convert some more fixes

This commit is contained in:
Axel Kohlmeyer
2020-02-15 02:28:26 -05:00
parent 2de515c671
commit b0de48e47f
29 changed files with 73 additions and 201 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

View File

@ -1,13 +0,0 @@
\documentclass[12pt]{article}
\usepackage{amsmath}
\begin{document}
\begin{align*}
&{\bf F}_{j}(t) = {\bf F}^C_j(t)-\int \limits_{0}^{t} \Gamma_j(t-s) {\bf v}_j(s)~\text{d}s + {\bf F}^R_j(t) \\
&\Gamma_j(t-s) = \sum \limits_{k=1}^{N_k} \frac{c_k}{\tau_k} e^{-(t-s)/\tau_k} \\
&\langle{\bf F}^R_j(t),{\bf F}^R_j(s)\rangle = \text{k$_\text{B}$T} ~\Gamma_j(t-s)
\end{align*}
\end{document}

View File

@ -1,40 +0,0 @@
\documentclass[preview]{standalone}
\usepackage{varwidth}
\usepackage[utf8x]{inputenc}
\usepackage{amsmath,amssymb,amsthm,bm,tikz}
\usetikzlibrary{automata,arrows,shapes,snakes}
\begin{document}
\begin{varwidth}{50in}
\begin{tikzpicture}
%Global
\node (v1) at (0,6.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] { $\bm{v} \leftarrow \bm{v}+L_v.\Delta t/2$ };
\node (s1) at (0,4.5) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] { $\bm{s} \leftarrow \bm{s}+L_s.\Delta t/2$ };
\node (r) at (0,3.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] { $\bm{r} \leftarrow \bm{r}+L_r.\Delta t$ };
\node (s2) at (0,1.5) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] { $\bm{s} \leftarrow \bm{s}+L_s.\Delta t/2$ };
\node (v2) at (0,0.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] { $\bm{v} \leftarrow \bm{v}+L_v.\Delta t/2$ };
\draw[line width=2pt, ->] (v1) -- (s1);
\draw[line width=2pt, ->] (s1) -- (r);
\draw[line width=2pt, ->] (r) -- (s2);
\draw[line width=2pt, ->] (s2) -- (v2);
%Spin
\node (s01) at (6,6.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] {$\bm{s}_0 \leftarrow \bm{s}_0+L_{s_0}.\Delta t/4$ };
\node (sN1) at (6,4.5) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] {$\bm{s}_{\rm N-1}\leftarrow\bm{s}_{\rm N-1}+L_{s_{\rm N-1}}.\Delta t/4$};
\node (sN) at (6,3.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] {$\bm{s}_{\rm N} \leftarrow \bm{s}_{\rm N}+L_{s_{\rm N}}.\Delta t/2$ };
\node (sN2) at (6,1.5) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] {$\bm{s}_{\rm N-1}\leftarrow\bm{s}_{\rm N-1}+L_{s_{\rm N-1}}.\Delta t/4$};
\node (s02) at (6,0.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] {$\bm{s}_0 \leftarrow \bm{s}_0+L_{s_0}.\Delta t/4$ };
\draw[line width=2pt,dashed, ->] (s01) -- (sN1);
\draw[line width=2pt, ->] (sN1) -- (sN);
\draw[line width=2pt, ->] (sN) -- (sN2);
\draw[line width=2pt,dashed, ->] (sN2) -- (s02);
%from Global to Spin
\draw[line width=2pt, dashed, ->] (s1) -- (s01.west);
\draw[line width=2pt, dashed, ->] (s1) -- (s02.west);
\end{tikzpicture}
\end{varwidth}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

View File

@ -1,21 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
v(t+\frac{\Delta t}{2}) = v(t) + \frac{\Delta t}{2}\cdot a(t),
$$
$$
r(t+\Delta t) = r(t) + \Delta t\cdot v(t+\frac{\Delta t}{2}),
$$
$$
a(t+\Delta t) = \frac{1}{m}\cdot F\left[ r(t+\Delta t), v(t) +\lambda \cdot \Delta t\cdot a(t)\right],
$$
$$
v(t+\Delta t) = v(t+\frac{\Delta t}{2}) + \frac{\Delta t}{2}\cdot a(t+\Delta t)
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.3 KiB

View File

@ -1,9 +0,0 @@
\documentstyle[12pt]{article}
\begin{document}
$$
T_t - T = \frac{\left(\frac{1}{2}\left(P + P_0\right)\left(V_0 - V\right) + E_0 - E\right)}{N_{dof} k_B } = Delta
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 14 KiB

