19.0080000 13.5770000
|
||||
115 115 1 0.0000000 2.7150000 19.0080000 10.8620000
|
||||
116 116 1 0.0000000 2.7150000 16.2930000 13.5770000
|
||||
117 117 1 0.0000000 4.0730000 17.6510000 14.9350000
|
||||
118 118 1 0.0000000 1.3580000 17.6510000 12.2200000
|
||||
119 119 1 0.0000000 1.3580000 20.3660000 14.9350000
|
||||
120 120 1 0.0000000 4.0730000 20.3660000 12.2200000
|
||||
121 121 1 0.0000000 0.0000000 16.2930000 16.2930000
|
||||
122 122 1 0.0000000 0.0000000 19.0080000 19.0080000
|
||||
123 123 1 0.0000000 2.7150000 19.0080000 16.2930000
|
||||
124 124 1 0.0000000 2.7150000 16.2930000 19.0080000
|
||||
125 125 1 0.0000000 4.0730000 17.6510000 20.3660000
|
||||
126 126 1 0.0000000 1.3580000 17.6510000 17.6510000
|
||||
127 127 1 0.0000000 1.3580000 20.3660000 20.3660000
|
||||
128 128 1 0.0000000 4.0730000 20.3660000 17.6510000
|
||||
129 129 1 0.0000000 5.4310000 0.0000000 0.0000000
|
||||
130 130 1 0.0000000 5.4310000 2.7150000 2.7150000
|
||||
131 131 1 0.0000000 8.1460000 2.7150000 0.0000000
|
||||
132 132 1 0.0000000 8.1460000 0.0000000 2.7150000
|
||||
133 133 1 0.0000000 9.5040000 1.3580000 4.0730000
|
||||
134 134 1 0.0000000 6.7890000 1.3580000 1.3580000
|
||||
135 135 1 0.0000000 6.7890000 4.0730000 4.0730000
|
||||
136 136 1 0.0000000 9.5040000 4.0730000 1.3580000
|
||||
137 137 1 0.0000000 5.4310000 0.0000000 5.4310000
|
||||
138 138 1 0.0000000 5.4310000 2.7150000 8.1460000
|
||||
139 139 1 0.0000000 8.1460000 2.7150000 5.4310000
|
||||
140 140 1 0.0000000 8.1460000 0.0000000 8.1460000
|
||||
141 141 1 0.0000000 9.5040000 1.3580000 9.5040000
|
||||
142 142 1 0.0000000 6.7890000 1.3580000 6.7890000
|
||||
143 143 1 0.0000000 6.7890000 4.0730000 9.5040000
|
||||
144 144 1 0.0000000 9.5040000 4.0730000 6.7890000
|
||||
145 145 1 0.0000000 5.4310000 0.0000000 10.8620000
|
||||
146 146 1 0.0000000 5.4310000 2.7150000 13.5770000
|
||||
147 147 1 0.0000000 8.1460000 2.7150000 10.8620000
|
||||
148 148 1 0.0000000 8.1460000 0.0000000 13.5770000
|
||||
149 149 1 0.0000000 9.5040000 1.3580000 14.9350000
|
||||
150 150 1 0.0000000 6.7890000 1.3580000 12.2200000
|
||||
151 151 1 0.0000000 6.7890000 4.0730000 14.9350000
|
||||
152 152 1 0.0000000 9.5040000 4.0730000 12.2200000
|
||||
153 153 1 0.0000000 5.4310000 0.0000000 16.2930000
|
||||
154 154 1 0.0000000 5.4310000 2.7150000 19.0080000
|
||||
155 155 1 0.0000000 8.1460000 2.7150000 16.2930000
|
||||
156 156 1 0.0000000 8.1460000 0.0000000 19.0080000
|
||||
157 157 1 0.0000000 9.5040000 1.3580000 20.3660000
|
||||
158 158 1 0.0000000 6.7890000 1.3580000 17.6510000
|
||||
159 159 1 0.0000000 6.7890000 4.0730000 20.3660000
|
||||
160 160 1 0.0000000 9.5040000 4.0730000 17.6510000
|
||||
161 161 1 0.0000000 5.4310000 5.4310000 0.0000000
|
||||
162 162 1 0.0000000 5.4310000 8.1460000 2.7150000
|
||||
163 163 1 0.0000000 8.1460000 8.1460000 0.0000000
|
||||
164 164 1 0.0000000 8.1460000 5.4310000 2.7150000
|
||||
165 165 1 0.0000000 9.5040000 6.7890000 4.0730000
|
||||
166 166 1 0.0000000 6.7890000 6.7890000 1.3580000
|
||||
167 167 1 0.0000000 6.7890000 9.5040000 4.0730000
|
||||
168 168 1 0.0000000 9.5040000 9.5040000 1.3580000
|
||||
169 169 1 0.0000000 5.4310000 5.4310000 5.4310000
|
||||
170 170 1 0.0000000 5.4310000 8.1460000 8.1460000
|
||||
171 171 1 0.0000000 8.1460000 8.1460000 5.4310000
|
||||
172 172 1 0.0000000 8.1460000 5.4310000 8.1460000
|
||||
173 173 1 0.0000000 9.5040000 6.7890000 9.5040000
|
||||
174 174 1 0.0000000 6.7890000 6.7890000 6.7890000
|
||||
175 175 1 0.0000000 6.7890000 9.5040000 9.5040000
|
||||
176 176 1 0.0000000 9.5040000 9.5040000 6.7890000
|
||||
177 177 1 0.0000000 5.4310000 5.4310000 10.8620000
|
||||
178 178 1 0.0000000 5.4310000 8.1460000 13.5770000
|
||||
179 179 1 0.0000000 8.1460000 8.1460000 10.8620000
|
||||
180 180 1 0.0000000 8.1460000 5.4310000 13.5770000
|
||||
181 181 1 0.0000000 9.5040000 6.7890000 14.9350000
|
||||
182 182 1 0.0000000 6.7890000 6.7890000 12.2200000
|
||||
183 183 1 0.0000000 6.7890000 9.5040000 14.9350000
|
||||
184 184 1 0.0000000 9.5040000 9.5040000 12.2200000
|
||||
185 185 1 0.0000000 5.4310000 5.4310000 16.2930000
|
||||
186 186 1 0.0000000 5.4310000 8.1460000 19.0080000
|
||||
187 187 1 0.0000000 8.1460000 8.1460000 16.2930000
|
||||
188 188 1 0.0000000 8.1460000 5.4310000 19.0080000
|
||||
189 189 1 0.0000000 9.5040000 6.7890000 20.3660000
|
||||
190 190 1 0.0000000 6.7890000 6.7890000 17.6510000
|
||||
191 191 1 0.0000000 6.7890000 9.5040000 20.3660000
|
||||
192 192 1 0.0000000 9.5040000 9.5040000 17.6510000
|
||||
193 193 1 0.0000000 5.4310000 10.8620000 0.0000000
|
||||
194 194 1 0.0000000 5.4310000 13.5770000 2.7150000
|
||||
195 195 1 0.0000000 8.1460000 13.5770000 0.0000000
|
||||
196 196 1 0.0000000 8.1460000 10.8620000 2.7150000
|
||||
197 197 1 0.0000000 9.5040000 12.2200000 4.0730000
|
||||
198 198 1 0.0000000 6.7890000 12.2200000 1.3580000
|
||||
199 199 1 0.0000000 6.7890000 14.9350000 4.0730000
|
||||
200 200 1 0.0000000 9.5040000 14.9350000 1.3580000
|
||||
201 201 1 0.0000000 5.4310000 10.8620000 5.4310000
|
||||
202 202 1 0.0000000 5.4310000 13.5770000 8.1460000
|
||||
203 203 1 0.0000000 8.1460000 13.5770000 5.4310000
|
||||
204 204 1 0.0000000 8.1460000 10.8620000 8.1460000
|
||||
205 205 1 0.0000000 9.5040000 12.2200000 9.5040000
|
||||
206 206 1 0.0000000 6.7890000 12.2200000 6.7890000
|
||||
207 207 1 0.0000000 6.7890000 14.9350000 9.5040000
|
||||
208 208 1 0.0000000 9.5040000 14.9350000 6.7890000
|
||||
209 209 1 0.0000000 5.4310000 10.8620000 10.8620000
|
||||
210 210 1 0.0000000 5.4310000 13.5770000 13.5770000
|
||||
211 211 1 0.0000000 8.1460000 13.5770000 10.8620000
|
||||
212 212 1 0.0000000 8.1460000 10.8620000 13.5770000
|
||||
