LAMMPS does not build on windows without this one
This commit is contained in:
237
lib/linalg/dpotrf2.f
Normal file
237
lib/linalg/dpotrf2.f
Normal file
@ -0,0 +1,237 @@
|
||||
*> \brief \b DPOTRF2
|
||||
*
|
||||
* =========== DOCUMENTATION ===========
|
||||
*
|
||||
* Online html documentation available at
|
||||
* http://www.netlib.org/lapack/explore-html/
|
||||
*
|
||||
* Definition:
|
||||
* ===========
|
||||
*
|
||||
* RECURSIVE SUBROUTINE DPOTRF2( UPLO, N, A, LDA, INFO )
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
* CHARACTER UPLO
|
||||
* INTEGER INFO, LDA, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
* REAL A( LDA, * )
|
||||
* ..
|
||||
*
|
||||
*
|
||||
*> \par Purpose:
|
||||
* =============
|
||||
*>
|
||||
*> \verbatim
|
||||
*>
|
||||
*> DPOTRF2 computes the Cholesky factorization of a real symmetric
|
||||
*> positive definite matrix A using the recursive algorithm.
|
||||
*>
|
||||
*> The factorization has the form
|
||||
*> A = U**T * U, if UPLO = 'U', or
|
||||
*> A = L * L**T, if UPLO = 'L',
|
||||
*> where U is an upper triangular matrix and L is lower triangular.
|
||||
*>
|
||||
*> This is the recursive version of the algorithm. It divides
|
||||
*> the matrix into four submatrices:
|
||||
*>
|
||||
*> [ A11 | A12 ] where A11 is n1 by n1 and A22 is n2 by n2
|
||||
*> A = [ -----|----- ] with n1 = n/2
|
||||
*> [ A21 | A22 ] n2 = n-n1
|
||||
*>
|
||||
*> The subroutine calls itself to factor A11. Update and scale A21
|
||||
*> or A12, update A22 then calls itself to factor A22.
|
||||
*>
|
||||
*> \endverbatim
|
||||
*
|
||||
* Arguments:
|
||||
* ==========
|
||||
*
|
||||
*> \param[in] UPLO
|
||||
*> \verbatim
|
||||
*> UPLO is CHARACTER*1
|
||||
*> = 'U': Upper triangle of A is stored;
|
||||
*> = 'L': Lower triangle of A is stored.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] N
|
||||
*> \verbatim
|
||||
*> N is INTEGER
|
||||
*> The order of the matrix A. N >= 0.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in,out] A
|
||||
*> \verbatim
|
||||
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
||||
*> On entry, the symmetric matrix A. If UPLO = 'U', the leading
|
||||
*> N-by-N upper triangular part of A contains the upper
|
||||
*> triangular part of the matrix A, and the strictly lower
|
||||
*> triangular part of A is not referenced. If UPLO = 'L', the
|
||||
*> leading N-by-N lower triangular part of A contains the lower
|
||||
*> triangular part of the matrix A, and the strictly upper
|
||||
*> triangular part of A is not referenced.
|
||||
*>
|
||||
*> On exit, if INFO = 0, the factor U or L from the Cholesky
|
||||
*> factorization A = U**T*U or A = L*L**T.
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[in] LDA
|
||||
*> \verbatim
|
||||
*> LDA is INTEGER
|
||||
*> The leading dimension of the array A. LDA >= max(1,N).
|
||||
*> \endverbatim
|
||||
*>
|
||||
*> \param[out] INFO
|
||||
*> \verbatim
|
||||
*> INFO is INTEGER
|
||||
*> = 0: successful exit
|
||||
*> < 0: if INFO = -i, the i-th argument had an illegal value
|
||||
*> > 0: if INFO = i, the leading minor of order i is not
|
||||
*> positive definite, and the factorization could not be
|
||||
*> completed.
|
||||
*> \endverbatim
|
||||
*
|
||||
* Authors:
|
||||
* ========
|
||||
*
|
||||
*> \author Univ. of Tennessee
|
||||
*> \author Univ. of California Berkeley
|
||||
*> \author Univ. of Colorado Denver
|
||||
*> \author NAG Ltd.
|
||||
*
|
||||
*> \date December 2016
|
||||
*
|
||||
*> \ingroup doublePOcomputational
|
||||
*
|
||||
* =====================================================================
|
||||
RECURSIVE SUBROUTINE DPOTRF2( UPLO, N, A, LDA, INFO )
|
||||
*
|
||||
* -- LAPACK computational routine (version 3.7.0) --
|
||||
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
||||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
||||
* December 2016
|
||||
*
|
||||
* .. Scalar Arguments ..
