Merge pull request #1027 from akohlmey/move-cdeam
Move pair style eam/cd from USER-MISC to MANYBODY
This commit is contained in:
@ -181,7 +181,6 @@ endmacro()
|
||||
pkg_depends(MPIIO MPI)
|
||||
pkg_depends(USER-ATC MANYBODY)
|
||||
pkg_depends(USER-LB MPI)
|
||||
pkg_depends(USER-MISC MANYBODY)
|
||||
pkg_depends(USER-PHONON KSPACE)
|
||||
|
||||
######################################################
|
||||
|
||||
@ -969,6 +969,7 @@ OPT.
|
||||
"dsmc"_pair_dsmc.html,
|
||||
"eam (gikot)"_pair_eam.html,
|
||||
"eam/alloy (gikot)"_pair_eam.html,
|
||||
"eam/cd (o)"_pair_eam.html,
|
||||
"eam/fs (gikot)"_pair_eam.html,
|
||||
"eim (o)"_pair_eim.html,
|
||||
"gauss (go)"_pair_gauss.html,
|
||||
@ -1069,7 +1070,6 @@ package"_Section_start.html#start_3.
|
||||
"coul/shield"_pair_coul_shield.html,
|
||||
"dpd/fdt"_pair_dpd_fdt.html,
|
||||
"dpd/fdt/energy (k)"_pair_dpd_fdt.html,
|
||||
"eam/cd (o)"_pair_eam.html,
|
||||
"edip (o)"_pair_edip.html,
|
||||
"edip/multi"_pair_edip.html,
|
||||
"edpd"_pair_meso.html,
|
||||
|
||||
@ -413,15 +413,10 @@ The eam pair styles can only be used via the {pair} keyword of the
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
All of these styles except the {eam/cd} style are part of the MANYBODY
|
||||
package. They are only enabled if LAMMPS was built with that package.
|
||||
All of these styles are part of the MANYBODY package. They are only
|
||||
enabled if LAMMPS was built with that package.
|
||||
See the "Making LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
The {eam/cd} style is part of the USER-MISC package and also requires
|
||||
the MANYBODY package. It is only enabled if LAMMPS was built with
|
||||
those packages. See the "Making LAMMPS"_Section_start.html#start_3
|
||||
section for more info.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
"pair_coeff"_pair_coeff.html
|
||||
|
||||
677
src/MANYBODY/pair_eam_cd.cpp
Normal file
677
src/MANYBODY/pair_eam_cd.cpp
Normal file
@ -0,0 +1,677 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Contributing author: Alexander Stukowski
|
||||
Technical University of Darmstadt,
|
||||
Germany Department of Materials Science
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include "pair_eam_cd.h"
|
||||
#include "atom.h"
|
||||
#include "force.h"
|
||||
#include "comm.h"
|
||||
#include "neighbor.h"
|
||||
#include "neigh_list.h"
|
||||
#include "memory.h"
|
||||
#include "error.h"
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
#define ASSERT(cond)
|
||||
#define MAXLINE 1024 // This sets the maximum line length in EAM input files.
|
||||
|
||||
PairEAMCD::PairEAMCD(LAMMPS *lmp, int _cdeamVersion)
|
||||
: PairEAM(lmp), PairEAMAlloy(lmp), cdeamVersion(_cdeamVersion)
|
||||
{
|
||||
single_enable = 0;
|
||||
restartinfo = 0;
|
||||
|
||||
rhoB = NULL;
|
||||
D_values = NULL;
|
||||
hcoeff = NULL;
|
||||
|
||||
// Set communication buffer sizes needed by this pair style.
|
||||
|
||||
if (cdeamVersion == 1) {
|
||||
comm_forward = 4;
|
||||
comm_reverse = 3;
|
||||
} else if (cdeamVersion == 2) {
|
||||
comm_forward = 3;
|
||||
comm_reverse = 2;
|
||||
} else {
|
||||
error->all(FLERR,"Invalid eam/cd potential version.");
|
||||
}
|
||||
}
|
||||
|
||||
PairEAMCD::~PairEAMCD()
|
||||
{
|
||||
memory->destroy(rhoB);
|
||||
memory->destroy(D_values);
|
||||
if (hcoeff) delete[] hcoeff;
|
||||
}
|
||||
|
||||
void PairEAMCD::compute(int eflag, int vflag)
|
||||
{
|
||||
int i,j,ii,jj,inum,jnum,itype,jtype;
|
||||
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
|
||||
double rsq,rhoip,rhojp,recip,phi;
|
||||
int *ilist,*jlist,*numneigh,**firstneigh;
|
||||
|
||||
evdwl = 0.0;
|
||||
if (eflag || vflag) ev_setup(eflag,vflag);
|
||||
else evflag = vflag_fdotr = eflag_global = eflag_atom = 0;
|
||||
|
||||
// Grow per-atom arrays if necessary
|
||||
|
||||
if (atom->nmax > nmax) {
|
||||
memory->destroy(rho);
|
||||
memory->destroy(fp);
|
||||
memory->destroy(rhoB);
|
||||
memory->destroy(D_values);
|
||||
nmax = atom->nmax;
|
||||
memory->create(rho,nmax,"pair:rho");
|
||||
memory->create(rhoB,nmax,"pair:rhoB");
|
||||
memory->create(fp,nmax,"pair:fp");
|
||||
memory->create(D_values,nmax,"pair:D_values");
|
||||
}
|
||||
|
||||
double **x = atom->x;
|
||||
double **f = atom->f;
|
||||
int *type = atom->type;
|
||||
int nlocal = atom->nlocal;
|
||||
int newton_pair = force->newton_pair;
|
||||
|
||||
inum = list->inum;
|
||||
ilist = list->ilist;
|
||||
numneigh = list->numneigh;
|
||||
firstneigh = list->firstneigh;
|
||||
|
||||
// Zero out per-atom arrays.
|
||||
|
||||
int m = nlocal + atom->nghost;
|
||||
for (i = 0; i < m; i++) {
|
||||
rho[i] = 0.0;
|
||||
rhoB[i] = 0.0;
|
||||
D_values[i] = 0.0;
|
||||
}
|
||||
|
||||
// Stage I
|
||||
|
||||
// Compute rho and rhoB at each local atom site.
|
||||
|
||||
// Additionally calculate the D_i values here if we are using the
|
||||
// one-site formulation. For the two-site formulation we have to
|
||||
// calculate the D values in an extra loop (Stage II).
