Add files via upload

This commit is contained in:
Mateo Rodríguez
2025-04-17 14:02:32 +02:00
committed by GitHub
parent ae19abdd7a
commit ab75943e39
2 changed files with 899 additions and 0 deletions

View File

@ -0,0 +1,839 @@
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Mateo Rodríguez (mateorsuarez@gmail.com) (IFF-CSIC MADRID)
Work done at the Molecular Interactions Group (INTERMOL) of the Fundamental Physics Institute (http://intermol.iff.csic.es/)
------------------------------------------------------------------------- */
#include "pair_ilj_cut.h"
#include "atom.h"
#include "comm.h"
#include "error.h"
#include "force.h"
#include "math_const.h"
#include "memory.h"
#include "neigh_list.h"
#include "neighbor.h"
#include "respa.h"
#include "update.h"
#include <cmath>
#include <cstring>
using namespace LAMMPS_NS;
using namespace MathConst;
/* ---------------------------------------------------------------------- */
PairILJCut::PairILJCut(LAMMPS *lmp) : Pair(lmp)
{
respa_enable = 1;
born_matrix_enable = 0;
writedata = 1;
}
/* ---------------------------------------------------------------------- */
PairILJCut::~PairILJCut()
{
if (copymode) return;
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
memory->destroy(cut);
memory->destroy(alpha);
memory->destroy(beta);
memory->destroy(gamma);
memory->destroy(rm);
memory->destroy(epsilon);
memory->destroy(offset);
}
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairILJCut::allocate()
{
allocated = 1;
int n = atom->ntypes + 1;
memory->create(setflag, n, n, "pair:setflag");
for (int i = 1; i < n; i++)
for (int j = i; j < n; j++) setflag[i][j] = 0;
memory->create(cutsq, n, n, "pair:cutsq");
memory->create(cut, n, n, "pair:cut");
memory->create(alpha, n, n, "pair:alpha");
memory->create(beta, n, n, "pair:beta");
memory->create(gamma, n, n, "pair:gamma");
memory->create(rm, n, n, "pair:rm");
memory->create(epsilon, n, n, "pair:epsilon");
memory->create(offset, n, n, "pair:offset");
}
/* ---------------------------------------------------------------------- */
void PairILJCut::compute(int eflag, int vflag)
{
int i, j, ii, jj, inum, jnum, itype, jtype;
double xtmp, ytmp, ztmp, delx, dely, delz, evdwl, fpair;
double rsq, forcelj, factor_lj;
int *ilist, *jlist, *numneigh, **firstneigh;
double r, rx, n_x;
double filj1,filj2,filj3,filj4,filj5,filj6,forceilj;
double ilj1,ilj2;
evdwl = 0.0;
ev_init(eflag, vflag);
double **x = atom->x;
double **f = atom->f;
int *type = atom->type;
int nlocal = atom->nlocal;
double *special_lj = force->special_lj;
int newton_pair = force->newton_pair;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_lj = special_lj[sbmask(j)];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx * delx + dely * dely + delz * delz;
jtype = type[j];
if (rsq < cutsq[itype][jtype]) {
r = sqrt(rsq);
rx = r / rm[itype][jtype];
n_x = alpha[itype][jtype] * rx * rx + beta[itype][jtype];
