track pair_brownian changes in COLLOID

This commit is contained in:
cjknight
2024-05-29 03:29:37 +00:00
parent 8abaf20ae6
commit bdbfa7f6e2
4 changed files with 50 additions and 829 deletions

View File

@ -42,6 +42,8 @@ using namespace LAMMPS_NS;
using namespace MathConst;
using namespace MathSpecial;
//#define _NO_RANDOM
/* ---------------------------------------------------------------------- */
PairBrownian::PairBrownian(LAMMPS *lmp) : Pair(lmp)
@ -54,6 +56,8 @@ PairBrownian::PairBrownian(LAMMPS *lmp) : Pair(lmp)
PairBrownian::~PairBrownian()
{
if(copymode) return;
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
@ -68,6 +72,10 @@ PairBrownian::~PairBrownian()
void PairBrownian::compute(int eflag, int vflag)
{
#ifdef _NO_RANDOM
printf("Warning:: PairBrownian::compute() Random numbers all set to 0.5\n");
#endif
int i, j, ii, jj, inum, jnum, itype, jtype;
double xtmp, ytmp, ztmp, delx, dely, delz, fx, fy, fz, tx, ty, tz;
double rsq, r, h_sep, radi;
@ -91,7 +99,7 @@ void PairBrownian::compute(int eflag, int vflag)
// This section of code adjusts R0/RT0/RS0 if necessary due to changes
// in the volume fraction as a result of fix deform or moving walls
double dims[3], wallcoord;
if (flagVF) // Flag for volume fraction corrections
if (flagdeform || flagwall == 2) { // Possible changes in volume fraction
@ -134,12 +142,12 @@ void PairBrownian::compute(int eflag, int vflag)
prethermostat = sqrt(24.0 * force->boltz * t_target / update->dt);
prethermostat *= sqrt(force->vxmu2f / force->ftm2v / force->mvv2e);
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
@ -152,6 +160,18 @@ void PairBrownian::compute(int eflag, int vflag)
// FLD contribution to force and torque due to isotropic terms
#ifdef _NO_RANDOM
if (flagfld) {
f[i][0] += prethermostat * sqrt(R0) * 0.5;
f[i][1] += prethermostat * sqrt(R0) * 0.5;
f[i][2] += prethermostat * sqrt(R0) * 0.5;
if (flaglog) {
torque[i][0] += prethermostat * sqrt(RT0) * 0.5;
torque[i][1] += prethermostat * sqrt(RT0) * 0.5;
torque[i][2] += prethermostat * sqrt(RT0) * 0.5;
}
}
#else
if (flagfld) {
f[i][0] += prethermostat * sqrt(R0) * (random->uniform() - 0.5);
f[i][1] += prethermostat * sqrt(R0) * (random->uniform() - 0.5);
@ -162,7 +182,8 @@ void PairBrownian::compute(int eflag, int vflag)
torque[i][2] += prethermostat * sqrt(RT0) * (random->uniform() - 0.5);
}
}
#endif
if (!flagHI) continue;
for (jj = 0; jj < jnum; jj++) {
@ -205,7 +226,11 @@ void PairBrownian::compute(int eflag, int vflag)
// generate a random number
#ifdef _NO_RANDOM
randr = 0.5;
#else
randr = random->uniform() - 0.5;
#endif
// contribution due to Brownian motion
@ -230,12 +255,18 @@ void PairBrownian::compute(int eflag, int vflag)
// force in each of the two directions
#ifdef _NO_RANDOM
randr = 0.5;
#else
randr = random->uniform() - 0.5;
#endif
fx += Fbmag * randr * p2[0];
fy += Fbmag * randr * p2[1];
fz += Fbmag * randr * p2[2];
#ifndef _NO_RANDOM
randr = random->uniform() - 0.5;
#endif
fx += Fbmag * randr * p3[0];
fy += Fbmag * randr * p3[1];
fz += Fbmag * randr * p3[2];
@ -246,7 +277,7 @@ void PairBrownian::compute(int eflag, int vflag)
fx = vxmu2f * fx;
fy = vxmu2f * fy;
fz = vxmu2f * fz;
// sum to total force
f[i][0] -= fx;
