Compare commits

..

288 Commits

Author SHA1 Message Date
cf79751f4f Merge pull request #1207 from akohlmey/next-patch-release
Patch release 15 November 2018
2018-11-15 19:33:52 -05:00
e4dee3de17 Merge pull request #1206 from akohlmey/collected-small-changes
Collected small changes for next release
2018-11-15 17:29:26 -05:00
6e225d90fc fix some minor bugs write data file writing and remove dead code and silence compiler warnings 2018-11-15 16:50:56 -05:00
1fc3b4618c remove dead code and silence compiler warnings 2018-11-15 16:50:56 -05:00
eae9d27f6d OpenMP support from the compiler is not a requirement for USER-OMP. Without OpenMP, it is like the OPT package but for many more styles, so it is still useful and should be supported. 2018-11-15 16:50:56 -05:00
db29ec7eee complete workflow document 2018-11-15 14:58:02 -05:00
090778c42b Merge pull request #1204 from lammps/doc-plumed
Linkage mode improvements and documentation updates for USER-PLUMED package
2018-11-15 13:48:58 -05:00
db935dba5e Merge pull request #1201 from junghans/cmake_doc
cmake: update internal doc about how cmake finds executables
2018-11-15 13:48:17 -05:00
e160376365 incomplete first draft. committed for checking the markup in github. 2018-11-15 12:45:15 -05:00
d5f222464b Update README.md 2018-11-15 09:48:46 -07:00
4d9e2a014b add detailed build instructions and discussion of linkage modes for PLUMED library and USER-PLUMED package 2018-11-15 11:35:04 -05:00
8a4983e4bc reformatting and simplification of fix plumed docs 2018-11-15 10:53:38 -05:00
82d6aa9add interlink fixes colvars, plumed, and smd 2018-11-15 10:52:41 -05:00
4231ab3d57 correct some links 2018-11-15 10:52:03 -05:00
25914ea3f3 patch 15Nov2018 2018-11-15 10:17:25 -05:00
003bb28471 make @gtribello code owner of the USER-PLUMED package 2018-11-14 22:17:25 -05:00
a557644939 support all three plumed linkage modes with CMake as well. For downloaded and previously installed plumed lib 2018-11-14 22:13:18 -05:00
04520e627d add code and scripts to support all three plumed linkage modes with fix plumed for conventional build 2018-11-14 21:26:36 -05:00
952e52982e add comment to indicate code intended for backward compatibility only 2018-11-14 05:37:59 -05:00
a942d8b3ba use memset() for clearing of arrays 2018-11-14 05:30:23 -05:00
7a22b8aa62 check only in currently added data file atoms for dihedral overflow 2018-11-14 05:29:26 -05:00
4c1fbc359a use tagint when unpacking atom tags from communication buffers 2018-11-14 05:28:19 -05:00
2c644c5f2e Merge pull request #1197 from akohlmey/collected-small-fixes
Collection of small changes and bugfixes for the next release
2018-11-13 15:18:09 -05:00
b1186a971e Merge pull request #1202 from lammps/hyper
Add Hyper-dynamics to REPLICA package
2018-11-13 15:17:30 -05:00
2dbd575a4b Merge pull request #1203 from stanmoore1/kk_update
Update Kokkos library in LAMMPS to v2.7.24
2018-11-13 15:15:09 -05:00
4805e1df22 doc page additions for USER-PLUMED package 2018-11-13 08:29:07 -07:00
380f0e4971 remove some debugging code 2018-11-13 08:06:40 -07:00
a026ce9669 correct broken links detected by make mobi 2018-11-12 21:38:26 -05:00
7e779d16de correct broken links in manual reported by 'make html' 2018-11-12 21:33:37 -05:00
b776f0f29f remove dead code and silence warnings about unused parameters 2018-11-12 21:11:55 -05:00
443644025f silence compiler warnings 2018-11-12 20:50:14 -05:00