|
||||
|
||||
for (ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
itype = type[i];
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
for (jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
|
||||
if (rsq < cutforcesq) {
|
||||
jtype = type[j];
|
||||
double r = sqrt(rsq);
|
||||
const EAMTableIndex index = radiusToTableIndex(r);
|
||||
double localrho = RhoOfR(index, jtype, itype);
|
||||
rho[i] += localrho;
|
||||
if (jtype == speciesB) rhoB[i] += localrho;
|
||||
if (newton_pair || j < nlocal) {
|
||||
localrho = RhoOfR(index, itype, jtype);
|
||||
rho[j] += localrho;
|
||||
if (itype == speciesB) rhoB[j] += localrho;
|
||||
}
|
||||
|
||||
if (cdeamVersion == 1 && itype != jtype) {
|
||||
|
||||
// Note: if the i-j interaction is not concentration dependent (because either
|
||||
// i or j are not species A or B) then its contribution to D_i and D_j should
|
||||
// be ignored.
|
||||
// This if-clause is only required for a ternary.
|
||||
|
||||
if ((itype == speciesA && jtype == speciesB)
|
||||
|| (jtype == speciesA && itype == speciesB)) {
|
||||
double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
|
||||
D_values[i] += Phi_AB;
|
||||
if (newton_pair || j < nlocal)
|
||||
D_values[j] += Phi_AB;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Communicate and sum densities.
|
||||
|
||||
if (newton_pair) {
|
||||
communicationStage = 1;
|
||||
comm->reverse_comm_pair(this);
|
||||
}
|
||||
|
||||
// fp = derivative of embedding energy at each atom
|
||||
// phi = embedding energy at each atom
|
||||
|
||||
for (ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
EAMTableIndex index = rhoToTableIndex(rho[i]);
|
||||
fp[i] = FPrimeOfRho(index, type[i]);
|
||||
if (eflag) {
|
||||
phi = FofRho(index, type[i]);
|
||||
if (eflag_global) eng_vdwl += phi;
|
||||
if (eflag_atom) eatom[i] += phi;
|
||||
}
|
||||
}
|
||||
|
||||
// Communicate derivative of embedding function and densities
|
||||
// and D_values (this for one-site formulation only).
|
||||
|
||||
communicationStage = 2;
|
||||
comm->forward_comm_pair(this);
|
||||
|
||||
// The electron densities may not drop to zero because then the
|
||||
// concentration would no longer be defined. But the concentration
|
||||
// is not needed anyway if there is no interaction with another atom,
|
||||
// which is the case if the electron density is exactly zero.
|
||||
// That's why the following lines have been commented out.
|
||||
//
|
||||
//for (i = 0; i < nlocal + atom->nghost; i++) {
|
||||
// if (rho[i] == 0 && (type[i] == speciesA || type[i] == speciesB))
|
||||
// error->one(FLERR,"CD-EAM potential routine: Detected atom with zero electron density.");
|
||||
//}
|
||||
|
||||
// Stage II
|
||||
// This is only required for the original two-site formulation of the CD-EAM potential.
|
||||
|
||||
if (cdeamVersion == 2) {
|
||||
|
||||
// Compute intermediate value D_i for each atom.
|
||||
|
||||
for (ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
itype = type[i];
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
// This code line is required for ternary alloys.
|
||||
|
||||
if (itype != speciesA && itype != speciesB) continue;
|
||||
|
||||
double x_i = rhoB[i] / rho[i]; // Concentration at atom i.
|
||||
|
||||
for (jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
jtype = type[j];
|
||||
if (itype == jtype) continue;
|
||||
|
||||
// This code line is required for ternary alloys.
|
||||
|
||||
if (jtype != speciesA && jtype != speciesB) continue;
|
||||
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
|
||||
if (rsq < cutforcesq) {
|
||||
double r = sqrt(rsq);
|
||||
const EAMTableIndex index = radiusToTableIndex(r);
|
||||
|
||||
// The concentration independent part of the cross pair potential.
|
||||
|
||||
double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
|
||||
|
||||
// Average concentration of two sites
|
||||
|
||||
double x_ij = 0.5 * (x_i + rhoB[j]/rho[j]);
|
||||
|
||||
// Calculate derivative of h(x_ij) polynomial function.
|
||||
|
||||
double h_prime = evalHprime(x_ij);
|
||||
|
||||
D_values[i] += h_prime * Phi_AB / (2.0 * rho[i] * rho[i]);
|
||||
if (newton_pair || j < nlocal)
|
||||
D_values[j] += h_prime * Phi_AB / (2.0 * rho[j] * rho[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Communicate and sum D values.
|
||||
|
||||
if (newton_pair) {
|
||||
communicationStage = 3;
|
||||
comm->reverse_comm_pair(this);
|
||||
}
|
||||
communicationStage = 4;
|
||||
comm->forward_comm_pair(this);
|
||||
}
|
||||
|
||||
// Stage III
|
||||
|
||||
// Compute force acting on each atom.
|
||||
|
||||
for (ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
itype = type[i];
|
||||
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
// Concentration at site i
|
||||
// The value -1 indicates: no concentration dependence for all interactions of atom i.
|
||||
// It will be replaced by the concentration at site i if atom i is either A or B.
|
||||
|
||||
double x_i = -1.0;
|
||||
double D_i, h_prime_i;
|
||||
|
||||
// This if-clause is only required for ternary alloys.
|
||||
|
||||
if ((itype == speciesA || itype == speciesB) && rho[i] != 0.0) {
|
||||
|
||||
// Compute local concentration at site i.
|
||||
|
||||
x_i = rhoB[i]/rho[i];
|
||||
ASSERT(x_i >= 0 && x_i<=1.0);
|
||||
|
||||
if (cdeamVersion == 1) {
|
||||
|
||||
// Calculate derivative of h(x_i) polynomial function.
|
||||
|
||||
h_prime_i = evalHprime(x_i);
|
||||
D_i = D_values[i] * h_prime_i / (2.0 * rho[i] * rho[i]);
|
||||
} else if (cdeamVersion == 2) {
|
||||
D_i = D_values[i];
|
||||
} else {
|
||||
ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
for (jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
|
||||
if (rsq < cutforcesq) {
|
||||
jtype = type[j];
|
||||
double r = sqrt(rsq);
|
||||
const EAMTableIndex index = radiusToTableIndex(r);
|
||||
|
||||
// rhoip = derivative of (density at atom j due to atom i)
|
||||
// rhojp = derivative of (density at atom i due to atom j)
|
||||
// psip needs both fp[i] and fp[j] terms since r_ij appears in two
|
||||
// terms of embed eng: Fi(sum rho_ij) and Fj(sum rho_ji)
|
||||
// hence embed' = Fi(sum rho_ij) rhojp + Fj(sum rho_ji) rhoip
|
||||
|
||||
rhoip = RhoPrimeOfR(index, itype, jtype);
|
||||
rhojp = RhoPrimeOfR(index, jtype, itype);
|
||||
fpair = fp[i]*rhojp + fp[j]*rhoip;
|
||||
recip = 1.0/r;
|
||||
|
||||
// The value -1 indicates: no concentration dependence for this
|
||||
// i-j pair because atom j is not of species A nor B.
