convert some more fixes
|
Before Width: | Height: | Size: 14 KiB |
@ -1,13 +0,0 @@
|
||||
\documentclass[12pt]{article}
|
||||
|
||||
\usepackage{amsmath}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{align*}
|
||||
&{\bf F}_{j}(t) = {\bf F}^C_j(t)-\int \limits_{0}^{t} \Gamma_j(t-s) {\bf v}_j(s)~\text{d}s + {\bf F}^R_j(t) \\
|
||||
&\Gamma_j(t-s) = \sum \limits_{k=1}^{N_k} \frac{c_k}{\tau_k} e^{-(t-s)/\tau_k} \\
|
||||
&\langle{\bf F}^R_j(t),{\bf F}^R_j(s)\rangle = \text{k$_\text{B}$T} ~\Gamma_j(t-s)
|
||||
\end{align*}
|
||||
|
||||
\end{document}
|
||||
@ -1,40 +0,0 @@
|
||||
\documentclass[preview]{standalone}
|
||||
\usepackage{varwidth}
|
||||
\usepackage[utf8x]{inputenc}
|
||||
\usepackage{amsmath,amssymb,amsthm,bm,tikz}
|
||||
\usetikzlibrary{automata,arrows,shapes,snakes}
|
||||
\begin{document}
|
||||
\begin{varwidth}{50in}
|
||||
\begin{tikzpicture}
|
||||
|
||||
%Global
|
||||
\node (v1) at (0,6.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] { $\bm{v} \leftarrow \bm{v}+L_v.\Delta t/2$ };
|
||||
\node (s1) at (0,4.5) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] { $\bm{s} \leftarrow \bm{s}+L_s.\Delta t/2$ };
|
||||
\node (r) at (0,3.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] { $\bm{r} \leftarrow \bm{r}+L_r.\Delta t$ };
|
||||
\node (s2) at (0,1.5) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] { $\bm{s} \leftarrow \bm{s}+L_s.\Delta t/2$ };
|
||||
\node (v2) at (0,0.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] { $\bm{v} \leftarrow \bm{v}+L_v.\Delta t/2$ };
|
||||
|
||||
\draw[line width=2pt, ->] (v1) -- (s1);
|
||||
\draw[line width=2pt, ->] (s1) -- (r);
|
||||
\draw[line width=2pt, ->] (r) -- (s2);
|
||||
\draw[line width=2pt, ->] (s2) -- (v2);
|
||||
|
||||
%Spin
|
||||
\node (s01) at (6,6.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] {$\bm{s}_0 \leftarrow \bm{s}_0+L_{s_0}.\Delta t/4$ };
|
||||
\node (sN1) at (6,4.5) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] {$\bm{s}_{\rm N-1}\leftarrow\bm{s}_{\rm N-1}+L_{s_{\rm N-1}}.\Delta t/4$};
|
||||
\node (sN) at (6,3.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] {$\bm{s}_{\rm N} \leftarrow \bm{s}_{\rm N}+L_{s_{\rm N}}.\Delta t/2$ };
|
||||
\node (sN2) at (6,1.5) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] {$\bm{s}_{\rm N-1}\leftarrow\bm{s}_{\rm N-1}+L_{s_{\rm N-1}}.\Delta t/4$};
|
||||
\node (s02) at (6,0.0) [draw,thick,minimum width=0.2cm,minimum height=0.2cm] {$\bm{s}_0 \leftarrow \bm{s}_0+L_{s_0}.\Delta t/4$ };
|
||||
|
||||
\draw[line width=2pt,dashed, ->] (s01) -- (sN1);
|
||||
\draw[line width=2pt, ->] (sN1) -- (sN);
|
||||
\draw[line width=2pt, ->] (sN) -- (sN2);
|
||||
\draw[line width=2pt,dashed, ->] (sN2) -- (s02);
|
||||
|
||||
%from Global to Spin
|
||||
\draw[line width=2pt, dashed, ->] (s1) -- (s01.west);
|
||||
\draw[line width=2pt, dashed, ->] (s1) -- (s02.west);
|
||||
|
||||
\end{tikzpicture}
|
||||
\end{varwidth}
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 26 KiB |
@ -1,21 +0,0 @@
|
||||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
