Merge pull request #3 from srtee/efield_lepton_updates

Efield lepton updates
This commit is contained in:
Gabriel Alkuino
2025-01-14 19:11:09 -05:00
committed by GitHub

View File

@ -179,37 +179,37 @@ void FixEfieldLepton::post_force(int vflag)
auto dphi_x = parsed.differentiate("x").createCompiledExpression();
auto dphi_y = parsed.differentiate("y").createCompiledExpression();
auto dphi_z = parsed.differentiate("z").createCompiledExpression();
std::vector<Lepton::CompiledExpression*> dphis = {&dphi_x, &dphi_y, &dphi_z};
std::array<Lepton::CompiledExpression*, 3> dphis = {&dphi_x, &dphi_y, &dphi_z};
// check if reference to x, y, z exist
const std::array<std::string, 3> variableNames = {"x", "y", "z"};
std::array<bool, 3> phi_has_ref = {true, true, true};
// array of vectors of ptrs to Lepton variable references
std::array<std::vector<double *>, 3> var_ref_ptrs{};
// fill ptr-vectors with Lepton refs as needed
const char* DIM_NAMES[] = {"x", "y", "z"};
if (atom->q_flag){
phi = parsed.createCompiledExpression();
for (size_t i = 0; i < 3; i++) {
for (size_t d = 0; d < 3; d++) {
try {
phi.getVariableReference(variableNames[i]);
}
catch (Lepton::Exception &) {
phi_has_ref[i] = false;
double *ptr = &(phi.getVariableReference(DIM_NAMES[d]));
var_ref_ptrs[d].push_back(ptr);
} catch (Lepton::Exception &) {
// do nothing
}
}
}
std::vector<std::array<bool, 3>> dphis_has_ref;
bool e_uniform = true;
for (auto &dphi : dphis) {
dphis_has_ref.push_back({false, false, false});
for (size_t i = 0; i < 3; i++) {
for (size_t j = 0; j < 3; j++)
for (size_t d = 0; d < 3; d++) {
try {
(*dphi).getVariableReference(variableNames[i]);
dphis_has_ref.back()[i] = true;
double *ptr = &((*dphis[j]).getVariableReference(DIM_NAMES[d]));
var_ref_ptrs[d].push_back(ptr);
e_uniform = false;
}
catch (Lepton::Exception &) {
// do nothing
}
}
}
if (!e_uniform && atom->mu_flag && h < 0) {
error->all(FLERR, "Fix {} requires keyword `step' for dipoles in a non-uniform electric field", style);
}
@ -227,43 +227,45 @@ void FixEfieldLepton::post_force(int vflag)
double ex, ey, ez;
double fx, fy, fz;
double v[6], unwrap[3];
double v[6], unwrap[3], dstep[3];
double xf, yf, zf, xb, yb, zb;
double exf, eyf, ezf, exb, eyb, ezb;
double mu_norm, h_mu;
if (atom->q_flag && atom->mu_flag) {
double *q = atom->q;
double **mu = atom->mu;
double **t = atom->torque;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
if (region && !region->match(x[i][0], x[i][1], x[i][2])) continue;
domain->unmap(x[i], image[i], unwrap);
double *q = atom->q;
double **mu = atom->mu;
double **t = atom->torque;
// evaluate e-field, used by q and mu
for (size_t j = 0; j < 3; j++) {
if (dphis_has_ref[j][0]) (*dphis[j]).getVariableReference("x") = unwrap[0];
if (dphis_has_ref[j][1]) (*dphis[j]).getVariableReference("y") = unwrap[1];
if (dphis_has_ref[j][2]) (*dphis[j]).getVariableReference("z") = unwrap[2];
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
if (region && !region->match(x[i][0], x[i][1], x[i][2])) continue;
fx = fy = fz = 0.0;
domain->unmap(x[i], image[i], unwrap);
// put unwrapped coords into Lepton variable refs
for (size_t d = 0; d < 3; d++) {
for (auto & var_ref_ptr : var_ref_ptrs[d]) {
*var_ref_ptr = unwrap[d];
}
ex = -dphi_x.evaluate();
ey = -dphi_y.evaluate();
ez = -dphi_z.evaluate();
}