|
||||
|
||||
double x_j = -1;
|
||||
|
||||
// This code line is required for ternary alloy.
|
||||
|
||||
if (jtype == speciesA || jtype == speciesB) {
|
||||
ASSERT(rho[i] != 0.0);
|
||||
ASSERT(rho[j] != 0.0);
|
||||
|
||||
// Compute local concentration at site j.
|
||||
|
||||
x_j = rhoB[j]/rho[j];
|
||||
ASSERT(x_j >= 0 && x_j<=1.0);
|
||||
|
||||
double D_j=0.0;
|
||||
if (cdeamVersion == 1) {
|
||||
|
||||
// Calculate derivative of h(x_j) polynomial function.
|
||||
|
||||
double h_prime_j = evalHprime(x_j);
|
||||
D_j = D_values[j] * h_prime_j / (2.0 * rho[j] * rho[j]);
|
||||
} else if (cdeamVersion == 2) {
|
||||
D_j = D_values[j];
|
||||
} else {
|
||||
ASSERT(false);
|
||||
}
|
||||
double t2 = -rhoB[j];
|
||||
if (itype == speciesB) t2 += rho[j];
|
||||
fpair += D_j * rhoip * t2;
|
||||
}
|
||||
|
||||
// This if-clause is only required for a ternary alloy.
|
||||
// Actually we don't need it at all because D_i should be zero
|
||||
// anyway if atom i has no concentration dependent interactions
|
||||
// (because it is not species A or B).
|
||||
|
||||
if (x_i != -1.0) {
|
||||
double t1 = -rhoB[i];
|
||||
if (jtype == speciesB) t1 += rho[i];
|
||||
fpair += D_i * rhojp * t1;
|
||||
}
|
||||
|
||||
double phip;
|
||||
double phi = PhiOfR(index, itype, jtype, recip, phip);
|
||||
if (itype == jtype || x_i == -1.0 || x_j == -1.0) {
|
||||
|
||||
// Case of no concentration dependence.
|
||||
|
||||
fpair += phip;
|
||||
} else {
|
||||
|
||||
// We have a concentration dependence for the i-j interaction.
|
||||
|
||||
double h=0.0;
|
||||
if (cdeamVersion == 1) {
|
||||
|
||||
// Calculate h(x_i) polynomial function.
|
||||
|
||||
double h_i = evalH(x_i);
|
||||
|
||||
// Calculate h(x_j) polynomial function.
|
||||
|
||||
double h_j = evalH(x_j);
|
||||
h = 0.5 * (h_i + h_j);
|
||||
} else if (cdeamVersion == 2) {
|
||||
|
||||
// Average concentration.
|
||||
|
||||
double x_ij = 0.5 * (x_i + x_j);
|
||||
|
||||
// Calculate h(x_ij) polynomial function.
|
||||
|
||||
h = evalH(x_ij);
|
||||
} else {
|
||||
ASSERT(false);
|
||||
}
|
||||
fpair += h * phip;
|
||||
phi *= h;
|
||||
}
|
||||
|
||||
// Divide by r_ij and negate to get forces from gradient.
|
||||
|
||||
fpair /= -r;
|
||||
|
||||
f[i][0] += delx*fpair;
|
||||
f[i][1] += dely*fpair;
|
||||
f[i][2] += delz*fpair;
|
||||
if (newton_pair || j < nlocal) {
|
||||
f[j][0] -= delx*fpair;
|
||||
f[j][1] -= dely*fpair;
|
||||
f[j][2] -= delz*fpair;
|
||||
}
|
||||
|
||||
if (eflag) evdwl = phi;
|
||||
if (evflag) ev_tally(i,j,nlocal,newton_pair,evdwl,0.0,fpair,delx,dely,delz);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (vflag_fdotr) virial_fdotr_compute();
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairEAMCD::coeff(int narg, char **arg)
|
||||
{
|
||||
PairEAMAlloy::coeff(narg, arg);
|
||||
|
||||
// Make sure the EAM file is a CD-EAM binary alloy.
|
||||
|
||||
if (setfl->nelements < 2)
|
||||
error->all(FLERR,"The EAM file must contain at least 2 elements to be used with the eam/cd pair style.");
|
||||
|
||||
// Read in the coefficients of the h polynomial from the end of the EAM file.
|
||||
|
||||
read_h_coeff(arg[2]);
|
||||
|
||||
// Determine which atom type is the A species and which is the B
|
||||
// species in the alloy. By default take the first element (index 0)
|
||||
// in the EAM file as the A species and the second element (index 1)
|
||||
// in the EAM file as the B species.
|
||||
|
||||
speciesA = -1;
|
||||
speciesB = -1;
|
||||
for (int i = 1; i <= atom->ntypes; i++) {
|
||||
if (map[i] == 0) {
|
||||
if (speciesA >= 0)
|
||||
error->all(FLERR,"The first element from the EAM file may only be mapped to a single atom type.");
|
||||
speciesA = i;
|
||||
}
|
||||
if (map[i] == 1) {
|
||||
if (speciesB >= 0)
|
||||
error->all(FLERR,"The second element from the EAM file may only be mapped to a single atom type.");
|
||||
speciesB = i;
|
||||
}
|
||||
}
|
||||
if (speciesA < 0)
|
||||
error->all(FLERR,"The first element from the EAM file must be mapped to exactly one atom type.");
|
||||
if (speciesB < 0)
|
||||
error->all(FLERR,"The second element from the EAM file must be mapped to exactly one atom type.");
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Reads in the h(x) polynomial coefficients
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void PairEAMCD::read_h_coeff(char *filename)
|
||||
{
|
||||
if (comm->me == 0) {
|
||||
|
||||
// Open potential file
|
||||
|
||||
FILE *fptr;
|
||||
char line[MAXLINE];
|
||||
char nextline[MAXLINE];
|
||||
fptr = force->open_potential(filename);
|
||||
if (fptr == NULL) {
|
||||
char str[128];
|
||||
sprintf(str,"Cannot open EAM potential file %s", filename);
|
||||
error->one(FLERR,str);
|
||||
}
|
||||
|
||||
// h coefficients are stored at the end of the file.
|
||||
// Skip to last line of file.
|
||||
|
||||
while(fgets(nextline, MAXLINE, fptr) != NULL) {
|
||||
strcpy(line, nextline);
|
||||
}
|
||||
char* ptr = strtok(line, " \t\n\r\f");
|
||||
int degree = atoi(ptr);
|
||||
nhcoeff = degree+1;
|
||||
hcoeff = new double[nhcoeff];
|
||||
int i = 0;
|
||||
while((ptr = strtok(NULL," \t\n\r\f")) != NULL && i < nhcoeff) {
|
||||
hcoeff[i++] = atof(ptr);
|
||||
}
|
||||
if (i != nhcoeff || nhcoeff < 1)
|
||||
error->one(FLERR,"Failed to read h(x) function coefficients from EAM file.");
|
||||
|
||||
// Close the potential file.