c4c90a96ec avoid void return from non-void function 2018-11-12 20:49:01 -05:00
5cb2463204 c++ style include files do not have a .h extension 2018-11-12 20:33:30 -05:00
5a4e44b75a remove accidentally duplicated code 2018-11-12 20:27:21 -05:00
0ca02b6f41 added new commands to doc pages, fixed a few missing entries as well 2018-11-12 17:23:15 -07:00
2b96dfd6cc Remove deprecated Kokkos code 2018-11-12 15:49:31 -07:00
c22c6e4d34 Add LAMMPS changes to Kokkos Makefile 2018-11-12 15:30:14 -07:00
b2d67bcbb5 Remove tpls dir 2018-11-12 15:18:06 -07:00
b3f08b38a2 Update Kokkos library in LAMMPS to v2.7.24 2018-11-12 15:16:26 -07:00
8e9d4f5bce modify bond style hybrid, so it can handle bond style quartic as a sub-style 2018-11-12 16:06:55 -05:00
fe07ad279d added NULL declations to constructor, removed debug code 2018-11-12 12:32:54 -07:00
5062c43aea rename example outputs 2018-11-12 12:32:53 -07:00
90caf0019c fix doc page errors 2018-11-12 12:32:53 -07:00
3b7ebbb8df new hyper examples 2018-11-12 12:32:53 -07:00
d7a479d2f6 hyper example dir 2018-11-12 12:32:52 -07:00
0c8ce199af more updates to hyper docs 2018-11-12 12:32:52 -07:00
4a6f088c0b updates to hyper doc pages 2018-11-12 12:32:52 -07:00
56598fcd0b changes to prd command doc page 2018-11-12 12:32:52 -07:00
265c11dca9 more edits to hyper docs 2018-11-12 12:32:52 -07:00
d6631266ce doc files in wrong dir 2018-11-12 12:32:52 -07:00
fbd610b8a9 global/local hyperdynamics src and doc files 2018-11-12 12:32:52 -07:00
86d1304176 cmake: update doc aobut executables 2018-11-10 18:58:53 -07:00
f68d77c7af correct formatting 2018-11-09 08:03:58 -05:00
7a4f534676 replace non-ASCII character 2018-11-09 08:03:41 -05:00
729201ab93 fix typo reported in #1199 2018-11-09 08:03:19 -05:00
ab8215a669 remove dead code 2018-11-09 01:09:31 -05:00
fe04147ee0 fix typo 2018-11-09 01:09:22 -05:00
62b1159673 update presets for USER-PLUMED package. fix typo. 2018-11-09 01:08:57 -05:00
adeb0c2b54 replace faulty preprocessor logic
fixes #1196
2018-11-09 01:08:57 -05:00
1651a21f92 Merge pull request #1198 from akohlmey/next-patch-release
Patch release 9 November 2018
2018-11-08 20:49:49 -05:00
cbae3b5afa Merge pull request #1184 from DiscreteLogarithm/sdpd
add USER-SDPD package for Smoothed Dissipative Particle Dynamics
2018-11-08 17:21:21 -05:00
f2a29880e2 patch 9Nov2018 2018-11-08 16:48:43 -05:00
e0955f6434 Merge branch 'master' into sdpd to resolve merge conflicts
# Conflicts:
#	cmake/CMakeLists.txt
#	src/Makefile
2018-11-08 16:32:02 -05:00
3681bc853d Merge pull request #1195 from jrgissing/bond/react-custom_edges
Bond/react: charge update for custom edges
2018-11-08 16:19:23 -05:00
a6e9b99295 Merge pull request #1180 from gtribello/master
Add natively supported PLUMED interface to LAMMPS
2018-11-08 16:16:50 -05:00
893a51ce14 Merge pull request #1191 from akohlmey/msi2lmp-avoid-bad-topology
Dihedral generation bugfix for msi2lmp
2018-11-08 16:10:31 -05:00
80ee08482c Merge pull request #1182 from junghans/pkgconfig_doc
liblammps.pc: add some more documentation
2018-11-08 16:10:15 -05:00
bbb371134d include USER-SDPD package in list of user packages in conventional make 2018-11-06 22:38:02 -05:00
a1e8992eac replace non-ASCII characters 2018-11-06 22:21:19 -05:00
baa7b705b8 improve logic and grammar of error messages 2018-11-06 22:13:38 -05:00