@ -298,12 +329,18 @@ void PairBrownian::compute(int eflag, int vflag)
// force in each direction
#ifdef _NO_RANDOM
randr = 0.5;
#else
randr = random->uniform() - 0.5;
#endif
tx = Fbmag * randr * p2[0];
ty = Fbmag * randr * p2[1];
tz = Fbmag * randr * p2[2];
#ifndef _NO_RANDOM
randr = random->uniform() - 0.5;
#endif
tx += Fbmag * randr * p3[0];
ty += Fbmag * randr * p3[1];
tz += Fbmag * randr * p3[2];
@ -321,12 +358,12 @@ void PairBrownian::compute(int eflag, int vflag)
}
}
if (evflag)
ev_tally_xyz(i, j, nlocal, newton_pair, 0.0, 0.0, -fx, -fy, -fz, delx, dely, delz);
if (evflag)
ev_tally_xyz(i, j, nlocal, newton_pair, 0.0, 0.0, -fx, -fy, -fz, delx, dely, delz);
}
}
}
if (vflag_fdotr) virial_fdotr_compute();
}
@ -434,7 +471,7 @@ void PairBrownian::coeff(int narg, char **arg)
------------------------------------------------------------------------- */
void PairBrownian::init_style()
{
{
if (!atom->radius_flag) error->all(FLERR, "Pair brownian requires atom attribute radius");
// if newton off, forces between atoms ij will be double computed
@ -477,8 +514,8 @@ void PairBrownian::init_style()
flagdeform = flagwall = 0;
for (int i = 0; i < modify->nfix; i++) {
if (strcmp(modify->fix[i]->style, "deform") == 0)
flagdeform = 1;
if (strcmp(modify->fix[i]->style, "deform") == 0) flagdeform = 1;
else if (strcmp(modify->fix[i]->style, "deform/kk") == 0) flagdeform = 1; // cleaner way to do this?? what about flagwall?
else if (strstr(modify->fix[i]->style, "wall") != nullptr) {
if (flagwall) error->all(FLERR, "Cannot use multiple fix wall commands with pair brownian");
flagwall = 1; // Walls exist

View File

@ -31,7 +31,7 @@ class PairBrownian : public Pair {
void compute(int, int) override;
void settings(int, char **) override;
void coeff(int, char **) override;
double init_one(int, int) override;
virtual double init_one(int, int) override;
void init_style() override;
void write_restart(FILE *) override;
void read_restart(FILE *) override;
@ -55,7 +55,7 @@ class PairBrownian : public Pair {
class RanMars *random;
void set_3_orthogonal_vectors(double *, double *, double *);
void allocate();
virtual void allocate();
};
} // namespace LAMMPS_NS

View File

@ -1,752 +0,0 @@
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing authors: Amit Kumar and Michael Bybee (UIUC)
------------------------------------------------------------------------- */
#include "pair_brownian.h"
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "error.h"
#include "fix.h"
#include "fix_wall.h"
#include "force.h"
#include "input.h"
#include "math_const.h"
#include "math_special.h"
#include "memory.h"
#include "modify.h"
#include "neigh_list.h"
#include "neighbor.h"
#include "random_mars.h"
#include "update.h"
#include "variable.h"
#include <cmath>
#include <cstring>
using namespace LAMMPS_NS;
using namespace MathConst;
using namespace MathSpecial;
// same as fix_wall.cpp
enum { EDGE, CONSTANT, VARIABLE };
//#define _NO_RANDOM
/* ---------------------------------------------------------------------- */
PairBrownian::PairBrownian(LAMMPS *lmp) : Pair(lmp)
{
single_enable = 0;
random = nullptr;
}
/* ---------------------------------------------------------------------- */
PairBrownian::~PairBrownian()