|
||||
|
||||
fclose(fptr);
|
||||
}
|
||||
|
||||
MPI_Bcast(&nhcoeff, 1, MPI_INT, 0, world);
|
||||
if (comm->me != 0) hcoeff = new double[nhcoeff];
|
||||
MPI_Bcast(hcoeff, nhcoeff, MPI_DOUBLE, 0, world);
|
||||
}
|
||||
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
int PairEAMCD::pack_forward_comm(int n, int *list, double *buf,
|
||||
int pbc_flag, int *pbc)
|
||||
{
|
||||
int i,j,m;
|
||||
|
||||
m = 0;
|
||||
if (communicationStage == 2) {
|
||||
if (cdeamVersion == 1) {
|
||||
for (i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
buf[m++] = fp[j];
|
||||
buf[m++] = rho[j];
|
||||
buf[m++] = rhoB[j];
|
||||
buf[m++] = D_values[j];
|
||||
}
|
||||
return m;
|
||||
} else if (cdeamVersion == 2) {
|
||||
for (i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
buf[m++] = fp[j];
|
||||
buf[m++] = rho[j];
|
||||
buf[m++] = rhoB[j];
|
||||
}
|
||||
return m;
|
||||
} else { ASSERT(false); return 0; }
|
||||
} else if (communicationStage == 4) {
|
||||
for (i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
buf[m++] = D_values[j];
|
||||
}
|
||||
return m;
|
||||
} else return 0;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairEAMCD::unpack_forward_comm(int n, int first, double *buf)
|
||||
{
|
||||
int i,m,last;
|
||||
|
||||
m = 0;
|
||||
last = first + n;
|
||||
if (communicationStage == 2) {
|
||||
if (cdeamVersion == 1) {
|
||||
for (i = first; i < last; i++) {
|
||||
fp[i] = buf[m++];
|
||||
rho[i] = buf[m++];
|
||||
rhoB[i] = buf[m++];
|
||||
D_values[i] = buf[m++];
|
||||
}
|
||||
} else if (cdeamVersion == 2) {
|
||||
for (i = first; i < last; i++) {
|
||||
fp[i] = buf[m++];
|
||||
rho[i] = buf[m++];
|
||||
rhoB[i] = buf[m++];
|
||||
}
|
||||
} else {
|
||||
ASSERT(false);
|
||||
}
|
||||
} else if (communicationStage == 4) {
|
||||
for (i = first; i < last; i++) {
|
||||
D_values[i] = buf[m++];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
int PairEAMCD::pack_reverse_comm(int n, int first, double *buf)
|
||||
{
|
||||
int i,m,last;
|
||||
|
||||
m = 0;
|
||||
last = first + n;
|
||||
|
||||
if (communicationStage == 1) {
|
||||
if (cdeamVersion == 1) {
|
||||
for (i = first; i < last; i++) {
|
||||
buf[m++] = rho[i];
|
||||
buf[m++] = rhoB[i];
|
||||
buf[m++] = D_values[i];
|
||||
}
|
||||
return m;
|
||||
} else if (cdeamVersion == 2) {
|
||||
for (i = first; i < last; i++) {
|
||||
buf[m++] = rho[i];
|
||||
buf[m++] = rhoB[i];
|
||||
}
|
||||
return m;
|
||||
} else { ASSERT(false); return 0; }
|
||||
} else if (communicationStage == 3) {
|
||||
for (i = first; i < last; i++) {
|
||||
buf[m++] = D_values[i];
|
||||
}
|
||||
return m;
|
||||
} else return 0;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairEAMCD::unpack_reverse_comm(int n, int *list, double *buf)
|
||||
{
|
||||
int i,j,m;
|
||||
|
||||
m = 0;
|
||||
if (communicationStage == 1) {
|
||||
if (cdeamVersion == 1) {
|
||||
for (i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
rho[j] += buf[m++];
|
||||
rhoB[j] += buf[m++];
|
||||
D_values[j] += buf[m++];
|
||||
}
|
||||
} else if (cdeamVersion == 2) {
|
||||
for (i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
rho[j] += buf[m++];
|
||||
rhoB[j] += buf[m++];
|
||||
}
|
||||
} else {
|
||||
ASSERT(false);
|
||||
}
|
||||
} else if (communicationStage == 3) {
|
||||
for (i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
D_values[j] += buf[m++];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
memory usage of local atom-based arrays
|
||||
------------------------------------------------------------------------- */
|
||||
double PairEAMCD::memory_usage()
|
||||
{
|
||||
double bytes = 2 * nmax * sizeof(double);
|
||||
return PairEAMAlloy::memory_usage() + bytes;
|
||||
}
|
||||
@ -13,8 +13,8 @@
|
||||
|
||||
#ifdef PAIR_CLASS
|
||||
|
||||
PairStyle(eam/cd,PairCDEAM_OneSite)
|
||||
PairStyle(eam/cd/old,PairCDEAM_TwoSite)
|
||||
PairStyle(eam/cd,PairEAMCD_OneSite)
|
||||
PairStyle(eam/cd/old,PairEAMCD_TwoSite)
|
||||
|
||||
#else
|
||||
|
||||
@ -25,14 +25,14 @@ PairStyle(eam/cd/old,PairCDEAM_TwoSite)
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
class PairCDEAM : public PairEAMAlloy
|
||||
class PairEAMCD : public PairEAMAlloy
|
||||
{
|
||||
public:
|
||||
/// Constructor.
|
||||
PairCDEAM(class LAMMPS*, int cdeamVersion);
|
||||
PairEAMCD(class LAMMPS*, int cdeamVersion);
|
||||
|
||||
/// Destructor.
|
||||
virtual ~PairCDEAM();
|
||||
virtual ~PairEAMCD();
|
||||
|
||||
/// Calculates the energies and forces for all atoms in the system.
|
||||
virtual void compute(int, int);
|
||||
@ -211,19 +211,19 @@ public:
|
||||
};
|
||||
|
||||
/// The one-site concentration formulation of CD-EAM.
|
||||
class PairCDEAM_OneSite : public PairCDEAM
|
||||
class PairEAMCD_OneSite : public PairEAMCD
|
||||
{
|
||||
public:
|
||||
/// Constructor.
|
||||
PairCDEAM_OneSite(class LAMMPS* lmp) : PairEAM(lmp), PairCDEAM(lmp, 1) {}
|
||||
PairEAMCD_OneSite(class LAMMPS* lmp) : PairEAM(lmp), PairEAMCD(lmp, 1) {}
|
||||
};
|
||||
|
||||
/// The two-site concentration formulation of CD-EAM.