filj1 = - 2.0 * alpha[itype][jtype] * gamma[itype][jtype] * rx * pow ( 1 / rx , n_x ) / ( pow ( n_x - gamma[itype][jtype] , 2.0 ) * rm[itype][jtype] ) ;
filj2 = + 2.0 * alpha[itype][jtype] * rx * n_x * pow ( 1 / rx , gamma[itype][jtype] ) / ( pow ( n_x - gamma[itype][jtype] , 2.0 ) * rm[itype][jtype] ) ;
filj3 = - 2.0 * alpha[itype][jtype] * rx * pow ( 1 / rx , gamma[itype][jtype] ) /( rm[itype][jtype] * ( n_x - gamma[itype][jtype] ) ) ;
filj4 = + 2.0 * alpha[itype][jtype] * gamma[itype][jtype] * ( rx / rm[itype][jtype] ) * log ( 1 / rx ) * pow ( 1 / rx , n_x ) / ( n_x - gamma[itype][jtype] ) ;
filj5 = - 1.0 * gamma[itype][jtype] * n_x * pow ( 1 / rx , n_x ) / ( r * ( n_x - gamma[itype][jtype] ) ) ;
filj6 = + 1.0 * gamma[itype][jtype] * n_x * pow ( 1 / rx , gamma[itype][jtype] ) / ( r * ( n_x - gamma[itype][jtype] ) ) ;
forceilj = -epsilon[itype][jtype]*(filj1 + filj2 + filj3 + filj4 + filj5 + filj6); // F = -dV/dr
fpair = factor_lj*forceilj/r; // F_x = -x/r * dV/dr (chain rule)
f[i][0] += delx * fpair;
f[i][1] += dely * fpair;
f[i][2] += delz * fpair;
if (newton_pair || j < nlocal) {
f[j][0] -= delx * fpair;
f[j][1] -= dely * fpair;
f[j][2] -= delz * fpair;
}
if (eflag) {
ilj1 = epsilon[itype][jtype] *gamma[itype][jtype]* pow ( 1 / rx , n_x ) / ( n_x -gamma[itype][jtype]) ;
ilj2 = -epsilon[itype][jtype] * n_x * pow ( 1 / rx , gamma[itype][jtype] ) / ( n_x -gamma[itype][jtype]) ;
evdwl = ilj1 + ilj2 - offset[itype][jtype];
evdwl *= factor_lj;
}
if (evflag) ev_tally(i, j, nlocal, newton_pair, evdwl, 0.0, fpair, delx, dely, delz);
}
}
}
if (vflag_fdotr) virial_fdotr_compute();
}
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
void PairILJCut::compute_inner()
{
int i, j, ii, jj, inum, jnum, itype, jtype;
double xtmp, ytmp, ztmp, delx, dely, delz, fpair;
double rsq, r2inv, r6inv, forcelj, factor_lj, rsw;
int *ilist, *jlist, *numneigh, **firstneigh;
double r, rx, n_x;
double filj1,filj2,filj3,filj4,filj5,filj6,forceilj;
double ilj1,ilj2;
double **x = atom->x;
double **f = atom->f;
int *type = atom->type;
int nlocal = atom->nlocal;
double *special_lj = force->special_lj;
int newton_pair = force->newton_pair;
inum = list->inum_inner;
ilist = list->ilist_inner;
numneigh = list->numneigh_inner;
firstneigh = list->firstneigh_inner;
double cut_out_on = cut_respa[0];
double cut_out_off = cut_respa[1];
double cut_out_diff = cut_out_off - cut_out_on;
double cut_out_on_sq = cut_out_on * cut_out_on;
double cut_out_off_sq = cut_out_off * cut_out_off;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_lj = special_lj[sbmask(j)];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx * delx + dely * dely + delz * delz;
if (rsq < cut_out_off_sq) {
r = sqrt(rsq);
rx = r / rm[itype][jtype];
n_x = alpha[itype][jtype] * rx * rx + beta[itype][jtype];
// x = r/rm
filj1 = - 2.0 * alpha[itype][jtype] * gamma[itype][jtype] * rx * pow ( 1 / rx , n_x ) / ( pow ( n_x - gamma[itype][jtype] , 2.0 ) * rm[itype][jtype] ) ;
filj2 = + 2.0 * alpha[itype][jtype] * rx * n_x * pow ( 1 / rx , gamma[itype][jtype] ) / ( pow ( n_x - gamma[itype][jtype] , 2.0 ) * rm[itype][jtype] ) ;
