Merge branch 'master' into collected-small-changes
@ -217,13 +217,20 @@ elseif(GPU_API STREQUAL "OPENCL")
|
||||
elseif(GPU_API STREQUAL "HIP")
|
||||
if(NOT DEFINED HIP_PATH)
|
||||
if(NOT DEFINED ENV{HIP_PATH})
|
||||
set(HIP_PATH "/opt/rocm/hip" CACHE PATH "Path to which HIP has been installed")
|
||||
set(HIP_PATH "/opt/rocm/hip" CACHE PATH "Path to HIP installation")
|
||||
else()
|
||||
set(HIP_PATH $ENV{HIP_PATH} CACHE PATH "Path to which HIP has been installed")
|
||||
set(HIP_PATH $ENV{HIP_PATH} CACHE PATH "Path to HIP installation")
|
||||
endif()
|
||||
endif()
|
||||
set(CMAKE_MODULE_PATH "${HIP_PATH}/cmake" ${CMAKE_MODULE_PATH})
|
||||
find_package(HIP REQUIRED)
|
||||
if(NOT DEFINED ROCM_PATH)
|
||||
if(NOT DEFINED ENV{ROCM_PATH})
|
||||
set(ROCM_PATH "/opt/rocm" CACHE PATH "Path to ROCm installation")
|
||||
else()
|
||||
set(ROCM_PATH $ENV{ROCM_PATH} CACHE PATH "Path to ROCm installation")
|
||||
endif()
|
||||
endif()
|
||||
list(APPEND CMAKE_PREFIX_PATH ${HIP_PATH} ${ROCM_PATH})
|
||||
find_package(hip REQUIRED)
|
||||
option(HIP_USE_DEVICE_SORT "Use GPU sorting" ON)
|
||||
|
||||
if(NOT DEFINED HIP_PLATFORM)
|
||||
@ -325,10 +332,11 @@ elseif(GPU_API STREQUAL "HIP")
|
||||
|
||||
set_directory_properties(PROPERTIES ADDITIONAL_MAKE_CLEAN_FILES "${LAMMPS_LIB_BINARY_DIR}/gpu/*_cubin.h ${LAMMPS_LIB_BINARY_DIR}/gpu/*.cu.cpp")
|
||||
|
||||
hip_add_library(gpu STATIC ${GPU_LIB_SOURCES})
|
||||
add_library(gpu STATIC ${GPU_LIB_SOURCES})
|
||||
target_include_directories(gpu PRIVATE ${LAMMPS_LIB_BINARY_DIR}/gpu)
|
||||
target_compile_definitions(gpu PRIVATE -D_${GPU_PREC_SETTING} -DMPI_GERYON -DUCL_NO_EXIT)
|
||||
target_compile_definitions(gpu PRIVATE -DUSE_HIP)
|
||||
target_link_libraries(gpu PRIVATE hip::host)
|
||||
|
||||
if(HIP_USE_DEVICE_SORT)
|
||||
# add hipCUB
|
||||
@ -377,8 +385,9 @@ elseif(GPU_API STREQUAL "HIP")
|
||||
endif()
|
||||
endif()
|
||||
|
||||
hip_add_executable(hip_get_devices ${LAMMPS_LIB_SOURCE_DIR}/gpu/geryon/ucl_get_devices.cpp)
|
||||
add_executable(hip_get_devices ${LAMMPS_LIB_SOURCE_DIR}/gpu/geryon/ucl_get_devices.cpp)
|
||||
target_compile_definitions(hip_get_devices PRIVATE -DUCL_HIP)
|
||||
target_link_libraries(hip_get_devices hip::host)
|
||||
|
||||
if(HIP_PLATFORM STREQUAL "nvcc")
|
||||
target_compile_definitions(gpu PRIVATE -D__HIP_PLATFORM_NVCC__)
|
||||
|
||||
30
cmake/presets/hip_amd.cmake
Normal file
@ -0,0 +1,30 @@
|
||||
# preset that will enable hip (clang/clang++) with support for MPI and OpenMP (on Linux boxes)
|
||||
|
||||
# prefer flang over gfortran, if available
|
||||
find_program(CLANG_FORTRAN NAMES flang gfortran f95)
|
||||
set(ENV{OMPI_FC} ${CLANG_FORTRAN})
|
||||
|
||||
set(CMAKE_CXX_COMPILER "hipcc" CACHE STRING "" FORCE)
|
||||
set(CMAKE_C_COMPILER "hipcc" CACHE STRING "" FORCE)
|
||||
set(CMAKE_Fortran_COMPILER ${CLANG_FORTRAN} CACHE STRING "" FORCE)
|
||||
set(CMAKE_CXX_FLAGS_DEBUG "-Wall -Wextra -g" CACHE STRING "" FORCE)
|
||||
set(CMAKE_CXX_FLAGS_RELWITHDEBINFO "-Wall -Wextra -g -O2 -DNDEBUG" CACHE STRING "" FORCE)
|
||||
set(CMAKE_CXX_FLAGS_RELEASE "-O3 -DNDEBUG" CACHE STRING "" FORCE)
|
||||
set(CMAKE_Fortran_FLAGS_DEBUG "-Wall -Wextra -g -std=f2003" CACHE STRING "" FORCE)
|
||||
set(CMAKE_Fortran_FLAGS_RELWITHDEBINFO "-Wall -Wextra -g -O2 -DNDEBUG -std=f2003" CACHE STRING "" FORCE)
|
||||
set(CMAKE_Fortran_FLAGS_RELEASE "-O3 -DNDEBUG -std=f2003" CACHE STRING "" FORCE)
|
||||
set(CMAKE_C_FLAGS_DEBUG "-Wall -Wextra -g" CACHE STRING "" FORCE)
|
||||
set(CMAKE_C_FLAGS_RELWITHDEBINFO "-Wall -Wextra -g -O2 -DNDEBUG" CACHE STRING "" FORCE)
|
||||
set(CMAKE_C_FLAGS_RELEASE "-O3 -DNDEBUG" CACHE STRING "" FORCE)
|
||||
|
||||
set(MPI_CXX "hipcc" CACHE STRING "" FORCE)
|
||||
set(MPI_CXX_COMPILER "mpicxx" CACHE STRING "" FORCE)
|
||||
|
||||
unset(HAVE_OMP_H_INCLUDE CACHE)
|
||||
set(OpenMP_C "hipcc" CACHE STRING "" FORCE)
|
||||
set(OpenMP_C_FLAGS "-fopenmp" CACHE STRING "" FORCE)
|
||||
set(OpenMP_C_LIB_NAMES "omp" CACHE STRING "" FORCE)
|
||||
set(OpenMP_CXX "hipcc" CACHE STRING "" FORCE)
|
||||
set(OpenMP_CXX_FLAGS "-fopenmp" CACHE STRING "" FORCE)
|
||||
set(OpenMP_CXX_LIB_NAMES "omp" CACHE STRING "" FORCE)
|
||||
set(OpenMP_omp_LIBRARY "libomp.so" CACHE PATH "" FORCE)
|
||||
@ -11,6 +11,7 @@ of time and requests from the LAMMPS user community.
|
||||
:maxdepth: 1
|
||||
|
||||
Developer_org
|
||||
Developer_parallel
|
||||
Developer_flow
|
||||
Developer_write
|
||||
Developer_notes
|
||||
|
||||
120
doc/src/Developer_par_comm.rst
Normal file
@ -0,0 +1,120 @@
|
||||
Communication
|
||||
^^^^^^^^^^^^^
|
||||
|
||||
Following the partitioning scheme in use all per-atom data is
|
||||
distributed across the MPI processes, which allows LAMMPS to handle very
|
||||
large systems provided it uses a correspondingly large number of MPI
|
||||
processes. Since The per-atom data (atom IDs, positions, velocities,
|
||||
types, etc.) To be able to compute the short-range interactions MPI
|
||||
processes need not only access to data of atoms they "own" but also
|
||||
information about atoms from neighboring sub-domains, in LAMMPS referred
|
||||
to as "ghost" atoms. These are copies of atoms storing required
|
||||
per-atom data for up to the communication cutoff distance. The green
|
||||
dashed-line boxes in the :ref:`domain-decomposition` figure illustrate
|
||||
the extended ghost-atom sub-domain for one processor.
|
||||
|
||||
This approach is also used to implement periodic boundary
|
||||
conditions: atoms that lie within the cutoff distance across a periodic
|
||||
boundary are also stored as ghost atoms and taken from the periodic
|
||||
replication of the sub-domain, which may be the same sub-domain, e.g. if
|
||||
running in serial. As a consequence of this, force computation in
|
||||
LAMMPS is not subject to minimum image conventions and thus cutoffs may
|
||||
be larger than half the simulation domain.
|
||||
|
||||
.. _ghost-atom-comm:
|
||||
.. figure:: img/ghost-comm.png
|
||||
:align: center
|
||||
|
||||
ghost atom communication
|
||||
|
||||
This figure shows the ghost atom communication patterns between
|
||||
sub-domains for "brick" (left) and "tiled" communication styles for
|
||||
2d simulations. The numbers indicate MPI process ranks. Here the
|
||||
sub-domains are drawn spatially separated for clarity. The
|
||||
dashed-line box is the extended sub-domain of processor 0 which
|
||||
includes its ghost atoms. The red- and blue-shaded boxes are the
|
||||
regions of communicated ghost atoms.
|
||||
|
||||
Efficient communication patterns are needed to update the "ghost" atom
|
||||
data, since that needs to be done at every MD time step or minimization
|
||||
step. The diagrams of the `ghost-atom-comm` figure illustrate how ghost
|
||||
atom communication is performed in two stages for a 2d simulation (three
|
||||
in 3d) for both a regular and irregular partitioning of the simulation
|
||||
box. For the regular case (left) atoms are exchanged first in the
|
||||
*x*-direction, then in *y*, with four neighbors in the grid of processor
|
||||
sub-domains.
|
||||
|
||||
In the *x* stage, processor ranks 1 and 2 send owned atoms in their
|
||||
red-shaded regions to rank 0 (and vice versa). Then in the *y* stage,
|
||||
ranks 3 and 4 send atoms in their blue-shaded regions to rank 0, which
|
||||
includes ghost atoms they received in the *x* stage. Rank 0 thus
|
||||
acquires all its ghost atoms; atoms in the solid blue corner regions
|
||||
are communicated twice before rank 0 receives them.
|
||||
|
||||
For the irregular case (right) the two stages are similar, but a
|
||||
processor can have more than one neighbor in each direction. In the
|
||||
*x* stage, MPI ranks 1,2,3 send owned atoms in their red-shaded regions to
|
||||
rank 0 (and vice versa). These include only atoms between the lower
|
||||
and upper *y*-boundary of rank 0's sub-domain. In the *y* stage, ranks
|
||||
4,5,6 send atoms in their blue-shaded regions to rank 0. This may
|
||||
include ghost atoms they received in the *x* stage, but only if they
|
||||
are needed by rank 0 to fill its extended ghost atom regions in the
|
||||
+/-*y* directions (blue rectangles). Thus in this case, ranks 5 and
|
||||
6 do not include ghost atoms they received from each other (in the *x*
|
||||
stage) in the atoms they send to rank 0. The key point is that while
|
||||
the pattern of communication is more complex in the irregular
|
||||
partitioning case, it can still proceed in two stages (three in 3d)
|
||||
via atom exchanges with only neighboring processors.
|
||||
|
||||
When attributes of owned atoms are sent to neighboring processors to
|
||||
become attributes of their ghost atoms, LAMMPS calls this a "forward"
|
||||
communication. On timesteps when atoms migrate to new owning processors
|
||||
and neighbor lists are rebuilt, each processor creates a list of its
|
||||
owned atoms which are ghost atoms in each of its neighbor processors.
|
||||
These lists are used to pack per-atom coordinates (for example) into
|
||||
message buffers in subsequent steps until the next reneighboring.
|
||||
|
||||
A "reverse" communication is when computed ghost atom attributes are
|
||||
sent back to the processor who owns the atom. This is used (for
|
||||
example) to sum partial forces on ghost atoms to the complete force on
|
||||
owned atoms. The order of the two stages described in the
|
||||
:ref:`ghost-atom-comm` figure is inverted and the same lists of atoms
|
||||
are used to pack and unpack message buffers with per-atom forces. When
|
||||
a received buffer is unpacked, the ghost forces are summed to owned atom
|
||||
forces. As in forward communication, forces on atoms in the four blue
|
||||
corners of the diagrams are sent, received, and summed twice (once at
|
||||
each stage) before owning processors have the full force.
|
||||
|
||||
These two operations are used many places within LAMMPS aside from
|
||||
exchange of coordinates and forces, for example by manybody potentials
|
||||
to share intermediate per-atom values, or by rigid-body integrators to
|
||||
enable each atom in a body to access body properties. Here are
|
||||
additional details about how these communication operations are
|
||||
performed in LAMMPS:
|
||||
|
||||
- When exchanging data with different processors, forward and reverse
|
||||
communication is done using ``MPI_Send()`` and ``MPI_IRecv()`` calls.
|
||||
If a processor is "exchanging" atoms with itself, only the pack and
|
||||
unpack operations are performed, e.g. to create ghost atoms across
|
||||
periodic boundaries when running on a single processor.
|
||||
|
||||
- For forward communication of owned atom coordinates, periodic box
|
||||
lengths are added and subtracted when the receiving processor is
|
||||
across a periodic boundary from the sender. There is then no need to
|
||||
apply a minimum image convention when calculating distances between
|
||||
atom pairs when building neighbor lists or computing forces.