2d12260ade remove bogus single function and set single_enable = 0 2018-11-06 22:13:05 -05:00
31277349c6 remove dead code and avoid compiler warnings 2018-11-06 22:10:27 -05:00
df232c1cf6 use c++ style include files for c-library functions 2018-11-06 22:09:05 -05:00
bdf73f7adb ignore USER-SDPD files when installed 2018-11-06 22:07:35 -05:00
84fcf01bed bond/react: allow custom update of charges near template edges
also, fixes a bug introduced in PR #1189, when not using stabilization
2018-11-06 19:59:22 -07:00
cc0d685e8e Merge pull request #32 from lammps/master
rebase
2018-11-06 19:52:08 -07:00
5196fa37e0 Merge pull request #1194 from ohenrich/user-cgdna
Update reference for USER-CGDNA
2018-11-06 15:52:22 -05:00
4e6253254c Merge branch 'master' into user-cgdna 2018-11-06 19:48:06 +00:00
562296bdb7 Updated link to preprint article 2018-11-06 19:44:35 +00:00
91c4ef6f64 Merge pull request #1189 from jrgissing/bond/react-custom_group
Bond/react custom group support
2018-11-06 10:32:06 -05:00
f46d6a4312 Merge pull request #1192 from julient31/master
update reference for SPIN package
2018-11-06 10:26:27 -05:00
cb828e9579 update reference 2018-11-06 07:48:47 +01:00
ed77701e56 Merge pull request #31 from lammps/master
rebase
2018-11-05 20:25:38 -07:00
7ed6cab040 do not generate illegal dihedrals, e.g. from 3-membered rings 2018-11-05 20:35:43 -05:00
ce7f76de1d cmake: switch plumed to full static mode 2018-11-05 07:39:23 -07:00
58d2f0cc57 cmake: fix linking again plumed 2018-11-05 05:55:31 -07:00
ab7aa9dfda correction to fix group property doc 2018-11-05 00:49:33 -07:00
6d1ea2d0b1 broke smooth restarts at some point. fixed 2018-11-05 00:46:53 -07:00
a3ca177d20 various small changes and reformatting
- add memory usage estimator
- test against varying number of atoms
- test against non-consecutive atom tags
- test for 32-bit overflow in number of atoms
- test for 32-bit overflow in timestep
- reduce tail correction error to warning
- more LAMMPS style formatting of the source code
- remove trailing whitespace
- avoid leaking memory from allocated arrays for masses/charges/tags
2018-11-04 19:52:10 -05:00
a3c0fe7726 Added check on fix modify for PLUMED to ensures that virial is calculated for group all 2018-11-04 11:43:07 +00:00
a051d61e1f Added functionality to support fix modify for fix plumed 2018-11-04 11:24:01 +00:00
8cb665f013 Added functionality to throw error when time step changes and PLUMED is being used 2018-11-04 10:21:28 +00:00
cb8c51e353 Got rid of some of the hard-coded units in the plumed interface 2018-11-03 18:13:28 +00:00
a37d718ed1 update bond/react examples 2018-11-03 12:01:00 -06:00
f7aa01d74a bond/react: convert group-ID to group-ID-prefix
enables consistent syntax when using custom groups
2018-11-03 11:57:46 -06:00
badfdd7433 download only the plumed-src package and include further tweaks to be compatible with plumed 2.5b 2018-11-03 00:21:10 -04:00
ac11d66d5a provide reference logfiles and move generated files to reference folder 2018-11-02 23:28:09 -04:00
18216de084 correctly check for fixes that maintain their own pressure compute 2018-11-02 23:21:09 -04:00
3cb2291a5a need to include comm.h now 2018-11-02 22:52:51 -04:00
54c52c3bdf adjust compilation settings to link in plumed library statically and all its dependencies 2018-11-02 22:52:36 -04:00
df3390e224 update formatting to closer match LAMMPS' programming style 2018-11-02 21:33:30 -04:00