filj3 = - 2.0 * alpha[itype][jtype] * rx * pow ( 1 / rx , gamma[itype][jtype] ) /( rm[itype][jtype] * ( n_x - gamma[itype][jtype] ) ) ;
filj4 = + 2.0 * alpha[itype][jtype] * gamma[itype][jtype] * ( rx / rm[itype][jtype] ) * log ( 1 / rx ) * pow ( 1 / rx , n_x ) / ( n_x - gamma[itype][jtype] ) ;
filj5 = - 1.0 * gamma[itype][jtype] * n_x * pow ( 1 / rx , n_x ) / ( r * ( n_x - gamma[itype][jtype] ) ) ;
filj6 = + 1.0 * gamma[itype][jtype] * n_x * pow ( 1 / rx , gamma[itype][jtype] ) / ( r * ( n_x - gamma[itype][jtype] ) ) ;
forceilj = -epsilon[itype][jtype]*(filj1 + filj2 + filj3 + filj4 + filj5 + filj6); // F = -dV/dr
fpair = factor_lj*forceilj/r; // F_x = -x/r * dV/dr (chain rule)
if (rsq > cut_out_on_sq) {
rsw = (sqrt(rsq) - cut_out_on) / cut_out_diff;
fpair *= 1.0 - rsw * rsw * (3.0 - 2.0 * rsw);
}
f[i][0] += delx * fpair;
f[i][1] += dely * fpair;
f[i][2] += delz * fpair;
if (newton_pair || j < nlocal) {
f[j][0] -= delx * fpair;
f[j][1] -= dely * fpair;
f[j][2] -= delz * fpair;
}
}
}
}
}
/* ---------------------------------------------------------------------- */
void PairILJCut::compute_middle()
{
int i, j, ii, jj, inum, jnum, itype, jtype;
double xtmp, ytmp, ztmp, delx, dely, delz, fpair;
double rsq, r2inv, r6inv, forcelj, factor_lj, rsw;
int *ilist, *jlist, *numneigh, **firstneigh;
double r, rx, n_x;
double filj1,filj2,filj3,filj4,filj5,filj6,forceilj;
double ilj1,ilj2;
double **x = atom->x;
double **f = atom->f;
int *type = atom->type;
int nlocal = atom->nlocal;
double *special_lj = force->special_lj;
int newton_pair = force->newton_pair;
inum = list->inum_middle;
ilist = list->ilist_middle;
numneigh = list->numneigh_middle;
firstneigh = list->firstneigh_middle;
double cut_in_off = cut_respa[0];
double cut_in_on = cut_respa[1];
double cut_out_on = cut_respa[2];
double cut_out_off = cut_respa[3];
double cut_in_diff = cut_in_on - cut_in_off;
double cut_out_diff = cut_out_off - cut_out_on;
double cut_in_off_sq = cut_in_off * cut_in_off;
double cut_in_on_sq = cut_in_on * cut_in_on;
double cut_out_on_sq = cut_out_on * cut_out_on;
double cut_out_off_sq = cut_out_off * cut_out_off;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_lj = special_lj[sbmask(j)];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx * delx + dely * dely + delz * delz;
if (rsq < cut_out_off_sq && rsq > cut_in_off_sq) {
r = sqrt(rsq);
rx = r / rm[itype][jtype];
n_x = alpha[itype][jtype] * rx * rx + beta[itype][jtype];
// x = r/rm
filj1 = - 2.0 * alpha[itype][jtype] * gamma[itype][jtype] * rx * pow ( 1 / rx , n_x ) / ( pow ( n_x - gamma[itype][jtype] , 2.0 ) * rm[itype][jtype] ) ;
filj2 = + 2.0 * alpha[itype][jtype] * rx * n_x * pow ( 1 / rx , gamma[itype][jtype] ) / ( pow ( n_x - gamma[itype][jtype] , 2.0 ) * rm[itype][jtype] ) ;
filj3 = - 2.0 * alpha[itype][jtype] * rx * pow ( 1 / rx , gamma[itype][jtype] ) /( rm[itype][jtype] * ( n_x - gamma[itype][jtype] ) ) ;