v(t+\frac{\Delta t}{2}) = v(t) + \frac{\Delta t}{2}\cdot a(t),
|
||||
$$
|
||||
|
||||
$$
|
||||
r(t+\Delta t) = r(t) + \Delta t\cdot v(t+\frac{\Delta t}{2}),
|
||||
$$
|
||||
|
||||
$$
|
||||
a(t+\Delta t) = \frac{1}{m}\cdot F\left[ r(t+\Delta t), v(t) +\lambda \cdot \Delta t\cdot a(t)\right],
|
||||
$$
|
||||
|
||||
$$
|
||||
v(t+\Delta t) = v(t+\frac{\Delta t}{2}) + \frac{\Delta t}{2}\cdot a(t+\Delta t)
|
||||
$$
|
||||
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 7.3 KiB |
@ -1,9 +0,0 @@
|
||||
\documentstyle[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
T_t - T = \frac{\left(\frac{1}{2}\left(P + P_0\right)\left(V_0 - V\right) + E_0 - E\right)}{N_{dof} k_B } = Delta
|
||||
$$
|
||||
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 14 KiB |
@ -1,17 +0,0 @@
|
||||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
$$
|
||||
Z = \int d{\bf q} d{\bf p} \cdot \textrm{exp} [ -\beta H_{eff} ]
|
||||
$$
|
||||
|
||||
$$
|
||||
H_{eff} = \bigg(\sum_{i=1}^P \frac{p_i^2}{2m_i}\bigg) + V_{eff}
|
||||
$$
|
||||
|
||||
$$
|
||||
V_{eff} = \sum_{i=1}^P \bigg[ \frac{mP}{2\beta^2 \hbar^2} (q_i - q_{i+1})^2 + \frac{1}{P} V(q_i)\bigg]
|
||||
$$
|
||||
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 18 KiB |
@ -1,11 +0,0 @@
|
||||
\documentclass[12pt]{article}
|
||||
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
U &=& \frac{1}{2} K (|\rho_{\vec{k}}| - a)^2 \\
|
||||
\rho_{\vec{k}} &=& \sum_j^N \exp(-i\vec{k} \cdot \vec{r}_j )/\sqrt{N} \\
|
||||
\vec{k} &=& (2\pi n_x /L_x , 2\pi n_y /L_y , 2\pi n_z/L_z )
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 2.4 KiB |
@ -1,9 +0,0 @@
|
||||
\documentstyle[12pt]{article}
|
||||
\pagestyle{empty}
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
k = AT^{n}e^{\frac{-E_{a}}{k_{B}T}}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 16 KiB |
@ -1,9 +0,0 @@
|
||||
\documentstyle[12pt]{article}
|
||||
\pagestyle{empty}
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
\theta_i^{-1} = \frac{\sum_{j=1}\omega_{Lucy}\left(r_{ij}\right)\theta_j^{-1}}{\sum_{j=1}\omega_{Lucy}\left(r_{ij}\right)}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 16 KiB |
@ -1,9 +0,0 @@
|
||||
\documentstyle[12pt]{article}
|
||||
\pagestyle{empty}
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
\omega_{Lucy}\left(r_{ij}\right) = \left( 1 + \frac{3r_{ij}}{r_c} \right) \left( 1 - \frac{r_{ij}}{r_c} \right)^3
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 2.8 KiB |
@ -1,9 +0,0 @@
|
||||
\documentstyle[12pt]{article}
|
||||
\pagestyle{empty}
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
\nu_{A}A + \nu_{B}B \rightarrow \nu_{C}C
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 2.9 KiB |
@ -1,9 +0,0 @@
|
||||
\documentstyle[12pt]{article}
|
||||
\pagestyle{empty}
|
||||
\begin{document}
|
||||
|
||||
\begin{eqnarray*}
|
||||
r = k(T)[A]^{\nu_{A}}[B]^{\nu_{B}}
|
||||
\end{eqnarray*}
|
||||
|
||||
\end{document}
|
||||
|
Before Width: | Height: | Size: 50 KiB After Width: | Height: | Size: 50 KiB |
@ -62,8 +62,12 @@ to be a Prony series.