213 213 1 0.0000000 9.5040000 12.2200000 14.9350000
|
||||
214 214 1 0.0000000 6.7890000 12.2200000 12.2200000
|
||||
215 215 1 0.0000000 6.7890000 14.9350000 14.9350000
|
||||
216 216 1 0.0000000 9.5040000 14.9350000 12.2200000
|
||||
217 217 1 0.0000000 5.4310000 10.8620000 16.2930000
|
||||
218 218 1 0.0000000 5.4310000 13.5770000 19.0080000
|
||||
219 219 1 0.0000000 8.1460000 13.5770000 16.2930000
|
||||
220 220 1 0.0000000 8.1460000 10.8620000 19.0080000
|
||||
221 221 1 0.0000000 9.5040000 12.2200000 20.3660000
|
||||
222 222 1 0.0000000 6.7890000 12.2200000 17.6510000
|
||||
223 223 1 0.0000000 6.7890000 14.9350000 20.3660000
|
||||
224 224 1 0.0000000 9.5040000 14.9350000 17.6510000
|
||||
225 225 1 0.0000000 5.4310000 16.2930000 0.0000000
|
||||
226 226 1 0.0000000 5.4310000 19.0080000 2.7150000
|
||||
227 227 1 0.0000000 8.1460000 19.0080000 0.0000000
|
||||
228 228 1 0.0000000 8.1460000 16.2930000 2.7150000
|
||||
229 229 1 0.0000000 9.5040000 17.6510000 4.0730000
|
||||
230 230 1 0.0000000 6.7890000 17.6510000 1.3580000
|
||||
231 231 1 0.0000000 6.7890000 20.3660000 4.0730000
|
||||
232 232 1 0.0000000 9.5040000 20.3660000 1.3580000
|
||||
233 233 1 0.0000000 5.4310000 16.2930000 5.4310000
|
||||
234 234 1 0.0000000 5.4310000 19.0080000 8.1460000
|
||||
235 235 1 0.0000000 8.1460000 19.0080000 5.4310000
|
||||
236 236 1 0.0000000 8.1460000 16.2930000 8.1460000
|
||||
237 237 1 0.0000000 9.5040000 17.6510000 9.5040000
|
||||
238 238 1 0.0000000 6.7890000 17.6510000 6.7890000
|
||||
239 239 1 0.0000000 6.7890000 20.3660000 9.5040000
|
||||
240 240 1 0.0000000 9.5040000 20.3660000 6.7890000
|
||||
241 241 1 0.0000000 5.4310000 16.2930000 10.8620000
|
||||
242 242 1 0.0000000 5.4310000 19.0080000 13.5770000
|
||||
243 243 1 0.0000000 8.1460000 19.0080000 10.8620000
|
||||
244 244 1 0.0000000 8.1460000 16.2930000 13.5770000
|
||||
245 245 1 0.0000000 9.5040000 17.6510000 14.9350000
|
||||
246 246 1 0.0000000 6.7890000 17.6510000 12.2200000
|
||||
247 247 1 0.0000000 6.7890000 20.3660000 14.9350000
|
||||
248 248 1 0.0000000 9.5040000 20.3660000 12.2200000
|
||||
249 249 1 0.0000000 5.4310000 16.2930000 16.2930000
|
||||
250 250 1 0.0000000 5.4310000 19.0080000 19.0080000
|
||||
251 251 1 0.0000000 8.1460000 19.0080000 16.2930000
|
||||
252 252 1 0.0000000 8.1460000 16.2930000 19.0080000
|
||||
253 253 1 0.0000000 9.5040000 17.6510000 20.3660000
|
||||
254 254 1 0.0000000 6.7890000 17.6510000 17.6510000
|
||||
255 255 1 0.0000000 6.7890000 20.3660000 20.3660000
|
||||
256 256 1 0.0000000 9.5040000 20.3660000 17.6510000
|
||||
257 257 1 0.0000000 10.8620000 0.0000000 0.0000000
|
||||
258 258 1 0.0000000 10.8620000 2.7150000 2.7150000
|
||||
259 259 1 0.0000000 13.5770000 2.7150000 0.0000000
|
||||
260 260 1 0.0000000 13.5770000 0.0000000 2.7150000
|
||||
261 261 1 0.0000000 14.9350000 1.3580000 4.0730000
|
||||
262 262 1 0.0000000 12.2200000 1.3580000 1.3580000
|
||||
263 263 1 0.0000000 12.2200000 4.0730000 4.0730000
|
||||
264 264 1 0.0000000 14.9350000 4.0730000 1.3580000
|
||||
265 265 1 0.0000000 10.8620000 0.0000000 5.4310000
|
||||
266 266 1 0.0000000 10.8620000 2.7150000 8.1460000
|
||||
267 267 1 0.0000000 13.5770000 2.7150000 5.4310000
|
||||
268 268 1 0.0000000 13.5770000 0.0000000 8.1460000
|
||||
269 269 1 0.0000000 14.9350000 1.3580000 9.5040000
|
||||
270 270 1 0.0000000 12.2200000 1.3580000 6.7890000
|
||||
271 271 1 0.0000000 12.2200000 4.0730000 9.5040000
|
||||
272 272 1 0.0000000 14.9350000 4.0730000 6.7890000
|
||||
273 273 1 0.0000000 10.8620000 0.0000000 10.8620000
|
||||
274 274 1 0.0000000 10.8620000 2.7150000 13.5770000
|
||||
275 275 1 0.0000000 13.5770000 2.7150000 10.8620000
|
||||
276 276 1 0.0000000 13.5770000 0.0000000 13.5770000
|
||||
277 277 1 0.0000000 14.9350000 1.3580000 14.9350000
|
||||
278 278 1 0.0000000 12.2200000 1.3580000 12.2200000
|
||||
279 279 1 0.0000000 12.2200000 4.0730000 14.9350000
|
||||
280 280 1 0.0000000 14.9350000 4.0730000 12.2200000
|
||||
281 281 1 0.0000000 10.8620000 0.0000000 16.2930000
|
||||
282 282 1 0.0000000 10.8620000 2.7150000 19.0080000
|
||||
283 283 1 0.0000000 13.5770000 2.7150000 16.2930000
|
||||
284 284 1 0.0000000 13.5770000 0.0000000 19.0080000
|
||||
285 285 1 0.0000000 14.9350000 1.3580000 20.3660000
|
||||
286 286 1 0.0000000 12.2200000 1.3580000 17.6510000
|
||||
287 287 1 0.0000000 12.2200000 4.0730000 20.3660000
|
||||
288 288 1 0.0000000 14.9350000 4.0730000 17.6510000
|
||||
289 289 1 0.0000000 10.8620000 5.4310000 0.0000000
|
||||
290 290 1 0.0000000 10.8620000 8.1460000 2.7150000
|
||||
291 291 1 0.0000000 13.5770000 8.1460000 0.0000000
|
||||
292 292 1 0.0000000 13.5770000 5.4310000 2.7150000
|
||||
293 293 1 0.0000000 14.9350000 6.7890000 4.0730000
|
||||
294 294 1 0.0000000 12.2200000 6.7890000 1.3580000
|
||||
295 295 1 0.0000000 12.2200000 9.5040000 4.0730000
|
||||
296 296 1 0.0000000 14.9350000 9.5040000 1.3580000
|
||||
297 297 1 0.0000000 10.8620000 5.4310000 5.4310000
|
||||
298 298 1 0.0000000 10.8620000 8.1460000 8.1460000
|
||||
299 299 1 0.0000000 13.5770000 8.1460000 5.4310000
|
||||
300 300 1 0.0000000 13.5770000 5.4310000 8.1460000
|
||||
301 301 1 0.0000000 14.9350000 6.7890000 9.5040000
|
||||
302 302 1 0.0000000 12.2200000 6.7890000 6.7890000
|
||||
303 303 1 0.0000000 12.2200000 9.5040000 9.5040000
|
||||
304 304 1 0.0000000 14.9350000 9.5040000 6.7890000
|
||||
305 305 1 0.0000000 10.8620000 5.4310000 10.8620000
|
||||
306 306 1 0.0000000 10.8620000 8.1460000 13.5770000
|
||||
307 307 1 0.0000000 13.5770000 8.1460000 10.8620000
|
||||
308 308 1 0.0000000 13.5770000 5.4310000 13.5770000
|
||||
309 309 1 0.0000000 14.9350000 6.7890000 14.9350000
|
||||
310 310 1 0.0000000 12.2200000 6.7890000 12.2200000
|
||||