filj4 = + 2.0 * alpha[itype][jtype] * gamma[itype][jtype] * ( rx / rm[itype][jtype] ) * log ( 1 / rx ) * pow ( 1 / rx , n_x ) / ( n_x - gamma[itype][jtype] ) ;
filj5 = - 1.0 * gamma[itype][jtype] * n_x * pow ( 1 / rx , n_x ) / ( r * ( n_x - gamma[itype][jtype] ) ) ;
filj6 = + 1.0 * gamma[itype][jtype] * n_x * pow ( 1 / rx , gamma[itype][jtype] ) / ( r * ( n_x - gamma[itype][jtype] ) ) ;
forceilj = -epsilon[itype][jtype]*(filj1 + filj2 + filj3 + filj4 + filj5 + filj6); // F = -dV/dr
fpair = factor_lj*forceilj/r;
if (rsq < cut_in_on_sq) {
rsw = (sqrt(rsq) - cut_in_off) / cut_in_diff;
fpair *= rsw * rsw * (3.0 - 2.0 * rsw);
}
if (rsq > cut_out_on_sq) {
rsw = (sqrt(rsq) - cut_out_on) / cut_out_diff;
fpair *= 1.0 + rsw * rsw * (2.0 * rsw - 3.0);
}
f[i][0] += delx * fpair;
f[i][1] += dely * fpair;
f[i][2] += delz * fpair;
if (newton_pair || j < nlocal) {
f[j][0] -= delx * fpair;
f[j][1] -= dely * fpair;
f[j][2] -= delz * fpair;
}
}
}
}
}
/* ---------------------------------------------------------------------- */
void PairILJCut::compute_outer(int eflag, int vflag)
{
int i, j, ii, jj, inum, jnum, itype, jtype;
double xtmp, ytmp, ztmp, delx, dely, delz, evdwl, fpair;
double rsq, r2inv, r6inv, forcelj, factor_lj, rsw;
int *ilist, *jlist, *numneigh, **firstneigh;
double r, rx, n_x;
double filj1,filj2,filj3,filj4,filj5,filj6,forceilj;
double ilj1,ilj2;
evdwl = 0.0;
ev_init(eflag, vflag);
double **x = atom->x;
double **f = atom->f;
int *type = atom->type;
int nlocal = atom->nlocal;
double *special_lj = force->special_lj;
int newton_pair = force->newton_pair;
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
double cut_in_off = cut_respa[2];
double cut_in_on = cut_respa[3];
double cut_in_diff = cut_in_on - cut_in_off;
double cut_in_off_sq = cut_in_off * cut_in_off;
double cut_in_on_sq = cut_in_on * cut_in_on;
// loop over neighbors of my atoms
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
jlist = firstneigh[i];
jnum = numneigh[i];
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
factor_lj = special_lj[sbmask(j)];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx * delx + dely * dely + delz * delz;
jtype = type[j];
if (rsq < cutsq[itype][jtype]) {
if (rsq > cut_in_off_sq) {
r = sqrt(rsq);
rx = r / rm[itype][jtype];
n_x = alpha[itype][jtype] * rx * rx + beta[itype][jtype];
// x = r/rm
filj1 = - 2.0 * alpha[itype][jtype] * gamma[itype][jtype] * rx * pow ( 1 / rx , n_x ) / ( pow ( n_x - gamma[itype][jtype] , 2.0 ) * rm[itype][jtype] ) ;
filj2 = + 2.0 * alpha[itype][jtype] * rx * n_x * pow ( 1 / rx , gamma[itype][jtype] ) / ( pow ( n_x - gamma[itype][jtype] , 2.0 ) * rm[itype][jtype] ) ;
filj3 = - 2.0 * alpha[itype][jtype] * rx * pow ( 1 / rx , gamma[itype][jtype] ) /( rm[itype][jtype] * ( n_x - gamma[itype][jtype] ) ) ;
filj4 = + 2.0 * alpha[itype][jtype] * gamma[itype][jtype] * ( rx / rm[itype][jtype] ) * log ( 1 / rx ) * pow ( 1 / rx , n_x ) / ( n_x - gamma[itype][jtype] ) ;
filj5 = - 1.0 * gamma[itype][jtype] * n_x * pow ( 1 / rx , n_x ) / ( r * ( n_x - gamma[itype][jtype] ) ) ;