|
||||
CHARACTER UPLO
|
||||
INTEGER INFO, LDA, N
|
||||
* ..
|
||||
* .. Array Arguments ..
|
||||
DOUBLE PRECISION A( LDA, * )
|
||||
* ..
|
||||
*
|
||||
* =====================================================================
|
||||
*
|
||||
* .. Parameters ..
|
||||
DOUBLE PRECISION ONE, ZERO
|
||||
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
||||
* ..
|
||||
* .. Local Scalars ..
|
||||
LOGICAL UPPER
|
||||
INTEGER N1, N2, IINFO
|
||||
* ..
|
||||
* .. External Functions ..
|
||||
LOGICAL LSAME, DISNAN
|
||||
EXTERNAL LSAME, DISNAN
|
||||
* ..
|
||||
* .. External Subroutines ..
|
||||
EXTERNAL DSYRK, DTRSM, XERBLA
|
||||
* ..
|
||||
* .. Intrinsic Functions ..
|
||||
INTRINSIC MAX, SQRT
|
||||
* ..
|
||||
* .. Executable Statements ..
|
||||
*
|
||||
* Test the input parameters
|
||||
*
|
||||
INFO = 0
|
||||
UPPER = LSAME( UPLO, 'U' )
|
||||
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
|
||||
INFO = -1
|
||||
ELSE IF( N.LT.0 ) THEN
|
||||
INFO = -2
|
||||
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
|
||||
INFO = -4
|
||||
END IF
|
||||
IF( INFO.NE.0 ) THEN
|
||||
CALL XERBLA( 'DPOTRF2', -INFO )
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Quick return if possible
|
||||
*
|
||||
IF( N.EQ.0 )
|
||||
$ RETURN
|
||||
*
|
||||
* N=1 case
|
||||
*
|
||||
IF( N.EQ.1 ) THEN
|
||||
*
|
||||
* Test for non-positive-definiteness
|
||||
*
|
||||
IF( A( 1, 1 ).LE.ZERO.OR.DISNAN( A( 1, 1 ) ) ) THEN
|
||||
INFO = 1
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Factor
|
||||
*
|
||||
A( 1, 1 ) = SQRT( A( 1, 1 ) )
|
||||
*
|
||||
* Use recursive code
|
||||
*
|
||||
ELSE
|
||||
N1 = N/2
|
||||
N2 = N-N1
|
||||
*
|
||||
* Factor A11
|
||||
*
|
||||
CALL DPOTRF2( UPLO, N1, A( 1, 1 ), LDA, IINFO )
|
||||
IF ( IINFO.NE.0 ) THEN
|
||||
INFO = IINFO
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Compute the Cholesky factorization A = U**T*U
|
||||
*
|
||||
IF( UPPER ) THEN
|
||||
*
|
||||
* Update and scale A12
|
||||
*
|
||||
CALL DTRSM( 'L', 'U', 'T', 'N', N1, N2, ONE,
|
||||
$ A( 1, 1 ), LDA, A( 1, N1+1 ), LDA )
|
||||
*
|
||||
* Update and factor A22
|
||||
*
|
||||
CALL DSYRK( UPLO, 'T', N2, N1, -ONE, A( 1, N1+1 ), LDA,
|
||||
$ ONE, A( N1+1, N1+1 ), LDA )
|
||||
CALL DPOTRF2( UPLO, N2, A( N1+1, N1+1 ), LDA, IINFO )
|
||||
IF ( IINFO.NE.0 ) THEN
|
||||
INFO = IINFO + N1
|
||||
RETURN
|
||||
END IF
|
||||
*
|
||||
* Compute the Cholesky factorization A = L*L**T
|
||||
*
|
||||
ELSE
|
||||
*
|
||||
* Update and scale A21
|
||||
*
|
||||
CALL DTRSM( 'R', 'L', 'T', 'N', N2, N1, ONE,
|
||||
$ A( 1, 1 ), LDA, A( N1+1, 1 ), LDA )
|
||||
*
|
||||
* Update and factor A22
|
||||
*
|
||||
CALL DSYRK( UPLO, 'N', N2, N1, -ONE, A( N1+1, 1 ), LDA,
|
||||
$ ONE, A( N1+1, N1+1 ), LDA )
|
||||
CALL DPOTRF2( UPLO, N2, A( N1+1, N1+1 ), LDA, IINFO )
|
||||
IF ( IINFO.NE.0 ) THEN
|
||||
INFO = IINFO + N1
|
||||
RETURN
|
||||
END IF
|
||||
END IF
|
||||
END IF
|
||||
RETURN
|
||||
*
|
||||
* End of DPOTRF2
|
||||
*
|
||||
END
|
||||
Reference in New Issue
Block a user