if (phi_has_ref[0]) phi.getVariableReference("x") = unwrap[0];
if (phi_has_ref[1]) phi.getVariableReference("y") = unwrap[1];
if (phi_has_ref[2]) phi.getVariableReference("z") = unwrap[2];
// evaluate e-field, used by q and mu
ex = -dphi_x.evaluate();
ey = -dphi_y.evaluate();
ez = -dphi_z.evaluate();
// charges
// force = q E
// charges
// force = q E
if (atom->q_flag) {
fx = qe2f * q[i] * ex;
fy = qe2f * q[i] * ey;
fz = qe2f * q[i] * ez;
// potential energy = q phi
fsum[0] += qe2f * q[i] * phi.evaluate();
}
// dipoles
if (atom->mu_flag) {
// dipoles
mu_norm = sqrt(mu[i][0]*mu[i][0] + mu[i][1]*mu[i][1] + mu[i][2]*mu[i][2]);
if (mu_norm > EPSILON) {
// torque = mu cross E
@ -273,181 +275,58 @@ void FixEfieldLepton::post_force(int vflag)
// potential energy = - mu dot E
fsum[0] -= mue2e * (mu[i][0] * ex + mu[i][1] * ey + mu[i][2] * ez);
// force = (mu dot D) E
// force = (mu dot D) E for non-uniform E
// using central difference method
h_mu = h / mu_norm;
if (!e_uniform) {
h_mu = h / mu_norm;
dstep[0] = h_mu * mu[i][0];
dstep[1] = h_mu * mu[i][1];
dstep[2] = h_mu * mu[i][2];
xf = unwrap[0] + h_mu * mu[i][0];
yf = unwrap[1] + h_mu * mu[i][1];
zf = unwrap[2] + h_mu * mu[i][2];
for (size_t j = 0; j < 3; j++) {
if (dphis_has_ref[j][0]) (*dphis[j]).getVariableReference("x") = xf;
if (dphis_has_ref[j][1]) (*dphis[j]).getVariableReference("y") = yf;
if (dphis_has_ref[j][2]) (*dphis[j]).getVariableReference("z") = zf;
// one step forwards, two steps back ;)
for (size_t d = 0; d < 3; d++) {
for (auto & var_ref_ptr : var_ref_ptrs[d]) {
*var_ref_ptr += dstep[d];
}
}
exf = -dphi_x.evaluate();
eyf = -dphi_y.evaluate();
ezf = -dphi_z.evaluate();
for (size_t d = 0; d < 3; d++) {
for (auto & var_ref_ptr : var_ref_ptrs[d]) {
*var_ref_ptr -= 2*dstep[d];
}
}
exb = -dphi_x.evaluate();
eyb = -dphi_y.evaluate();
ezb = -dphi_z.evaluate();
fx += qe2f * (exf - exb) / 2.0 / h_mu;
fy += qe2f * (eyf - eyb) / 2.0 / h_mu;
fz += qe2f * (ezf - ezb) / 2.0 / h_mu;
}
exf = -dphi_x.evaluate();
eyf = -dphi_y.evaluate();
ezf = -dphi_z.evaluate();
xb = unwrap[0] - h_mu * mu[i][0];
yb = unwrap[1] - h_mu * mu[i][1];
zb = unwrap[2] - h_mu * mu[i][2];
for (size_t j = 0; j < 3; j++) {
if (dphis_has_ref[j][0]) (*dphis[j]).getVariableReference("x") = xb;
if (dphis_has_ref[j][1]) (*dphis[j]).getVariableReference("y") = yb;
if (dphis_has_ref[j][2]) (*dphis[j]).getVariableReference("z") = zb;
}
exb = -dphi_x.evaluate();
eyb = -dphi_y.evaluate();
ezb = -dphi_z.evaluate();
fx += qe2f * (exf - exb) / 2.0 / h_mu;
fy += qe2f * (eyf - eyb) / 2.0 / h_mu;
fz += qe2f * (ezf - ezb) / 2.0 / h_mu;
}
f[i][0] += fx;
f[i][1] += fy;
f[i][2] += fz;
fsum[1] += fx;
fsum[2] += fy;
fsum[3] += fz;
if (evflag) {
v[0] = fx * unwrap[0];
v[1] = fy * unwrap[1];
v[2] = fz * unwrap[2];
v[3] = fx * unwrap[1];
v[4] = fx * unwrap[2];
v[5] = fy * unwrap[2];
v_tally(i, v);
}
}
}
} else if (atom->q_flag && !atom->mu_flag) {
double *q = atom->q;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
if (region && !region->match(x[i][0], x[i][1], x[i][2])) continue;
domain->unmap(x[i], image[i], unwrap);
for (size_t j = 0; j < 3; j++) {
if (dphis_has_ref[j][0]) (*dphis[j]).getVariableReference("x") = unwrap[0];
if (dphis_has_ref[j][1]) (*dphis[j]).getVariableReference("y") = unwrap[1];
if (dphis_has_ref[j][2]) (*dphis[j]).getVariableReference("z") = unwrap[2];