|
||||
|
||||
- The cutoff distance for exchanging ghost atoms is typically equal to
|
||||
the neighbor cutoff. But it can also chosen to be longer if needed,
|
||||
e.g. half the diameter of a rigid body composed of multiple atoms or
|
||||
over 3x the length of a stretched bond for dihedral interactions. It
|
||||
can also exceed the periodic box size. For the regular communication
|
||||
pattern (left), if the cutoff distance extends beyond a neighbor
|
||||
processor's sub-domain, then multiple exchanges are performed in the
|
||||
same direction. Each exchange is with the same neighbor processor,
|
||||
but buffers are packed/unpacked using a different list of atoms. For
|
||||
forward communication, in the first exchange a processor sends only
|
||||
owned atoms. In subsequent exchanges, it sends ghost atoms received
|
||||
in previous exchanges. For the irregular pattern (right) overlaps of
|
||||
a processor's extended ghost-atom sub-domain with all other processors
|
||||
in each dimension are detected.
|
||||
188
doc/src/Developer_par_long.rst
Normal file
@ -0,0 +1,188 @@
|
||||
Long-range interactions
|
||||
^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
For charged systems, LAMMPS can compute long-range Coulombic
|
||||
interactions via the FFT-based particle-particle/particle-mesh (PPPM)
|
||||
method implemented in :doc:`kspace style pppm and its variants
|
||||
<kspace_style>`. For that Coulombic interactions are partitioned into
|
||||
short- and long-range components. The short-ranged portion is computed
|
||||
in real space as a loop over pairs of charges within a cutoff distance,
|
||||
using neighbor lists. The long-range portion is computed in reciprocal
|
||||
space using a kspace style. For the PPPM implementation the simulation
|
||||
cell is overlaid with a regular FFT grid in 3d. It proceeds in several stages:
|
||||
|
||||
a) each atom's point charge is interpolated to nearby FFT grid points,
|
||||
b) a forward 3d FFT is performed,
|
||||
c) a convolution operation is performed in reciprocal space,
|
||||
d) one or more inverse 3d FFTs are performed, and
|
||||
e) electric field values from grid points near each atom are interpolated to compute
|
||||
its forces.
|
||||
|
||||
For any of the spatial-decomposition partitioning schemes each processor
|
||||
owns the brick-shaped portion of FFT grid points contained within its
|
||||
sub-domain. The two interpolation operations use a stencil of grid
|
||||
points surrounding each atom. To accommodate the stencil size, each
|
||||
processor also stores a few layers of ghost grid points surrounding its
|
||||
brick. Forward and reverse communication of grid point values is
|
||||
performed similar to the corresponding :doc:`atom data communication
|
||||
<Developer_par_comm>`. In this case, electric field values on owned
|
||||
grid points are sent to neighboring processors to become ghost point
|
||||
values. Likewise charge values on ghost points are sent and summed to
|
||||
values on owned points.
|
||||
|
||||
For triclinic simulation boxes, the FFT grid planes are parallel to
|
||||
the box faces, but the mapping of charge and electric field values
|
||||
to/from grid points is done in reduced coordinates where the tilted
|
||||
box is conceptually a unit cube, so that the stencil and FFT
|
||||
operations are unchanged. However the FFT grid size required for a
|
||||
given accuracy is larger for triclinic domains than it is for
|
||||
orthogonal boxes.
|
||||
|
||||
.. _fft-parallel:
|
||||
.. figure:: img/fft-decomp-parallel.png
|
||||
:align: center
|
||||
|
||||
parallel FFT in PPPM
|
||||
|
||||
Stages of a parallel FFT for a simulation domain overlaid
|
||||
with an 8x8x8 3d FFT grid, partitioned across 64 processors.
|
||||
Within each of the 4 diagrams, grid cells of the same color are
|
||||
owned by a single processor; for simplicity only cells owned by 4
|
||||
or 8 of the 64 processors are colored. The two images on the left
|
||||
illustrate brick-to-pencil communication. The two images on the
|
||||
right illustrate pencil-to-pencil communication, which in this
|
||||
case transposes the *y* and *z* dimensions of the grid.
|
||||
|
||||
Parallel 3d FFTs require substantial communication relative to their
|
||||
computational cost. A 3d FFT is implemented by a series of 1d FFTs
|
||||
along the *x-*, *y-*, and *z-*\ direction of the FFT grid. Thus the FFT
|
||||
grid cannot be decomposed like atoms into 3 dimensions for parallel
|
||||
processing of the FFTs but only in 1 (as planes) or 2 (as pencils)
|
||||
dimensions and in between the steps the grid needs to be transposed to
|
||||
have the FFT grid portion "owned" by each MPI process complete in the
|
||||
direction of the 1d FFTs it has to perform. LAMMPS uses the
|
||||
pencil-decomposition algorithm as shown in the :ref:`fft-parallel` figure.
|
||||
|
||||
Initially (far left), each processor owns a brick of same-color grid
|
||||
cells (actually grid points) contained within in its sub-domain. A
|
||||
brick-to-pencil communication operation converts this layout to 1d
|
||||
pencils in the *x*-dimension (center left). Again, cells of the same
|
||||
color are owned by the same processor. Each processor can then compute
|
||||
a 1d FFT on each pencil of data it wholly owns using a call to the
|
||||
configured FFT library. A pencil-to-pencil communication then converts
|
||||
this layout to pencils in the *y* dimension (center right) which
|
||||
effectively transposes the *x* and *y* dimensions of the grid, followed
|
||||
by 1d FFTs in *y*. A final transpose of pencils from *y* to *z* (far
|
||||
right) followed by 1d FFTs in *z* completes the forward FFT. The data
|
||||
is left in a *z*-pencil layout for the convolution operation. One or
|
||||
more inverse FFTs then perform the sequence of 1d FFTs and communication
|
||||
steps in reverse order; the final layout of resulting grid values is the
|
||||
same as the initial brick layout.
|
||||
|
||||
Each communication operation within the FFT (brick-to-pencil or
|
||||
pencil-to-pencil or pencil-to-brick) converts one tiling of the 3d grid
|
||||
to another, where a tiling in this context means an assignment of a
|
||||
small brick-shaped subset of grid points to each processor, the union of
|
||||
which comprise the entire grid. The parallel `fftMPI library
|
||||
<https://lammps.github.io/fftmpi/>`_ written for LAMMPS allows arbitrary
|
||||
definitions of the tiling so that an irregular partitioning of the
|
||||
simulation domain can use it directly. Transforming data from one
|
||||
tiling to another is implemented in `fftMPI` using point-to-point
|
||||
communication, where each processor sends data to a few other
|
||||
processors, since each tile in the initial tiling overlaps with a
|
||||
handful of tiles in the final tiling.
|
||||
|
||||
The transformations could also be done using collective communication
|
||||
across all $P$ processors with a single call to ``MPI_Alltoall()``, but
|
||||
this is typically much slower. However, for the specialized brick and
|
||||
pencil tiling illustrated in :ref:`fft-parallel` figure, collective
|
||||
communication across the entire MPI communicator is not required. In
|
||||
the example an :math:`8^3` grid with 512 grid cells is partitioned
|
||||
across 64 processors; each processor owns a 2x2x2 3d brick of grid
|
||||
cells. The initial brick-to-pencil communication (upper left to upper
|
||||
right) only requires collective communication within subgroups of 4
|
||||
processors, as illustrated by the 4 colors. More generally, a
|
||||
brick-to-pencil communication can be performed by partitioning *P*
|
||||
processors into :math:`P^{\frac{2}{3}}` subgroups of
|
||||
:math:`P^{\frac{1}{3}}` processors each. Each subgroup performs
|
||||
collective communication only within its subgroup. Similarly,
|
||||
pencil-to-pencil communication can be performed by partitioning *P*
|
||||
processors into :math:`P^{\frac{1}{2}}` subgroups of
|
||||
:math:`P^{\frac{1}{2}}` processors each. This is illustrated in the
|
||||
figure for the :math:`y \Rightarrow z` communication (center). An
|
||||
eight-processor subgroup owns the front *yz* plane of data and performs
|
||||
collective communication within the subgroup to transpose from a
|
||||
*y*-pencil to *z*-pencil layout.
|
||||
|
||||
LAMMPS invokes point-to-point communication by default, but also
|
||||
provides the option of partitioned collective communication when using a
|
||||
:doc:`kspace_modify collective yes <kspace_modify>` command to switch to
|
||||
that mode. In the latter case, the code detects the size of the
|
||||
disjoint subgroups and partitions the single *P*-size communicator into
|
||||
multiple smaller communicators, each of which invokes collective
|
||||
communication. Testing on a large IBM Blue Gene/Q machine at Argonne
|
||||
National Labs showed a significant improvement in FFT performance for
|
||||
large processor counts; partitioned collective communication was faster
|
||||
than point-to-point communication or global collective communication
|
||||
involving all *P* processors.
|
||||
|
||||
Here are some additional details about FFTs for long-range and related
|
||||
grid/particle operations that LAMMPS supports:
|
||||
|
||||
- The fftMPI library allows each grid dimension to be a multiple of
|
||||
small prime factors (2,3,5), and allows any number of processors to
|
||||
perform the FFT. The resulting brick and pencil decompositions are
|
||||
thus not always as well-aligned but the size of subgroups of
|
||||
processors for the two modes of communication (brick/pencil and
|
||||
pencil/pencil) still scale as :math:`O(P^{\frac{1}{3}})` and
|
||||
:math:`O(P^{\frac{1}{2}})`.
|
||||
|
||||
- For efficiency in performing 1d FFTs, the grid transpose
|
||||
operations illustrated in Figure \ref{fig:fft} also involve
|
||||
reordering the 3d data so that a different dimension is contiguous
|
||||
in memory. This reordering can be done during the packing or
|
||||
unpacking of buffers for MPI communication.
|
||||
|
||||
- For large systems and particularly a large number of MPI processes,
|
||||
the dominant cost for parallel FFTs is often the communication, not
|
||||
the computation of 1d FFTs, even though the latter scales as :math:`N
|
||||
\log(N)` in the number of grid points *N* per grid direction. This is
|
||||
due to the fact that only a 2d decomposition into pencils is possible
|
||||
while atom data (and their corresponding short-range force and energy
|
||||
computations) can be decomposed efficiently in 3d.
|
||||
|
||||
This can be addressed by reducing the number of MPI processes involved
|
||||
in the MPI communication by using :doc:`hybrid MPI + OpenMP
|
||||
parallelization <Speed_omp>`. This will use OpenMP parallelization
|
||||
inside the MPI domains and while that may have a lower parallel
|
||||
efficiency, it reduces the communication overhead.
|
||||
|
||||
As an alternative it is also possible to start a :ref:`multi-partition
|
||||
<partition>` calculation and then use the :doc:`verlet/split
|
||||
integrator <run_style>` to perform the PPPM computation on a
|
||||
dedicated, separate partition of MPI processes. This uses an integer
|
||||
"1:*p*" mapping of *p* sub-domains of the atom decomposition to one
|
||||
sub-domain of the FFT grid decomposition and where pairwise non-bonded
|
||||
and bonded forces and energies are computed on the larger partition
|
||||
and the PPPM kspace computation concurrently on the smaller partition.
|
||||
|
||||
- LAMMPS also implements PPPM-based solvers for other long-range
|
||||
interactions, dipole and dispersion (Lennard-Jones), which can be used
|
||||
in conjunction with long-range Coulombics for point charges.
|
||||
|
||||
- LAMMPS implements a ``GridComm`` class which overlays the simulation
|
||||
domain with a regular grid, partitions it across processors in a
|
||||
manner consistent with processor sub-domains, and provides methods for
|
||||
forward and reverse communication of owned and ghost grid point
|
||||
values. It is used for PPPM as an FFT grid (as outlined above) and
|
||||
also for the MSM algorithm which uses a cascade of grid sizes from
|
||||
fine to coarse to compute long-range Coulombic forces. The GridComm
|
||||
class is also useful for models where continuum fields interact with
|
||||
particles. For example, the two-temperature model (TTM) defines heat
|
||||
transfer between atoms (particles) and electrons (continuum gas) where
|
||||
spatial variations in the electron temperature are computed by finite
|
||||
differences of a discretized heat equation on a regular grid. The
|
||||
:doc:`fix ttm/grid <fix_ttm>` command uses the ``GridComm`` class
|
||||
internally to perform its grid operations on a distributed grid
|
||||
instead of the original :doc:`fix ttm <fix_ttm>` which uses a
|
||||
replicated grid.
|
||||
159
doc/src/Developer_par_neigh.rst
Normal file
@ -0,0 +1,159 @@
|
||||
Neighbor lists
|
||||
^^^^^^^^^^^^^^
|
||||
|
||||
To compute forces efficiently, each processor creates a Verlet-style
|
||||
neighbor list which enumerates all pairs of atoms *i,j* (*i* = owned,
|
||||
*j* = owned or ghost) with separation less than the applicable
|
||||
neighbor list cutoff distance. In LAMMPS the neighbor lists are stored
|
||||
in a multiple-page data structure; each page is a contiguous chunk of
|
||||
memory which stores vectors of neighbor atoms *j* for many *i* atoms.
|
||||
This allows pages to be incrementally allocated or deallocated in blocks
|
||||
as needed. Neighbor lists typically consume the most memory of any data
|
||||
structure in LAMMPS. The neighbor list is rebuilt (from scratch) once
|
||||
every few timesteps, then used repeatedly each step for force or other
|
||||
computations. The neighbor cutoff distance is :math:`R_n = R_f +
|
||||
\Delta_s`, where :math:`R_f` is the (largest) force cutoff defined by
|
||||
the interatomic potential for computing short-range pairwise or manybody
|
||||
forces and :math:`\Delta_s` is a "skin" distance that allows the list to
|
||||
be used for multiple steps assuming that atoms do not move very far
|
||||
between consecutive time steps. Typically the code triggers
|
||||
reneighboring when any atom has moved half the skin distance since the
|
||||
last reneighboring; this and other options of the neighbor list rebuild
|
||||
can be adjusted with the :doc:`neigh_modify <neigh_modify>` command.