filj6 = + 1.0 * gamma[itype][jtype] * n_x * pow ( 1 / rx , gamma[itype][jtype] ) / ( r * ( n_x - gamma[itype][jtype] ) ) ;
forceilj = -epsilon[itype][jtype]*(filj1 + filj2 + filj3 + filj4 + filj5 + filj6); // F = -dV/dr
fpair = factor_lj*forceilj/r;
if (rsq < cut_in_on_sq) {
rsw = (sqrt(rsq) - cut_in_off) / cut_in_diff;
fpair *= rsw * rsw * (3.0 - 2.0 * rsw);
}
f[i][0] += delx * fpair;
f[i][1] += dely * fpair;
f[i][2] += delz * fpair;
if (newton_pair || j < nlocal) {
f[j][0] -= delx * fpair;
f[j][1] -= dely * fpair;
f[j][2] -= delz * fpair;
}
}
if (eflag) {
ilj1 = epsilon[itype][jtype] *gamma[itype][jtype]* pow ( 1 / rx , n_x ) / ( n_x -gamma[itype][jtype]) ;
ilj2 = -epsilon[itype][jtype] * n_x * pow ( 1 / rx , gamma[itype][jtype] ) / ( n_x -gamma[itype][jtype]) ;
evdwl = ilj1 + ilj2 - offset[itype][jtype];
evdwl *= factor_lj;
}
if (vflag) {
if (rsq <= cut_in_off_sq) {
r = sqrt(rsq);
rx = r / rm[itype][jtype];
n_x = alpha[itype][jtype] * rx * rx + beta[itype][jtype];
// x = r/rm
filj1 = - 2.0 * alpha[itype][jtype] * gamma[itype][jtype] * rx * pow ( 1 / rx , n_x ) / ( pow ( n_x - gamma[itype][jtype] , 2.0 ) * rm[itype][jtype] ) ;
filj2 = + 2.0 * alpha[itype][jtype] * rx * n_x * pow ( 1 / rx , gamma[itype][jtype] ) / ( pow ( n_x - gamma[itype][jtype] , 2.0 ) * rm[itype][jtype] ) ;
filj3 = - 2.0 * alpha[itype][jtype] * rx * pow ( 1 / rx , gamma[itype][jtype] ) /( rm[itype][jtype] * ( n_x - gamma[itype][jtype] ) ) ;
filj4 = + 2.0 * alpha[itype][jtype] * gamma[itype][jtype] * ( rx / rm[itype][jtype] ) * log ( 1 / rx ) * pow ( 1 / rx , n_x ) / ( n_x - gamma[itype][jtype] ) ;
filj5 = - 1.0 * gamma[itype][jtype] * n_x * pow ( 1 / rx , n_x ) / ( r * ( n_x - gamma[itype][jtype] ) ) ;
filj6 = + 1.0 * gamma[itype][jtype] * n_x * pow ( 1 / rx , gamma[itype][jtype] ) / ( r * ( n_x - gamma[itype][jtype] ) ) ;
forceilj = -epsilon[itype][jtype]*(filj1 + filj2 + filj3 + filj4 + filj5 + filj6); // F = -dV/dr
fpair = factor_lj*forceilj/r;
} else if (rsq < cut_in_on_sq)
fpair = factor_lj * forceilj/r;
}
if (evflag) ev_tally(i, j, nlocal, newton_pair, evdwl, 0.0, fpair, delx, dely, delz);
}
}
}
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairILJCut::settings(int narg, char **arg)
{
if (narg != 1) error->all(FLERR, "Pair style ilj/cut must have exactly one argument: cutoff distance");
cut_global = utils::numeric(FLERR, arg[0], false, lmp);
// reset cutoffs that have been explicitly set
if (allocated) {
int i, j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++)
if (setflag[i][j]) cut[i][j] = cut_global;
}
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
/*
7 or 8 coefficients: 5 for the ILJ, 2 for the pair, 1 for the cutoff (optional)
*/
void PairILJCut::coeff(int narg, char **arg)
{
if (narg < 7 || narg > 8) error->all(FLERR, "Incorrect args for pair coefficients");
if (!allocated) allocate();
int ilo, ihi, jlo, jhi;
utils::bounds(FLERR, arg[0], 1, atom->ntypes, ilo, ihi, error);