d185b34b19 reformat to closer match LAMMPS programming style 2018-11-02 21:19:53 -04:00
30518a993b add LAMMPS header 2018-11-02 21:14:36 -04:00
b7e507a258 fix typo and reformat 2018-11-02 21:08:45 -04:00
ea9746f26d insert fix plumed docs into manual generation 2018-11-02 21:08:32 -04:00
2635f7d160 Merge pull request #1190 from giacomofiorin/colvars-update
Update Colvars library to version 2018-10-16
2018-11-02 20:11:28 -04:00
85a5cab663 Update Colvars library to version 2018-10-16 2018-11-02 17:45:20 -04:00
b1c50e3bbe Added plumed documentation in a txt file 2018-11-02 19:50:49 +00:00
0c7c344e19 additional molecule templates sanity-check
thanks to Sagar Patil for report
2018-11-01 01:26:12 -06:00
b67e54dd7d reciprocal 'related commands' 2018-11-01 01:09:52 -06:00
5821a5ecc8 bond/react: custom group with stabilization option 2018-11-01 01:04:45 -06:00
20b9c7fd79 Merge pull request #30 from lammps/master
rebase
2018-10-31 20:15:45 -06:00
a66d4c7451 Merge pull request #1186 from akohlmey/various-small-fixes
Various small fixes
2018-10-31 12:13:38 -04:00
7514838700 put LAMMPS sources folder first in list of include directories 2018-10-31 04:18:08 -04:00
1fccb391a6 Merge pull request #1185 from jrgissing/bond/react-update_edges-option
Bond/react: update edges option
2018-10-31 00:43:07 -04:00
688945a0ef silence compiler warnings about initialization order and unused args 2018-10-31 00:34:58 -04:00
50b99c8450 silence compiler warnings about unused arguments 2018-10-31 00:19:06 -04:00
446b05ebc1 silence warning about initialization order 2018-10-31 00:17:17 -04:00
2a5cd1d31e remove debug output 2018-10-31 00:16:44 -04:00
3faecc4d28 add option to update all atoms' atomic charges
option to update all atomic charges, even when edge atoms are defined
2018-10-30 22:11:52 -06:00
e992bf935b Merge pull request #29 from lammps/master
rebase
2018-10-30 20:35:47 -06:00
42068944aa Merge branch 'master' of github.com:gtribello/lammps into fix-plumed 2018-10-30 20:43:49 -04:00
e3b89b60dc add checksum support for downloaded tar archives. upgrade to v2.4.3 2018-10-30 20:43:20 -04:00
e70a9b0f26 updated CMakeLists to handle the optional dependency of USER-SDPD 2018-10-30 19:35:22 +03:30
113539b053 Merge pull request #1183 from akohlmey/voro-clean-namespace
Reduce namespace pollution for VORONOI package
2018-10-30 11:53:56 -04:00
ba6f6f73f1 first commit: added SDPD 2018-10-30 17:40:00 +03:30
c838a9fd48 use forward declarations for better namespace hygiene 2018-10-30 00:33:51 -04:00
fb4df86d3d Merge pull request #1170 from akohlmey/fix-merge-sort
Bug fix for merge sort by Jeffrey Frey
2018-10-29 18:47:50 -04:00
1bae30c295 liblammps.pc: add some more documentation 2018-10-29 06:57:46 -06:00
044507640f include Plumed.h with full path 2018-10-29 06:52:19 -06:00
bcc7a4c32f cmake: add PLUMED include dir 2018-10-29 06:36:47 -06:00
283096d1d5 update .gitignore 2018-10-29 03:50:55 -04:00
079134255d make sure class member "list" is initialized to NULL in constructor 2018-10-29 03:49:25 -04:00
25b425dbb0 no need to import the PLMD namespace globally 2018-10-28 22:21:35 -04:00
bee2cb96fa remove references to Plumed.cpp and Plumed.h 2018-10-28 22:18:27 -04:00
360aca581c remove last reference to voro++ 2018-10-28 21:56:49 -04:00
21661f84db Merge pull request #1181 from akohlmey/fixup-github-folder
Updates to contributing guidelines
2018-10-28 21:55:02 -04:00