|
||||
class PairCDEAM_TwoSite : public PairCDEAM
|
||||
class PairEAMCD_TwoSite : public PairEAMCD
|
||||
{
|
||||
public:
|
||||
/// Constructor.
|
||||
PairCDEAM_TwoSite(class LAMMPS* lmp) : PairEAM(lmp), PairCDEAM(lmp, 2) {}
|
||||
PairEAMCD_TwoSite(class LAMMPS* lmp) : PairEAM(lmp), PairEAMCD(lmp, 2) {}
|
||||
};
|
||||
|
||||
}
|
||||
@ -1,40 +0,0 @@
|
||||
# Install/unInstall package files in LAMMPS
|
||||
# mode = 0/1/2 for uninstall/install/update
|
||||
|
||||
mode=$1
|
||||
|
||||
# enforce using portable C locale
|
||||
LC_ALL=C
|
||||
export LC_ALL
|
||||
|
||||
# arg1 = file, arg2 = file it depends on
|
||||
|
||||
action () {
|
||||
if (test $mode = 0) then
|
||||
rm -f ../$1
|
||||
elif (! cmp -s $1 ../$1) then
|
||||
if (test -z "$2" || test -e ../$2) then
|
||||
cp $1 ..
|
||||
if (test $mode = 2) then
|
||||
echo " updating src/$1"
|
||||
fi
|
||||
fi
|
||||
elif (test ! -n "$2") then
|
||||
if (test ! -e ../$2) then
|
||||
rm -f ../$1
|
||||
fi
|
||||
fi
|
||||
}
|
||||
|
||||
# all package files
|
||||
# only a few files have dependencies
|
||||
|
||||
for file in *.cpp *.h; do
|
||||
if (test $file = "pair_cdeam.cpp") then
|
||||
action pair_cdeam.cpp pair_eam_alloy.cpp
|
||||
elif (test $file = "pair_cdeam.h") then
|
||||
action pair_cdeam.h pair_eam_alloy.cpp
|
||||
else
|
||||
test -f ${file} && action $file
|
||||
fi
|
||||
done
|
||||
@ -65,7 +65,6 @@ pair_style buck/mdf, Paolo Raiteri, p.raiteri at curtin.edu.au, 2 Dec 15
|
||||
pair_style coul/diel, Axel Kohlmeyer, akohlmey at gmail.com, 1 Dec 11
|
||||
pair_style dipole/sf, Mario Orsi, orsimario at gmail.com, 8 Aug 11
|
||||
pair_style edip, Luca Ferraro, luca.ferraro at caspur.it, 15 Sep 11
|
||||
pair_style eam/cd, Alexander Stukowski, stukowski at mm.tu-darmstadt.de, 7 Nov 09
|
||||
pair_style extep, Jaap Kroes (Radboud U), jaapkroes at gmail dot com, 28 Nov 17
|
||||
pair_style gauss/cut, Axel Kohlmeyer, akohlmey at gmail.com, 1 Dec 11
|
||||
pair_style lennard/mdf, Paolo Raiteri, p.raiteri at curtin.edu.au, 2 Dec 15
|
||||
|
||||
@ -1,644 +0,0 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
http://lammps.sandia.gov, Sandia National Laboratories
|
||||
Steve Plimpton, sjplimp@sandia.gov
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Contributing author: Alexander Stukowski
|
||||
Technical University of Darmstadt,
|
||||
Germany Department of Materials Science
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <cstdlib>
|
||||
#include <cstring>
|
||||
#include "pair_cdeam.h"
|
||||
#include "atom.h"
|
||||
#include "force.h"
|
||||
#include "comm.h"
|
||||
#include "neighbor.h"
|
||||
#include "neigh_list.h"
|
||||
#include "memory.h"
|
||||
#include "error.h"
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
// This is for debugging purposes. The ASSERT() macro is used in the code to check
|
||||
// if everything runs as expected. Change this to #if 0 if you don't need the checking.
|
||||
#if 0
|
||||
#define ASSERT(cond) ((!(cond)) ? my_failure(error,__FILE__,__LINE__) : my_noop())
|
||||
|
||||
inline void my_noop() {}
|
||||
inline void my_failure(Error* error, const char* file, int line) {
|
||||
char str[1024];
|
||||
sprintf(str,"Assertion failure: File %s, line %i", file, line);
|
||||
error->one(FLERR,str);
|
||||
}
|
||||
#else
|
||||
#define ASSERT(cond)
|
||||
#endif
|
||||
|
||||
#define MAXLINE 1024 // This sets the maximum line length in EAM input files.
|
||||
|
||||
PairCDEAM::PairCDEAM(LAMMPS *lmp, int _cdeamVersion) : PairEAM(lmp), PairEAMAlloy(lmp), cdeamVersion(_cdeamVersion)
|
||||
{
|
||||
single_enable = 0;
|
||||
restartinfo = 0;
|
||||
|
||||
rhoB = NULL;
|
||||
D_values = NULL;
|
||||
hcoeff = NULL;
|
||||
|
||||
// Set communication buffer sizes needed by this pair style.
|
||||
if(cdeamVersion == 1) {
|
||||
comm_forward = 4;
|
||||
comm_reverse = 3;
|
||||
}
|
||||
else if(cdeamVersion == 2) {
|
||||
comm_forward = 3;
|
||||
comm_reverse = 2;
|
||||
}
|
||||
else {
|
||||
error->all(FLERR,"Invalid CD-EAM potential version.");
|
||||
}
|
||||
}
|
||||
|
||||
PairCDEAM::~PairCDEAM()
|
||||
{
|
||||
memory->destroy(rhoB);
|
||||
memory->destroy(D_values);
|
||||
if(hcoeff) delete[] hcoeff;
|
||||
}
|
||||
|
||||
void PairCDEAM::compute(int eflag, int vflag)
|
||||
{
|
||||
int i,j,ii,jj,inum,jnum,itype,jtype;
|
||||
double xtmp,ytmp,ztmp,delx,dely,delz,evdwl,fpair;
|
||||
double rsq,rhoip,rhojp,recip,phi;
|
||||
int *ilist,*jlist,*numneigh,**firstneigh;
|
||||
|
||||
evdwl = 0.0;
|
||||
if (eflag || vflag) ev_setup(eflag,vflag);
|
||||
else evflag = vflag_fdotr = eflag_global = eflag_atom = 0;
|
||||
|
||||
// Grow per-atom arrays if necessary
|
||||
if(atom->nmax > nmax) {
|
||||
memory->destroy(rho);
|
||||
memory->destroy(fp);
|
||||
memory->destroy(rhoB);
|
||||
memory->destroy(D_values);
|
||||
nmax = atom->nmax;
|
||||
memory->create(rho,nmax,"pair:rho");
|
||||
memory->create(rhoB,nmax,"pair:rhoB");
|
||||
memory->create(fp,nmax,"pair:fp");
|
||||
memory->create(D_values,nmax,"pair:D_values");
|
||||
}
|
||||
|
||||
double **x = atom->x;
|
||||
double **f = atom->f;
|
||||
int *type = atom->type;
|
||||
int nlocal = atom->nlocal;
|
||||
int newton_pair = force->newton_pair;
|
||||
|
||||
inum = list->inum;
|
||||
ilist = list->ilist;
|
||||
numneigh = list->numneigh;
|
||||
firstneigh = list->firstneigh;
|
||||
|
||||
// Zero out per-atom arrays.