|
||||
|
||||
With this fix active, the force on the *j*\ th atom is given as
|
||||
|
||||
.. image:: Eqs/fix_gld1.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
{\bf F}_{j}(t) = & {\bf F}^C_j(t)-\int \limits_{0}^{t} \Gamma_j(t-s) {\bf v}_j(s)~\text{d}s + {\bf F}^R_j(t) \\
|
||||
\Gamma_j(t-s) = & \sum \limits_{k=1}^{N_k} \frac{c_k}{\tau_k} e^{-(t-s)/\tau_k} \\
|
||||
\langle{\bf F}^R_j(t),{\bf F}^R_j(s)\rangle = & \text{k$_\text{B}$T} ~\Gamma_j(t-s)
|
||||
|
||||
|
||||
Here, the first term is representative of all conservative (pairwise,
|
||||
bonded, etc) forces external to this fix, the second is the temporally
|
||||
@ -72,7 +76,7 @@ the colored Gaussian random force.
|
||||
|
||||
The Prony series form of the memory kernel is chosen to enable an
|
||||
extended variable formalism, with a number of exemplary mathematical
|
||||
features discussed in :ref:`(Baczewski) <Baczewski>`. In particular, 3N\_k
|
||||
features discussed in :ref:`(Baczewski) <Baczewski>`. In particular, :math:`3N_k`
|
||||
extended variables are added to each atom, which effect the action of
|
||||
the memory kernel without having to explicitly evaluate the integral
|
||||
over time in the second term of the force. This also has the benefit
|
||||
|
||||
@ -50,10 +50,14 @@ The modified velocity-Verlet (MVV) algorithm aims to improve the
|
||||
stability of the time integrator by using an extrapolated version of
|
||||
the velocity for the force evaluation:
|
||||
|
||||
.. image:: Eqs/fix_mvv_dpd.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
where the parameter <font size="4">λ</font> depends on the
|
||||
v(t+\frac{\Delta t}{2}) = & v(t) + \frac{\Delta t}{2}\cdot a(t) \\
|
||||
r(t+\Delta t) = & r(t) + \Delta t\cdot v(t+\frac{\Delta t}{2}) \\
|
||||
a(t+\Delta t) = & \frac{1}{m}\cdot F\left[ r(t+\Delta t), v(t) +\lambda \cdot \Delta t\cdot a(t)\right] \\
|
||||
v(t+\Delta t) = & v(t+\frac{\Delta t}{2}) + \frac{\Delta t}{2}\cdot a(t+\Delta t)
|
||||
|
||||
where the parameter :math:`\lambda` depends on the
|
||||
specific choice of DPD parameters, and needs to be tuned on a
|
||||
case-by-case basis. Specification of a *lambda* value is optional.
|
||||
If specified, the setting must be from 0.0 to 1.0. If not specified,
|
||||
|
||||
@ -88,21 +88,23 @@ Essentially, a Hugoniostat simulation is an NPT simulation in which the
|
||||
user-specified target temperature is replaced with a time-dependent
|
||||
target temperature Tt obtained from the following equation:
|
||||
|
||||
.. image:: Eqs/fix_nphug.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
where T and Tt are the instantaneous and target temperatures,
|
||||
P and P0 are the instantaneous and reference pressures or axial stresses,
|
||||
T_t - T = \frac{\left(\frac{1}{2}\left(P + P_0\right)\left(V_0 - V\right) + E_0 - E\right)}{N_{dof} k_B } = \Delta
|
||||
|
||||
|
||||
where *T* and :math:`T_t` are the instantaneous and target temperatures,
|
||||
*P* and :math:`P_0` are the instantaneous and reference pressures or axial stresses,
|
||||
depending on whether hydrostatic or uniaxial compression is being
|
||||
performed, V and V0 are the instantaneous and reference volumes,
|
||||
E and E0 are the instantaneous and reference internal energy (potential
|
||||
plus kinetic), Ndof is the number of degrees of freedom used in the
|
||||
definition of temperature, and kB is the Boltzmann constant. Delta is the
|
||||
performed, *V* and :math:`V_0` are the instantaneous and reference volumes,
|
||||
*E* and :math:`E_0` are the instantaneous and reference internal energy (potential
|
||||
plus kinetic), :math:`N_{dof}` is the number of degrees of freedom used in the
|
||||
definition of temperature, and :math:`k_B` is the Boltzmann constant. :math:`\Delta` is the
|
||||
negative deviation of the instantaneous temperature from the target temperature.