|
||||
|
||||
On steps when reneighboring is performed, atoms which have moved outside
|
||||
their owning processor's sub-domain are first migrated to new processors
|
||||
via communication. Periodic boundary conditions are also (only)
|
||||
enforced on these steps to ensure each atom is re-assigned to the
|
||||
correct processor. After migration, the atoms owned by each processor
|
||||
are stored in a contiguous vector. Periodically each processor
|
||||
spatially sorts owned atoms within its vector to reorder it for improved
|
||||
cache efficiency in force computations and neighbor list building. For
|
||||
that atoms are spatially binned and then reordered so that atoms in the
|
||||
same bin are adjacent in the vector. Atom sorting can be disabled or
|
||||
its settings modified with the :doc:`atom_modify <atom_modify>` command.
|
||||
|
||||
.. _neighbor-stencil:
|
||||
.. figure:: img/neigh-stencil.png
|
||||
:align: center
|
||||
|
||||
neighbor list stencils
|
||||
|
||||
A 2d simulation sub-domain (thick black line) and the corresponding
|
||||
ghost atom cutoff region (dashed blue line) for both orthogonal
|
||||
(left) and triclinic (right) domains. A regular grid of neighbor
|
||||
bins (thin lines) overlays the entire simulation domain and need not
|
||||
align with sub-domain boundaries; only the portion overlapping the
|
||||
augmented sub-domain is shown. In the triclinic case it overlaps the
|
||||
bounding box of the tilted rectangle. The blue- and red-shaded bins
|
||||
represent a stencil of bins searched to find neighbors of a particular
|
||||
atom (black dot).
|
||||
|
||||
To build a local neighbor list in linear time, the simulation domain is
|
||||
overlaid (conceptually) with a regular 3d (or 2d) grid of neighbor bins,
|
||||
as shown in the :ref:`neighbor-stencil` figure for 2d models and a
|
||||
single MPI processor's sub-domain. Each processor stores a set of
|
||||
neighbor bins which overlap its sub-domain extended by the neighbor
|
||||
cutoff distance :math:`R_n`. As illustrated, the bins need not align
|
||||
with processor boundaries; an integer number in each dimension is fit to
|
||||
the size of the entire simulation box.
|
||||
|
||||
Most often LAMMPS builds what it calls a "half" neighbor list where
|
||||
each *i,j* neighbor pair is stored only once, with either atom *i* or
|
||||
*j* as the central atom. The build can be done efficiently by using a
|
||||
pre-computed "stencil" of bins around a central origin bin which
|
||||
contains the atom whose neighbors are being searched for. A stencil
|
||||
is simply a list of integer offsets in *x,y,z* of nearby bins
|
||||
surrounding the origin bin which are close enough to contain any
|
||||
neighbor atom *j* within a distance :math:`R_n` from any atom *i* in the
|
||||
origin bin. Note that for a half neighbor list, the stencil can be
|
||||
asymmetric since each atom only need store half its nearby neighbors.
|
||||
|
||||
These stencils are illustrated in the figure for a half list and a bin
|
||||
size of :math:`\frac{1}{2} R_n`. There are 13 red+blue stencil bins in
|
||||
2d (for the orthogonal case, 15 for triclinic). In 3d there would be
|
||||
63, 13 in the plane of bins that contain the origin bin and 25 in each
|
||||
of the two planes above it in the *z* direction (75 for triclinic). The
|
||||
reason the triclinic stencil has extra bins is because the bins tile the
|
||||
bounding box of the entire triclinic domain and thus are not periodic
|
||||
with respect to the simulation box itself. The stencil and logic for
|
||||
determining which *i,j* pairs to include in the neighbor list are
|
||||
altered slightly to account for this.
|
||||
|
||||
To build a neighbor list, a processor first loops over its "owned" plus
|
||||
"ghost" atoms and assigns each to a neighbor bin. This uses an integer
|
||||
vector to create a linked list of atom indices within each bin. It then
|
||||
performs a triply-nested loop over its owned atoms *i*, the stencil of
|
||||
bins surrounding atom *i*'s bin, and the *j* atoms in each stencil bin
|
||||
(including ghost atoms). If the distance :math:`r_{ij} < R_n`, then
|
||||
atom *j* is added to the vector of atom *i*'s neighbors.
|
||||
|
||||
Here are additional details about neighbor list build options LAMMPS
|
||||
supports:
|
||||
|
||||
- The choice of bin size is an option; a size half of :math:`R_n` has
|
||||
been found to be optimal for many typical cases. Smaller bins incur
|
||||
additional overhead to loop over; larger bins require more distance
|
||||
calculations. Note that for smaller bin sizes, the 2d stencil in the
|
||||
figure would be more semi-circular in shape (hemispherical in 3d),
|
||||
with bins near the corners of the square eliminated due to their
|
||||
distance from the origin bin.
|
||||
|
||||
- Depending on the interatomic potential(s) and other commands used in
|
||||
an input script, multiple neighbor lists and stencils with different
|
||||
attributes may be needed. This includes lists with different cutoff
|
||||
distances, e.g. for force computation versus occasional diagnostic
|
||||
computations such as a radial distribution function, or for the
|
||||
r-RESPA time integrator which can partition pairwise forces by
|
||||
distance into subsets computed at different time intervals. It
|
||||
includes "full" lists (as opposed to half lists) where each *i,j* pair
|
||||
appears twice, stored once with *i* and *j*, and which use a larger
|
||||
symmetric stencil. It also includes lists with partial enumeration of
|
||||
ghost atom neighbors. The full and ghost-atom lists are used by
|
||||
various manybody interatomic potentials. Lists may also use different
|
||||
criteria for inclusion of a pair interaction. Typically this simply
|
||||
depends only on the distance between two atoms and the cutoff
|
||||
distance. But for finite-size coarse-grained particles with
|
||||
individual diameters (e.g. polydisperse granular particles), it can
|
||||
also depend on the diameters of the two particles.
|
||||
|
||||
- When using :doc:`pair style hybrid <pair_hybrid>` multiple sub-lists
|
||||
of the master neighbor list for the full system need to be generated,
|
||||
one for each sub-style, which contains only the *i,j* pairs needed to
|
||||
compute interactions between subsets of atoms for the corresponding
|
||||
potential. This means not all *i* or *j* atoms owned by a processor
|
||||
are included in a particular sub-list.
|
||||
|
||||
- Some models use different cutoff lengths for pairwise interactions
|
||||
between different kinds of particles which are stored in a single
|
||||
neighbor list. One example is a solvated colloidal system with large
|
||||
colloidal particles where colloid/colloid, colloid/solvent, and
|
||||
solvent/solvent interaction cutoffs can be dramatically different.
|
||||
Another is a model of polydisperse finite-size granular particles;
|
||||
pairs of particles interact only when they are in contact with each
|
||||
other. Mixtures with particle size ratios as high as 10-100x may be
|
||||
used to model realistic systems. Efficient neighbor list building
|
||||
algorithms for these kinds of systems are available in LAMMPS. They
|
||||
include a method which uses different stencils for different cutoff
|
||||
lengths and trims the stencil to only include bins that straddle the
|
||||
cutoff sphere surface. More recently a method which uses both
|
||||
multiple stencils and multiple bin sizes was developed; it builds
|
||||
neighbor lists efficiently for systems with particles of any size
|
||||
ratio, though other considerations (timestep size, force computations)
|
||||
may limit the ability to model systems with huge polydispersity.
|
||||
|
||||
- For small and sparse systems and as a fallback method, LAMMPS also
|
||||
supports neighbor list construction without binning by using a full
|
||||
:math:`O(N^2)` loop over all *i,j* atom pairs in a sub-domain when
|
||||
using the :doc:`neighbor nsq <neighbor>` command.
|
||||
|
||||
- Dependent on the "pair" setting of the :doc:`newton <newton>` command,
|
||||
the "half" neighbor lists may contain **all** pairs of atoms where
|
||||
atom *j* is a ghost atom (i.e. when the newton pair setting is *off*)
|
||||
For the newton pair *on* setting the atom *j* is only added to the
|
||||
list if its *z* coordinate is larger, or if equal the *y* coordinate
|
||||
is larger, and that is equal, too, the *x* coordinate is larger. For
|
||||
homogeneously dense systems that will result in picking neighbors from
|
||||
a same size sector in always the same direction relative to the
|
||||
"owned" atom and thus it should lead to similar length neighbor lists
|
||||
and thus reduce the chance of a load imbalance.
|
||||
114
doc/src/Developer_par_openmp.rst
Normal file
@ -0,0 +1,114 @@
|
||||
OpenMP Parallelism
|
||||
^^^^^^^^^^^^^^^^^^
|
||||
|
||||
The styles in the INTEL, KOKKOS, and OPENMP package offer to use OpenMP
|
||||
thread parallelism to predominantly distribute loops over local data
|
||||
and thus follow an orthogonal parallelization strategy to the
|
||||
decomposition into spatial domains used by the :doc:`MPI partitioning
|
||||
<Developer_par_part>`. For clarity, this section discusses only the
|
||||
implementation in the OPENMP package as it is the simplest. The INTEL
|
||||
and KOKKOS package offer additional options and are more complex since
|
||||
they support more features and different hardware like co-processors
|
||||
or GPUs.
|
||||
|
||||
One of the key decisions when implementing the OPENMP package was to
|
||||
keep the changes to the source code small, so that it would be easier to
|
||||
maintain the code and keep it in sync with the non-threaded standard
|
||||
implementation. this is achieved by a) making the OPENMP version a
|
||||
derived class from the regular version (e.g. ``PairLJCutOMP`` from
|
||||
``PairLJCut``) and overriding only methods that are multi-threaded or
|
||||
need to be modified to support multi-threading (similar to what was done
|
||||
in the OPT package), b) keeping the structure in the modified code very
|
||||
similar so that side-by-side comparisons are still useful, and c)
|
||||
offloading additional functionality and multi-thread support functions
|
||||
into three separate classes ``ThrOMP``, ``ThrData``, and ``FixOMP``.
|
||||
``ThrOMP`` provides additional, multi-thread aware functionality not
|
||||
available in the corresponding base class (e.g. ``Pair`` for
|
||||
``PairLJCutOMP``) like multi-thread aware variants of the "tally"
|
||||
functions. Those functions are made available through multiple
|
||||
inheritance so those new functions have to have unique names to avoid
|
||||
ambiguities; typically ``_thr`` is appended to the name of the function.
|
||||
``ThrData`` is a classes that manages per-thread data structures.
|
||||
It is used instead of extending the corresponding storage to per-thread
|
||||
arrays to avoid slowdowns due to "false sharing" when multiple threads
|
||||
update adjacent elements in an array and thus force the CPU cache lines
|
||||
to be reset and re-fetched. ``FixOMP`` finally manages the "multi-thread
|
||||
state" like settings and access to per-thread storage, it is activated
|
||||
by the :doc:`package omp <package>` command.
|
||||
|
||||
Avoiding data races
|
||||
"""""""""""""""""""
|
||||
|
||||
A key problem when implementing thread parallelism in an MD code is
|
||||
to avoid data races when updating accumulated properties like forces,
|
||||
energies, and stresses. When interactions are computed, they always
|
||||
involve multiple atoms and thus there are race conditions when multiple
|
||||
threads want to update per-atom data of the same atoms. Five possible
|
||||
strategies have been considered to avoid this:
|
||||
|
||||
1) restructure the code so that there is no overlapping access possible
|
||||
when computing in parallel, e.g. by breaking lists into multiple
|
||||
parts and synchronizing threads in between.
|
||||
2) have each thread be "responsible" for a specific group of atoms and
|
||||
compute these interactions multiple times, once on each thread that
|
||||
is responsible for a given atom and then have each thread only update
|
||||
the properties of this atom.
|
||||
3) use mutexes around functions and regions of code where the data race
|
||||
could happen
|
||||
4) use atomic operations when updating per-atom properties
|
||||
5) use replicated per-thread data structures to accumulate data without
|
||||
conflicts and then use a reduction to combine those results into the
|
||||
data structures used by the regular style.
|
||||
|
||||
Option 5 was chosen for the OPENMP package because it would retain the
|
||||
performance for the case of 1 thread and the code would be more
|
||||
maintainable. Option 1 would require extensive code changes,
|
||||
particularly to the neighbor list code; options 2 would have incurred a
|
||||
2x or more performance penalty for the serial case; option 3 causes
|
||||
significant overhead and would enforce serialization of operations in
|
||||
inner loops and thus defeat the purpose of multi-threading; option 4
|
||||
slows down the serial case although not quite as bad as option 2. The
|
||||
downside of option 5 is that the overhead of the reduction operations
|
||||
grows with the number of threads used, so there would be a crossover
|
||||
point where options 2 or 4 would result in faster executing. That is
|
||||
why option 2 for example is used in the GPU package because a GPU is a
|
||||
processor with a massive number of threads. However, since the MPI
|
||||
parallelization is generally more effective for typical MD systems, the
|
||||
expectation is that thread parallelism is only used for a smaller number
|
||||
of threads (2-8). At the time of its implementation, that number was
|
||||
equivalent to the number of CPU cores per CPU socket on high-end
|
||||
supercomputers.
|
||||
|
||||
Thus arrays like the force array are dimensioned to the number of atoms
|
||||
times the number of threads when enabling OpenMP support and inside the
|
||||
compute functions a pointer to a different chunk is obtained by each thread.
|
||||
Similarly, accumulators like potential energy or virial are kept in
|
||||
per-thread instances of the ``ThrData`` class and then only reduced and
|
||||
stored in their global counterparts at the end of the force computation.
|
||||
|
||||
|
||||
Loop scheduling
|
||||
"""""""""""""""
|
||||
|
||||
Multi-thread parallelization is applied by distributing (outer) loops
|
||||
statically across threads. Typically this would be the loop over local
|
||||
atoms *i* when processing *i,j* pairs of atoms from a neighbor list.
|
||||
The design of the neighbor list code results in atoms having a similar
|
||||
number of neighbors for homogeneous systems and thus load imbalances
|
||||
across threads are not common and typically happen for systems where
|
||||
also the MPI parallelization would be unbalanced, which would typically
|
||||
have a more pronounced impact on the performance. This same loop
|
||||
scheduling scheme can also be applied to the reduction operations on
|
||||
per-atom data to try and reduce the overhead of the reduction operation.