311 311 1 0.0000000 12.2200000 9.5040000 14.9350000
|
||||
312 312 1 0.0000000 14.9350000 9.5040000 12.2200000
|
||||
313 313 1 0.0000000 10.8620000 5.4310000 16.2930000
|
||||
314 314 1 0.0000000 10.8620000 8.1460000 19.0080000
|
||||
315 315 1 0.0000000 13.5770000 8.1460000 16.2930000
|
||||
316 316 1 0.0000000 13.5770000 5.4310000 19.0080000
|
||||
317 317 1 0.0000000 14.9350000 6.7890000 20.3660000
|
||||
318 318 1 0.0000000 12.2200000 6.7890000 17.6510000
|
||||
319 319 1 0.0000000 12.2200000 9.5040000 20.3660000
|
||||
320 320 1 0.0000000 14.9350000 9.5040000 17.6510000
|
||||
321 321 1 0.0000000 10.8620000 10.8620000 0.0000000
|
||||
322 322 1 0.0000000 10.8620000 13.5770000 2.7150000
|
||||
323 323 1 0.0000000 13.5770000 13.5770000 0.0000000
|
||||
324 324 1 0.0000000 13.5770000 10.8620000 2.7150000
|
||||
325 325 1 0.0000000 14.9350000 12.2200000 4.0730000
|
||||
326 326 1 0.0000000 12.2200000 12.2200000 1.3580000
|
||||
327 327 1 0.0000000 12.2200000 14.9350000 4.0730000
|
||||
328 328 1 0.0000000 14.9350000 14.9350000 1.3580000
|
||||
329 329 1 0.0000000 10.8620000 10.8620000 5.4310000
|
||||
330 330 1 0.0000000 10.8620000 13.5770000 8.1460000
|
||||
331 331 1 0.0000000 13.5770000 13.5770000 5.4310000
|
||||
332 332 1 0.0000000 13.5770000 10.8620000 8.1460000
|
||||
333 333 1 0.0000000 14.9350000 12.2200000 9.5040000
|
||||
334 334 1 0.0000000 12.2200000 12.2200000 6.7890000
|
||||
335 335 1 0.0000000 12.2200000 14.9350000 9.5040000
|
||||
336 336 1 0.0000000 14.9350000 14.9350000 6.7890000
|
||||
337 337 1 0.0000000 10.8620000 10.8620000 10.8620000
|
||||
338 338 1 0.0000000 10.8620000 13.5770000 13.5770000
|
||||
339 339 1 0.0000000 13.5770000 13.5770000 10.8620000
|
||||
340 340 1 0.0000000 13.5770000 10.8620000 13.5770000
|
||||
341 341 1 0.0000000 14.9350000 12.2200000 14.9350000
|
||||
342 342 1 0.0000000 12.2200000 12.2200000 12.2200000
|
||||
343 343 1 0.0000000 12.2200000 14.9350000 14.9350000
|
||||
344 344 1 0.0000000 14.9350000 14.9350000 12.2200000
|
||||
345 345 1 0.0000000 10.8620000 10.8620000 16.2930000
|
||||
346 346 1 0.0000000 10.8620000 13.5770000 19.0080000
|
||||
347 347 1 0.0000000 13.5770000 13.5770000 16.2930000
|
||||
348 348 1 0.0000000 13.5770000 10.8620000 19.0080000
|
||||
349 349 1 0.0000000 14.9350000 12.2200000 20.3660000
|
||||
350 350 1 0.0000000 12.2200000 12.2200000 17.6510000
|
||||
351 351 1 0.0000000 12.2200000 14.9350000 20.3660000
|
||||
352 352 1 0.0000000 14.9350000 14.9350000 17.6510000
|
||||
353 353 1 0.0000000 10.8620000 16.2930000 0.0000000
|
||||
354 354 1 0.0000000 10.8620000 19.0080000 2.7150000
|
||||
355 355 1 0.0000000 13.5770000 19.0080000 0.0000000
|
||||
356 356 1 0.0000000 13.5770000 16.2930000 2.7150000
|
||||
357 357 1 0.0000000 14.9350000 17.6510000 4.0730000
|
||||
358 358 1 0.0000000 12.2200000 17.6510000 1.3580000
|
||||
359 359 1 0.0000000 12.2200000 20.3660000 4.0730000
|
||||
360 360 1 0.0000000 14.9350000 20.3660000 1.3580000
|
||||
361 361 1 0.0000000 10.8620000 16.2930000 5.4310000
|
||||
362 362 1 0.0000000 10.8620000 19.0080000 8.1460000
|
||||
363 363 1 0.0000000 13.5770000 19.0080000 5.4310000
|
||||
364 364 1 0.0000000 13.5770000 16.2930000 8.1460000
|
||||
365 365 1 0.0000000 14.9350000 17.6510000 9.5040000
|
||||
366 366 1 0.0000000 12.2200000 17.6510000 6.7890000
|
||||
367 367 1 0.0000000 12.2200000 20.3660000 9.5040000
|
||||
368 368 1 0.0000000 14.9350000 20.3660000 6.7890000
|
||||
369 369 1 0.0000000 10.8620000 16.2930000 10.8620000
|
||||
370 370 1 0.0000000 10.8620000 19.0080000 13.5770000
|
||||
371 371 1 0.0000000 13.5770000 19.0080000 10.8620000
|
||||
372 372 1 0.0000000 13.5770000 16.2930000 13.5770000
|
||||
373 373 1 0.0000000 14.9350000 17.6510000 14.9350000
|
||||
374 374 1 0.0000000 12.2200000 17.6510000 12.2200000
|
||||
375 375 1 0.0000000 12.2200000 20.3660000 14.9350000
|
||||
376 376 1 0.0000000 14.9350000 20.3660000 12.2200000
|
||||
377 377 1 0.0000000 10.8620000 16.2930000 16.2930000
|
||||
378 378 1 0.0000000 10.8620000 19.0080000 19.0080000
|
||||
379 379 1 0.0000000 13.5770000 19.0080000 16.2930000
|
||||
380 380 1 0.0000000 13.5770000 16.2930000 19.0080000
|
||||
381 381 1 0.0000000 14.9350000 17.6510000 20.3660000
|
||||
382 382 1 0.0000000 12.2200000 17.6510000 17.6510000
|
||||
383 383 1 0.0000000 12.2200000 20.3660000 20.3660000
|
||||
384 384 1 0.0000000 14.9350000 20.3660000 17.6510000
|
||||
385 385 1 0.0000000 16.2930000 0.0000000 0.0000000
|
||||
386 386 1 0.0000000 16.2930000 2.7150000 2.7150000
|
||||
387 387 1 0.0000000 19.0080000 2.7150000 0.0000000
|
||||
388 388 1 0.0000000 19.0080000 0.0000000 2.7150000
|
||||
389 389 1 0.0000000 20.3660000 1.3580000 4.0730000
|
||||
390 390 1 0.0000000 17.6510000 1.3580000 1.3580000
|
||||
391 391 1 0.0000000 17.6510000 4.0730000 4.0730000
|
||||
392 392 1 0.0000000 20.3660000 4.0730000 1.3580000
|
||||
393 393 1 0.0000000 16.2930000 0.0000000 5.4310000
|
||||
394 394 1 0.0000000 16.2930000 2.7150000 8.1460000
|
||||
395 395 1 0.0000000 19.0080000 2.7150000 5.4310000
|
||||
396 396 1 0.0000000 19.0080000 0.0000000 8.1460000
|
||||
397 397 1 0.0000000 20.3660000 1.3580000 9.5040000
|
||||
398 398 1 0.0000000 17.6510000 1.3580000 6.7890000
|
||||
399 399 1 0.0000000 17.6510000 4.0730000 9.5040000
|
||||
400 400 1 0.0000000 20.3660000 4.0730000 6.7890000
|
||||
401 401 1 0.0000000 16.2930000 0.0000000 10.8620000
|
||||
402 402 1 0.0000000 16.2930000 2.7150000 13.5770000
|
||||
403 403 1 0.0000000 19.0080000 2.7150000 10.8620000
|
||||
404 404 1 0.0000000 19.0080000 0.0000000 13.5770000
|
||||
405 405 1 0.0000000 20.3660000 1.3580000 14.9350000
|
||||
406 406 1 0.0000000 17.6510000 1.3580000 12.2200000
|
||||
407 407 1 0.0000000 17.6510000 4.0730000 14.9350000
|
||||