|
||||
When the system reaches a stable equilibrium, the value of Delta should
|
||||
When the system reaches a stable equilibrium, the value of :math:`\Delta` should
|
||||
fluctuate about zero.
|
||||
|
||||
The values of E0, V0, and P0 are the instantaneous values at the start of
|
||||
The values of :math:`E_0`, :math:`V_0`, and :math:`P_0` are the instantaneous values at the start of
|
||||
the simulation. These can be overridden using the fix\_modify keywords *e0*\ ,
|
||||
*v0*\ , and *p0* described below.
|
||||
|
||||
@ -179,19 +181,20 @@ instructions on how to use the accelerated styles effectively.
|
||||
|
||||
**Restart, fix\_modify, output, run start/stop, minimize info:**
|
||||
|
||||
This fix writes the values of E0, V0, and P0, as well as the
|
||||
state of all the thermostat and barostat
|
||||
variables to :doc:`binary restart files <restart>`. See the
|
||||
:doc:`read_restart <read_restart>` command for info on how to re-specify
|
||||
a fix in an input script that reads a restart file, so that the
|
||||
operation of the fix continues in an uninterrupted fashion.
|
||||
This fix writes the values of :math:`E_0`, :math:`V_0`, and :math:`P_0`,
|
||||
as well as the state of all the thermostat and barostat variables to
|
||||
:doc:`binary restart files <restart>`. See the :doc:`read_restart
|
||||
<read_restart>` command for info on how to re-specify a fix in an input
|
||||
script that reads a restart file, so that the operation of the fix
|
||||
continues in an uninterrupted fashion.
|
||||
|
||||
The :doc:`fix_modify <fix_modify>` *e0*\ , *v0* and *p0* keywords
|
||||
can be used to define the values of E0, V0, and P0. Note the
|
||||
the values for *e0* and *v0* are extensive, and so must correspond
|
||||
to the total energy and volume of the entire system, not energy and
|
||||
volume per atom. If any of these quantities are not specified, then the
|
||||
instantaneous value in the system at the start of the simulation is used.
|
||||
The :doc:`fix_modify <fix_modify>` *e0*\ , *v0* and *p0* keywords can be
|
||||
used to define the values of :math:`E_0`, :math:`V_0`, and
|
||||
:math:`P_0`. Note the the values for *e0* and *v0* are extensive, and so
|
||||
must correspond to the total energy and volume of the entire system, not
|
||||
energy and volume per atom. If any of these quantities are not
|
||||
specified, then the instantaneous value in the system at the start of
|
||||
the simulation is used.
|
||||
|
||||
The :doc:`fix_modify <fix_modify>` *temp* and *press* options are
|
||||
supported by these fixes. You can use them to assign a
|
||||
@ -216,7 +219,7 @@ values are "intensive".
|
||||
|
||||
The scalar is the cumulative energy change due to the fix.
|
||||
|
||||
The vector stores three quantities unique to this fix (Delta, Us, and up),
|
||||
The vector stores three quantities unique to this fix (:math:`\Delta`, Us, and up),
|
||||
followed by all the internal Nose/Hoover thermostat and barostat
|
||||
variables defined for :doc:`fix npt <fix_nh>`. Delta is the deviation
|
||||
of the temperature from the target temperature, given by the above equation.
|
||||
|
||||
@ -47,7 +47,7 @@ By default a spin-lattice integration is performed (lattice = moving).
|
||||
The *nve/spin* fix applies a Suzuki-Trotter decomposition to
|
||||
the equations of motion of the spin lattice system, following the scheme:
|
||||
|
||||
.. image:: Eqs/fix_integration_spin_stdecomposition.jpg
|
||||
.. image:: JPG/fix_integration_spin_stdecomposition.jpg
|
||||
:align: center
|
||||
|
||||
according to the implementation reported in :ref:`(Omelyan) <Omelyan1>`.