View File

@ -1,17 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
$$
Z = \int d{\bf q} d{\bf p} \cdot \textrm{exp} [ -\beta H_{eff} ]
$$
$$
H_{eff} = \bigg(\sum_{i=1}^P \frac{p_i^2}{2m_i}\bigg) + V_{eff}
$$
$$
V_{eff} = \sum_{i=1}^P \bigg[ \frac{mP}{2\beta^2 \hbar^2} (q_i - q_{i+1})^2 + \frac{1}{P} V(q_i)\bigg]
$$
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

View File

@ -1,11 +0,0 @@
\documentclass[12pt]{article}
\begin{document}
\begin{eqnarray*}
U &=& \frac{1}{2} K (|\rho_{\vec{k}}| - a)^2 \\
\rho_{\vec{k}} &=& \sum_j^N \exp(-i\vec{k} \cdot \vec{r}_j )/\sqrt{N} \\
\vec{k} &=& (2\pi n_x /L_x , 2\pi n_y /L_y , 2\pi n_z/L_z )
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.4 KiB

View File

@ -1,9 +0,0 @@
\documentstyle[12pt]{article}
\pagestyle{empty}
\begin{document}
\begin{eqnarray*}
k = AT^{n}e^{\frac{-E_{a}}{k_{B}T}}
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

View File

@ -1,9 +0,0 @@
\documentstyle[12pt]{article}
\pagestyle{empty}
\begin{document}
\begin{eqnarray*}
\theta_i^{-1} = \frac{\sum_{j=1}\omega_{Lucy}\left(r_{ij}\right)\theta_j^{-1}}{\sum_{j=1}\omega_{Lucy}\left(r_{ij}\right)}
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

View File

@ -1,9 +0,0 @@
\documentstyle[12pt]{article}
\pagestyle{empty}
\begin{document}
\begin{eqnarray*}
\omega_{Lucy}\left(r_{ij}\right) = \left( 1 + \frac{3r_{ij}}{r_c} \right) \left( 1 - \frac{r_{ij}}{r_c} \right)^3
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.8 KiB

View File

@ -1,9 +0,0 @@
\documentstyle[12pt]{article}
\pagestyle{empty}
\begin{document}
\begin{eqnarray*}
\nu_{A}A + \nu_{B}B \rightarrow \nu_{C}C
\end{eqnarray*}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.9 KiB

View File

@ -1,9 +0,0 @@
\documentstyle[12pt]{article}
\pagestyle{empty}
\begin{document}
\begin{eqnarray*}
r = k(T)[A]^{\nu_{A}}[B]^{\nu_{B}}
\end{eqnarray*}
\end{document}

View File

Before

Width:  |  Height:  |  Size: 50 KiB

After

Width:  |  Height:  |  Size: 50 KiB

View File

@ -62,8 +62,12 @@ to be a Prony series.
With this fix active, the force on the *j*\ th atom is given as
.. image:: Eqs/fix_gld1.jpg
:align: center
.. math::
{\bf F}_{j}(t) = & {\bf F}^C_j(t)-\int \limits_{0}^{t} \Gamma_j(t-s) {\bf v}_j(s)~\text{d}s + {\bf F}^R_j(t) \\
\Gamma_j(t-s) = & \sum \limits_{k=1}^{N_k} \frac{c_k}{\tau_k} e^{-(t-s)/\tau_k} \\
\langle{\bf F}^R_j(t),{\bf F}^R_j(s)\rangle = & \text{k$_\text{B}$T} ~\Gamma_j(t-s)
Here, the first term is representative of all conservative (pairwise,
bonded, etc) forces external to this fix, the second is the temporally
@ -72,7 +76,7 @@ the colored Gaussian random force.
The Prony series form of the memory kernel is chosen to enable an
extended variable formalism, with a number of exemplary mathematical
features discussed in :ref:`(Baczewski) <Baczewski>`. In particular, 3N\_k
features discussed in :ref:`(Baczewski) <Baczewski>`. In particular, :math:`3N_k`
extended variables are added to each atom, which effect the action of
the memory kernel without having to explicitly evaluate the integral
over time in the second term of the force. This also has the benefit