|
||||
int m = nlocal + atom->nghost;
|
||||
for(i = 0; i < m; i++) {
|
||||
rho[i] = 0.0;
|
||||
rhoB[i] = 0.0;
|
||||
D_values[i] = 0.0;
|
||||
}
|
||||
|
||||
// Stage I
|
||||
|
||||
// Compute rho and rhoB at each local atom site.
|
||||
// Additionally calculate the D_i values here if we are using the one-site formulation.
|
||||
// For the two-site formulation we have to calculate the D values in an extra loop (Stage II).
|
||||
for(ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
itype = type[i];
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
for(jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
|
||||
if(rsq < cutforcesq) {
|
||||
jtype = type[j];
|
||||
double r = sqrt(rsq);
|
||||
const EAMTableIndex index = radiusToTableIndex(r);
|
||||
double localrho = RhoOfR(index, jtype, itype);
|
||||
rho[i] += localrho;
|
||||
if(jtype == speciesB) rhoB[i] += localrho;
|
||||
if(newton_pair || j < nlocal) {
|
||||
localrho = RhoOfR(index, itype, jtype);
|
||||
rho[j] += localrho;
|
||||
if(itype == speciesB) rhoB[j] += localrho;
|
||||
}
|
||||
|
||||
if(cdeamVersion == 1 && itype != jtype) {
|
||||
// Note: if the i-j interaction is not concentration dependent (because either
|
||||
// i or j are not species A or B) then its contribution to D_i and D_j should
|
||||
// be ignored.
|
||||
// This if-clause is only required for a ternary.
|
||||
if((itype == speciesA && jtype == speciesB) || (jtype == speciesA && itype == speciesB)) {
|
||||
double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
|
||||
D_values[i] += Phi_AB;
|
||||
if(newton_pair || j < nlocal)
|
||||
D_values[j] += Phi_AB;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Communicate and sum densities.
|
||||
if(newton_pair) {
|
||||
communicationStage = 1;
|
||||
comm->reverse_comm_pair(this);
|
||||
}
|
||||
|
||||
// fp = derivative of embedding energy at each atom
|
||||
// phi = embedding energy at each atom
|
||||
for(ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
EAMTableIndex index = rhoToTableIndex(rho[i]);
|
||||
fp[i] = FPrimeOfRho(index, type[i]);
|
||||
if(eflag) {
|
||||
phi = FofRho(index, type[i]);
|
||||
if (eflag_global) eng_vdwl += phi;
|
||||
if (eflag_atom) eatom[i] += phi;
|
||||
}
|
||||
}
|
||||
|
||||
// Communicate derivative of embedding function and densities
|
||||
// and D_values (this for one-site formulation only).
|
||||
communicationStage = 2;
|
||||
comm->forward_comm_pair(this);
|
||||
|
||||
// The electron densities may not drop to zero because then the concentration would no longer be defined.
|
||||
// But the concentration is not needed anyway if there is no interaction with another atom, which is the case
|
||||
// if the electron density is exactly zero. That's why the following lines have been commented out.
|
||||
//
|
||||
//for(i = 0; i < nlocal + atom->nghost; i++) {
|
||||
// if(rho[i] == 0 && (type[i] == speciesA || type[i] == speciesB))
|
||||
// error->one(FLERR,"CD-EAM potential routine: Detected atom with zero electron density.");
|
||||
//}
|
||||
|
||||
// Stage II
|
||||
// This is only required for the original two-site formulation of the CD-EAM potential.
|
||||
|
||||
if(cdeamVersion == 2) {
|
||||
// Compute intermediate value D_i for each atom.
|
||||
for(ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
itype = type[i];
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
// This code line is required for ternary alloys.
|
||||
if(itype != speciesA && itype != speciesB) continue;
|
||||
|
||||
double x_i = rhoB[i] / rho[i]; // Concentration at atom i.
|
||||
|
||||
for(jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
jtype = type[j];
|
||||
if(itype == jtype) continue;
|
||||
|
||||
// This code line is required for ternary alloys.
|
||||
if(jtype != speciesA && jtype != speciesB) continue;
|
||||
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
|
||||
if(rsq < cutforcesq) {
|
||||
double r = sqrt(rsq);
|
||||
const EAMTableIndex index = radiusToTableIndex(r);
|
||||
|
||||
// The concentration independent part of the cross pair potential.
|
||||
double Phi_AB = PhiOfR(index, itype, jtype, 1.0 / r);
|
||||
|
||||
// Average concentration of two sites
|
||||
double x_ij = 0.5 * (x_i + rhoB[j]/rho[j]);
|
||||
|
||||
// Calculate derivative of h(x_ij) polynomial function.
|
||||
double h_prime = evalHprime(x_ij);
|
||||
|
||||
D_values[i] += h_prime * Phi_AB / (2.0 * rho[i] * rho[i]);
|
||||
if(newton_pair || j < nlocal)
|
||||
D_values[j] += h_prime * Phi_AB / (2.0 * rho[j] * rho[j]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Communicate and sum D values.
|
||||
if(newton_pair) {
|
||||
communicationStage = 3;
|
||||
comm->reverse_comm_pair(this);
|
||||
}
|
||||
communicationStage = 4;
|
||||
comm->forward_comm_pair(this);
|
||||
}
|
||||
|
||||
// Stage III
|
||||
|
||||
// Compute force acting on each atom.
|
||||
for(ii = 0; ii < inum; ii++) {
|
||||
i = ilist[ii];
|
||||
xtmp = x[i][0];
|
||||
ytmp = x[i][1];
|
||||
ztmp = x[i][2];
|
||||
itype = type[i];
|
||||
|
||||
jlist = firstneigh[i];
|
||||
jnum = numneigh[i];
|
||||
|
||||
// Concentration at site i
|
||||
double x_i = -1.0; // The value -1 indicates: no concentration dependence for all interactions of atom i.
|
||||
// It will be replaced by the concentration at site i if atom i is either A or B.
|
||||
|
||||
double D_i, h_prime_i;
|
||||
|
||||
// This if-clause is only required for ternary alloys.
|
||||
if((itype == speciesA || itype == speciesB) && rho[i] != 0.0) {
|
||||
|
||||
// Compute local concentration at site i.