|
||||
|
||||
Neighbor list parallelization
|
||||
"""""""""""""""""""""""""""""
|
||||
|
||||
In addition to the parallelization of force computations, also the
|
||||
generation of the neighbor lists is parallelized. As explained
|
||||
previously, neighbor lists are built by looping over "owned" atoms and
|
||||
storing the neighbors in "pages". In the OPENMP variants of the
|
||||
neighbor list code, each thread operates on a different chunk of "owned"
|
||||
atoms and allocates and fills its own set of pages with neighbor list
|
||||
data. This is achieved by each thread keeping its own instance of the
|
||||
:cpp:class:`MyPage <LAMMPS_NS::MyPage>` page allocator class.
|
||||
89
doc/src/Developer_par_part.rst
Normal file
@ -0,0 +1,89 @@
|
||||
Partitioning
|
||||
^^^^^^^^^^^^
|
||||
|
||||
The underlying spatial decomposition strategy used by LAMMPS for
|
||||
distributed-memory parallelism is set with the :doc:`comm_style command
|
||||
<comm_style>` and can be either "brick" (a regular grid) or "tiled".
|
||||
|
||||
.. _domain-decomposition:
|
||||
.. figure:: img/domain-decomp.png
|
||||
:align: center
|
||||
|
||||
domain decomposition
|
||||
|
||||
This figure shows the different kinds of domain decomposition used
|
||||
for MPI parallelization: "brick" on the left with an orthogonal
|
||||
(left) and a triclinic (middle) simulation domain, and a "tiled"
|
||||
decomposition (right). The black lines show the division into
|
||||
sub-domains and the contained atoms are "owned" by the corresponding
|
||||
MPI process. The green dashed lines indicate how sub-domains are
|
||||
extended with "ghost" atoms up to the communication cutoff distance.
|
||||
|
||||
The LAMMPS simulation box is a 3d or 2d volume, which can be orthogonal
|
||||
or triclinic in shape, as illustrated in the :ref:`domain-decomposition`
|
||||
figure for the 2d case. Orthogonal means the box edges are aligned with
|
||||
the *x*, *y*, *z* Cartesian axes, and the box faces are thus all
|
||||
rectangular. Triclinic allows for a more general parallelepiped shape
|
||||
in which edges are aligned with three arbitrary vectors and the box
|
||||
faces are parallelograms. In each dimension box faces can be periodic,
|
||||
or non-periodic with fixed or shrink-wrapped boundaries. In the fixed
|
||||
case, atoms which move outside the face are deleted; shrink-wrapped
|
||||
means the position of the box face adjusts continuously to enclose all
|
||||
the atoms.
|
||||
|
||||
For distributed-memory MPI parallelism, the simulation box is spatially
|
||||
decomposed (partitioned) into non-overlapping sub-domains which fill the
|
||||
box. The default partitioning, "brick", is most suitable when atom
|
||||
density is roughly uniform, as shown in the left-side images of the
|
||||
:ref:`domain-decomposition` figure. The sub-domains comprise a regular
|
||||
grid and all sub-domains are identical in size and shape. Both the
|
||||
orthogonal and triclinic boxes can deform continuously during a
|
||||
simulation, e.g. to compress a solid or shear a liquid, in which case
|
||||
the processor sub-domains likewise deform.
|
||||
|
||||
|
||||
For models with non-uniform density, the number of particles per
|
||||
processor can be load-imbalanced with the default partitioning. This
|
||||
reduces parallel efficiency, as the overall simulation rate is limited
|
||||
by the slowest processor, i.e. the one with the largest computational
|
||||
load. For such models, LAMMPS supports multiple strategies to reduce
|
||||
the load imbalance:
|
||||
|
||||
- The processor grid decomposition is by default based on the simulation
|
||||
cell volume and tries to optimize the volume to surface ratio for the sub-domains.
|
||||
This can be changed with the :doc:`processors command <processors>`.
|
||||
- The parallel planes defining the size of the sub-domains can be shifted
|
||||
with the :doc:`balance command <balance>`. Which can be done in addition
|
||||
to choosing a more optimal processor grid.
|
||||
- The recursive bisectioning algorithm in combination with the "tiled"
|
||||
communication style can produce a partitioning with equal numbers of
|
||||
particles in each sub-domain.
|
||||
|
||||
|
||||
.. |decomp1| image:: img/decomp-regular.png
|
||||
:width: 24%
|
||||
|
||||
.. |decomp2| image:: img/decomp-processors.png
|
||||
:width: 24%
|
||||
|
||||
.. |decomp3| image:: img/decomp-balance.png
|
||||
:width: 24%
|
||||
|
||||
.. |decomp4| image:: img/decomp-rcb.png
|
||||
:width: 24%
|
||||
|
||||
|decomp1| |decomp2| |decomp3| |decomp4|
|
||||
|
||||
The pictures above demonstrate different decompositions for a 2d system
|
||||
with 12 MPI ranks. The atom colors indicate the load imbalance of each
|
||||
sub-domain with green being optimal and red the least optimal.
|
||||
|
||||
Due to the vacuum in the system, the default decomposition is unbalanced
|
||||
with several MPI ranks without atoms (left). By forcing a 1x12x1
|
||||
processor grid, every MPI rank does computations now, but number of
|
||||
atoms per sub-domain is still uneven and the thin slice shape increases
|
||||
the amount of communication between sub-domains (center left). With a
|
||||
2x6x1 processor grid and shifting the sub-domain divisions, the load
|
||||
imbalance is further reduced and the amount of communication required
|
||||
between sub-domains is less (center right). And using the recursive
|
||||
bisectioning leads to further improved decomposition (right).
|
||||
28
doc/src/Developer_parallel.rst
Normal file
@ -0,0 +1,28 @@
|
||||
Parallel algorithms
|
||||
-------------------
|
||||
|
||||
LAMMPS is designed to enable running simulations in parallel using the
|
||||
MPI parallel communication standard with distributed data via domain
|
||||
decomposition. The parallelization aims to be efficient result in good
|
||||
strong scaling (= good speedup for the same system) and good weak
|
||||
scaling (= the computational cost of enlarging the system is
|
||||
proportional to the system size). Additional parallelization using GPUs
|
||||
or OpenMP can also be applied within the sub-domain assigned to an MPI
|
||||
process. For clarity, most of the following illustrations show the 2d
|
||||
simulation case. The underlying algorithms in those cases, however,
|
||||
apply to both 2d and 3d cases equally well.
|
||||
|
||||
.. note::
|
||||
|
||||
The text and most of the figures in this chapter were adapted
|
||||
for the manual from the section on parallel algorithms in the
|
||||
:ref:`new LAMMPS paper <lammps_paper>`.
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
|
||||
Developer_par_part
|
||||
Developer_par_comm
|
||||
Developer_par_neigh
|
||||
Developer_par_long
|
||||
Developer_par_openmp
|
||||
@ -4,28 +4,40 @@ Citing LAMMPS
|
||||
Core Algorithms
|
||||
^^^^^^^^^^^^^^^
|
||||
|
||||
Since LAMMPS is a community project, there is not a single one
|
||||
publication or reference that describes **all** of LAMMPS.
|
||||
The canonical publication that describes the foundation, that is
|
||||
the basic spatial decomposition approach, the neighbor finding,
|
||||
and basic communications algorithms used in LAMMPS is:
|
||||
The paper mentioned below is the best overview of LAMMPS, but there are
|
||||
also publications describing particular models or algorithms implemented
|
||||
in LAMMPS or complementary software that is has interfaces to. Please
|
||||
see below for how to cite contributions to LAMMPS.
|
||||
|
||||
`S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19 (1995). <http://www.sandia.gov/~sjplimp/papers/jcompphys95.pdf>`_
|
||||
.. _lammps_paper:
|
||||
|
||||
So any project using LAMMPS (or a derivative application using LAMMPS as
|
||||
a simulation engine) should cite this paper. A new publication
|
||||
describing the developments and improvements of LAMMPS in the 25 years
|
||||
since then is currently in preparation.
|
||||
The latest canonical publication that describes the basic features, the
|
||||
source code design, the program structure, the spatial decomposition
|
||||
approach, the neighbor finding, basic communications algorithms, and how
|
||||
users and developers have contributed to LAMMPS is:
|
||||
|
||||
`LAMMPS - A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales, Comp. Phys. Comm. (accepted 09/2021), DOI:10.1016/j.cpc.2021.108171 <https://doi.org/10.1016/j.cpc.2021.108171>`_
|
||||
|
||||
So a project using LAMMPS or a derivative application that uses LAMMPS
|
||||
as a simulation engine should cite this paper. The paper is expected to
|
||||
be published in its final form under the same DOI in the first half
|
||||
of 2022.
|
||||
|
||||
The original publication describing the parallel algorithms used in the
|
||||
initial versions of LAMMPS is:
|
||||
|
||||
`S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J Comp Phys, 117, 1-19 (1995). <http://www.sandia.gov/~sjplimp/papers/jcompphys95.pdf>`_
|
||||
|
||||
|
||||
DOI for the LAMMPS code
|
||||
^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
LAMMPS developers use the `Zenodo service at CERN
|
||||
<https://zenodo.org/>`_ to create digital object identifies (DOI) for
|
||||
stable releases of the LAMMPS code. There are two types of DOIs for the
|
||||
LAMMPS source code: the canonical DOI for **all** versions of LAMMPS,
|
||||
which will always point to the **latest** stable release version is:
|
||||
LAMMPS developers use the `Zenodo service at CERN <https://zenodo.org/>`_
|
||||
to create digital object identifies (DOI) for stable releases of the
|
||||
LAMMPS source code. There are two types of DOIs for the LAMMPS source code.
|
||||
|
||||
The canonical DOI for **all** versions of LAMMPS, which will always
|
||||
point to the **latest** stable release version is:
|
||||
|
||||
- DOI: `10.5281/zenodo.3726416 <https://dx.doi.org/10.5281/zenodo.3726416>`_
|
||||
|
||||
@ -45,11 +57,13 @@ about LAMMPS and its features.
|
||||
Citing contributions
|
||||
^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
LAMMPS has many features and that use either previously published
|
||||
methods and algorithms or novel features. It also includes potential
|
||||
parameter filed for specific models. Where available, a reminder about
|
||||
references for optional features used in a specific run is printed to
|
||||
the screen and log file. Style and output location can be selected with
|
||||
the :ref:`-cite command-line switch <cite>`. Additional references are
|
||||
LAMMPS has many features that use either previously published methods
|
||||
and algorithms or novel features. It also includes potential parameter
|
||||
files for specific models. Where available, a reminder about references
|
||||
for optional features used in a specific run is printed to the screen
|
||||
and log file. Style and output location can be selected with the
|
||||
:ref:`-cite command-line switch <cite>`. Additional references are
|
||||
given in the documentation of the :doc:`corresponding commands
|
||||
<Commands_all>` or in the :doc:`Howto tutorials <Howto>`.
|
||||
<Commands_all>` or in the :doc:`Howto tutorials <Howto>`. So please
|
||||
make certain, that you provide the proper acknowledgments and citations
|
||||
in any published works using LAMMPS.