View File

@ -50,10 +50,14 @@ The modified velocity-Verlet (MVV) algorithm aims to improve the
stability of the time integrator by using an extrapolated version of
the velocity for the force evaluation:
.. image:: Eqs/fix_mvv_dpd.jpg
:align: center
.. math::
where the parameter <font size="4">&lambda;</font> depends on the
v(t+\frac{\Delta t}{2}) = & v(t) + \frac{\Delta t}{2}\cdot a(t) \\
r(t+\Delta t) = & r(t) + \Delta t\cdot v(t+\frac{\Delta t}{2}) \\
a(t+\Delta t) = & \frac{1}{m}\cdot F\left[ r(t+\Delta t), v(t) +\lambda \cdot \Delta t\cdot a(t)\right] \\
v(t+\Delta t) = & v(t+\frac{\Delta t}{2}) + \frac{\Delta t}{2}\cdot a(t+\Delta t)
where the parameter :math:`\lambda` depends on the
specific choice of DPD parameters, and needs to be tuned on a
case-by-case basis. Specification of a *lambda* value is optional.
If specified, the setting must be from 0.0 to 1.0. If not specified,

View File

@ -88,21 +88,23 @@ Essentially, a Hugoniostat simulation is an NPT simulation in which the
user-specified target temperature is replaced with a time-dependent
target temperature Tt obtained from the following equation:
.. image:: Eqs/fix_nphug.jpg
:align: center
.. math::
where T and Tt are the instantaneous and target temperatures,
P and P0 are the instantaneous and reference pressures or axial stresses,
T_t - T = \frac{\left(\frac{1}{2}\left(P + P_0\right)\left(V_0 - V\right) + E_0 - E\right)}{N_{dof} k_B } = \Delta
where *T* and :math:`T_t` are the instantaneous and target temperatures,
*P* and :math:`P_0` are the instantaneous and reference pressures or axial stresses,
depending on whether hydrostatic or uniaxial compression is being
performed, V and V0 are the instantaneous and reference volumes,
E and E0 are the instantaneous and reference internal energy (potential
plus kinetic), Ndof is the number of degrees of freedom used in the
definition of temperature, and kB is the Boltzmann constant. Delta is the
performed, *V* and :math:`V_0` are the instantaneous and reference volumes,
*E* and :math:`E_0` are the instantaneous and reference internal energy (potential
plus kinetic), :math:`N_{dof}` is the number of degrees of freedom used in the
definition of temperature, and :math:`k_B` is the Boltzmann constant. :math:`\Delta` is the
negative deviation of the instantaneous temperature from the target temperature.
When the system reaches a stable equilibrium, the value of Delta should
When the system reaches a stable equilibrium, the value of :math:`\Delta` should
fluctuate about zero.
The values of E0, V0, and P0 are the instantaneous values at the start of
The values of :math:`E_0`, :math:`V_0`, and :math:`P_0` are the instantaneous values at the start of
the simulation. These can be overridden using the fix\_modify keywords *e0*\ ,
*v0*\ , and *p0* described below.
@ -179,19 +181,20 @@ instructions on how to use the accelerated styles effectively.
**Restart, fix\_modify, output, run start/stop, minimize info:**
This fix writes the values of E0, V0, and P0, as well as the
state of all the thermostat and barostat
variables to :doc:`binary restart files <restart>`. See the
:doc:`read_restart <read_restart>` command for info on how to re-specify
a fix in an input script that reads a restart file, so that the
operation of the fix continues in an uninterrupted fashion.
This fix writes the values of :math:`E_0`, :math:`V_0`, and :math:`P_0`,
as well as the state of all the thermostat and barostat variables to
:doc:`binary restart files <restart>`. See the :doc:`read_restart
<read_restart>` command for info on how to re-specify a fix in an input
script that reads a restart file, so that the operation of the fix
continues in an uninterrupted fashion.
The :doc:`fix_modify <fix_modify>` *e0*\ , *v0* and *p0* keywords
can be used to define the values of E0, V0, and P0. Note the
the values for *e0* and *v0* are extensive, and so must correspond
to the total energy and volume of the entire system, not energy and
volume per atom. If any of these quantities are not specified, then the
instantaneous value in the system at the start of the simulation is used.
The :doc:`fix_modify <fix_modify>` *e0*\ , *v0* and *p0* keywords can be
used to define the values of :math:`E_0`, :math:`V_0`, and
:math:`P_0`. Note the the values for *e0* and *v0* are extensive, and so
must correspond to the total energy and volume of the entire system, not
energy and volume per atom. If any of these quantities are not
specified, then the instantaneous value in the system at the start of
the simulation is used.
The :doc:`fix_modify <fix_modify>` *temp* and *press* options are
supported by these fixes. You can use them to assign a
@ -216,7 +219,7 @@ values are "intensive".
The scalar is the cumulative energy change due to the fix.
The vector stores three quantities unique to this fix (Delta, Us, and up),
The vector stores three quantities unique to this fix (:math:`\Delta`, Us, and up),
followed by all the internal Nose/Hoover thermostat and barostat
variables defined for :doc:`fix npt <fix_nh>`. Delta is the deviation
of the temperature from the target temperature, given by the above equation.