|
||||
|
||||
@ -46,8 +46,11 @@ configurations from the canonical ensemble :ref:`(Feynman) <Feynman>`.
|
||||
The classical partition function and its components are given
|
||||
by the following equations:
|
||||
|
||||
.. image:: Eqs/fix_pimd.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
Z = & \int d{\bf q} d{\bf p} \cdot \textrm{exp} [ -\beta H_{eff} ] \\
|
||||
H_{eff} = & \bigg(\sum_{i=1}^P \frac{p_i^2}{2m_i}\bigg) + V_{eff} \\
|
||||
V_{eff} = & \sum_{i=1}^P \bigg[ \frac{mP}{2\beta^2 \hbar^2} (q_i - q_{i+1})^2 + \frac{1}{P} V(q_i)\bigg]
|
||||
|
||||
The interested user is referred to any of the numerous references on
|
||||
this methodology, but briefly, each quantum particle in a path
|
||||
|
||||
@ -29,8 +29,12 @@ Description
|
||||
|
||||
The fix applies a force to atoms given by the potential
|
||||
|
||||
.. image:: Eqs/fix_rhok.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
U = & \frac{1}{2} K (|\rho_{\vec{k}}| - a)^2 \\
|
||||
\rho_{\vec{k}} = & \sum_j^N \exp(-i\vec{k} \cdot \vec{r}_j )/\sqrt{N} \\
|
||||
\vec{k} = & (2\pi n_x /L_x , 2\pi n_y /L_y , 2\pi n_z/L_z )
|
||||
|
||||
|
||||
as described in :ref:`(Pedersen) <Pedersen>`.
|
||||
|
||||
|
||||
@ -46,13 +46,17 @@ defined within the file associated with this command.
|
||||
|
||||
For a general reaction such that
|
||||
|
||||
.. image:: Eqs/fix_rx_reaction.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
\nu_{A}A + \nu_{B}B \rightarrow \nu_{C}C
|
||||
|
||||
|
||||
the reaction rate equation is defined to be of the form
|
||||
|
||||
.. image:: Eqs/fix_rx_reactionRate.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
r = k(T)[A]^{\nu_{A}}[B]^{\nu_{B}}
|
||||
|
||||
|
||||
In the current implementation, the exponents are defined to be equal
|
||||
to the stoichiometric coefficients. A given reaction set consisting
|
||||
@ -121,12 +125,14 @@ irreversible reaction. After specifying the reaction, the reaction
|
||||
rate constant is determined through the temperature dependent
|
||||
Arrhenius equation:
|
||||
|
||||
.. image:: Eqs/fix_rx.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
k = AT^{n}e^{\frac{-E_{a}}{k_{B}T}}
|
||||
|
||||
|
||||
where *A* is the Arrhenius factor in time units or concentration/time
|
||||
units, *n* is the unitless exponent of the temperature dependence, and
|
||||
*E\_a* is the activation energy in energy units. The temperature
|
||||
:math:`E_a` is the activation energy in energy units. The temperature
|
||||
dependence can be removed by specifying the exponent as zero.
|
||||
|
||||
The internal temperature of the coarse-grained particles can be used
|
||||
@ -136,13 +142,17 @@ be specified to compute a local-average particle internal temperature
|
||||
for use in the reaction rate constant expressions. The local-average
|
||||
particle internal temperature is defined as:
|
||||
|
||||
.. image:: Eqs/fix_rx_localTemp.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
\theta_i^{-1} = \frac{\sum_{j=1}\omega_{Lucy}\left(r_{ij}\right)\theta_j^{-1}}{\sum_{j=1}\omega_{Lucy}\left(r_{ij}\right)}
|
||||
|
||||
|
||||
where the Lucy function is expressed as:
|
||||
|
||||
.. image:: Eqs/fix_rx_localTemp2.jpg
|
||||
:align: center
|
||||
.. math::
|
||||
|
||||
\omega_{Lucy}\left(r_{ij}\right) = \left( 1 + \frac{3r_{ij}}{r_c} \right) \left( 1 - \frac{r_{ij}}{r_c} \right)^3
|
||||
|
||||
|
||||
The self-particle interaction is included in the above equation.
|
||||
|
||||
|
||||