{
if(copymode) return;
if (allocated) {
memory->destroy(setflag);
memory->destroy(cutsq);
memory->destroy(cut);
memory->destroy(cut_inner);
}
delete random;
}
/* ---------------------------------------------------------------------- */
void PairBrownian::compute(int eflag, int vflag)
{
#ifdef _NO_RANDOM
printf("Warning:: PairBrownian::compute() Random numbers all set to 0.5\n");
#endif
int i, j, ii, jj, inum, jnum, itype, jtype;
double xtmp, ytmp, ztmp, delx, dely, delz, fx, fy, fz, tx, ty, tz;
double rsq, r, h_sep, radi;
int *ilist, *jlist, *numneigh, **firstneigh;
ev_init(eflag, vflag);
double **x = atom->x;
double **f = atom->f;
double **torque = atom->torque;
double *radius = atom->radius;
int *type = atom->type;
int nlocal = atom->nlocal;
int newton_pair = force->newton_pair;
double vxmu2f = force->vxmu2f;
double randr;
double prethermostat;
double xl[3], a_sq, a_sh, a_pu, Fbmag;
double p1[3], p2[3], p3[3];
// This section of code adjusts R0/RT0/RS0 if necessary due to changes
// in the volume fraction as a result of fix deform or moving walls
double dims[3], wallcoord;
if (flagVF) // Flag for volume fraction corrections
if (flagdeform || flagwall == 2) { // Possible changes in volume fraction
if (flagdeform && !flagwall)
for (j = 0; j < 3; j++) dims[j] = domain->prd[j];
else if (flagwall == 2 || (flagdeform && flagwall == 1)) {
double wallhi[3], walllo[3];
for (int j = 0; j < 3; j++) {
wallhi[j] = domain->prd[j];
walllo[j] = 0;
}
for (int m = 0; m < wallfix->nwall; m++) {
int dim = wallfix->wallwhich[m] / 2;
int side = wallfix->wallwhich[m] % 2;
if (wallfix->xstyle[m] == VARIABLE) {
wallcoord = input->variable->compute_equal(wallfix->xindex[m]);
} else
wallcoord = wallfix->coord0[m];
if (side == 0)
walllo[dim] = wallcoord;
else
wallhi[dim] = wallcoord;
}
for (int j = 0; j < 3; j++) dims[j] = wallhi[j] - walllo[j];
}
double vol_T = dims[0] * dims[1] * dims[2];
double vol_f = vol_P / vol_T;
if (flaglog == 0) {
R0 = 6 * MY_PI * mu * rad * (1.0 + 2.16 * vol_f);
RT0 = 8 * MY_PI * mu * cube(rad);
//RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.33*vol_f + 2.80*vol_f*vol_f);
} else {
R0 = 6 * MY_PI * mu * rad * (1.0 + 2.725 * vol_f - 6.583 * vol_f * vol_f);
RT0 = 8 * MY_PI * mu * cube(rad) * (1.0 + 0.749 * vol_f - 2.469 * vol_f * vol_f);
//RS0 = 20.0/3.0*MY_PI*mu*pow(rad,3)*(1.0 + 3.64*vol_f - 6.95*vol_f*vol_f);
}
}
// scale factor for Brownian moments
prethermostat = sqrt(24.0 * force->boltz * t_target / update->dt);
prethermostat *= sqrt(force->vxmu2f / force->ftm2v / force->mvv2e);
inum = list->inum;
ilist = list->ilist;
numneigh = list->numneigh;
firstneigh = list->firstneigh;
for (ii = 0; ii < inum; ii++) {
i = ilist[ii];
xtmp = x[i][0];
ytmp = x[i][1];
ztmp = x[i][2];
itype = type[i];
radi = radius[i];
jlist = firstneigh[i];
jnum = numneigh[i];
// FLD contribution to force and torque due to isotropic terms
#ifdef _NO_RANDOM
if (flagfld) {
f[i][0] += prethermostat * sqrt(R0) * 0.5;
f[i][1] += prethermostat * sqrt(R0) * 0.5;
f[i][2] += prethermostat * sqrt(R0) * 0.5;
if (flaglog) {
torque[i][0] += prethermostat * sqrt(RT0) * 0.5;
torque[i][1] += prethermostat * sqrt(RT0) * 0.5;
torque[i][2] += prethermostat * sqrt(RT0) * 0.5;
}
}
#else