View File

@ -47,7 +47,7 @@ By default a spin-lattice integration is performed (lattice = moving).
The *nve/spin* fix applies a Suzuki-Trotter decomposition to
the equations of motion of the spin lattice system, following the scheme:
.. image:: Eqs/fix_integration_spin_stdecomposition.jpg
.. image:: JPG/fix_integration_spin_stdecomposition.jpg
:align: center
according to the implementation reported in :ref:`(Omelyan) <Omelyan1>`.

View File

@ -46,8 +46,11 @@ configurations from the canonical ensemble :ref:`(Feynman) <Feynman>`.
The classical partition function and its components are given
by the following equations:
.. image:: Eqs/fix_pimd.jpg
:align: center
.. math::
Z = & \int d{\bf q} d{\bf p} \cdot \textrm{exp} [ -\beta H_{eff} ] \\
H_{eff} = & \bigg(\sum_{i=1}^P \frac{p_i^2}{2m_i}\bigg) + V_{eff} \\
V_{eff} = & \sum_{i=1}^P \bigg[ \frac{mP}{2\beta^2 \hbar^2} (q_i - q_{i+1})^2 + \frac{1}{P} V(q_i)\bigg]
The interested user is referred to any of the numerous references on
this methodology, but briefly, each quantum particle in a path

View File

@ -29,8 +29,12 @@ Description
The fix applies a force to atoms given by the potential
.. image:: Eqs/fix_rhok.jpg
:align: center
.. math::
U = & \frac{1}{2} K (|\rho_{\vec{k}}| - a)^2 \\
\rho_{\vec{k}} = & \sum_j^N \exp(-i\vec{k} \cdot \vec{r}_j )/\sqrt{N} \\
\vec{k} = & (2\pi n_x /L_x , 2\pi n_y /L_y , 2\pi n_z/L_z )
as described in :ref:`(Pedersen) <Pedersen>`.

View File

@ -46,13 +46,17 @@ defined within the file associated with this command.
For a general reaction such that
.. image:: Eqs/fix_rx_reaction.jpg
:align: center
.. math::
\nu_{A}A + \nu_{B}B \rightarrow \nu_{C}C
the reaction rate equation is defined to be of the form
.. image:: Eqs/fix_rx_reactionRate.jpg
:align: center
.. math::
r = k(T)[A]^{\nu_{A}}[B]^{\nu_{B}}
In the current implementation, the exponents are defined to be equal
to the stoichiometric coefficients. A given reaction set consisting
@ -121,12 +125,14 @@ irreversible reaction. After specifying the reaction, the reaction
rate constant is determined through the temperature dependent
Arrhenius equation:
.. image:: Eqs/fix_rx.jpg
:align: center
.. math::
k = AT^{n}e^{\frac{-E_{a}}{k_{B}T}}
where *A* is the Arrhenius factor in time units or concentration/time
units, *n* is the unitless exponent of the temperature dependence, and
*E\_a* is the activation energy in energy units. The temperature
:math:`E_a` is the activation energy in energy units. The temperature
dependence can be removed by specifying the exponent as zero.
The internal temperature of the coarse-grained particles can be used
@ -136,13 +142,17 @@ be specified to compute a local-average particle internal temperature
for use in the reaction rate constant expressions. The local-average
particle internal temperature is defined as:
.. image:: Eqs/fix_rx_localTemp.jpg
:align: center
.. math::
\theta_i^{-1} = \frac{\sum_{j=1}\omega_{Lucy}\left(r_{ij}\right)\theta_j^{-1}}{\sum_{j=1}\omega_{Lucy}\left(r_{ij}\right)}
where the Lucy function is expressed as:
.. image:: Eqs/fix_rx_localTemp2.jpg
:align: center
.. math::
\omega_{Lucy}\left(r_{ij}\right) = \left( 1 + \frac{3r_{ij}}{r_c} \right) \left( 1 - \frac{r_{ij}}{r_c} \right)^3
The self-particle interaction is included in the above equation.