utils::bounds(FLERR, arg[1], 1, atom->ntypes, jlo, jhi, error);
double alpha_one = utils::numeric(FLERR, arg[2], false, lmp);
double beta_one = utils::numeric(FLERR, arg[3], false, lmp);
double gamma_one = utils::numeric(FLERR, arg[4], false, lmp);
double rm_one = utils::numeric(FLERR, arg[5], false, lmp);
double epsilon_one = utils::numeric(FLERR, arg[6], false, lmp);
double cut_one = cut_global;
if (narg == 8) cut_one = utils::numeric(FLERR, arg[7], false, lmp);
if (rm_one <= 0.0 || epsilon_one < 0.0 || gamma_one <= 0.0)
error->all(FLERR,"Illegal ILJ coefficients");
int count = 0;
for (int i = ilo; i <= ihi; i++) {
for (int j = MAX(jlo, i); j <= jhi; j++) {
alpha[i][j] = alpha_one;
beta[i][j] = beta_one;
gamma[i][j] = gamma_one;
rm[i][j] = rm_one;
epsilon[i][j] = epsilon_one;
cut[i][j] = cut_one;
setflag[i][j] = 1;
count++;
}
}
// Initialize symmetric entries
for (int i = ilo; i <= ihi; i++) {
for (int j = MAX(jlo,i); j <= jhi; j++) {
alpha[j][i] = alpha[i][j];
beta[j][i] = beta[i][j];
gamma[j][i] = gamma[i][j];
rm[j][i] = rm[i][j];
epsilon[j][i] = epsilon[i][j];
cut[j][i] = cut[i][j];
setflag[j][i] = setflag[i][j];
}
}
if (count == 0) error->all(FLERR, "Incorrect args for pair coefficients");
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairILJCut::init_style()
{
// request regular or rRESPA neighbor list
int list_style = NeighConst::REQ_DEFAULT;
if (update->whichflag == 1 && utils::strmatch(update->integrate_style, "^respa")) {
auto respa = dynamic_cast<Respa *>(update->integrate);
if (respa->level_inner >= 0) list_style = NeighConst::REQ_RESPA_INOUT;
if (respa->level_middle >= 0) list_style = NeighConst::REQ_RESPA_ALL;
}
neighbor->add_request(this, list_style);
// set rRESPA cutoffs
if (utils::strmatch(update->integrate_style, "^respa") &&
(dynamic_cast<Respa *>(update->integrate))->level_inner >= 0)
cut_respa = (dynamic_cast<Respa *>(update->integrate))->cutoff;
else
cut_respa = nullptr;
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairILJCut::init_one(int i, int j)
{
if (setflag[i][j] == 0) error->all(FLERR, "All pair coeffs are not set");
if (offset_flag && (cut[i][j] > 0.0)) {
double r = cut[i][j]/rm[i][j];
double nx = alpha[i][j]*r*r + beta[i][j];
offset[i][j] = epsilon[i][j] * ( (gamma[i][j] / (nx-gamma[i][j]))* pow ( 1 / r , nx ) - (nx / (nx-gamma[i][j]))* pow ( 1 / r , gamma[i][j] )) ;
} else
offset[i][j] = 0.0;
alpha[j][i] = alpha[i][j];
beta[j][i] = beta[i][j];
gamma[j][i] = gamma[i][j];
rm[j][i] = rm[i][j];
epsilon[j][i] = epsilon[i][j];
offset[j][i] = offset[i][j];
// check interior rRESPA cutoff
if (cut_respa && cut[i][j] < cut_respa[3])
error->all(FLERR, "Pair cutoff < Respa interior cutoff");
return cut[i][j];
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairILJCut::write_restart(FILE *fp)
{
write_restart_settings(fp);
int i, j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
fwrite(&setflag[i][j], sizeof(int), 1, fp);
if (setflag[i][j]) {
fwrite(&alpha[i][j], sizeof(double), 1, fp);