a662afe970 fully integrate USER-PLUMED package into conventional build 2018-10-28 21:37:33 -04:00
3a082e227e remove obsolete and redundant files 2018-10-28 21:33:51 -04:00
54d728c0c7 reduce need for include files by adding forward declaration 2018-10-28 21:33:06 -04:00
ae499b980d make Plumed.cpp obsolete in USER-PLUMED code by inserting it into fix_plumed.cpp 2018-10-28 21:32:47 -04:00
925d6d37b9 adjust header inclusion to current LAMMPS conventions 2018-10-28 21:32:01 -04:00
bdf3764905 update user-plumed Install.sh file to fit better into LAMMPS, adjust to changes in lib folder 2018-10-28 21:31:40 -04:00
bfbf5695fd adjust path for includelink to find the Plumed.h wrapper properly 2018-10-28 21:30:37 -04:00
e788ffe210 Merge branch 'master' of github.com:gtribello/lammps into fix-plumed 2018-10-28 21:29:53 -04:00
3cc9384488 cmake: add support USER-PLUMED 2018-10-28 16:23:29 -06:00
a60b6d1ab8 add feature to python lib install script to support existing installation and use links 2018-10-28 18:12:32 -04:00
174b180a41 remove file that is not present 2018-10-28 18:12:02 -04:00
7bbd8644c8 rework some of the pull request instructions to be realigned with the recent changes in the workflow. 2018-10-28 08:50:37 -04:00
f36b7e38a8 correct link to github tutorial in CONTRIBUTING doc 2018-10-28 08:42:28 -04:00
f70af61b35 Added new version of Plumed wrapper 2018-10-28 09:27:22 +00:00
4fa78a78de Added instructions on PLUMED to build extras and Package details pages of manual 2018-10-26 22:12:17 +01:00
ff9f836be4 Merge remote-tracking branch 'upstream/master' 2018-10-26 22:01:05 +01:00
2e79d9f340 Merged Pablo's fixes into the plumed interface for lammps 2018-10-25 21:45:35 +01:00
2428c1c1f3 Merge pull request #1177 from lammps/modify-reorder
reorder operations in init() to fix a bug with compute chunk/atom del…
2018-10-25 10:55:14 -04:00
0e213b80e9 reorder operations in init() to fix a bug with compute chunk/atom deleting a fix 2018-10-25 08:23:10 -06:00
7069b52a44 Merge pull request #1172 from akohlmey/next-patch-release
Patch release 24 October 2018
2018-10-23 18:08:38 -04:00
45f28517ef Merge pull request #1174 from akohlmey/fix-kspace-refactor
Bug fix for Kspace refactoring in USER-INTEL package
2018-10-23 13:33:36 -04:00
fccc26758b Merge pull request #1152 from lammps/doc-adjust2
More Documentation consistency improvements
2018-10-23 13:05:04 -04:00
b6b6270716 fix bug reported in issue #1173 2018-10-23 11:58:00 -04:00
0293dee9b2 patch 24Oct2018 2018-10-23 11:03:51 -04:00
6107f00e9d Merge pull request #1164 from akohlmey/fix-halt-for-minimize
Enable use of fix halt for minimizations
2018-10-23 10:35:26 -04:00
1d38f2d725 Merge pull request #1165 from akohlmey/refactor-kspace-base-class
Refactor kspace base class to have a settings() method
2018-10-23 10:35:12 -04:00
4a5c14f60d Merge pull request #1148 from akohlmey/deprecated-styles
Implement dummy classes for deprecated and removed styles
2018-10-23 10:34:58 -04:00
aa27c8f733 convert double quotes to latex style 2018-10-23 09:17:00 -04:00
da38ae0370 apply fix for merge sort from issue #1163 by @jtfrey and re-enable it 2018-10-23 08:57:33 -04:00
527ec61586 Merge pull request #1169 from akohlmey/kokkos-parallel-for-workaround
Workaround for parallel_for() compilation issue with newer GNU compilers
2018-10-22 11:17:47 -04:00
8649081904 fix broken links in manual 2018-10-21 18:39:25 -04:00