408 408 1 0.0000000 20.3660000 4.0730000 12.2200000
|
||||
409 409 1 0.0000000 16.2930000 0.0000000 16.2930000
|
||||
410 410 1 0.0000000 16.2930000 2.7150000 19.0080000
|
||||
411 411 1 0.0000000 19.0080000 2.7150000 16.2930000
|
||||
412 412 1 0.0000000 19.0080000 0.0000000 19.0080000
|
||||
413 413 1 0.0000000 20.3660000 1.3580000 20.3660000
|
||||
414 414 1 0.0000000 17.6510000 1.3580000 17.6510000
|
||||
415 415 1 0.0000000 17.6510000 4.0730000 20.3660000
|
||||
416 416 1 0.0000000 20.3660000 4.0730000 17.6510000
|
||||
417 417 1 0.0000000 16.2930000 5.4310000 0.0000000
|
||||
418 418 1 0.0000000 16.2930000 8.1460000 2.7150000
|
||||
419 419 1 0.0000000 19.0080000 8.1460000 0.0000000
|
||||
420 420 1 0.0000000 19.0080000 5.4310000 2.7150000
|
||||
421 421 1 0.0000000 20.3660000 6.7890000 4.0730000
|
||||
422 422 1 0.0000000 17.6510000 6.7890000 1.3580000
|
||||
423 423 1 0.0000000 17.6510000 9.5040000 4.0730000
|
||||
424 424 1 0.0000000 20.3660000 9.5040000 1.3580000
|
||||
425 425 1 0.0000000 16.2930000 5.4310000 5.4310000
|
||||
426 426 1 0.0000000 16.2930000 8.1460000 8.1460000
|
||||
427 427 1 0.0000000 19.0080000 8.1460000 5.4310000
|
||||
428 428 1 0.0000000 19.0080000 5.4310000 8.1460000
|
||||
429 429 1 0.0000000 20.3660000 6.7890000 9.5040000
|
||||
430 430 1 0.0000000 17.6510000 6.7890000 6.7890000
|
||||
431 431 1 0.0000000 17.6510000 9.5040000 9.5040000
|
||||
432 432 1 0.0000000 20.3660000 9.5040000 6.7890000
|
||||
433 433 1 0.0000000 16.2930000 5.4310000 10.8620000
|
||||
434 434 1 0.0000000 16.2930000 8.1460000 13.5770000
|
||||
435 435 1 0.0000000 19.0080000 8.1460000 10.8620000
|
||||
436 436 1 0.0000000 19.0080000 5.4310000 13.5770000
|
||||
437 437 1 0.0000000 20.3660000 6.7890000 14.9350000
|
||||
438 438 1 0.0000000 17.6510000 6.7890000 12.2200000
|
||||
439 439 1 0.0000000 17.6510000 9.5040000 14.9350000
|
||||
440 440 1 0.0000000 20.3660000 9.5040000 12.2200000
|
||||
441 441 1 0.0000000 16.2930000 5.4310000 16.2930000
|
||||
442 442 1 0.0000000 16.2930000 8.1460000 19.0080000
|
||||
443 443 1 0.0000000 19.0080000 8.1460000 16.2930000
|
||||
444 444 1 0.0000000 19.0080000 5.4310000 19.0080000
|
||||
445 445 1 0.0000000 20.3660000 6.7890000 20.3660000
|
||||
446 446 1 0.0000000 17.6510000 6.7890000 17.6510000
|
||||
447 447 1 0.0000000 17.6510000 9.5040000 20.3660000
|
||||
448 448 1 0.0000000 20.3660000 9.5040000 17.6510000
|
||||
449 449 1 0.0000000 16.2930000 10.8620000 0.0000000
|
||||
450 450 1 0.0000000 16.2930000 13.5770000 2.7150000
|
||||
451 451 1 0.0000000 19.0080000 13.5770000 0.0000000
|
||||
452 452 1 0.0000000 19.0080000 10.8620000 2.7150000
|
||||
453 453 1 0.0000000 20.3660000 12.2200000 4.0730000
|
||||
454 454 1 0.0000000 17.6510000 12.2200000 1.3580000
|
||||
455 455 1 0.0000000 17.6510000 14.9350000 4.0730000
|
||||
456 456 1 0.0000000 20.3660000 14.9350000 1.3580000
|
||||
457 457 1 0.0000000 16.2930000 10.8620000 5.4310000
|
||||
458 458 1 0.0000000 16.2930000 13.5770000 8.1460000
|
||||
459 459 1 0.0000000 19.0080000 13.5770000 5.4310000
|
||||
460 460 1 0.0000000 19.0080000 10.8620000 8.1460000
|
||||
461 461 1 0.0000000 20.3660000 12.2200000 9.5040000
|
||||
462 462 1 0.0000000 17.6510000 12.2200000 6.7890000
|
||||
463 463 1 0.0000000 17.6510000 14.9350000 9.5040000
|
||||
464 464 1 0.0000000 20.3660000 14.9350000 6.7890000
|
||||
465 465 1 0.0000000 16.2930000 10.8620000 10.8620000
|
||||
466 466 1 0.0000000 16.2930000 13.5770000 13.5770000
|
||||
467 467 1 0.0000000 19.0080000 13.5770000 10.8620000
|
||||
468 468 1 0.0000000 19.0080000 10.8620000 13.5770000
|
||||
469 469 1 0.0000000 20.3660000 12.2200000 14.9350000
|
||||
470 470 1 0.0000000 17.6510000 12.2200000 12.2200000
|
||||
471 471 1 0.0000000 17.6510000 14.9350000 14.9350000
|
||||
472 472 1 0.0000000 20.3660000 14.9350000 12.2200000
|
||||
473 473 1 0.0000000 16.2930000 10.8620000 16.2930000
|
||||
474 474 1 0.0000000 16.2930000 13.5770000 19.0080000
|
||||
475 475 1 0.0000000 19.0080000 13.5770000 16.2930000
|
||||
476 476 1 0.0000000 19.0080000 10.8620000 19.0080000
|
||||
477 477 1 0.0000000 20.3660000 12.2200000 20.3660000
|
||||
478 478 1 0.0000000 17.6510000 12.2200000 17.6510000
|
||||
479 479 1 0.0000000 17.6510000 14.9350000 20.3660000
|
||||
480 480 1 0.0000000 20.3660000 14.9350000 17.6510000
|
||||
481 481 1 0.0000000 16.2930000 16.2930000 0.0000000
|
||||
482 482 1 0.0000000 16.2930000 19.0080000 2.7150000
|
||||
483 483 1 0.0000000 19.0080000 19.0080000 0.0000000
|
||||
484 484 1 0.0000000 19.0080000 16.2930000 2.7150000
|
||||
485 485 1 0.0000000 20.3660000 17.6510000 4.0730000
|
||||
486 486 1 0.0000000 17.6510000 17.6510000 1.3580000
|
||||
487 487 1 0.0000000 17.6510000 20.3660000 4.0730000
|
||||
488 488 1 0.0000000 20.3660000 20.3660000 1.3580000
|
||||
489 489 1 0.0000000 16.2930000 16.2930000 5.4310000
|
||||
490 490 1 0.0000000 16.2930000 19.0080000 8.1460000
|
||||
491 491 1 0.0000000 19.0080000 19.0080000 5.4310000
|
||||
492 492 1 0.0000000 19.0080000 16.2930000 8.1460000
|
||||
493 493 1 0.0000000 20.3660000 17.6510000 9.5040000
|
||||
494 494 1 0.0000000 17.6510000 17.6510000 6.7890000
|
||||
495 495 1 0.0000000 17.6510000 20.3660000 9.5040000
|
||||
496 496 1 0.0000000 20.3660000 20.3660000 6.7890000
|
||||
497 497 1 0.0000000 16.2930000 16.2930000 10.8620000
|
||||
498 498 1 0.0000000 16.2930000 19.0080000 13.5770000
|
||||
499 499 1 0.0000000 19.0080000 19.0080000 10.8620000
|
||||
500 500 1 0.0000000 19.0080000 16.2930000 13.5770000
|
||||
501 501 1 0.0000000 20.3660000 17.6510000 14.9350000
|
||||
502 502 1 0.0000000 17.6510000 17.6510000 12.2200000
|
||||
503 503 1 0.0000000 17.6510000 20.3660000 14.9350000
|
||||
504 504 1 0.0000000 20.3660000 20.3660000 12.2200000