|
||||
|
||||
BIN
doc/src/img/decomp-balance.png
Normal file
|
After Width: | Height: | Size: 129 KiB |
BIN
doc/src/img/decomp-processors.png
Normal file
|
After Width: | Height: | Size: 121 KiB |
BIN
doc/src/img/decomp-rcb.png
Normal file
|
After Width: | Height: | Size: 121 KiB |
BIN
doc/src/img/decomp-regular.png
Normal file
|
After Width: | Height: | Size: 121 KiB |
BIN
doc/src/img/domain-decomp.png
Normal file
|
After Width: | Height: | Size: 547 KiB |
BIN
doc/src/img/fft-decomp-parallel.png
Normal file
|
After Width: | Height: | Size: 35 KiB |
BIN
doc/src/img/ghost-comm.png
Normal file
|
After Width: | Height: | Size: 33 KiB |
BIN
doc/src/img/neigh-stencil.png
Normal file
|
After Width: | Height: | Size: 53 KiB |
@ -1,4 +1,3 @@
|
||||
// clang-format off
|
||||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
https://www.lammps.org/, Sandia National Laboratories
|
||||
@ -85,21 +84,23 @@ void KimInit::command(int narg, char **arg)
|
||||
if ((narg < 2) || (narg > 3)) error->all(FLERR, "Illegal 'kim init' command");
|
||||
|
||||
if (domain->box_exist)
|
||||
error->all(FLERR, "Must use 'kim init' command before "
|
||||
"simulation box is defined");
|
||||
error->all(FLERR, "Must use 'kim init' command before simulation box is defined");
|
||||
|
||||
char *model_name = utils::strdup(arg[0]);
|
||||
char *user_units = utils::strdup(arg[1]);
|
||||
if (narg == 3) {
|
||||
auto arg_str = std::string(arg[2]);
|
||||
if (arg_str == "unit_conversion_mode") unit_conversion_mode = true;
|
||||
if (arg_str == "unit_conversion_mode")
|
||||
unit_conversion_mode = true;
|
||||
else {
|
||||
error->all(FLERR, "Illegal 'kim init' command.\nThe argument "
|
||||
"followed by unit_style {} is an optional "
|
||||
"argument and when is used must "
|
||||
"be unit_conversion_mode", user_units);
|
||||
error->all(FLERR,
|
||||
"Illegal 'kim init' command.\n"
|
||||
"The argument followed by unit_style {} is an optional argument and when "
|
||||
"is used must be unit_conversion_mode",
|
||||
user_units);
|
||||
}
|
||||
} else unit_conversion_mode = false;
|
||||
} else
|
||||
unit_conversion_mode = false;
|
||||
|
||||
char *model_units;
|
||||
KIM_Model *pkim = nullptr;
|
||||
@ -117,14 +118,9 @@ void KimInit::command(int narg, char **arg)
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
namespace {
|
||||
void get_kim_unit_names(
|
||||
char const * const system,
|
||||
KIM_LengthUnit & lengthUnit,
|
||||
KIM_EnergyUnit & energyUnit,
|
||||
KIM_ChargeUnit & chargeUnit,
|
||||
KIM_TemperatureUnit & temperatureUnit,
|
||||
KIM_TimeUnit & timeUnit,
|
||||
Error * error)
|
||||
void get_kim_unit_names(char const *const system, KIM_LengthUnit &lengthUnit,
|
||||
KIM_EnergyUnit &energyUnit, KIM_ChargeUnit &chargeUnit,
|
||||
KIM_TemperatureUnit &temperatureUnit, KIM_TimeUnit &timeUnit, Error *error)
|
||||
{
|
||||
const std::string system_str(system);
|
||||
if (system_str == "real") {
|
||||
@ -157,20 +153,64 @@ void get_kim_unit_names(
|
||||
chargeUnit = KIM_CHARGE_UNIT_e;
|
||||
temperatureUnit = KIM_TEMPERATURE_UNIT_K;
|
||||
timeUnit = KIM_TIME_UNIT_fs;
|
||||
} else if ((system_str == "lj") ||
|
||||
(system_str == "micro") ||
|
||||
(system_str == "nano")) {
|
||||
error->all(FLERR, "LAMMPS unit_style {} not supported "
|
||||
"by KIM models", system_str);
|
||||
} else if ((system_str == "lj") || (system_str == "micro") || (system_str == "nano")) {
|
||||
error->all(FLERR, "LAMMPS unit_style {} not supported by KIM models", system_str);
|
||||
} else {
|
||||
error->all(FLERR, "Unknown unit_style");
|
||||
}
|
||||
}
|
||||
} // namespace
|
||||
} // namespace
|
||||
|
||||
void KimInit::determine_model_type_and_units(char * model_name,
|
||||
char * user_units,
|
||||
char ** model_units,
|
||||
void KimInit::print_dirs(struct KIM_Collections *const collections) const
|
||||
{
|
||||
int kim_error = 0;
|
||||
int dirListExtent = 0;
|
||||
int dirCounter = 0;
|
||||
|
||||
std::string mesg = "#=== KIM is looking for 'Portable Models' in these directories ===\n";
|
||||
std::vector<struct KIM_Collection> collection_list;
|
||||
collection_list.push_back(KIM_COLLECTION_currentWorkingDirectory);
|
||||
collection_list.push_back(KIM_COLLECTION_environmentVariable);
|
||||
collection_list.push_back(KIM_COLLECTION_user);
|
||||
collection_list.push_back(KIM_COLLECTION_system);
|
||||
|
||||
for (auto col : collection_list) {
|
||||
kim_error = KIM_Collections_CacheListOfDirectoryNames(
|
||||
collections, col, KIM_COLLECTION_ITEM_TYPE_portableModel, &dirListExtent);
|
||||
if (!kim_error) {
|
||||
for (int i = 0; i < dirListExtent; ++i) {
|
||||
char const *name;
|
||||
kim_error = KIM_Collections_GetDirectoryName(collections, i, &name);
|
||||
// Don't check for error due to bug in kim-api-2.2.1 and below.
|
||||
#if ((KIM_VERSION_MAJOR * 1000 + KIM_VERSION_MINOR) * 1000 + KIM_VERSION_PATCH) <= 2002001
|
||||
kim_error = 0;
|
||||
#endif
|
||||
if (!kim_error) mesg += fmt::format("# {:2}: {}\n", ++dirCounter, name);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
dirCounter = 0;
|
||||
mesg += "#=== KIM is looking for 'Simulator Models' in these directories ===\n";
|
||||
for (auto col : collection_list) {
|
||||
kim_error = KIM_Collections_CacheListOfDirectoryNames(
|
||||
collections, col, KIM_COLLECTION_ITEM_TYPE_simulatorModel, &dirListExtent);
|
||||
if (!kim_error) {
|
||||
for (int i = 0; i < dirListExtent; ++i) {
|
||||
char const *name;
|
||||
kim_error = KIM_Collections_GetDirectoryName(collections, i, &name);
|
||||
// Don't check for error due to bug in kim-api-2.2.1 and below.
|
||||
#if ((KIM_VERSION_MAJOR * 1000 + KIM_VERSION_MINOR) * 1000 + KIM_VERSION_PATCH) <= 2002001
|
||||
kim_error = 0;
|
||||
#endif
|
||||
if (!kim_error) mesg += fmt::format("# {:2}: {}\n", ++dirCounter, name);
|
||||
}
|
||||
}
|
||||
}
|
||||
input->write_echo(mesg);
|
||||
}
|
||||
|
||||
void KimInit::determine_model_type_and_units(char *model_name, char *user_units, char **model_units,
|
||||
KIM_Model *&pkim)
|
||||
{
|
||||
KIM_LengthUnit lengthUnit;
|
||||
@ -179,33 +219,26 @@ void KimInit::determine_model_type_and_units(char * model_name,
|
||||
KIM_TemperatureUnit temperatureUnit;
|
||||
KIM_TimeUnit timeUnit;
|
||||
int units_accepted;
|
||||
KIM_Collections * collections;
|
||||
KIM_Collections *collections;
|
||||
KIM_CollectionItemType itemType;
|
||||
|
||||
int kim_error = KIM_Collections_Create(&collections);
|
||||
if (kim_error)
|
||||
error->all(FLERR, "Unable to access KIM Collections to find Model");
|
||||
if (kim_error) error->all(FLERR, "Unable to access KIM Collections to find Model");
|
||||
|
||||
auto logID = fmt::format("{}_Collections", comm->me);
|
||||
KIM_Collections_SetLogID(collections, logID.c_str());
|
||||
|
||||
print_dirs(collections);
|
||||
|
||||
kim_error = KIM_Collections_GetItemType(collections, model_name, &itemType);
|
||||
if (kim_error) error->all(FLERR, "KIM Model name not found");
|
||||
KIM_Collections_Destroy(&collections);
|
||||
|
||||
if (KIM_CollectionItemType_Equal(itemType,
|
||||
KIM_COLLECTION_ITEM_TYPE_portableModel)) {
|
||||
get_kim_unit_names(user_units, lengthUnit, energyUnit,
|
||||
chargeUnit, temperatureUnit, timeUnit, error);
|
||||
int kim_error = KIM_Model_Create(KIM_NUMBERING_zeroBased,
|
||||
lengthUnit,
|
||||
energyUnit,
|
||||
chargeUnit,
|
||||
temperatureUnit,
|
||||
timeUnit,
|
||||
model_name,
|
||||
&units_accepted,
|
||||
&pkim);
|
||||
if (KIM_CollectionItemType_Equal(itemType, KIM_COLLECTION_ITEM_TYPE_portableModel)) {
|
||||
get_kim_unit_names(user_units, lengthUnit, energyUnit, chargeUnit, temperatureUnit, timeUnit,
|
||||
error);
|
||||
int kim_error = KIM_Model_Create(KIM_NUMBERING_zeroBased, lengthUnit, energyUnit, chargeUnit,
|
||||
temperatureUnit, timeUnit, model_name, &units_accepted, &pkim);
|
||||
|
||||
if (kim_error) error->all(FLERR, "Unable to load KIM Simulator Model");
|
||||
|
||||
@ -219,20 +252,12 @@ void KimInit::determine_model_type_and_units(char * model_name,
|
||||
} else if (unit_conversion_mode) {
|
||||
KIM_Model_Destroy(&pkim);
|
||||
int const num_systems = 5;
|
||||
char const * const systems[num_systems]
|
||||
= {"metal", "real", "si", "cgs", "electron"};
|
||||
for (int i=0; i < num_systems; ++i) {
|
||||
get_kim_unit_names(systems[i], lengthUnit, energyUnit,
|
||||
chargeUnit, temperatureUnit, timeUnit, error);
|
||||
kim_error = KIM_Model_Create(KIM_NUMBERING_zeroBased,
|
||||
lengthUnit,
|
||||
energyUnit,
|
||||
chargeUnit,
|
||||
temperatureUnit,
|
||||
timeUnit,
|
||||
model_name,
|
||||
&units_accepted,
|
||||
&pkim);
|
||||
char const *const systems[num_systems] = {"metal", "real", "si", "cgs", "electron"};
|
||||
for (int i = 0; i < num_systems; ++i) {
|
||||
get_kim_unit_names(systems[i], lengthUnit, energyUnit, chargeUnit, temperatureUnit,
|
||||
timeUnit, error);
|
||||
kim_error = KIM_Model_Create(KIM_NUMBERING_zeroBased, lengthUnit, energyUnit, chargeUnit,
|
||||
temperatureUnit, timeUnit, model_name, &units_accepted, &pkim);
|
||||
if (units_accepted) {
|
||||
logID = fmt::format("{}_Model", comm->me);
|
||||
KIM_Model_SetLogID(pkim, logID.c_str());
|
||||
@ -246,12 +271,10 @@ void KimInit::determine_model_type_and_units(char * model_name,
|
||||
KIM_Model_Destroy(&pkim);
|
||||
error->all(FLERR, "KIM Model does not support the requested unit system");
|
||||
}
|
||||
} else if (KIM_CollectionItemType_Equal(
|
||||
itemType, KIM_COLLECTION_ITEM_TYPE_simulatorModel)) {
|
||||
KIM_SimulatorModel * simulatorModel;
|
||||
} else if (KIM_CollectionItemType_Equal(itemType, KIM_COLLECTION_ITEM_TYPE_simulatorModel)) {
|
||||
KIM_SimulatorModel *simulatorModel;
|
||||
kim_error = KIM_SimulatorModel_Create(model_name, &simulatorModel);
|
||||
if (kim_error)
|
||||
error->all(FLERR, "Unable to load KIM Simulator Model");
|
||||
if (kim_error) error->all(FLERR, "Unable to load KIM Simulator Model");
|
||||
model_type = SM;
|
||||
|
||||
logID = fmt::format("{}_SimulatorModel", comm->me);
|
||||
@ -264,13 +287,11 @@ void KimInit::determine_model_type_and_units(char * model_name,
|
||||
KIM_SimulatorModel_GetNumberOfSimulatorFields(simulatorModel, &sim_fields);
|
||||
KIM_SimulatorModel_CloseTemplateMap(simulatorModel);
|
||||
for (int i = 0; i < sim_fields; ++i) {
|
||||
KIM_SimulatorModel_GetSimulatorFieldMetadata(
|
||||
simulatorModel, i, &sim_lines, &sim_field);
|
||||
KIM_SimulatorModel_GetSimulatorFieldMetadata(simulatorModel, i, &sim_lines, &sim_field);
|
||||
|
||||
const std::string sim_field_str(sim_field);
|
||||
if (sim_field_str == "units") {
|
||||
KIM_SimulatorModel_GetSimulatorFieldLine(
|
||||
simulatorModel, i, 0, &sim_value);
|
||||
KIM_SimulatorModel_GetSimulatorFieldLine(simulatorModel, i, 0, &sim_value);
|
||||
*model_units = utils::strdup(sim_value);
|
||||
break;
|
||||
}
|
||||
@ -280,16 +301,15 @@ void KimInit::determine_model_type_and_units(char * model_name,
|
||||
const std::string model_units_str(*model_units);
|
||||
const std::string user_units_str(user_units);
|
||||
if ((!unit_conversion_mode) && (model_units_str != user_units_str)) {
|
||||
error->all(FLERR, "Incompatible units for KIM Simulator Model"
|
||||
", required units = {}", model_units_str);
|
||||
error->all(FLERR, "Incompatible units for KIM Simulator Model, required units = {}",
|
||||
model_units_str);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void KimInit::do_init(char *model_name, char *user_units, char *model_units,
|
||||
KIM_Model *&pkim)
|
||||
void KimInit::do_init(char *model_name, char *user_units, char *model_units, KIM_Model *&pkim)
|
||||
{
|
||||
// create storage proxy fix. delete existing fix, if needed.