c0dd187802 make sure all pictures are includes in epub/mobi files 2018-10-21 18:38:46 -04:00
3661836a3b Merge pull request #1168 from athomps/compute-adf
Created new compute ADF for angular distribution function
2018-10-20 20:57:38 -04:00
76a2a9ab0a Fixed normalization error for ordinate degree 2018-10-20 17:16:47 -06:00
8223f5e0a3 Eliminated another initialization error and tweaked rdf-adf example 2018-10-20 16:46:45 -06:00
07a499fcc1 improve check for missing styles in lammps.book 2018-10-20 10:01:55 -04:00
8aecefe233 fix uninitialized data bug in compute adf 2018-10-20 08:12:19 -04:00
2140caa6f5 add an example for RDF and ADF computation with water molecules 2018-10-20 08:12:02 -04:00
fb6f019a11 correct link to output options 2018-10-20 06:45:57 -04:00
79da210dc4 integrate compute adf into manual build infrastructure 2018-10-20 06:45:28 -04:00
348febdf4b work around for parallel_for() compilation issue with newer compilers
apparently, data items used inside parallel_for() constructs have
rather strict requirements on const-ness, which is enforced by
newer GNU compilers. As a workaround we construct explicit const
copies of those class instances. This closes #1045
2018-10-20 02:54:48 -04:00
0783f8ad2f Added compute_rdf.txt 2018-10-19 18:43:58 -06:00
3a735d15d4 Added compute_rdf.cpp 2018-10-19 18:43:04 -06:00
04a4a29fcf Creatd new compute ADF for angular distribution function 2018-10-19 18:36:11 -06:00
52f02f2bbb Merge pull request #1167 from lammps/create-triclinic-lib
fix triclinic rounding bug for lib interface as well
2018-10-19 19:06:01 -04:00
f82a8493fa Merge pull request #1166 from rbberger/cmake_prevent_src_builds
Add src directory to PreventInSourceBuilds checks
2018-10-19 17:56:25 -04:00
8cd70f7d78 fix triclinic rounding bug for lib interface as well 2018-10-19 15:27:38 -06:00
27a46cec8c Add src directory to PreventInSourceBuilds checks 2018-10-19 17:25:18 -04:00
15de09683e Merge pull request #1162 from lammps/restart2dump
added -restart2dump command-line option
2018-10-19 17:24:17 -04:00
f542590090 Merge pull request #1136 from junghans/cmake_out_source
cmake: prevent in-source build
2018-10-19 17:02:05 -04:00
01c3ab5979 update embedded command line help summary string for new feature 2018-10-19 16:49:06 -04:00
709013be5a harden code against buffer overflows 2018-10-19 16:48:37 -04:00
db32373b32 fix some typos caused by trusting emacs' smart case-preserving replace too much 2018-10-19 16:11:13 -04:00
9d7c4ac5f2 add depreacted kspace style 2018-10-19 16:01:26 -04:00
0ec94b2ad6 replace non-ASCII character 2018-10-19 16:01:13 -04:00
83c830fd8a port kspace refactor to GPU and KOKKOS package 2018-10-19 15:47:00 -04:00
3a4bef351c refactor kspace style in USER-SCAFACOS and fix uninitialized handle bug 2018-10-19 15:32:29 -04:00
da84138475 correct scafacos input example 2018-10-19 15:31:53 -04:00
2f52eee6bf kspace refactor compiles for KSPACE and USER-OMP 2018-10-19 15:11:37 -04:00
80e0dddae0 use min_post_force() method to hook fix halt into minimization 2018-10-19 14:08:25 -04:00
1c994bda46 corrections to fix neb doc page 2018-10-19 09:53:19 -06:00
f5206d2f7b more one-liner in pair_style doc page 2018-10-19 09:53:19 -06:00
9bca5ae607 added one-line pair descriptions 2018-10-19 09:53:19 -06:00
d1f260a765 undo changes to PRD doc from another branch 2018-10-19 09:53:19 -06:00