|
||||
505 505 1 0.0000000 16.2930000 16.2930000 16.2930000
|
||||
506 506 1 0.0000000 16.2930000 19.0080000 19.0080000
|
||||
507 507 1 0.0000000 19.0080000 19.0080000 16.2930000
|
||||
508 508 1 0.0000000 19.0080000 16.2930000 19.0080000
|
||||
509 509 1 0.0000000 20.3660000 17.6510000 20.3660000
|
||||
510 510 1 0.0000000 17.6510000 17.6510000 17.6510000
|
||||
511 511 1 0.0000000 17.6510000 20.3660000 20.3660000
|
||||
512 512 1 0.0000000 20.3660000 20.3660000 17.6510000
|
||||
|
||||
@ -1,29 +0,0 @@
|
||||
LAMMPS description
|
||||
|
||||
8 atoms
|
||||
0 bonds
|
||||
0 angles
|
||||
0 dihedrals
|
||||
0 impropers
|
||||
|
||||
1 atom types
|
||||
0 bond types
|
||||
0 angle types
|
||||
0 dihedral types
|
||||
0 improper types
|
||||
|
||||
|
||||
0.0000000 5.4310000 xlo xhi
|
||||
0.0000000 5.4310000 ylo yhi
|
||||
0.0000000 5.4310000 zlo zhi
|
||||
|
||||
Atoms
|
||||
|
||||
1 1 1 0.0000000 0.0000000 0.0000000 0.0000000
|
||||
2 2 1 0.0000000 1.3577500 1.3577500 1.3572000
|
||||
3 3 1 0.0000000 2.7155000 2.7155000 0.0000000
|
||||
4 4 1 0.0000000 4.0732500 4.0732500 1.3572000
|
||||
5 5 1 0.0000000 2.7155000 0.0000000 2.7144000
|
||||
6 6 1 0.0000000 4.0732500 1.3577500 4.0732500
|
||||
7 7 1 0.0000000 0.0000000 2.7155000 2.7155000
|
||||
8 8 1 0.0000000 1.3577500 4.0732500 4.0732500
|
||||
@ -1,58 +0,0 @@
|
||||
LAMMPS (16 Jul 2018)
|
||||
Reading data file ...
|
||||
orthogonal box = (0 0 0) to (5.431 5.431 5.431)
|
||||
2 by 2 by 1 MPI processor grid
|
||||
reading atoms ...
|
||||
8 atoms
|
||||
Finding 1-2 1-3 1-4 neighbors ...
|
||||
special bond factors lj: 0 0 0
|
||||
special bond factors coul: 0 0 0
|
||||
0 = max # of 1-2 neighbors
|
||||
0 = max # of 1-3 neighbors
|
||||
0 = max # of 1-4 neighbors
|
||||
1 = max # of special neighbors
|
||||
Neighbor list info ...
|
||||
update every 1 steps, delay 10 steps, check yes
|
||||
max neighbors/atom: 2000, page size: 100000
|
||||
master list distance cutoff = 4
|
||||
ghost atom cutoff = 4
|
||||
binsize = 2, bins = 3 3 3
|
||||
1 neighbor lists, perpetual/occasional/extra = 1 0 0
|
||||
(1) pair tersoff, perpetual
|
||||
attributes: full, newton on
|
||||
pair build: full/bin
|
||||
stencil: full/bin/3d
|
||||
bin: standard
|
||||
Calculating Anharmonic Dynamical Matrix...
|
||||
Third Order calculation took 0.043923 seconds
|
||||
Finished Calculating Third Order Tensor
|
||||
Loop time of 1.22619e+06 on 4 procs for 0 steps with 8 atoms
|
||||
|
||||
0.0% CPU use with 4 MPI tasks x no OpenMP threads
|
||||
|
||||
MPI task timing breakdown:
|
||||
Section | min time | avg time | max time |%varavg| %total
|
||||
---------------------------------------------------------------
|
||||
Pair | 0.013707 | 0.016582 | 0.019588 | 2.2 | 0.00
|
||||
Bond | 8.1341e-05 | 8.7207e-05 | 9.3228e-05 | 0.0 | 0.00
|
||||
Neigh | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Comm | 0.019285 | 0.022435 | 0.025684 | 2.0 | 0.00
|
||||
Output | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Modify | 0 | 0 | 0 | 0.0 | 0.00
|
||||
Other | | 1.226e+06 | | |100.00
|
||||
|
||||
Nlocal: 2 ave 2 max 2 min
|
||||
Histogram: 4 0 0 0 0 0 0 0 0 0
|
||||
Nghost: 56 ave 56 max 56 min
|
||||
Histogram: 4 0 0 0 0 0 0 0 0 0
|
||||
Neighs: 0 ave 0 max 0 min
|
||||
Histogram: 4 0 0 0 0 0 0 0 0 0
|
||||
FullNghs: 32 ave 32 max 32 min
|
||||
Histogram: 4 0 0 0 0 0 0 0 0 0
|
||||
|
||||
Total # of neighbors = 128
|
||||
Ave neighs/atom = 16
|
||||
Ave special neighs/atom = 0
|
||||
Neighbor list builds = 0
|
||||
Dangerous builds = 0
|
||||
Total wall time: 0:00:00
|
||||
File diff suppressed because it is too large
Load Diff
@ -1,29 +0,0 @@
|
||||
LAMMPS description
|
||||
|
||||
8 atoms
|
||||
0 bonds
|
||||
0 angles
|
||||
0 dihedrals
|
||||
0 impropers
|
||||
|
||||
1 atom types
|
||||
0 bond types
|
||||
0 angle types
|
||||
0 dihedral types
|
||||
0 improper types
|
||||
|
||||
|
||||
0.0000000 5.4310000 xlo xhi
|
||||
0.0000000 5.4310000 ylo yhi
|
||||
0.0000000 5.4310000 zlo zhi
|
||||
|
||||
Atoms
|
||||
|
||||
1 1 1 0.0000000 0.0000000 0.0000000 0.0000000
|
||||
2 2 1 0.0000000 1.3577500 1.3577500 1.3572000
|
||||
3 3 1 0.0000000 2.7155000 2.7155000 0.0000000
|
||||
4 4 1 0.0000000 4.0732500 4.0732500 1.3572000
|
||||
5 5 1 0.0000000 2.7155000 0.0000000 2.7144000
|
||||
6 6 1 0.0000000 4.0732500 1.3577500 4.0732500
|
||||
7 7 1 0.0000000 0.0000000 2.7155000 2.7155000
|
||||
8 8 1 0.0000000 1.3577500 4.0732500 4.0732500
|
||||
@ -3,12 +3,11 @@ matrices from finite temperature MD simulations, which can then be
|
||||
used to compute phonon dispersion relations, directly from molecular
|
||||
dynamics simulations.
|
||||
|
||||
It also contains two commands to compute the dynamical matrix and
|
||||
the corresponding third order matrix at pre-optimized positions
|
||||
through finite differences.
|
||||
It also contains a command to compute the dynamical matrix at
|
||||
pre-optimized positions through finite differences.
|
||||
|
||||
See the doc page for the fix phonon command or the dynamical_matrix
|
||||
third_order commands for detailed usage instructions.
|
||||
command for detailed usage instructions.
|
||||
|
||||
Use of this package requires building LAMMPS with FFT suppport, as
|
||||
described in doc/Section_start.html.
|
||||
@ -30,5 +29,5 @@ The person who created fix phonon is Ling-Ti Kong (konglt at
|
||||
sjtu.edu.cn) at Shanghai Jiao Tong University. Contact him directly
|
||||
if you have questions.
|
||||
|
||||
The person who created dynamical_matrix and third_order is
|
||||
Charlie Sievers at UC Davis.
|
||||
The person who created the dynamical_matrix command is Charlie Sievers
|
||||
at UC Davis. Contact him directly if you have questions about his code.