if (flagfld) {
f[i][0] += prethermostat * sqrt(R0) * (random->uniform() - 0.5);
f[i][1] += prethermostat * sqrt(R0) * (random->uniform() - 0.5);
f[i][2] += prethermostat * sqrt(R0) * (random->uniform() - 0.5);
if (flaglog) {
torque[i][0] += prethermostat * sqrt(RT0) * (random->uniform() - 0.5);
torque[i][1] += prethermostat * sqrt(RT0) * (random->uniform() - 0.5);
torque[i][2] += prethermostat * sqrt(RT0) * (random->uniform() - 0.5);
}
}
#endif
if (!flagHI) continue;
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
j &= NEIGHMASK;
delx = xtmp - x[j][0];
dely = ytmp - x[j][1];
delz = ztmp - x[j][2];
rsq = delx * delx + dely * dely + delz * delz;
jtype = type[j];
if (rsq < cutsq[itype][jtype]) {
r = sqrt(rsq);
// scalar resistances a_sq and a_sh
h_sep = r - 2.0 * radi;
// if less than minimum gap, use minimum gap instead
if (r < cut_inner[itype][jtype]) h_sep = cut_inner[itype][jtype] - 2.0 * radi;
// scale h_sep by radi
h_sep = h_sep / radi;
// scalar resistances
if (flaglog) {
a_sq = 6.0 * MY_PI * mu * radi * (1.0 / 4.0 / h_sep + 9.0 / 40.0 * log(1.0 / h_sep));
a_sh = 6.0 * MY_PI * mu * radi * (1.0 / 6.0 * log(1.0 / h_sep));
a_pu = 8.0 * MY_PI * mu * cube(radi) * (3.0 / 160.0 * log(1.0 / h_sep));
} else
a_sq = 6.0 * MY_PI * mu * radi * (1.0 / 4.0 / h_sep);
// generate the Pairwise Brownian Force: a_sq
Fbmag = prethermostat * sqrt(a_sq);
// generate a random number
#ifdef _NO_RANDOM
randr = 0.5;
#else
randr = random->uniform() - 0.5;
#endif
// contribution due to Brownian motion
fx = Fbmag * randr * delx / r;
fy = Fbmag * randr * dely / r;
fz = Fbmag * randr * delz / r;
// add terms due to a_sh
if (flaglog) {
// generate two orthogonal vectors to the line of centers
p1[0] = delx / r;
p1[1] = dely / r;
p1[2] = delz / r;
set_3_orthogonal_vectors(p1, p2, p3);
// magnitude
Fbmag = prethermostat * sqrt(a_sh);
// force in each of the two directions
#ifdef _NO_RANDOM
randr = 0.5;
#else
randr = random->uniform() - 0.5;
#endif
fx += Fbmag * randr * p2[0];
fy += Fbmag * randr * p2[1];
fz += Fbmag * randr * p2[2];
#ifndef _NO_RANDOM
randr = random->uniform() - 0.5;
#endif
fx += Fbmag * randr * p3[0];
fy += Fbmag * randr * p3[1];
fz += Fbmag * randr * p3[2];
}
// scale forces to appropriate units
fx = vxmu2f * fx;
fy = vxmu2f * fy;
fz = vxmu2f * fz;
// sum to total force
f[i][0] -= fx;
f[i][1] -= fy;
f[i][2] -= fz;
if (newton_pair || j < nlocal) {
//randr = random->uniform()-0.5;
//fx = Fbmag*randr*delx/r;
//fy = Fbmag*randr*dely/r;
//fz = Fbmag*randr*delz/r;
f[j][0] += fx;
f[j][1] += fy;
f[j][2] += fz;
}
// torque due to the Brownian Force
if (flaglog) {
// location of the point of closest approach on I from its center
xl[0] = -delx / r * radi;
xl[1] = -dely / r * radi;
xl[2] = -delz / r * radi;
// torque = xl_cross_F
tx = xl[1] * fz - xl[2] * fy;
ty = xl[2] * fx - xl[0] * fz;
tz = xl[0] * fy - xl[1] * fx;
// torque is same on both particles
torque[i][0] -= tx;
torque[i][1] -= ty;
torque[i][2] -= tz;
if (newton_pair || j < nlocal) {
torque[j][0] -= tx;
torque[j][1] -= ty;
torque[j][2] -= tz;
}
// torque due to a_pu
Fbmag = prethermostat * sqrt(a_pu);
// force in each direction
#ifdef _NO_RANDOM
randr = 0.5;
#else
randr = random->uniform() - 0.5;
#endif