fwrite(&beta[i][j], sizeof(double), 1, fp);
fwrite(&gamma[i][j], sizeof(double), 1, fp);
fwrite(&rm[i][j], sizeof(double), 1, fp);
fwrite(&epsilon[i][j], sizeof(double), 1, fp);
fwrite(&cut[i][j], sizeof(double), 1, fp);
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairILJCut::write_restart_settings(FILE *fp)
{
fwrite(&cut_global, sizeof(double), 1, fp);
fwrite(&offset_flag, sizeof(int), 1, fp);
fwrite(&mix_flag, sizeof(int), 1, fp);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairILJCut::read_restart(FILE *fp)
{
read_restart_settings(fp);
allocate();
int i, j;
int me = comm->me;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
if (me == 0) utils::sfread(FLERR, &setflag[i][j], sizeof(int), 1, fp, nullptr, error);
MPI_Bcast(&setflag[i][j], 1, MPI_INT, 0, world);
if (setflag[i][j]) {
if (me == 0) {
utils::sfread(FLERR, &alpha[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &beta[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &gamma[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &rm[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &epsilon[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &cut[i][j], sizeof(double), 1, fp, nullptr, error);
}
MPI_Bcast(&alpha[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&beta[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&gamma[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&rm[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&epsilon[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&cut[i][j], 1, MPI_DOUBLE, 0, world);
}
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairILJCut::read_restart_settings(FILE *fp)
{
int me = comm->me;
if (me == 0) {
utils::sfread(FLERR, &cut_global, sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &offset_flag, sizeof(int), 1, fp, nullptr, error);
utils::sfread(FLERR, &mix_flag, sizeof(int), 1, fp, nullptr, error);
}
MPI_Bcast(&cut_global, 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&offset_flag, 1, MPI_INT, 0, world);
MPI_Bcast(&mix_flag, 1, MPI_INT, 0, world);
}
/* ----------------------------------------------------------------------
proc 0 writes to data file
------------------------------------------------------------------------- */
void PairILJCut::write_data(FILE *fp)
{
for (int i = 1; i <= atom->ntypes; i++)
fprintf(fp, "%d %g %g %g %g %g\n", i, alpha[i][i], beta[i][i], gamma[i][i], rm[i][i], epsilon[i][i]);
}
/* ----------------------------------------------------------------------
proc 0 writes all pairs to data file
------------------------------------------------------------------------- */
void PairILJCut::write_data_all(FILE *fp)
{
for (int i = 1; i <= atom->ntypes; i++)
for (int j = i; j <= atom->ntypes; j++)
fprintf(fp, "%d %d %g %g %g %g %g %g\n", i, j, alpha[i][j], beta[i][j], gamma[i][j], rm[i][j], epsilon[i][j], cut[i][j]);
}
/* ---------------------------------------------------------------------- */