|
||||
|
||||
@ -304,8 +324,7 @@ void KimInit::do_init(char *model_name, char *user_units, char *model_units,
|
||||
fix_store->setptr("model_units", (void *) model_units);
|
||||
|
||||
// Begin output to log file
|
||||
input->write_echo("#=== BEGIN kim init ==================================="
|
||||
"=======\n");
|
||||
input->write_echo("#=== BEGIN kim init ==========================================\n");
|
||||
|
||||
KIM_SimulatorModel *simulatorModel;
|
||||
if (model_type == SM) {
|
||||
@ -316,18 +335,16 @@ void KimInit::do_init(char *model_name, char *user_units, char *model_units,
|
||||
KIM_SimulatorModel_SetLogID(simulatorModel, logID.c_str());
|
||||
|
||||
char const *sim_name, *sim_version;
|
||||
KIM_SimulatorModel_GetSimulatorNameAndVersion(
|
||||
simulatorModel, &sim_name, &sim_version);
|
||||
KIM_SimulatorModel_GetSimulatorNameAndVersion(simulatorModel, &sim_name, &sim_version);
|
||||
|
||||
const std::string sim_name_str(sim_name);
|
||||
if (sim_name_str != "LAMMPS")
|
||||
error->all(FLERR, "Incompatible KIM Simulator Model");
|
||||
if (sim_name_str != "LAMMPS") error->all(FLERR, "Incompatible KIM Simulator Model");
|
||||
|
||||
if (comm->me == 0) {
|
||||
auto mesg = fmt::format("# Using KIM Simulator Model : {}\n"
|
||||
"# For Simulator : {} {}\n"
|
||||
"# Running on : LAMMPS {}\n#\n", model_name,
|
||||
sim_name_str, sim_version, lmp->version);
|
||||
"# For Simulator : {} {}\n"
|
||||
"# Running on : LAMMPS {}\n#\n",
|
||||
model_name, sim_name_str, sim_version, lmp->version);
|
||||
utils::logmesg(lmp, mesg);
|
||||
}
|
||||
|
||||
@ -350,18 +367,16 @@ void KimInit::do_init(char *model_name, char *user_units, char *model_units,
|
||||
// Set the skin and timestep default values as
|
||||
// 2.0 Angstroms and 1.0 femtosecond
|
||||
|
||||
const std::string skin_cmd =
|
||||
(model_units_str == "real") ? "neighbor 2.0 bin # Angstroms":
|
||||
(model_units_str == "metal") ? "neighbor 2.0 bin # Angstroms":
|
||||
(model_units_str == "si") ? "neighbor 2e-10 bin # meters":
|
||||
(model_units_str == "cgs") ? "neighbor 2e-8 bin # centimeters":
|
||||
"neighbor 3.77945224 bin # Bohr";
|
||||
const std::string step_cmd =
|
||||
(model_units_str == "real") ? "timestep 1.0 # femtoseconds":
|
||||
(model_units_str == "metal") ? "timestep 1.0e-3 # picoseconds":
|
||||
(model_units_str == "si") ? "timestep 1e-15 # seconds":
|
||||
(model_units_str == "cgs") ? "timestep 1e-15 # seconds":
|
||||
"timestep 1.0 # femtoseconds";
|
||||
const std::string skin_cmd = (model_units_str == "real") ? "neighbor 2.0 bin # Angstroms"
|
||||
: (model_units_str == "metal") ? "neighbor 2.0 bin # Angstroms"
|
||||
: (model_units_str == "si") ? "neighbor 2e-10 bin # meters"
|
||||
: (model_units_str == "cgs") ? "neighbor 2e-8 bin # centimeters"
|
||||
: "neighbor 3.77945224 bin # Bohr";
|
||||
const std::string step_cmd = (model_units_str == "real") ? "timestep 1.0 # femtoseconds"
|
||||
: (model_units_str == "metal") ? "timestep 1.0e-3 # picoseconds"
|
||||
: (model_units_str == "si") ? "timestep 1e-15 # seconds"
|
||||
: (model_units_str == "cgs") ? "timestep 1e-15 # seconds"
|
||||
: "timestep 1.0 # femtoseconds";
|
||||
input->one(skin_cmd);
|
||||
input->one(step_cmd);
|
||||
|
||||
@ -373,14 +388,12 @@ void KimInit::do_init(char *model_name, char *user_units, char *model_units,
|
||||
// init model
|
||||
|
||||
for (int i = 0; i < sim_fields; ++i) {
|
||||
KIM_SimulatorModel_GetSimulatorFieldMetadata(
|
||||
simulatorModel, i, &sim_lines, &sim_field);
|
||||
KIM_SimulatorModel_GetSimulatorFieldMetadata(simulatorModel, i, &sim_lines, &sim_field);
|
||||
|
||||
const std::string sim_field_str(sim_field);
|
||||
if (sim_field_str == "model-init") {
|
||||
for (int j = 0; j < sim_lines; ++j) {
|
||||
KIM_SimulatorModel_GetSimulatorFieldLine(
|
||||
simulatorModel, i, j, &sim_value);
|
||||
KIM_SimulatorModel_GetSimulatorFieldLine(simulatorModel, i, j, &sim_value);
|
||||
input->one(sim_value);
|
||||
}
|
||||
break;
|
||||
@ -404,31 +417,28 @@ void KimInit::do_init(char *model_name, char *user_units, char *model_units,
|
||||
|
||||
int max_len(0);
|
||||
for (int i = 0; i < numberOfParameters; ++i) {
|
||||
KIM_Model_GetParameterMetadata(pkim, i, &kim_DataType,
|
||||
&extent, &str_name, &str_desc);
|
||||
max_len = MAX(max_len, (int)strlen(str_name));
|
||||
KIM_Model_GetParameterMetadata(pkim, i, &kim_DataType, &extent, &str_name, &str_desc);
|
||||
max_len = MAX(max_len, (int) strlen(str_name));
|
||||
}
|
||||
max_len = MAX(18, max_len + 1);
|
||||
mesg += fmt::format(" No. | {:<{}} | data type | extent\n",
|
||||
"Parameter name", max_len);
|
||||
mesg += fmt::format(" No. | {:<{}} | data type | extent\n", "Parameter name", max_len);
|
||||
mesg += fmt::format("{:-<{}}\n", "-", max_len + 35);
|
||||
for (int i = 0; i < numberOfParameters; ++i) {
|
||||
KIM_Model_GetParameterMetadata(pkim, i, &kim_DataType,
|
||||
&extent, &str_name, &str_desc);
|
||||
KIM_Model_GetParameterMetadata(pkim, i, &kim_DataType, &extent, &str_name, &str_desc);
|
||||
auto data_type = std::string("\"");
|
||||
data_type += KIM_DataType_ToString(kim_DataType) + std::string("\"");
|
||||
mesg += fmt::format(" {:<8} | {:<{}} | {:<10} | {}\n", i + 1, str_name,
|
||||
max_len, data_type, extent);
|
||||
mesg += fmt::format(" {:<8} | {:<{}} | {:<10} | {}\n", i + 1, str_name, max_len, data_type,
|
||||
extent);
|
||||
}
|
||||
} else mesg += "No mutable parameters.\n";
|
||||
} else
|
||||
mesg += "No mutable parameters.\n";
|
||||
|
||||
KIM_Model_Destroy(&pkim);
|
||||
input->write_echo(mesg);
|
||||
}
|
||||
|
||||
// End output to log file
|
||||
input->write_echo("#=== END kim init ====================================="
|
||||
"=======\n\n");
|
||||
input->write_echo("#=== END kim init ============================================\n\n");
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
@ -446,24 +456,11 @@ void KimInit::do_variables(const std::string &from, const std::string &to)
|
||||
int ier;
|
||||
std::string var_str;
|
||||
int v_unit;
|
||||
const char *units[] = {"mass",
|
||||
"distance",
|
||||
"time",
|
||||
"energy",
|
||||
"velocity",
|
||||
"force",
|
||||
"torque",
|
||||
"temperature",
|
||||
"pressure",
|
||||
"viscosity",
|
||||
"charge",
|
||||
"dipole",
|
||||
"efield",
|
||||
"density",
|
||||
nullptr};
|
||||
const char *units[] = {"mass", "distance", "time", "energy", "velocity",
|
||||
"force", "torque", "temperature", "pressure", "viscosity",
|
||||
"charge", "dipole", "efield", "density", nullptr};
|
||||
|
||||
input->write_echo(fmt::format("# Conversion factors from {} to {}:\n",
|
||||
from, to));
|
||||
input->write_echo(fmt::format("# Conversion factors from {} to {}:\n", from, to));
|
||||
|
||||
auto variable = input->variable;
|
||||
for (int i = 0; units[i] != nullptr; ++i) {
|
||||
@ -473,24 +470,23 @@ void KimInit::do_variables(const std::string &from, const std::string &to)
|
||||
variable->set(var_str + " internal 1.0");
|
||||
v_unit = variable->find(var_str.c_str());
|
||||
}
|
||||
ier = lammps_unit_conversion(units[i], from, to,
|
||||
conversion_factor);
|
||||
ier = lammps_unit_conversion(units[i], from, to, conversion_factor);
|
||||
if (ier != 0)
|
||||
error->all(FLERR, "Unable to obtain conversion factor: "
|
||||
"unit = {}; from = {}; to = {}",
|
||||
units[i], from, to);
|
||||
error->all(FLERR,
|
||||
"Unable to obtain conversion factor: "
|
||||
"unit = {}; from = {}; to = {}",
|
||||
units[i], from, to);
|
||||
|
||||
variable->internal_set(v_unit, conversion_factor);
|
||||
input->write_echo(fmt::format("variable {:<15s} internal {:<15.12e}\n",
|
||||
var_str, conversion_factor));
|
||||
input->write_echo(
|
||||
fmt::format("variable {:<15s} internal {:<15.12e}\n", var_str, conversion_factor));
|
||||
}
|
||||
input->write_echo("#\n");
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void KimInit::write_log_cite(class LAMMPS *lmp,
|
||||
KimInit::model_type_enum model_type,
|
||||
void KimInit::write_log_cite(class LAMMPS *lmp, KimInit::model_type_enum model_type,
|
||||
char *model_name)
|
||||
{
|
||||
if (!lmp->citeme) return;
|
||||
@ -501,7 +497,7 @@ void KimInit::write_log_cite(class LAMMPS *lmp,
|
||||
|
||||
std::string cite_id;
|
||||
if (kim_id.empty()) {
|
||||
cite_id = fmt::format("KIM potential: unpublished, \"{}\"\n",model_name_str);
|
||||
cite_id = fmt::format("KIM potential: unpublished, \"{}\"\n", model_name_str);
|
||||
} else {
|
||||
KIM_Collections *collections;
|
||||
int err = KIM_Collections_Create(&collections);
|
||||
@ -513,12 +509,10 @@ void KimInit::write_log_cite(class LAMMPS *lmp,
|
||||
int extent;
|
||||
if (model_type == MO) {
|
||||
err = KIM_Collections_CacheListOfItemMetadataFiles(
|
||||
collections, KIM_COLLECTION_ITEM_TYPE_portableModel,
|
||||
model_name, &extent);
|
||||
collections, KIM_COLLECTION_ITEM_TYPE_portableModel, model_name, &extent);
|
||||
} else if (model_type == SM) {
|
||||
err = KIM_Collections_CacheListOfItemMetadataFiles(
|
||||
collections, KIM_COLLECTION_ITEM_TYPE_simulatorModel,
|
||||
model_name, &extent);
|
||||
collections, KIM_COLLECTION_ITEM_TYPE_simulatorModel, model_name, &extent);
|
||||
} else {
|
||||
lmp->error->all(FLERR, "Unknown model type");
|
||||
}
|
||||
@ -529,19 +523,18 @@ void KimInit::write_log_cite(class LAMMPS *lmp,
|
||||
}
|
||||
|
||||
cite_id = fmt::format("OpenKIM potential: https://openkim.org/cite/"
|
||||
"{}#item-citation\n\n",kim_id);
|
||||
"{}#item-citation\n\n",
|
||||
kim_id);
|
||||
|
||||
for (int i = 0; i < extent; ++i) {
|
||||
char const *fileName;
|
||||
int availableAsString;
|
||||
char const *fileString;
|
||||
err = KIM_Collections_GetItemMetadataFile(
|
||||
collections, i, &fileName, nullptr, nullptr,
|
||||
&availableAsString, &fileString);
|
||||
err = KIM_Collections_GetItemMetadataFile(collections, i, &fileName, nullptr, nullptr,
|
||||
&availableAsString, &fileString);
|
||||
if (err) continue;
|
||||
|
||||
if (utils::strmatch(fileName, "^kimcite") && availableAsString)
|
||||
cite_id += fileString;
|
||||
if (utils::strmatch(fileName, "^kimcite") && availableAsString) cite_id += fileString;
|
||||
}
|
||||
KIM_Collections_Destroy(&collections);
|
||||
}
|
||||
|
||||
@ -62,7 +62,8 @@
|
||||
#include "pointers.h"
|
||||
|
||||
// Forward declaration.