tx = Fbmag * randr * p2[0];
ty = Fbmag * randr * p2[1];
tz = Fbmag * randr * p2[2];
#ifndef _NO_RANDOM
randr = random->uniform() - 0.5;
#endif
tx += Fbmag * randr * p3[0];
ty += Fbmag * randr * p3[1];
tz += Fbmag * randr * p3[2];
// torque has opposite sign on two particles
torque[i][0] -= tx;
torque[i][1] -= ty;
torque[i][2] -= tz;
if (newton_pair || j < nlocal) {
torque[j][0] += tx;
torque[j][1] += ty;
torque[j][2] += tz;
}
}
if (evflag)
ev_tally_xyz(i, j, nlocal, newton_pair, 0.0, 0.0, -fx, -fy, -fz, delx, dely, delz);
}
}
}
if (vflag_fdotr) virial_fdotr_compute();
}
/* ----------------------------------------------------------------------
allocate all arrays
------------------------------------------------------------------------- */
void PairBrownian::allocate()
{
allocated = 1;
int np1 = atom->ntypes + 1;
memory->create(setflag, np1, np1, "pair:setflag");
for (int i = 1; i < np1; i++)
for (int j = i; j < np1; j++) setflag[i][j] = 0;
memory->create(cutsq, np1, np1, "pair:cutsq");
memory->create(cut, np1, np1, "pair:cut");
memory->create(cut_inner, np1, np1, "pair:cut_inner");
}
/* ----------------------------------------------------------------------
global settings
------------------------------------------------------------------------- */
void PairBrownian::settings(int narg, char **arg)
{
if (narg != 7 && narg != 9) error->all(FLERR, "Illegal pair_style command");
mu = utils::numeric(FLERR, arg[0], false, lmp);
flaglog = utils::inumeric(FLERR, arg[1], false, lmp);
flagfld = utils::inumeric(FLERR, arg[2], false, lmp);
cut_inner_global = utils::numeric(FLERR, arg[3], false, lmp);
cut_global = utils::numeric(FLERR, arg[4], false, lmp);
t_target = utils::numeric(FLERR, arg[5], false, lmp);
seed = utils::inumeric(FLERR, arg[6], false, lmp);
flagHI = flagVF = 1;
if (narg == 9) {
flagHI = utils::inumeric(FLERR, arg[7], false, lmp);
flagVF = utils::inumeric(FLERR, arg[8], false, lmp);
}
if (flaglog == 1 && flagHI == 0) {
error->warning(FLERR,
"Cannot include log terms without 1/r terms; "
"setting flagHI to 1");
flagHI = 1;
}
// initialize Marsaglia RNG with processor-unique seed
delete random;
random = new RanMars(lmp, seed + comm->me);
// reset cutoffs that have been explicitly set
if (allocated) {
for (int i = 1; i <= atom->ntypes; i++)
for (int j = i; j <= atom->ntypes; j++)
if (setflag[i][j]) {
cut_inner[i][j] = cut_inner_global;
cut[i][j] = cut_global;
}
}
}
/* ----------------------------------------------------------------------
set coeffs for one or more type pairs
------------------------------------------------------------------------- */
void PairBrownian::coeff(int narg, char **arg)
{
if (narg != 2 && narg != 4) error->all(FLERR, "Incorrect args for pair coefficients");
if (!allocated) allocate();
int ilo, ihi, jlo, jhi;
utils::bounds(FLERR, arg[0], 1, atom->ntypes, ilo, ihi, error);
utils::bounds(FLERR, arg[1], 1, atom->ntypes, jlo, jhi, error);
double cut_inner_one = cut_inner_global;
double cut_one = cut_global;
if (narg == 4) {
cut_inner_one = utils::numeric(FLERR, arg[2], false, lmp);
cut_one = utils::numeric(FLERR, arg[3], false, lmp);
}
int count = 0;
for (int i = ilo; i <= ihi; i++)
for (int j = MAX(jlo, i); j <= jhi; j++) {