|
||||
x_i = rhoB[i]/rho[i];
|
||||
ASSERT(x_i >= 0 && x_i<=1.0);
|
||||
|
||||
if(cdeamVersion == 1) {
|
||||
// Calculate derivative of h(x_i) polynomial function.
|
||||
h_prime_i = evalHprime(x_i);
|
||||
D_i = D_values[i] * h_prime_i / (2.0 * rho[i] * rho[i]);
|
||||
} else if(cdeamVersion == 2) {
|
||||
D_i = D_values[i];
|
||||
} else {
|
||||
ASSERT(false);
|
||||
}
|
||||
}
|
||||
|
||||
for(jj = 0; jj < jnum; jj++) {
|
||||
j = jlist[jj];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
delx = xtmp - x[j][0];
|
||||
dely = ytmp - x[j][1];
|
||||
delz = ztmp - x[j][2];
|
||||
rsq = delx*delx + dely*dely + delz*delz;
|
||||
|
||||
if(rsq < cutforcesq) {
|
||||
jtype = type[j];
|
||||
double r = sqrt(rsq);
|
||||
const EAMTableIndex index = radiusToTableIndex(r);
|
||||
|
||||
// rhoip = derivative of (density at atom j due to atom i)
|
||||
// rhojp = derivative of (density at atom i due to atom j)
|
||||
// psip needs both fp[i] and fp[j] terms since r_ij appears in two
|
||||
// terms of embed eng: Fi(sum rho_ij) and Fj(sum rho_ji)
|
||||
// hence embed' = Fi(sum rho_ij) rhojp + Fj(sum rho_ji) rhoip
|
||||
rhoip = RhoPrimeOfR(index, itype, jtype);
|
||||
rhojp = RhoPrimeOfR(index, jtype, itype);
|
||||
fpair = fp[i]*rhojp + fp[j]*rhoip;
|
||||
recip = 1.0/r;
|
||||
|
||||
double x_j = -1; // The value -1 indicates: no concentration dependence for this i-j pair
|
||||
// because atom j is not of species A nor B.
|
||||
|
||||
// This code line is required for ternary alloy.
|
||||
if(jtype == speciesA || jtype == speciesB) {
|
||||
ASSERT(rho[i] != 0.0);
|
||||
ASSERT(rho[j] != 0.0);
|
||||
|
||||
// Compute local concentration at site j.
|
||||
x_j = rhoB[j]/rho[j];
|
||||
ASSERT(x_j >= 0 && x_j<=1.0);
|
||||
|
||||
double D_j=0.0;
|
||||
if(cdeamVersion == 1) {
|
||||
// Calculate derivative of h(x_j) polynomial function.
|
||||
double h_prime_j = evalHprime(x_j);
|
||||
D_j = D_values[j] * h_prime_j / (2.0 * rho[j] * rho[j]);
|
||||
} else if(cdeamVersion == 2) {
|
||||
D_j = D_values[j];
|
||||
} else {
|
||||
ASSERT(false);
|
||||
}
|
||||
double t2 = -rhoB[j];
|
||||
if(itype == speciesB) t2 += rho[j];
|
||||
fpair += D_j * rhoip * t2;
|
||||
}
|
||||
|
||||
// This if-clause is only required for a ternary alloy.
|
||||
// Actually we don't need it at all because D_i should be zero anyway if
|
||||
// atom i has no concentration dependent interactions (because it is not species A or B).
|
||||
if(x_i != -1.0) {
|
||||
double t1 = -rhoB[i];
|
||||
if(jtype == speciesB) t1 += rho[i];
|
||||
fpair += D_i * rhojp * t1;
|
||||
}
|
||||
|
||||
double phip;
|
||||
double phi = PhiOfR(index, itype, jtype, recip, phip);
|
||||
if(itype == jtype || x_i == -1.0 || x_j == -1.0) {
|
||||
// Case of no concentration dependence.
|
||||
fpair += phip;
|
||||
} else {
|
||||
// We have a concentration dependence for the i-j interaction.
|
||||
double h=0.0;
|
||||
if(cdeamVersion == 1) {
|
||||
// Calculate h(x_i) polynomial function.
|
||||
double h_i = evalH(x_i);
|
||||
// Calculate h(x_j) polynomial function.
|
||||
double h_j = evalH(x_j);
|
||||
h = 0.5 * (h_i + h_j);
|
||||
} else if(cdeamVersion == 2) {
|
||||
// Average concentration.
|
||||
double x_ij = 0.5 * (x_i + x_j);
|
||||
// Calculate h(x_ij) polynomial function.
|
||||
h = evalH(x_ij);
|
||||
} else {
|
||||
ASSERT(false);
|
||||
}
|
||||
fpair += h * phip;
|
||||
phi *= h;
|
||||
}
|
||||
|
||||
// Divide by r_ij and negate to get forces from gradient.
|
||||
fpair /= -r;
|
||||
|
||||
f[i][0] += delx*fpair;
|
||||
f[i][1] += dely*fpair;
|
||||
f[i][2] += delz*fpair;
|
||||
if(newton_pair || j < nlocal) {
|
||||
f[j][0] -= delx*fpair;
|
||||
f[j][1] -= dely*fpair;
|
||||
f[j][2] -= delz*fpair;
|
||||
}
|
||||
|
||||
if(eflag) evdwl = phi;
|
||||
if(evflag) ev_tally(i,j,nlocal,newton_pair,evdwl,0.0,fpair,delx,dely,delz);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(vflag_fdotr) virial_fdotr_compute();
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairCDEAM::coeff(int narg, char **arg)
|
||||
{
|
||||
PairEAMAlloy::coeff(narg, arg);
|
||||
|
||||
// Make sure the EAM file is a CD-EAM binary alloy.
|
||||
if(setfl->nelements < 2)
|
||||
error->all(FLERR,"The EAM file must contain at least 2 elements to be used with the eam/cd pair style.");
|
||||
|
||||
// Read in the coefficients of the h polynomial from the end of the EAM file.
|
||||
read_h_coeff(arg[2]);
|
||||
|
||||
// Determine which atom type is the A species and which is the B species in the alloy.
|
||||
// By default take the first element (index 0) in the EAM file as the A species
|
||||
// and the second element (index 1) in the EAM file as the B species.