|
||||
|
||||
@ -1,560 +0,0 @@
|
||||
//
|
||||
// Created by charlie sievers on 7/5/18.
|
||||
//
|
||||
|
||||
|
||||
#include <mpi.h>
|
||||
#include <cstdlib>
|
||||
#include "third_order.h"
|
||||
#include "atom.h"
|
||||
#include "complex"
|
||||
#include "domain.h"
|
||||
#include "comm.h"
|
||||
#include "group.h"
|
||||
#include "force.h"
|
||||
#include "math_extra.h"
|
||||
#include "memory.h"
|
||||
#include "bond.h"
|
||||
#include "angle.h"
|
||||
#include "dihedral.h"
|
||||
#include "improper.h"
|
||||
#include "kspace.h"
|
||||
#include "update.h"
|
||||
#include "neighbor.h"
|
||||
#include "pair.h"
|
||||
#include "timer.h"
|
||||
#include "finish.h"
|
||||
#include <algorithm>
|
||||
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
enum{REGULAR,BALLISTICO};
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
ThirdOrder::ThirdOrder(LAMMPS *lmp) : Pointers(lmp), fp(NULL)
|
||||
{
|
||||
external_force_clear = 1;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
ThirdOrder::~ThirdOrder()
|
||||
{
|
||||
if (fp && me == 0) fclose(fp);
|
||||
memory->destroy(groupmap);
|
||||
fp = NULL;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
setup without output or one-time post-init setup
|
||||
flag = 0 = just force calculation
|
||||
flag = 1 = reneighbor and force calculation
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void ThirdOrder::setup()
|
||||
{
|
||||
// setup domain, communication and neighboring
|
||||
// acquire ghosts
|
||||
// build neighbor lists
|
||||
if (triclinic) domain->x2lamda(atom->nlocal);
|
||||
domain->pbc();
|
||||
domain->reset_box();
|
||||
comm->setup();
|
||||
if (neighbor->style) neighbor->setup_bins();
|
||||
comm->exchange();
|
||||
comm->borders();
|
||||
if (triclinic) domain->lamda2x(atom->nlocal+atom->nghost);
|
||||
domain->image_check();
|
||||
domain->box_too_small_check();
|
||||
neighbor->build(1);
|
||||
neighbor->ncalls = 0;
|
||||
neighbor->every = 3; // build every this many steps
|
||||
neighbor->delay = 1;
|
||||
neighbor->ago = 0;
|
||||
neighbor->ndanger = 0;
|
||||
|
||||
// compute all forces
|
||||
|
||||
external_force_clear = 0;
|
||||
eflag=0;
|
||||
vflag=0;
|
||||
update_force();
|
||||
|
||||
if (gcount == atom->natoms)
|
||||
for (bigint i=0; i<atom->natoms; i++)
|
||||
groupmap[i] = i;
|
||||
else
|
||||
create_groupmap();
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ThirdOrder::command(int narg, char **arg)
|
||||
{
|
||||
MPI_Comm_rank(world,&me);
|
||||
|
||||
if (domain->box_exist == 0)
|
||||
error->all(FLERR,"Third_order command before simulation box is defined");
|
||||
if (narg < 2) error->all(FLERR,"Illegal third_oreder command");
|
||||
|
||||
lmp->init();
|
||||
|
||||
// orthogonal vs triclinic simulation box
|
||||
|
||||
triclinic = domain->triclinic;
|
||||
|
||||
if (force->pair && force->pair->compute_flag) pair_compute_flag = 1;
|
||||
else pair_compute_flag = 0;
|
||||
if (force->kspace && force->kspace->compute_flag) kspace_compute_flag = 1;
|
||||
else kspace_compute_flag = 0;
|
||||
|
||||
// group and style
|
||||
|
||||
igroup = group->find(arg[0]);
|
||||
if (igroup == -1) error->all(FLERR,"Could not find third_order group ID");
|
||||
groupbit = group->bitmask[igroup];
|
||||
gcount = group->count(igroup);
|
||||
dynlen = (gcount)*3;
|
||||
memory->create(groupmap,atom->natoms,"total_group_map:totalgm");
|
||||
update->setupflag = 1;
|
||||
|
||||
int style = -1;
|
||||
if (strcmp(arg[1],"regular") == 0) style = REGULAR;
|
||||
else if (strcmp(arg[1],"ballistico") == 0) style = BALLISTICO;
|
||||
else error->all(FLERR,"Illegal Dynamical Matrix command");
|
||||
|
||||
// set option defaults
|
||||
|
||||
binaryflag = 0;
|
||||
scaleflag = 0;
|
||||
compressed = 0;
|
||||
file_flag = 0;
|
||||
file_opened = 0;
|
||||
conversion = 1;
|
||||
|
||||
// read options from end of input line
|
||||
if (style == REGULAR) options(narg-3,&arg[3]); //COME BACK
|
||||
else if (style == BALLISTICO) options(narg-3,&arg[3]); //COME BACK
|
||||
else if (comm->me == 0 && screen) fprintf(screen,"Illegal Dynamical Matrix command\n");
|
||||
del = force->numeric(FLERR, arg[2]);
|
||||
|
||||
// move atoms by 3-vector or specified variable(s)
|
||||
|
||||
if (style == REGULAR) {
|
||||
setup();
|
||||
timer->init();
|
||||
timer->barrier_start();
|
||||
calculateMatrix();
|
||||
timer->barrier_stop();
|
||||
}
|
||||
|
||||
if (style == BALLISTICO) {
|
||||
setup();
|
||||
convert_units(update->unit_style);
|
||||
conversion = conv_energy/conv_distance/conv_distance;
|
||||
timer->init();
|
||||
timer->barrier_start();
|
||||
calculateMatrix();
|
||||
timer->barrier_stop();
|
||||
}
|
||||
|
||||
Finish finish(lmp);
|
||||
finish.end(1);
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
parse optional parameters
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void ThirdOrder::options(int narg, char **arg)
|
||||
{
|
||||
if (narg < 0) error->all(FLERR,"Illegal dynamical_matrix command");
|
||||
int iarg = 0;
|
||||
const char *filename = "third_order.txt";
|
||||
|
||||
while (iarg < narg) {
|
||||
if (strcmp(arg[iarg],"file") == 0) {
|
||||
if (iarg+2 > narg) error->all(FLERR, "Illegal dynamical_matrix command");
|
||||
filename = arg[iarg + 1];
|
||||
file_flag = 1;
|
||||
iarg += 2;
|
||||
}
|
||||
else if (strcmp(arg[iarg],"binary") == 0) {
|
||||
if (iarg + 2 > narg) error->all(FLERR, "Illegal dynamical_matrix command");
|
||||
if (strcmp(arg[iarg+1],"gzip") == 0) {
|
||||
compressed = 1;
|
||||
}
|
||||
else if (strcmp(arg[iarg+1],"yes") == 0) {
|
||||
binaryflag = 1;
|
||||
}
|
||||
iarg += 2;
|
||||
} else error->all(FLERR,"Illegal dynamical_matrix command");
|
||||
}
|
||||
if (file_flag == 1 && me == 0) {
|
||||
openfile(filename);
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
generic opening of a file
|
||||
ASCII or binary or gzipped
|
||||
some derived classes override this function
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void ThirdOrder::openfile(const char* filename)
|
||||
{
|
||||
// if file already opened, return
|
||||
if (file_opened) return;
|
||||
|
||||
if (compressed) {
|
||||
#ifdef LAMMPS_GZIP
|
||||
char gzip[128];
|
||||
sprintf(gzip,"gzip -6 > %s",filename);
|
||||
#ifdef _WIN32
|
||||
fp = _popen(gzip,"wb");
|
||||
#else
|
||||
fp = popen(gzip,"w");
|
||||
#endif
|
||||
#else
|
||||
error->one(FLERR,"Cannot open gzipped file");
|
||||
#endif
|
||||
} else if (binaryflag) {
|
||||
fp = fopen(filename,"wb");
|
||||
} else {
|
||||
fp = fopen(filename,"w");
|
||||
}
|
||||
|
||||