cut_inner[i][j] = cut_inner_one;
cut[i][j] = cut_one;
setflag[i][j] = 1;
count++;
}
if (count == 0) error->all(FLERR, "Incorrect args for pair coefficients");
}
/* ----------------------------------------------------------------------
init specific to this pair style
------------------------------------------------------------------------- */
void PairBrownian::init_style()
{
if (!atom->radius_flag) error->all(FLERR, "Pair brownian requires atom attribute radius");
// if newton off, forces between atoms ij will be double computed
// using different random numbers
if (force->newton_pair == 0 && comm->me == 0)
error->warning(FLERR, "Pair brownian needs newton pair on for momentum conservation");
neighbor->add_request(this);
// ensure all particles are finite-size
// for pair hybrid, should limit test to types using the pair style
double *radius = atom->radius;
int nlocal = atom->nlocal;
for (int i = 0; i < nlocal; i++)
if (radius[i] == 0.0) error->one(FLERR, "Pair brownian requires extended particles");
// require monodisperse system with same radii for all types
double radtype;
for (int i = 1; i <= atom->ntypes; i++) {
if (!atom->radius_consistency(i, radtype))
error->all(FLERR, "Pair brownian requires monodisperse particles");
if (i > 1 && radtype != rad) error->all(FLERR, "Pair brownian requires monodisperse particles");
rad = radtype;
}
// set the isotropic constants that depend on the volume fraction
// vol_T = total volume
// check for fix deform, if exists it must use "remap v"
// If box will change volume, set appropriate flag so that volume
// and v.f. corrections are re-calculated at every step.
//
// If available volume is different from box volume
// due to walls, set volume appropriately; if walls will
// move, set appropriate flag so that volume and v.f. corrections
// are re-calculated at every step.
flagdeform = flagwall = 0;
for (int i = 0; i < modify->nfix; i++) {
if (strcmp(modify->fix[i]->style, "deform") == 0) flagdeform = 1;
else if (strcmp(modify->fix[i]->style, "deform/kk") == 0) flagdeform = 1; // cleaner way to do this?? what about flagwall?
else if (strstr(modify->fix[i]->style, "wall") != nullptr) {
if (flagwall) error->all(FLERR, "Cannot use multiple fix wall commands with pair brownian");
flagwall = 1; // Walls exist
wallfix = dynamic_cast<FixWall *>(modify->fix[i]);
if (wallfix->xflag) flagwall = 2; // Moving walls exist
}
}
// set the isotropic constants depending on the volume fraction
// vol_T = total volumeshearing = flagdeform = flagwall = 0;
double vol_T, wallcoord;
if (!flagwall)
vol_T = domain->xprd * domain->yprd * domain->zprd;
else {
double wallhi[3], walllo[3];
for (int j = 0; j < 3; j++) {
wallhi[j] = domain->prd[j];
walllo[j] = 0;
}
for (int m = 0; m < wallfix->nwall; m++) {
int dim = wallfix->wallwhich[m] / 2;
int side = wallfix->wallwhich[m] % 2;
if (wallfix->xstyle[m] == VARIABLE) {
wallfix->xindex[m] = input->variable->find(wallfix->xstr[m]);
// Since fix->wall->init happens after pair->init_style
wallcoord = input->variable->compute_equal(wallfix->xindex[m]);
}
else
wallcoord = wallfix->coord0[m];
if (side == 0)
walllo[dim] = wallcoord;
else
wallhi[dim] = wallcoord;
}