|
||||
typedef struct KIM_Model KIM_Model;
|
||||
struct KIM_Model;
|
||||
struct KIM_Collections;
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
@ -80,6 +81,8 @@ class KimInit : protected Pointers {
|
||||
void determine_model_type_and_units(char *, char *, char **, KIM_Model *&);
|
||||
void do_init(char *, char *, char *, KIM_Model *&);
|
||||
void do_variables(const std::string &, const std::string &);
|
||||
|
||||
void print_dirs(struct KIM_Collections * const collections) const;
|
||||
};
|
||||
|
||||
} // namespace LAMMPS_NS
|
||||
|
||||
@ -17,23 +17,23 @@
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include "pair_eam_alloy_kokkos.h"
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include "kokkos.h"
|
||||
#include "pair_kokkos.h"
|
||||
|
||||
#include "atom_kokkos.h"
|
||||
#include "force.h"
|
||||
#include "atom_masks.h"
|
||||
#include "comm.h"
|
||||
#include "neighbor.h"
|
||||
#include "error.h"
|
||||
#include "force.h"
|
||||
#include "kokkos.h"
|
||||
#include "memory_kokkos.h"
|
||||
#include "neigh_list_kokkos.h"
|
||||
#include "neigh_request.h"
|
||||
#include "memory_kokkos.h"
|
||||
#include "error.h"
|
||||
#include "atom_masks.h"
|
||||
|
||||
#include "tokenizer.h"
|
||||
#include "neighbor.h"
|
||||
#include "pair_kokkos.h"
|
||||
#include "potential_file_reader.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
// Cannot use virtual inheritance on the GPU, so must duplicate code
|
||||
@ -44,8 +44,8 @@ template<class DeviceType>
|
||||
PairEAMAlloyKokkos<DeviceType>::PairEAMAlloyKokkos(LAMMPS *lmp) : PairEAM(lmp)
|
||||
{
|
||||
respa_enable = 0;
|
||||
single_enable = 0;
|
||||
one_coeff = 1;
|
||||
manybody_flag = 1;
|
||||
|
||||
kokkosable = 1;
|
||||
atomKK = (AtomKokkos *) atom;
|
||||
@ -261,6 +261,8 @@ void PairEAMAlloyKokkos<DeviceType>::compute(int eflag_in, int vflag_in)
|
||||
virial[5] += ev.v[5];
|
||||
}
|
||||
|
||||
if (vflag_fdotr) pair_virial_fdotr_compute(this);
|
||||
|
||||
if (eflag_atom) {
|
||||
if (need_dup)
|
||||
Kokkos::Experimental::contribute(d_eatom, dup_eatom);
|
||||
@ -275,8 +277,6 @@ void PairEAMAlloyKokkos<DeviceType>::compute(int eflag_in, int vflag_in)
|
||||
k_vatom.template sync<LMPHostType>();
|
||||
}
|
||||
|
||||
if (vflag_fdotr) pair_virial_fdotr_compute(this);
|
||||
|
||||
copymode = 0;
|
||||
|
||||
// free duplicated memory
|
||||
@ -322,6 +322,11 @@ void PairEAMAlloyKokkos<DeviceType>::init_style()
|
||||
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
convert read-in funcfl potential(s) to standard array format
|
||||
interpolate all file values to a single grid and cutoff
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
template<class DeviceType>
|
||||
void PairEAMAlloyKokkos<DeviceType>::file2array()
|
||||
{
|
||||
@ -524,7 +529,7 @@ void PairEAMAlloyKokkos<DeviceType>::unpack_reverse_comm(int n, int *list, doubl
|
||||
h_rho[j] += buf[m++];
|
||||
}
|
||||
|
||||
k_fp.modify_host();
|
||||
k_rho.modify_host();
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
@ -581,8 +586,8 @@ void PairEAMAlloyKokkos<DeviceType>::operator()(TagPairEAMAlloyKernelA<NEIGHFLAG
|
||||
d_rhor_spline(d_type2rhor_ji,m,5))*p + d_rhor_spline(d_type2rhor_ji,m,6);
|
||||
if (NEWTON_PAIR || j < nlocal) {
|
||||
const int d_type2rhor_ij = d_type2rhor(itype,jtype);
|
||||
a_rho[j] += ((d_rhor_spline(d_type2rhor_ij,m,3)*p + d_rhor_spline(d_type2rhor_ij,m,4))*p +
|
||||
d_rhor_spline(d_type2rhor_ij,m,5))*p + d_rhor_spline(d_type2rhor_ij,m,6);
|
||||
a_rho[j] += ((d_rhor_spline(d_type2rhor_ij,m,3)*p + d_rhor_spline(d_type2rhor_ij,m,4))*p +
|
||||
d_rhor_spline(d_type2rhor_ij,m,5))*p + d_rhor_spline(d_type2rhor_ij,m,6);
|
||||
}
|
||||
}
|
||||
|
||||
@ -597,7 +602,6 @@ template<class DeviceType>
|
||||
template<int EFLAG>
|
||||
KOKKOS_INLINE_FUNCTION
|
||||
void PairEAMAlloyKokkos<DeviceType>::operator()(TagPairEAMAlloyKernelB<EFLAG>, const int &ii, EV_FLOAT& ev) const {
|
||||
|
||||
// fp = derivative of embedding energy at each atom
|
||||
// phi = embedding energy at each atom
|
||||
// if rho > rhomax (e.g. due to close approach of two atoms),
|
||||
@ -620,7 +624,6 @@ void PairEAMAlloyKokkos<DeviceType>::operator()(TagPairEAMAlloyKernelB<EFLAG>, c
|
||||
if (eflag_global) ev.evdwl += phi;
|
||||
if (eflag_atom) d_eatom[i] += phi;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<class DeviceType>
|
||||
|
||||
@ -17,23 +17,23 @@
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include "pair_eam_fs_kokkos.h"
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
#include "kokkos.h"
|
||||
#include "pair_kokkos.h"
|
||||
|
||||
#include "atom_kokkos.h"
|
||||
#include "force.h"
|
||||
#include "atom_masks.h"
|
||||
#include "comm.h"
|
||||
#include "neighbor.h"
|
||||
#include "error.h"
|
||||
#include "force.h"
|
||||
#include "kokkos.h"
|
||||
#include "memory_kokkos.h"
|
||||
#include "neigh_list_kokkos.h"
|
||||
#include "neigh_request.h"
|
||||
#include "memory_kokkos.h"
|
||||
#include "error.h"
|
||||
#include "atom_masks.h"
|
||||
|
||||
#include "tokenizer.h"
|
||||
#include "neighbor.h"
|
||||
#include "pair_kokkos.h"
|
||||
#include "potential_file_reader.h"
|
||||
|
||||
#include <cmath>
|
||||
#include <cstring>
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
// Cannot use virtual inheritance on the GPU, so must duplicate code
|
||||
@ -43,9 +43,9 @@ using namespace LAMMPS_NS;
|
||||
template<class DeviceType>
|
||||
PairEAMFSKokkos<DeviceType>::PairEAMFSKokkos(LAMMPS *lmp) : PairEAM(lmp)
|
||||
{
|
||||
one_coeff = 1;
|
||||
manybody_flag = 1;
|
||||
respa_enable = 0;
|
||||
single_enable = 0;
|
||||
one_coeff = 1;
|
||||
|
||||
kokkosable = 1;
|
||||
atomKK = (AtomKokkos *) atom;
|
||||
@ -200,9 +200,9 @@ void PairEAMFSKokkos<DeviceType>::compute(int eflag_in, int vflag_in)
|
||||
|
||||
// communicate derivative of embedding function (on the device)
|
||||
|
||||
k_fp.template sync<DeviceType>();
|
||||
comm->forward_comm_pair(this);
|
||||
k_fp.template modify<DeviceType>();
|
||||
comm->forward_comm_pair(this);
|
||||
k_fp.template sync<DeviceType>();
|
||||
|
||||
// compute kernel C
|
||||
|
||||
@ -322,6 +322,11 @@ void PairEAMFSKokkos<DeviceType>::init_style()
|
||||
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
convert read-in funcfl potential(s) to standard array format
|
||||
interpolate all file values to a single grid and cutoff
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
template<class DeviceType>
|
||||
void PairEAMFSKokkos<DeviceType>::file2array()
|
||||
{
|
||||
@ -581,8 +586,8 @@ void PairEAMFSKokkos<DeviceType>::operator()(TagPairEAMFSKernelA<NEIGHFLAG,NEWTO
|
||||
d_rhor_spline(d_type2rhor_ji,m,5))*p + d_rhor_spline(d_type2rhor_ji,m,6);
|
||||
if (NEWTON_PAIR || j < nlocal) {
|
||||
const int d_type2rhor_ij = d_type2rhor(itype,jtype);
|
||||
a_rho[j] += ((d_rhor_spline(d_type2rhor_ij,m,3)*p + d_rhor_spline(d_type2rhor_ij,m,4))*p +
|
||||
d_rhor_spline(d_type2rhor_ij,m,5))*p + d_rhor_spline(d_type2rhor_ij,m,6);
|
||||
a_rho[j] += ((d_rhor_spline(d_type2rhor_ij,m,3)*p + d_rhor_spline(d_type2rhor_ij,m,4))*p +
|
||||
d_rhor_spline(d_type2rhor_ij,m,5))*p + d_rhor_spline(d_type2rhor_ij,m,6);
|
||||
}
|
||||
}
|
||||
|
||||
@ -620,7 +625,6 @@ void PairEAMFSKokkos<DeviceType>::operator()(TagPairEAMFSKernelB<EFLAG>, const i
|
||||
if (eflag_global) ev.evdwl += phi;
|
||||
if (eflag_atom) d_eatom[i] += phi;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template<class DeviceType>
|
||||
|
||||
@ -17,18 +17,20 @@
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include "pair_eam_kokkos.h"
|
||||
#include <cmath>
|
||||
#include "kokkos.h"
|
||||
#include "pair_kokkos.h"
|
||||
|
||||
#include "atom_kokkos.h"
|
||||
#include "force.h"
|
||||
#include "atom_masks.h"
|
||||
#include "comm.h"
|
||||
#include "neighbor.h"
|
||||
#include "error.h"
|
||||
#include "force.h"
|
||||
#include "kokkos.h"
|
||||
#include "memory_kokkos.h"
|
||||
#include "neigh_list_kokkos.h"
|
||||
#include "neigh_request.h"
|
||||
#include "memory_kokkos.h"
|
||||
#include "error.h"
|
||||
#include "atom_masks.h"
|
||||
#include "neighbor.h"
|
||||
#include "pair_kokkos.h"
|
||||
|
||||
#include <cmath>
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
|
||||
@ -36,7 +36,7 @@ From: centos:7
|
||||
# manually install Plumed
|
||||
mkdir plumed
|
||||
cd plumed
|
||||
version=2.6.1
|
||||
version=2.7.2
|
||||
curl -L -o plumed.tar.gz https://github.com/plumed/plumed2/releases/download/v${version}/plumed-src-${version}.tgz
|
||||
tar -xzf plumed.tar.gz
|
||||
cd plumed-${version}
|
||||
|
||||
@ -3,7 +3,7 @@ From: centos:8
|
||||
|
||||
%post
|
||||
dnf -y install epel-release dnf-utils
|
||||
dnf config-manager --set-enabled PowerTools
|
||||
dnf config-manager --set-enabled powertools
|
||||
dnf -y update
|
||||
dnf -y install vim-enhanced git file make cmake patch which file ninja-build \
|
||||
ccache gcc-c++ gcc-gfortran clang libomp-devel gdb valgrind libubsan libasan libtsan \
|
||||
@ -42,7 +42,7 @@ From: centos:8
|
||||
# manually install Plumed
|
||||
mkdir plumed
|
||||
cd plumed
|
||||
version=2.6.1
|
||||
version=2.7.2
|
||||
curl -L -o plumed.tar.gz https://github.com/plumed/plumed2/releases/download/v${version}/plumed-src-${version}.tgz
|
||||
tar -xzf plumed.tar.gz
|
||||
cd plumed-${version}
|
||||
|
||||
110
tools/singularity/rocky8.def
Normal file
@ -0,0 +1,110 @@
|
||||
BootStrap: docker
|
||||
From: rockylinux/rockylinux:8
|
||||
|
||||
%post
|
||||
dnf -y install epel-release dnf-utils
|
||||
dnf config-manager --set-enabled powertools
|
||||
dnf -y update
|
||||
dnf -y install vim-enhanced git file make cmake patch which file ninja-build \
|
||||
ccache gcc-c++ gcc-gfortran clang libomp-devel gdb valgrind libubsan libasan libtsan \
|
||||
eigen3-devel openblas-devel libpng-devel libjpeg-devel platform-python-devel \
|
||||
openmpi-devel mpich-devel fftw-devel voro++-devel gsl-devel hdf5-devel \
|
||||
netcdf-devel netcdf-cxx-devel netcdf-mpich-devel netcdf-openmpi-devel \
|
||||
enchant python3-virtualenv doxygen diffutils latexmk readline-devel \
|
||||
texlive-latex-fonts texlive-pslatex texlive-collection-latexrecommended \
|
||||
texlive-latex texlive-latexconfig doxygen-latex texlive-collection-latex \
|
||||
texlive-latex-bin texlive-lualatex-math texlive-fncychap texlive-tabulary \
|
||||
texlive-framed texlive-wrapfig texlive-upquote texlive-capt-of \
|
||||
texlive-needspace texlive-titlesec texlive-anysize texlive-dvipng \
|
||||
blas-devel lapack-devel libyaml-devel openkim-models kim-api-devel \
|
||||
zstd libzstd-devel
|
||||
dnf clean all
|
||||
|
||||
# we need to reset any module variables
|
||||
# inherited from the host.
|
||||
unset __LMOD_REF_COUNT__LMFILES_
|
||||
unset __LMOD_REF_COUNT_PATH
|
||||
unset __LMOD_REF_COUNT_LD_LIBRARY_PATH
|
||||
unset __LMOD_REF_COUNT_MANPATH
|
||||
unset __LMOD_REF_COUNT_MODULEPATH
|
||||
unset __LMOD_REF_COUNT_LOADEDMODULES
|
||||
unset _LMFILES_
|
||||
unset MODULEPATH
|
||||
unset MODULESHOME
|
||||
unset MODULEPATH_ROOT
|
||||
unset LOADEDMODULES
|
||||
unset LMOD_SYSTEM_DEFAULT_MODULES
|
||||
|
||||
# load MPI by default
|
||||
. /etc/profile
|
||||
module load mpi
|
||||
|
||||
# manually install Plumed
|
||||
mkdir plumed
|
||||
cd plumed
|
||||
version=2.7.2
|
||||
curl -L -o plumed.tar.gz https://github.com/plumed/plumed2/releases/download/v${version}/plumed-src-${version}.tgz
|
||||
tar -xzf plumed.tar.gz
|
||||
cd plumed-${version}
|
||||
./configure --disable-doc --prefix=/usr
|
||||
make
|
||||
make install
|
||||
# fix up installation for CentOS and Fedora
|
||||
mv -v /usr/lib64/pkgconfig/plumed* /usr/share/pkgconfig/
|
||||
cd ../../
|
||||
rm -rvf plumed
|
||||
|
||||
# create missing readline pkgconfig file
|
||||
cat > /usr/lib64/pkgconfig/readline.pc <<EOF
|
||||
prefix=/usr
|
||||
exec_prefix=/usr
|
||||
libdir=/usr/lib64
|
||||
includedir=/usr/include
|
||||
|
||||
Name: Readline
|
||||
Description: GNU Readline library for command line editing
|
||||
URL: http://tiswww.cwru.edu/php/chet/readline/rltop.html
|
||||
Version: 7.0
|
||||
Requires.private: ncurses
|
||||
Libs: -L\${libdir} -lreadline
|
||||
Cflags: -I\${includedir}/readline
|
||||
EOF
|
||||
# set custom prompt indicating the container name
|
||||
CUSTOM_PROMPT_ENV=/.singularity.d/env/99-zz_custom_prompt.sh
|
||||
cat >$CUSTOM_PROMPT_ENV <<EOF
|
||||
#!/bin/bash
|
||||
PS1="[centos8:\u@\h] \W> "
|
||||
EOF
|
||||
chmod 755 $CUSTOM_PROMPT_ENV
|
||||
|
||||
|
||||
%environment
|
||||
LC_ALL=C
|
||||
export LC_ALL
|
||||
|
||||
# we need to reset any module variables
|
||||
# inherited from the host.
|
||||
unset __LMOD_REF_COUNT__LMFILES_
|
||||
unset __LMOD_REF_COUNT_PATH
|
||||
unset __LMOD_REF_COUNT_LD_LIBRARY_PATH
|
||||
unset __LMOD_REF_COUNT_MANPATH
|
||||
unset __LMOD_REF_COUNT_MODULEPATH
|
||||
unset __LMOD_REF_COUNT_LOADEDMODULES
|
||||
unset _LMFILES_
|
||||
unset MODULEPATH
|
||||
unset MODULESHOME
|
||||
unset MODULEPATH_ROOT
|
||||
unset LOADEDMODULES
|
||||
unset LMOD_SYSTEM_DEFAULT_MODULES
|
||||
|
||||
# load MPI by default
|
||||
. /etc/profile
|
||||
module load mpi
|
||||
# tell OpenMPI to not try using Infiniband
|
||||
OMPI_MCA_btl="^openib"
|
||||
# do not warn about unused components as this messes up testing
|
||||
OMPI_MCA_btl_base_warn_component_unused="0"
|
||||
export OMPI_MCA_btl OMPI_MCA_btl_base_warn_component_unused
|
||||
|
||||
%labels
|
||||
Author akohlmey, rbberger
|
||||
@ -105,7 +105,7 @@ From: ubuntu:18.04
|
||||
# Plumed
|
||||
###########################################################################
|
||||
|
||||
export PLUMED_PKG_VERSION=2.6.1
|
||||
export PLUMED_PKG_VERSION=2.7.2
|
||||
|
||||
mkdir plumed
|
||||
cd plumed
|
||||
|
||||
@ -3,7 +3,7 @@ From: ubuntu:18.04
|
||||
|
||||
%environment
|
||||
export PATH=/usr/lib/ccache:${PATH}:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_64
|
||||
|
||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib:/opt/rocm-4.3.0/llvm/lib
|
||||
%post
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
apt-get update
|
||||
@ -94,7 +94,7 @@ From: ubuntu:18.04
|
||||
###########################################################################
|
||||
|
||||
export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_64
|
||||
git clone -b rocm-4.1.x https://github.com/ROCmSoftwarePlatform/hipCUB.git
|
||||
git clone -b release/rocm-rel-4.3 https://github.com/ROCmSoftwarePlatform/hipCUB.git
|
||||
mkdir hipCUB/build
|
||||
cd hipCUB/build
|
||||
CXX=hipcc cmake -D BUILD_TEST=off ..