double PairILJCut::single(int /*i*/, int /*j*/, int itype, int jtype, double rsq,
double /*factor_coul*/, double factor_lj, double &fforce)
{
double r, rx, n_x, filj1,filj2,filj3,filj4,filj5,filj6, forceilj;
double ilj1, ilj2;
r = sqrt(rsq);
rx = r / rm[itype][jtype];
n_x = alpha[itype][jtype] * rx * rx + beta[itype][jtype];
filj1 = - 2.0 * alpha[itype][jtype] * gamma[itype][jtype] * rx * pow ( 1 / rx , n_x ) / ( pow ( n_x - gamma[itype][jtype] , 2.0 ) * rm[itype][jtype] ) ;
filj2 = + 2.0 * alpha[itype][jtype] * rx * n_x * pow ( 1 / rx , gamma[itype][jtype] ) / ( pow ( n_x - gamma[itype][jtype] , 2.0 ) * rm[itype][jtype] ) ;
filj3 = - 2.0 * alpha[itype][jtype] * rx * pow ( 1 / rx , gamma[itype][jtype] ) /( rm[itype][jtype] * ( n_x - gamma[itype][jtype] ) ) ;
filj4 = + 2.0 * alpha[itype][jtype] * gamma[itype][jtype] * ( rx / rm[itype][jtype] ) * log ( 1 / rx ) * pow ( 1 / rx , n_x ) / ( n_x - gamma[itype][jtype] ) ;
filj5 = - 1.0 * gamma[itype][jtype] * n_x * pow ( 1 / rx , n_x ) / ( r * ( n_x - gamma[itype][jtype] ) ) ;
filj6 = + 1.0 * gamma[itype][jtype] * n_x * pow ( 1 / rx , gamma[itype][jtype] ) / ( r * ( n_x - gamma[itype][jtype] ) ) ;
forceilj = -epsilon[itype][jtype] * ( filj1 + filj2 + filj3 + filj4 + filj5 + filj6 ) ;
fforce = factor_lj * forceilj / r;
ilj1 = epsilon[itype][jtype] *gamma[itype][jtype]* pow ( 1 / rx , n_x ) / ( n_x -gamma[itype][jtype]) ;
ilj2 = -epsilon[itype][jtype] * n_x * pow ( 1 / rx , gamma[itype][jtype] ) / ( n_x -gamma[itype][jtype]) ;
return factor_lj * ( ilj1 + ilj2 - offset[itype][jtype]);
}
/* ---------------------------------------------------------------------- */
void *PairILJCut::extract(const char *str, int &dim)
{
dim = 2;
if (strcmp(str, "alpha") == 0) return (void *) alpha;
if (strcmp(str, "beta") == 0) return (void *) beta;
return nullptr;
}

View File

@ -0,0 +1,60 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifdef PAIR_CLASS
// clang-format off
PairStyle(ilj/cut,PairILJCut);
// clang-format on
#else
#ifndef LMP_PAIR_ILJ_CUT_H
#define LMP_PAIR_ILJ_CUT_H
#include "pair.h"
namespace LAMMPS_NS {
class PairILJCut : public Pair {
public:
PairILJCut(class LAMMPS *);
virtual ~PairILJCut() override;
void compute(int, int) override;
void settings(int, char **) override;
void coeff(int, char **) override;
void init_style() override;
double init_one(int, int) override;
void write_restart(FILE *) override;
void read_restart(FILE *) override;
void write_restart_settings(FILE *) override;
void read_restart_settings(FILE *) override;
void write_data(FILE *) override;
void write_data_all(FILE *) override;
double single(int, int, int, int, double, double, double, double &) override;
void *extract(const char *, int &) override;
void compute_inner() override;
void compute_middle() override;
void compute_outer(int, int) override;
protected:
double cut_global;
double **cut;
double **alpha,**beta,**gamma,**rm,**epsilon;
double **offset;
double *cut_respa;
virtual void allocate();
};
} // namespace LAMMPS_NS
#endif
#endif