vol_T = (wallhi[0] - walllo[0]) * (wallhi[1] - walllo[1]) * (wallhi[2] - walllo[2]);
}
// vol_P = volume of particles, assuming mono-dispersity
// vol_f = volume fraction
vol_P = atom->natoms * (4.0 / 3.0) * MY_PI * cube(rad);
double vol_f = vol_P / vol_T;
// set isotropic constants
if (!flagVF) vol_f = 0;
if (flaglog == 0) {
R0 = 6 * MY_PI * mu * rad * (1.0 + 2.16 * vol_f);
RT0 = 8 * MY_PI * mu * cube(rad); // not actually needed
} else {
R0 = 6 * MY_PI * mu * rad * (1.0 + 2.725 * vol_f - 6.583 * vol_f * vol_f);
RT0 = 8 * MY_PI * mu * cube(rad) * (1.0 + 0.749 * vol_f - 2.469 * vol_f * vol_f);
}
}
/* ----------------------------------------------------------------------
init for one type pair i,j and corresponding j,i
------------------------------------------------------------------------- */
double PairBrownian::init_one(int i, int j)
{
if (setflag[i][j] == 0) {
cut_inner[i][j] = mix_distance(cut_inner[i][i], cut_inner[j][j]);
cut[i][j] = mix_distance(cut[i][i], cut[j][j]);
}
cut_inner[j][i] = cut_inner[i][j];
return cut[i][j];
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairBrownian::write_restart(FILE *fp)
{
write_restart_settings(fp);
int i, j;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
fwrite(&setflag[i][j], sizeof(int), 1, fp);
if (setflag[i][j]) {
fwrite(&cut_inner[i][j], sizeof(double), 1, fp);
fwrite(&cut[i][j], sizeof(double), 1, fp);
}
}
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairBrownian::read_restart(FILE *fp)
{
read_restart_settings(fp);
allocate();
int i, j;
int me = comm->me;
for (i = 1; i <= atom->ntypes; i++)
for (j = i; j <= atom->ntypes; j++) {
if (me == 0) utils::sfread(FLERR, &setflag[i][j], sizeof(int), 1, fp, nullptr, error);
MPI_Bcast(&setflag[i][j], 1, MPI_INT, 0, world);
if (setflag[i][j]) {
if (me == 0) {
utils::sfread(FLERR, &cut_inner[i][j], sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &cut[i][j], sizeof(double), 1, fp, nullptr, error);
}
MPI_Bcast(&cut_inner[i][j], 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&cut[i][j], 1, MPI_DOUBLE, 0, world);
}
}
}
/* ----------------------------------------------------------------------
proc 0 writes to restart file
------------------------------------------------------------------------- */
void PairBrownian::write_restart_settings(FILE *fp)
{
fwrite(&mu, sizeof(double), 1, fp);
fwrite(&flaglog, sizeof(int), 1, fp);
fwrite(&flagfld, sizeof(int), 1, fp);
fwrite(&cut_inner_global, sizeof(double), 1, fp);
fwrite(&cut_global, sizeof(double), 1, fp);
fwrite(&t_target, sizeof(double), 1, fp);
fwrite(&seed, sizeof(int), 1, fp);
fwrite(&offset_flag, sizeof(int), 1, fp);
fwrite(&mix_flag, sizeof(int), 1, fp);
fwrite(&flagHI, sizeof(int), 1, fp);
fwrite(&flagVF, sizeof(int), 1, fp);
}
/* ----------------------------------------------------------------------
proc 0 reads from restart file, bcasts
------------------------------------------------------------------------- */
void PairBrownian::read_restart_settings(FILE *fp)
{
int me = comm->me;
if (me == 0) {
utils::sfread(FLERR, &mu, sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &flaglog, sizeof(int), 1, fp, nullptr, error);
utils::sfread(FLERR, &flagfld, sizeof(int), 1, fp, nullptr, error);