if (fp == NULL) error->one(FLERR,"Cannot open dump file");
|
||||
|
||||
file_opened = 1;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
create dynamical matrix
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void ThirdOrder::calculateMatrix()
|
||||
{
|
||||
int local_idx; // local index
|
||||
int local_jdx; // second local index
|
||||
int local_kdx; // third local index
|
||||
int nlocal = atom->nlocal;
|
||||
int natoms = atom->natoms;
|
||||
int *gm = groupmap;
|
||||
double **f = atom->f;
|
||||
|
||||
double *dynmat = new double[3*dynlen];
|
||||
double *fdynmat = new double[3*dynlen];
|
||||
memset(&dynmat[0],0,dynlen*sizeof(double));
|
||||
memset(&fdynmat[0],0,dynlen*sizeof(double));
|
||||
|
||||
if (comm->me == 0 && screen) fprintf(screen,"Calculating Anharmonic Dynamical Matrix...\n");
|
||||
|
||||
update->nsteps = 0;
|
||||
for (bigint i=1; i<=natoms; i++){
|
||||
local_idx = atom->map(i);
|
||||
for (bigint alpha=0; alpha<3; alpha++){
|
||||
for (bigint j=1; j<=natoms; j++){
|
||||
local_jdx = atom->map(j);
|
||||
for (int beta=0; beta<3; beta++){
|
||||
displace_atom(local_idx, alpha, 1);
|
||||
displace_atom(local_jdx, beta, 1);
|
||||
update_force();
|
||||
for (bigint k=1; k<=natoms; k++){
|
||||
local_kdx = atom->map(k);
|
||||
for (int gamma=0; gamma<3; gamma++){
|
||||
if (local_idx >= 0 && local_jdx >= 0 && local_kdx >= 0
|
||||
&& gm[i-1] >= 0 && gm[j-1] >= 0 && gm[k-1] >= 0
|
||||
&& local_kdx < nlocal) {
|
||||
dynmat[gm[k-1]*3+gamma] += f[local_kdx][gamma];
|
||||
}
|
||||
}
|
||||
}
|
||||
displace_atom(local_jdx, beta, -2);
|
||||
update_force();
|
||||
for (bigint k=1; k<=natoms; k++){
|
||||
local_kdx = atom->map(k);
|
||||
for (int gamma=0; gamma<3; gamma++){
|
||||
if (local_idx >= 0 && local_jdx >= 0 && local_kdx >= 0
|
||||
&& gm[i-1] >= 0 && gm[j-1] >= 0 && gm[k-1] >= 0
|
||||
&& local_kdx < nlocal) {
|
||||
dynmat[gm[k-1]*3+gamma] -= f[local_kdx][gamma];
|
||||
}
|
||||
}
|
||||
}
|
||||
displace_atom(local_jdx, beta, 1);
|
||||
displace_atom(local_idx,alpha,-2);
|
||||
displace_atom(local_jdx, beta, 1);
|
||||
update_force();
|
||||
for (bigint k=1; k<=natoms; k++){
|
||||
local_kdx = atom->map(k);
|
||||
for (int gamma=0; gamma<3; gamma++){
|
||||
if (local_idx >= 0 && local_jdx >= 0 && local_kdx >= 0
|
||||
&& gm[i-1] >= 0 && gm[j-1] >= 0 && gm[k-1] >= 0
|
||||
&& local_kdx < nlocal) {
|
||||
dynmat[gm[k-1]*3+gamma] -= f[local_kdx][gamma];
|
||||
}
|
||||
}
|
||||
}
|
||||
displace_atom(local_jdx, beta, -2);
|
||||
update_force();
|
||||
for (bigint k=1; k<=natoms; k++){
|
||||
local_kdx = atom->map(k);
|
||||
for (int gamma=0; gamma<3; gamma++){
|
||||
if (local_idx >= 0 && local_jdx >= 0 && local_kdx >= 0
|
||||
&& gm[i-1] >= 0 && gm[j-1] >= 0 && gm[k-1] >= 0
|
||||
&& local_kdx < nlocal) {
|
||||
dynmat[gm[k-1]*3+gamma] += f[local_kdx][gamma];
|
||||
dynmat[gm[k-1]*3+gamma] /= -(4 * del * del);
|
||||
}
|
||||
}
|
||||
}
|
||||
displace_atom(local_jdx, beta, 1);
|
||||
displace_atom(local_idx, alpha, 1);
|
||||
MPI_Reduce(dynmat,fdynmat,3*dynlen,MPI_DOUBLE,MPI_SUM,0,world);
|
||||
if (me == 0){
|
||||
writeMatrix(fdynmat, gm[i-1], alpha, gm[j-1], beta);
|
||||
}
|
||||
memset(&dynmat[0],0,dynlen*sizeof(double));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
delete [] dynmat;
|
||||
delete [] fdynmat;
|
||||
|
||||
if (screen && me ==0 ) fprintf(screen,"Finished Calculating Third Order Tensor\n");
|
||||
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
write dynamical matrix
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void ThirdOrder::writeMatrix(double *dynmat, int i, int a, int j, int b)
|
||||
{
|
||||
if (me != 0)
|
||||
return;
|
||||
|
||||
if (!binaryflag && fp) {
|
||||
clearerr(fp);
|
||||
for (int k = 0; k < gcount; k++){
|
||||
if (dynmat[k*3] > 1.0e-16
|
||||
&& dynmat[k*3+1] > 1.0e-16
|
||||
&& dynmat[k*3+2] > 1.0e-16)
|
||||
fprintf(fp,
|
||||
"%d %d %d %d %d %7.8f %7.8f %7.8f\n",
|
||||
i+1, a + 1, j+1, b + 1, groupmap[k]+1,
|
||||
dynmat[k*3] * conversion,
|
||||
dynmat[k*3+1] * conversion,
|
||||
dynmat[k*3+2] * conversion);
|
||||
}
|
||||
}
|
||||
else if (binaryflag && fp){
|
||||
clearerr(fp);
|
||||
fwrite(&dynmat[0], sizeof(double), dynlen, fp);
|
||||
}
|
||||
if (ferror(fp)) error->one(FLERR,"Error writing to file");
|
||||
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Displace atoms
|
||||
---------------------------------------------------------------------- */
|
||||
|
||||
void ThirdOrder::displace_atom(int local_idx, int direction, int magnitude)
|
||||
{
|
||||
if (local_idx < 0) return;
|
||||
|
||||
double **x = atom->x;
|
||||
int *sametag = atom->sametag;
|
||||
int j = local_idx;
|
||||
|
||||
x[local_idx][direction] += del*magnitude;
|
||||
|
||||
while (sametag[j] >= 0){
|
||||
j = sametag[j];
|
||||
x[j][direction] += del*magnitude;
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
evaluate potential energy and forces
|
||||
may migrate atoms due to reneighboring
|
||||
return new energy, which should include nextra_global dof
|
||||
return negative gradient stored in atom->f
|
||||
return negative gradient for nextra_global dof in fextra
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void ThirdOrder::update_force()
|
||||
{
|
||||
force_clear();
|
||||
|
||||
timer->stamp();
|
||||
|
||||
if (pair_compute_flag) {
|
||||
force->pair->compute(eflag,vflag);
|
||||
timer->stamp(Timer::PAIR);
|
||||
}
|
||||
|
||||
if (atom->molecular) {
|
||||
if (force->bond) force->bond->compute(eflag,vflag);
|
||||
if (force->angle) force->angle->compute(eflag,vflag);
|
||||
if (force->dihedral) force->dihedral->compute(eflag,vflag);
|
||||
if (force->improper) force->improper->compute(eflag,vflag);
|
||||
timer->stamp(Timer::BOND);
|
||||
}
|
||||
|
||||
if (kspace_compute_flag) {
|
||||
force->kspace->compute(eflag,vflag);
|
||||
timer->stamp(Timer::KSPACE);
|
||||
}
|
||||
|
||||
if (force->newton) {
|
||||
comm->reverse_comm();
|
||||
timer->stamp(Timer::COMM);
|
||||
}
|
||||
++ update->nsteps;
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
clear force on own & ghost atoms
|
||||
clear other arrays as needed
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void ThirdOrder::force_clear()
|
||||
{
|
||||
if (external_force_clear) return;
|
||||
|
||||
// clear global force array
|
||||
// if either newton flag is set, also include ghosts
|
||||
|
||||
size_t nbytes = sizeof(double) * atom->nlocal;
|
||||
if (force->newton) nbytes += sizeof(double) * atom->nghost;
|
||||
|
||||
if (nbytes) {
|
||||