|
||||
@ -129,7 +129,7 @@ From: ubuntu:18.04
|
||||
# Plumed
|
||||
###########################################################################
|
||||
|
||||
export PLUMED_PKG_VERSION=2.6.1
|
||||
export PLUMED_PKG_VERSION=2.7.2
|
||||
|
||||
mkdir plumed
|
||||
cd plumed
|
||||
|
||||
@ -2,11 +2,11 @@ BootStrap: docker
|
||||
From: ubuntu:18.04
|
||||
|
||||
%environment
|
||||
export PATH=/usr/lib/ccache:/usr/local/cuda-11.0/bin:${PATH}:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_64
|
||||
export CUDADIR=/usr/local/cuda-11.0
|
||||
export CUDA_PATH=/usr/local/cuda-11.0
|
||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.0/lib64
|
||||
export LIBRARY_PATH=/usr/local/cuda-11.0/lib64/stubs
|
||||
export PATH=/usr/lib/ccache:/usr/local/cuda-11.4/bin:${PATH}:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_64
|
||||
export CUDADIR=/usr/local/cuda-11.4
|
||||
export CUDA_PATH=/usr/local/cuda-11.4
|
||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.4/lib64:/opt/rocm/lib:/opt/rocm-4.3.0/llvm/lib
|
||||
export LIBRARY_PATH=/usr/local/cuda-11.4/lib64/stubs
|
||||
%post
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
apt-get update
|
||||
@ -104,23 +104,19 @@ From: ubuntu:18.04
|
||||
add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/ /"
|
||||
apt-get update
|
||||
|
||||
export CUDA_PKG_VERSION=11.0
|
||||
export CUDA_PKG_VERSION=11.4
|
||||
|
||||
apt-get install -y --no-install-recommends \
|
||||
cuda-libraries-$CUDA_PKG_VERSION \
|
||||
cuda-command-line-tools-$CUDA_PKG_VERSION \
|
||||
cuda-libraries-dev-$CUDA_PKG_VERSION \
|
||||
cuda-minimal-build-$CUDA_PKG_VERSION \
|
||||
cuda-libraries-${CUDA_PKG_VERSION} \
|
||||
cuda-command-line-tools-${CUDA_PKG_VERSION} \
|
||||
cuda-libraries-dev-${CUDA_PKG_VERSION} \
|
||||
cuda-minimal-build-${CUDA_PKG_VERSION} \
|
||||
cuda-compat-$CUDA_PKG_VERSION \
|
||||
libcublas-11-0 \
|
||||
libcublas-dev-11-0
|
||||
|
||||
echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf
|
||||
echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf
|
||||
libcublas-${CUDA_PKG_VERSION} \
|
||||
libcublas-dev-${CUDA_PKG_VERSION}
|
||||
|
||||
# add missing symlink
|
||||
ln -s /usr/local/cuda-11.0 /usr/local/cuda
|
||||
ln -s /usr/local/cuda-11.0/lib64/stubs/libcuda.so /usr/local/cuda-11.0/lib64/stubs/libcuda.so.1
|
||||
ln -s /usr/local/cuda-${CUDA_PKG_VERSION}/lib64/stubs/libcuda.so /usr/local/cuda-${CUDA_PKG_VERSION}/lib64/stubs/libcuda.so.1
|
||||
|
||||
###########################################################################
|
||||
# NVIDIA OpenCL
|
||||
@ -134,7 +130,7 @@ From: ubuntu:18.04
|
||||
###########################################################################
|
||||
|
||||
export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_64
|
||||
git clone -b rocm-3.7.x https://github.com/ROCmSoftwarePlatform/hipCUB.git
|
||||
git clone -b release/rocm-rel-4.3 https://github.com/ROCmSoftwarePlatform/hipCUB.git
|
||||
mkdir hipCUB/build
|
||||
cd hipCUB/build
|
||||
CXX=hipcc cmake -D BUILD_TEST=off ..
|
||||
@ -169,7 +165,7 @@ From: ubuntu:18.04
|
||||
# Plumed
|
||||
###########################################################################
|
||||
|
||||
export PLUMED_PKG_VERSION=2.6.1
|
||||
export PLUMED_PKG_VERSION=2.7.2
|
||||
|
||||
mkdir plumed
|
||||
cd plumed
|
||||
|
||||
@ -106,7 +106,7 @@ From: ubuntu:18.04
|
||||
# Plumed
|
||||
###########################################################################
|
||||
|
||||
export PLUMED_PKG_VERSION=2.6.1
|
||||
export PLUMED_PKG_VERSION=2.7.2
|
||||
|
||||
mkdir plumed
|
||||
cd plumed
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
BootStrap: docker
|
||||
From: nvidia/cuda:11.0-devel-ubuntu18.04
|
||||
From: nvidia/cuda:11.4.1-devel-ubuntu18.04
|
||||
|
||||
%post
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
@ -105,7 +105,7 @@ From: nvidia/cuda:11.0-devel-ubuntu18.04
|
||||
# Plumed
|
||||
###########################################################################
|
||||
|
||||
export PLUMED_PKG_VERSION=2.6.1
|
||||
export PLUMED_PKG_VERSION=2.7.2
|
||||
|
||||
mkdir plumed
|
||||
cd plumed
|
||||
|
||||
@ -100,7 +100,7 @@ From: ubuntu:20.04
|
||||
# Plumed
|
||||
###########################################################################
|
||||
|
||||
export PLUMED_PKG_VERSION=2.6.1
|
||||
export PLUMED_PKG_VERSION=2.7.2
|
||||
|
||||
mkdir plumed
|
||||
cd plumed
|
||||
|
||||
@ -3,7 +3,7 @@ From: ubuntu:20.04
|
||||
|
||||
%environment
|
||||
export PATH=/usr/lib/ccache:${PATH}:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_64
|
||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib:/opt/rocm-4.2.0/llvm/lib
|
||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/opt/rocm/lib:/opt/rocm-4.3.0/llvm/lib
|
||||
%post
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
apt-get update
|
||||
@ -91,7 +91,7 @@ From: ubuntu:20.04
|
||||
###########################################################################
|
||||
|
||||
export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_64
|
||||
git clone -b rocm-4.1.x https://github.com/ROCmSoftwarePlatform/hipCUB.git
|
||||
git clone -b release/rocm-rel-4.3 https://github.com/ROCmSoftwarePlatform/hipCUB.git
|
||||
mkdir hipCUB/build
|
||||
cd hipCUB/build
|
||||
CXX=hipcc cmake -D BUILD_TEST=off ..
|
||||
@ -126,7 +126,7 @@ From: ubuntu:20.04
|
||||
# Plumed
|
||||
###########################################################################
|
||||
|
||||
export PLUMED_PKG_VERSION=2.6.1
|
||||
export PLUMED_PKG_VERSION=2.7.2
|
||||
|
||||
mkdir plumed
|
||||
cd plumed
|
||||
|
||||
@ -2,11 +2,11 @@ BootStrap: docker
|
||||
From: ubuntu:20.04
|
||||
|
||||
%environment
|
||||
export PATH=/usr/lib/ccache:/usr/local/cuda-11.0/bin:${PATH}:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_64
|
||||
export CUDADIR=/usr/local/cuda-11.0
|
||||
export CUDA_PATH=/usr/local/cuda-11.0
|
||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.0/lib64:/opt/rocm/lib:/opt/rocm-4.2.0/llvm/lib
|
||||
export LIBRARY_PATH=/usr/local/cuda-11.0/lib64/stubs
|
||||
export PATH=/usr/lib/ccache:/usr/local/cuda-11.4/bin:${PATH}:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_64
|
||||
export CUDADIR=/usr/local/cuda-11.4
|
||||
export CUDA_PATH=/usr/local/cuda-11.4
|
||||
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.4/lib64:/opt/rocm/lib:/opt/rocm-4.3.0/llvm/lib
|
||||
export LIBRARY_PATH=/usr/local/cuda-11.4/lib64/stubs
|
||||
%post
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
apt-get update
|
||||
@ -101,23 +101,19 @@ From: ubuntu:20.04
|
||||
add-apt-repository "deb http://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/ /"
|
||||
apt-get update
|
||||
|
||||
export CUDA_PKG_VERSION=11.0
|
||||
export CUDA_PKG_VERSION=11.4
|
||||
|
||||
apt-get install -y --no-install-recommends \
|
||||
cuda-libraries-$CUDA_PKG_VERSION \
|
||||
cuda-command-line-tools-$CUDA_PKG_VERSION \
|
||||
cuda-libraries-dev-$CUDA_PKG_VERSION \
|
||||
cuda-minimal-build-$CUDA_PKG_VERSION \
|
||||
cuda-libraries-${CUDA_PKG_VERSION} \
|
||||
cuda-command-line-tools-${CUDA_PKG_VERSION} \
|
||||
cuda-libraries-dev-${CUDA_PKG_VERSION} \
|
||||
cuda-minimal-build-${CUDA_PKG_VERSION} \
|
||||
cuda-compat-$CUDA_PKG_VERSION \
|
||||
libcublas-11-0 \
|
||||
libcublas-dev-11-0
|
||||
|
||||
echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf
|
||||
echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf
|
||||
libcublas-${CUDA_PKG_VERSION} \
|
||||
libcublas-dev-${CUDA_PKG_VERSION}
|
||||
|
||||
# add missing symlink
|
||||
ln -s /usr/local/cuda-11.0 /usr/local/cuda
|
||||
ln -s /usr/local/cuda-11.0/lib64/stubs/libcuda.so /usr/local/cuda-11.0/lib64/stubs/libcuda.so.1
|
||||
ln -s /usr/local/cuda-${CUDA_PKG_VERSION}/lib64/stubs/libcuda.so /usr/local/cuda-${CUDA_PKG_VERSION}/lib64/stubs/libcuda.so.1
|
||||
|
||||
###########################################################################
|
||||
# NVIDIA OpenCL
|
||||
@ -131,7 +127,7 @@ From: ubuntu:20.04
|
||||
###########################################################################
|
||||
|
||||
export PATH=$PATH:/opt/rocm/bin:/opt/rocm/profiler/bin:/opt/rocm/opencl/bin/x86_64
|
||||
git clone -b rocm-4.2.x https://github.com/ROCmSoftwarePlatform/hipCUB.git
|
||||
git clone -b release/rocm-rel-4.3 https://github.com/ROCmSoftwarePlatform/hipCUB.git
|
||||
mkdir hipCUB/build
|
||||
cd hipCUB/build
|
||||
CXX=hipcc cmake -D BUILD_TEST=off ..
|
||||
@ -166,7 +162,7 @@ From: ubuntu:20.04
|
||||
# Plumed
|
||||
###########################################################################
|
||||
|
||||
export PLUMED_PKG_VERSION=2.6.1
|
||||
export PLUMED_PKG_VERSION=2.7.2
|
||||
|
||||
mkdir plumed
|
||||
cd plumed
|
||||
|
||||
@ -99,7 +99,7 @@ From: ubuntu:20.04
|
||||
# Plumed
|
||||
###########################################################################
|
||||
|
||||
export PLUMED_PKG_VERSION=2.6.1
|
||||
export PLUMED_PKG_VERSION=2.7.2
|
||||
|
||||
mkdir plumed
|
||||
cd plumed
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
BootStrap: docker
|
||||
From: nvidia/cuda:11.0-devel-ubuntu20.04
|
||||
From: nvidia/cuda:11.4.1-devel-ubuntu20.04
|
||||
|
||||
%post
|
||||
export DEBIAN_FRONTEND=noninteractive
|
||||
@ -102,7 +102,7 @@ From: nvidia/cuda:11.0-devel-ubuntu20.04
|
||||
# Plumed
|
||||
###########################################################################
|
||||
|
||||
export PLUMED_PKG_VERSION=2.6.1
|
||||
export PLUMED_PKG_VERSION=2.7.2
|
||||
|
||||
mkdir plumed
|
||||
cd plumed
|
||||
|
||||