|
||||
speciesA = -1;
|
||||
speciesB = -1;
|
||||
for(int i = 1; i <= atom->ntypes; i++) {
|
||||
if(map[i] == 0) {
|
||||
if(speciesA >= 0)
|
||||
error->all(FLERR,"The first element from the EAM file may only be mapped to a single atom type.");
|
||||
speciesA = i;
|
||||
}
|
||||
if(map[i] == 1) {
|
||||
if(speciesB >= 0)
|
||||
error->all(FLERR,"The second element from the EAM file may only be mapped to a single atom type.");
|
||||
speciesB = i;
|
||||
}
|
||||
}
|
||||
if(speciesA < 0)
|
||||
error->all(FLERR,"The first element from the EAM file must be mapped to exactly one atom type.");
|
||||
if(speciesB < 0)
|
||||
error->all(FLERR,"The second element from the EAM file must be mapped to exactly one atom type.");
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Reads in the h(x) polynomial coefficients
|
||||
------------------------------------------------------------------------- */
|
||||
void PairCDEAM::read_h_coeff(char *filename)
|
||||
{
|
||||
if(comm->me == 0) {
|
||||
// Open potential file
|
||||
FILE *fptr;
|
||||
char line[MAXLINE];
|
||||
char nextline[MAXLINE];
|
||||
fptr = force->open_potential(filename);
|
||||
if (fptr == NULL) {
|
||||
char str[128];
|
||||
sprintf(str,"Cannot open EAM potential file %s", filename);
|
||||
error->one(FLERR,str);
|
||||
}
|
||||
|
||||
// h coefficients are stored at the end of the file.
|
||||
// Skip to last line of file.
|
||||
while(fgets(nextline, MAXLINE, fptr) != NULL) {
|
||||
strcpy(line, nextline);
|
||||
}
|
||||
char* ptr = strtok(line, " \t\n\r\f");
|
||||
int degree = atoi(ptr);
|
||||
nhcoeff = degree+1;
|
||||
hcoeff = new double[nhcoeff];
|
||||
int i = 0;
|
||||
while((ptr = strtok(NULL," \t\n\r\f")) != NULL && i < nhcoeff) {
|
||||
hcoeff[i++] = atof(ptr);
|
||||
}
|
||||
if(i != nhcoeff || nhcoeff < 1)
|
||||
error->one(FLERR,"Failed to read h(x) function coefficients from EAM file.");
|
||||
|
||||
// Close the potential file.
|
||||
fclose(fptr);
|
||||
}
|
||||
|
||||
MPI_Bcast(&nhcoeff, 1, MPI_INT, 0, world);
|
||||
if(comm->me != 0) hcoeff = new double[nhcoeff];
|
||||
MPI_Bcast(hcoeff, nhcoeff, MPI_DOUBLE, 0, world);
|
||||
}
|
||||
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
int PairCDEAM::pack_forward_comm(int n, int *list, double *buf,
|
||||
int pbc_flag, int *pbc)
|
||||
{
|
||||
int i,j,m;
|
||||
|
||||
m = 0;
|
||||
if(communicationStage == 2) {
|
||||
if(cdeamVersion == 1) {
|
||||
for (i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
buf[m++] = fp[j];
|
||||
buf[m++] = rho[j];
|
||||
buf[m++] = rhoB[j];
|
||||
buf[m++] = D_values[j];
|
||||
}
|
||||
return m;
|
||||
}
|
||||
else if(cdeamVersion == 2) {
|
||||
for (i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
buf[m++] = fp[j];
|
||||
buf[m++] = rho[j];
|
||||
buf[m++] = rhoB[j];
|
||||
}
|
||||
return m;
|
||||
}
|
||||
else { ASSERT(false); return 0; }
|
||||
}
|
||||
else if(communicationStage == 4) {
|
||||
for (i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
buf[m++] = D_values[j];
|
||||
}
|
||||
return m;
|
||||
}
|
||||
else return 0;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairCDEAM::unpack_forward_comm(int n, int first, double *buf)
|
||||
{
|
||||
int i,m,last;
|
||||
|
||||
m = 0;
|
||||
last = first + n;
|
||||
if(communicationStage == 2) {
|
||||
if(cdeamVersion == 1) {
|
||||
for(i = first; i < last; i++) {
|
||||
fp[i] = buf[m++];
|
||||
rho[i] = buf[m++];
|
||||
rhoB[i] = buf[m++];
|
||||
D_values[i] = buf[m++];
|
||||
}
|
||||
}
|
||||
else if(cdeamVersion == 2) {
|
||||
for(i = first; i < last; i++) {
|
||||
fp[i] = buf[m++];
|
||||
rho[i] = buf[m++];
|
||||
rhoB[i] = buf[m++];
|
||||
}
|
||||
} else {
|
||||
ASSERT(false);
|
||||
}
|
||||
}
|
||||
else if(communicationStage == 4) {
|
||||
for(i = first; i < last; i++) {
|
||||
D_values[i] = buf[m++];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
int PairCDEAM::pack_reverse_comm(int n, int first, double *buf)
|
||||
{
|
||||
int i,m,last;
|
||||
|
||||
m = 0;
|
||||
last = first + n;
|
||||
|
||||
if(communicationStage == 1) {
|
||||
if(cdeamVersion == 1) {
|
||||
for(i = first; i < last; i++) {
|
||||
buf[m++] = rho[i];
|
||||
buf[m++] = rhoB[i];
|
||||
buf[m++] = D_values[i];
|
||||
}
|
||||
return m;
|
||||
}
|
||||
else if(cdeamVersion == 2) {
|
||||
for(i = first; i < last; i++) {
|
||||
buf[m++] = rho[i];
|
||||
buf[m++] = rhoB[i];
|
||||
}
|
||||
return m;
|
||||
}
|
||||
else { ASSERT(false); return 0; }
|
||||
}
|
||||
else if(communicationStage == 3) {
|
||||
for(i = first; i < last; i++) {
|
||||
buf[m++] = D_values[i];
|
||||
}
|
||||
return m;
|
||||
}
|
||||
else return 0;
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairCDEAM::unpack_reverse_comm(int n, int *list, double *buf)
|
||||
{
|
||||
int i,j,m;
|
||||
|
||||
m = 0;
|
||||
if(communicationStage == 1) {
|
||||
if(cdeamVersion == 1) {
|
||||
for(i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
rho[j] += buf[m++];
|
||||
rhoB[j] += buf[m++];
|
||||
D_values[j] += buf[m++];
|
||||
}
|
||||
} else if(cdeamVersion == 2) {
|
||||
for(i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
rho[j] += buf[m++];
|
||||
rhoB[j] += buf[m++];
|
||||
}
|
||||
} else {
|
||||
ASSERT(false);
|
||||
}
|
||||
}
|
||||
else if(communicationStage == 3) {
|
||||
for(i = 0; i < n; i++) {
|
||||
j = list[i];
|
||||
D_values[j] += buf[m++];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
memory usage of local atom-based arrays
|
||||
------------------------------------------------------------------------- */
|
||||
double PairCDEAM::memory_usage()
|
||||
{
|
||||
double bytes = 2 * nmax * sizeof(double);
|
||||
return PairEAMAlloy::memory_usage() + bytes;
|
||||
}
|
||||
Reference in New Issue
Block a user