memset(&atom->f[0][0],0,3*nbytes);
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ThirdOrder::convert_units(const char *style)
|
||||
{
|
||||
// physical constants from:
|
||||
// http://physics.nist.gov/cuu/Constants/Table/allascii.txt
|
||||
// using thermochemical calorie = 4.184 J
|
||||
|
||||
if (strcmp(style,"lj") == 0) {
|
||||
error->all(FLERR,"Conversion Not Set");
|
||||
//conversion = 1; // lj -> 10 J/mol
|
||||
|
||||
} else if (strcmp(style,"real") == 0) {
|
||||
conv_energy = 418.4; // kcal/mol -> 10 J/mol
|
||||
conv_mass = 1; // g/mol -> g/mol
|
||||
conv_distance = 1; // angstrom -> angstrom
|
||||
|
||||
} else if (strcmp(style,"metal") == 0) {
|
||||
conv_energy = 9648.5; // eV -> 10 J/mol
|
||||
conv_mass = 1; // g/mol -> g/mol
|
||||
conv_distance = 1; // angstrom -> angstrom
|
||||
|
||||
} else if (strcmp(style,"si") == 0) {
|
||||
if (comm->me) error->warning(FLERR,"Conversion Warning: Multiplication by Large Float");
|
||||
conv_energy = 6.022E22; // J -> 10 J/mol
|
||||
conv_mass = 6.022E26; // kg -> g/mol
|
||||
conv_distance = 1E-10; // meter -> angstrom
|
||||
|
||||
} else if (strcmp(style,"cgs") == 0) {
|
||||
if (comm->me) error->warning(FLERR,"Conversion Warning: Multiplication by Large Float");
|
||||
conv_energy = 6.022E12; // Erg -> 10 J/mol
|
||||
conv_mass = 6.022E23; // g -> g/mol
|
||||
conv_distance = 1E-7; // centimeter -> angstrom
|
||||
|
||||
} else if (strcmp(style,"electron") == 0) {
|
||||
conv_energy = 262550; // Hartree -> 10 J/mol
|
||||
conv_mass = 1; // amu -> g/mol
|
||||
conv_distance = 0.529177249; // bohr -> angstrom
|
||||
|
||||
} else if (strcmp(style,"micro") == 0) {
|
||||
if (comm->me) error->warning(FLERR,"Conversion Warning: Untested Conversion");
|
||||
conv_energy = 6.022E10; // picogram-micrometer^2/microsecond^2 -> 10 J/mol
|
||||
conv_mass = 6.022E11; // pg -> g/mol
|
||||
conv_distance = 1E-4; // micrometer -> angstrom
|
||||
|
||||
} else if (strcmp(style,"nano") == 0) {
|
||||
if (comm->me) error->warning(FLERR,"Conversion Warning: Untested Conversion");
|
||||
conv_energy = 6.022E4; // attogram-nanometer^2/nanosecond^2 -> 10 J/mol
|
||||
conv_mass = 6.022E5; // ag -> g/mol
|
||||
conv_distance = 0.1; // angstrom -> angstrom
|
||||
|
||||
} else error->all(FLERR,"Units Type Conversion Not Found");
|
||||
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void ThirdOrder::create_groupmap()
|
||||
{
|
||||
//Create a group map which maps atom order onto group
|
||||
|
||||
int local_idx; // local index
|
||||
int gid = 0; //group index
|
||||
int nlocal = atom->nlocal;
|
||||
int *mask = atom->mask;
|
||||
bigint natoms = atom->natoms;
|
||||
int *recv = new int[comm->nprocs];
|
||||
int *displs = new int[comm->nprocs];
|
||||
int *temp_groupmap = new int[natoms];
|
||||
|
||||
//find number of local atoms in the group (final_gid)
|
||||
for (bigint i=1; i<=natoms; i++){
|
||||
local_idx = atom->map(i);
|
||||
if ((local_idx >= 0) && (local_idx < nlocal) && mask[local_idx] & groupbit)
|
||||
gid += 1; // gid at the end of loop is final_Gid
|
||||
}
|
||||
//create an array of length final_gid
|
||||
int *sub_groupmap = new int[gid];
|
||||
|
||||
gid = 0;
|
||||
//create a map between global atom id and group atom id for each proc
|
||||
for (bigint i=1; i<=natoms; i++){
|
||||
local_idx = atom->map(i);
|
||||
if ((local_idx >= 0) && (local_idx < nlocal) && mask[local_idx] & groupbit){
|
||||
sub_groupmap[gid] = i;
|
||||
gid += 1;
|
||||
}
|
||||
}
|
||||
|
||||
//populate arrays for Allgatherv
|
||||
for (int i=0; i<comm->nprocs; i++){
|
||||
recv[i] = 0;
|
||||
}
|
||||
recv[comm->me] = gid;
|
||||
MPI_Allreduce(recv,displs,4,MPI_INT,MPI_SUM,world);
|
||||
for (int i=0; i<comm->nprocs; i++){
|
||||
recv[i]=displs[i];
|
||||
if (i>0) displs[i] = displs[i-1]+recv[i-1];
|
||||
else displs[i] = 0;
|
||||
}
|
||||
|
||||
//combine subgroup maps into total temporary groupmap
|
||||
MPI_Allgatherv(sub_groupmap,gid,MPI_INT,temp_groupmap,recv,displs,MPI_INT,world);
|
||||
std::sort(temp_groupmap,temp_groupmap+gcount);
|
||||
|
||||
//populate member groupmap based on temp groupmap
|
||||
for (bigint i=0; i<natoms; i++){
|
||||
if (i==temp_groupmap[i]-1)
|
||||
groupmap[i] = temp_groupmap[i]-1;
|
||||
else
|
||||
groupmap[i] = -1;
|
||||
}
|
||||
|
||||
//free that memory!
|
||||
delete[] recv;
|
||||
delete[] displs;
|
||||
delete[] sub_groupmap;
|
||||
delete[] temp_groupmap;
|
||||
}
|
||||
@ -1,76 +0,0 @@
|
||||
//
|
||||
// Created by charlie sievers on 7/5/18.
|
||||
//
|
||||
|
||||
|
||||
#ifdef COMMAND_CLASS
|
||||
|
||||
CommandStyle(third_order,ThirdOrder)
|
||||
|
||||
#else
|
||||
|
||||
#ifndef LMP_THIRD_ORDER_H
|
||||
#define LMP_THIRD_ORDER_H
|
||||
|
||||
#include "pointers.h"
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
class ThirdOrder : protected Pointers {
|
||||
public:
|
||||
ThirdOrder(class LAMMPS *);
|
||||
virtual ~ThirdOrder();
|
||||
void command(int, char **);
|
||||
void setup();
|
||||
|
||||
protected:
|
||||
int eflag,vflag; // flags for energy/virial computation
|
||||
int external_force_clear; // clear forces locally or externally
|
||||
|
||||
|
||||
int triclinic; // 0 if domain is orthog, 1 if triclinic
|
||||
int pairflag;
|
||||
|
||||
int pair_compute_flag; // 0 if pair->compute is skipped
|
||||
int kspace_compute_flag; // 0 if kspace->compute is skipped
|
||||
|
||||
int nvec; // local atomic dof = length of xvec
|
||||
|
||||
void update_force();
|
||||
void force_clear();
|
||||
virtual void openfile(const char* filename);
|
||||
|
||||
|
||||
private:
|
||||
void options(int, char **);
|
||||
void create_groupmap();
|
||||
void calculateMatrix();
|
||||
void convert_units(const char *style);
|
||||
void displace_atom(int local_idx, int direction, int magnitude);
|
||||
void writeMatrix(double *, int, int, int, int);
|
||||
|
||||
double conversion;
|
||||
double conv_energy;
|
||||
double conv_distance;
|
||||
double conv_mass;
|
||||
double del;
|
||||
int igroup,groupbit;
|
||||
bigint dynlen;
|
||||
int scaleflag;
|
||||
int me;
|
||||
int gcount; // number of atoms in group
|
||||
int *groupmap;
|
||||
|
||||
int compressed; // 1 if dump file is written compressed, 0 no
|
||||
int binaryflag; // 1 if dump file is written binary, 0 no
|
||||
int file_opened; // 1 if openfile method has been called, 0 no
|
||||
int file_flag; // 1 custom file name, 0 dynmat.dat
|
||||
|
||||
FILE *fp;
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
#endif //LMP_THIRD_ORDER_H
|
||||
#endif
|
||||
|
||||
Reference in New Issue
Block a user