utils::sfread(FLERR, &cut_inner_global, sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &cut_global, sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &t_target, sizeof(double), 1, fp, nullptr, error);
utils::sfread(FLERR, &seed, sizeof(int), 1, fp, nullptr, error);
utils::sfread(FLERR, &offset_flag, sizeof(int), 1, fp, nullptr, error);
utils::sfread(FLERR, &mix_flag, sizeof(int), 1, fp, nullptr, error);
utils::sfread(FLERR, &flagHI, sizeof(int), 1, fp, nullptr, error);
utils::sfread(FLERR, &flagVF, sizeof(int), 1, fp, nullptr, error);
}
MPI_Bcast(&mu, 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&flaglog, 1, MPI_INT, 0, world);
MPI_Bcast(&flagfld, 1, MPI_INT, 0, world);
MPI_Bcast(&cut_inner_global, 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&cut_global, 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&t_target, 1, MPI_DOUBLE, 0, world);
MPI_Bcast(&seed, 1, MPI_INT, 0, world);
MPI_Bcast(&offset_flag, 1, MPI_INT, 0, world);
MPI_Bcast(&mix_flag, 1, MPI_INT, 0, world);
MPI_Bcast(&flagHI, 1, MPI_INT, 0, world);
MPI_Bcast(&flagVF, 1, MPI_INT, 0, world);
// additional setup based on restart parameters
delete random;
random = new RanMars(lmp, seed + comm->me);
}
/* ----------------------------------------------------------------------*/
void PairBrownian::set_3_orthogonal_vectors(double p1[3], double p2[3], double p3[3])
{
double norm;
int ix, iy, iz;
// find the index of maximum magnitude and store it in iz
if (fabs(p1[0]) > fabs(p1[1])) {
iz = 0;
ix = 1;
iy = 2;
} else {
iz = 1;
ix = 2;
iy = 0;
}
if (iz == 0) {
if (fabs(p1[0]) < fabs(p1[2])) {
iz = 2;
ix = 0;
iy = 1;
}
} else {
if (fabs(p1[1]) < fabs(p1[2])) {
iz = 2;
ix = 0;
iy = 1;
}
}
// set p2 arbitrarily such that it's orthogonal to p1
p2[ix] = 1.0;
p2[iy] = 1.0;
p2[iz] = -(p1[ix] * p2[ix] + p1[iy] * p2[iy]) / p1[iz];
// normalize p2
norm = sqrt(p2[0] * p2[0] + p2[1] * p2[1] + p2[2] * p2[2]);
p2[0] = p2[0] / norm;
p2[1] = p2[1] / norm;
p2[2] = p2[2] / norm;
// Set p3 by taking the cross product p3=p2xp1
p3[0] = p1[1] * p2[2] - p1[2] * p2[1];
p3[1] = p1[2] * p2[0] - p1[0] * p2[2];
p3[2] = p1[0] * p2[1] - p1[1] * p2[0];
}

View File

@ -1,64 +0,0 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifdef PAIR_CLASS
// clang-format off
PairStyle(brownian,PairBrownian);
// clang-format on
#else
#ifndef LMP_PAIR_BROWNIAN_H
#define LMP_PAIR_BROWNIAN_H
#include "pair.h"
namespace LAMMPS_NS {
class PairBrownian : public Pair {
public:
PairBrownian(class LAMMPS *);
~PairBrownian() override;
void compute(int, int) override;
void settings(int, char **) override;
void coeff(int, char **) override;
virtual double init_one(int, int) override;
void init_style() override;
void write_restart(FILE *) override;
void read_restart(FILE *) override;
void write_restart_settings(FILE *) override;
void read_restart_settings(FILE *) override;
protected:
double cut_inner_global, cut_global;
double t_target, mu;
int flaglog, flagfld;
int flagHI, flagVF;
int flagdeform, flagwall;
double vol_P;
double rad;
class FixWall *wallfix;
int seed;
double **cut_inner, **cut;
double R0, RT0;
class RanMars *random;
void set_3_orthogonal_vectors(double *, double *, double *);
virtual void allocate();
};
} // namespace LAMMPS_NS
#endif
#endif