}
ex = -dphi_x.evaluate();
ey = -dphi_y.evaluate();
ez = -dphi_z.evaluate();
f[i][0] += fx;
f[i][1] += fy;
f[i][2] += fz;
if (phi_has_ref[0]) phi.getVariableReference("x") = unwrap[0];
if (phi_has_ref[1]) phi.getVariableReference("y") = unwrap[1];
if (phi_has_ref[2]) phi.getVariableReference("z") = unwrap[2];
fsum[1] += fx;
fsum[2] += fy;
fsum[3] += fz;
// force = q E
fx = qe2f * q[i] * ex;
fy = qe2f * q[i] * ey;
fz = qe2f * q[i] * ez;
// potential energy = q phi
fsum[0] += qe2f * q[i] * phi.evaluate();
f[i][0] += fx;
f[i][1] += fy;
f[i][2] += fz;
fsum[1] += fx;
fsum[2] += fy;
fsum[3] += fz;
if (evflag) {
v[0] = fx * unwrap[0];
v[1] = fy * unwrap[1];
v[2] = fz * unwrap[2];
v[3] = fx * unwrap[1];
v[4] = fx * unwrap[2];
v[5] = fy * unwrap[2];
v_tally(i, v);
}
}
}
} else if (!atom->q_flag && atom->mu_flag) {
double **mu = atom->mu;
double **t = atom->torque;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
if (region && !region->match(x[i][0], x[i][1], x[i][2])) continue;
mu_norm = sqrt(mu[i][0]*mu[i][0] + mu[i][1]*mu[i][1] + mu[i][2]*mu[i][2]);
if (mu_norm > EPSILON) continue;
domain->unmap(x[i], image[i], unwrap);
for (size_t j = 0; j < 3; j++) {
if (dphis_has_ref[j][0]) (*dphis[j]).getVariableReference("x") = unwrap[0];
if (dphis_has_ref[j][1]) (*dphis[j]).getVariableReference("y") = unwrap[1];
if (dphis_has_ref[j][2]) (*dphis[j]).getVariableReference("z") = unwrap[2];
}
ex = -dphi_x.evaluate();
ey = -dphi_y.evaluate();
ez = -dphi_z.evaluate();
// torque = mu cross E
t[i][0] += mue2e * (ez * mu[i][1] - ey * mu[i][2]);
t[i][1] += mue2e * (ex * mu[i][2] - ez * mu[i][0]);
t[i][2] += mue2e * (ey * mu[i][0] - ex * mu[i][1]);
// potential energy = - mu dot E
fsum[0] -= mue2e * (mu[i][0] * ex + mu[i][1] * ey + mu[i][2] * ez);
// force = (mu dot D) E
// using central difference method
h_mu = h / sqrt(mu[i][0]*mu[i][0] + mu[i][1]*mu[i][1] + mu[i][2]*mu[i][2]);
xf = unwrap[0] + h_mu * mu[i][0];
yf = unwrap[1] + h_mu * mu[i][1];
zf = unwrap[2] + h_mu * mu[i][2];
for (size_t j = 0; j < 3; j++) {
if (dphis_has_ref[j][0]) (*dphis[j]).getVariableReference("x") = xf;
if (dphis_has_ref[j][1]) (*dphis[j]).getVariableReference("y") = yf;
if (dphis_has_ref[j][2]) (*dphis[j]).getVariableReference("z") = zf;
}
exf = -dphi_x.evaluate();
eyf = -dphi_y.evaluate();
ezf = -dphi_z.evaluate();
xb = unwrap[0] - h_mu * mu[i][0];
yb = unwrap[1] - h_mu * mu[i][1];
zb = unwrap[2] - h_mu * mu[i][2];
for (size_t j = 0; j < 3; j++) {
if (dphis_has_ref[j][0]) (*dphis[j]).getVariableReference("x") = xb;
if (dphis_has_ref[j][1]) (*dphis[j]).getVariableReference("y") = yb;
if (dphis_has_ref[j][2]) (*dphis[j]).getVariableReference("z") = zb;
}
exb = -dphi_x.evaluate();
eyb = -dphi_y.evaluate();
ezb = -dphi_z.evaluate();
fx = qe2f * (exf - exb) / 2.0 / h_mu;
fy = qe2f * (eyf - eyb) / 2.0 / h_mu;
fz = qe2f * (ezf - ezb) / 2.0 / h_mu;
f[i][0] += fx;
f[i][1] += fy;
f[i][2] += fz;
fsum[1] += fx;
fsum[2] += fy;
fsum[3] += fz;
if (evflag) {
v[0] = fx * unwrap[0];
v[1] = fy * unwrap[1];
v[2] = fz * unwrap[2];
v[3] = fx * unwrap[1];
v[4] = fx * unwrap[2];
v[5] = fy * unwrap[2];
v_tally(i, v);
}
if (evflag) {
v[0] = fx * unwrap[0];
v[1] = fy * unwrap[1];
v[2] = fz * unwrap[2];
v[3] = fx * unwrap[1];
v[4] = fx * unwrap[2];
v[5] = fy * unwrap[2];
v_tally(i, v);
}
}
}