36a1ca7e72 updates some one-line style defs 2018-10-19 09:53:19 -06:00
5f1c77ced2 tweaks to USER-PTM package doc 2018-10-19 09:53:18 -06:00
dc89bdd924 more changes augmenting lists with USER styles and to core/shell doc pages 2018-10-19 09:53:18 -06:00
a979c6eeec updating files that have lists of command styles 2018-10-19 09:53:18 -06:00
cc6f1be82d first attempt to port fix halt to minimizations 2018-10-19 07:26:49 -04:00
9090fd0255 propagate the kspace change to a the first few kspace styles 2018-10-18 16:31:17 -04:00
7deb1df2b6 split kspace style constructor into plain constructor and settings() method 2018-10-18 16:30:45 -04:00
d9dd80b368 added -restart2dump command-line option 2018-10-18 14:24:48 -06:00
4015b36a1a Merge pull request #1161 from lammps/create-atoms-single
bug fix for create_atoms single remap and triclinic
2018-10-18 13:41:28 -04:00
dcde84eb53 bug fix for create_atoms single remap and triclinic 2018-10-18 11:22:51 -06:00
7bb5821baf add deprecated dump and region styles 2018-10-17 18:13:12 -04:00
2b0e474729 implement deprecated styles for bond, angle, dihedral, and improper 2018-10-17 16:26:20 -04:00
65ebbdada3 add DEPRECATED compute style 2018-10-17 16:05:10 -04:00
b71f530bd0 make default style name for deprecated styles uppercase, so it is considered internal
also consolidate the writeout message across styles into a single convenience function
2018-10-17 16:04:52 -04:00
0ec9b9a71a Merge pull request #1160 from akohlmey/user-ptm-portability
Make USER-PTM compile with MinGW64 for Windows
2018-10-16 14:52:26 -04:00
2273604533 resolve portability issues to windows w.r.t. fixed width integer types 2018-10-16 13:49:06 -04:00
6e99b3d8ff Merge pull request #1159 from wmbrownIntel/user-intel-sf-hybrid
Fix to allow suffix and pair hybrid to work together with USER-INTEL.
2018-10-16 06:09:58 -04:00
bea0a3091d Fix to allow suffix and pair hybrid to work together with USER-INTEL. 2018-10-15 10:25:39 -07:00
7968d2ed22 Merge pull request #1155 from athomps/sna-atom-leakfix2
Fixed a segfault introduced by memory-leak fix (#1125)
2018-10-12 13:01:15 -04:00
382e91cf5b Merge pull request #1156 from wmbrownIntel/user-intel-hybrid
Adding hybrid support to USER-INTEL package + EAM/intel bug fix
2018-10-12 12:35:36 -04:00
ce63a22783 Merge pull request #1157 from wmbrownIntel/user-intel-makefiles
Changes to intel Makefiles to make use of MKL consistent.
2018-10-12 12:32:28 -04:00
00c75ecb74 Merge pull request #988 from valleymouth/granular-kokkos
Kokkos port for GRANULAR
2018-10-12 09:04:36 -06:00
8224c89f93 Revert size_velocity change in atom_vec_dpd_kokkos 2018-10-11 16:38:44 -06:00
a223338b47 Fix hang with Kokkos and USER-DPD examples 2018-10-11 16:32:44 -06:00
8eb74d8fb3 Add missing Kokkos pack/unpack comm vel functions 2018-10-11 13:21:44 -06:00
e5c6b6987a Merge branch 'master' of github.com:lammps/lammps into granular-kokkos 2018-10-11 13:14:25 -06:00
8cbee78725 Changes to intel Makefiles to make use of MKL consistent. 2018-10-11 05:46:40 -07:00
c37deebffa Adding full hybrid support to USER-INTEL package and fixing bug with EAM parameter initialization. 2018-10-11 05:12:00 -07:00
c142288eb3 Fixed a segfault introduced by memory-leak fix 2018-10-10 17:24:14 -06:00
7faa48b4c3 Merge pull request #1154 from stanmoore1/small_fixes
Small fixes
2018-10-10 23:05:21 +02:00
a1266a1a1e Fix compile error with copysign function 2018-10-10 14:19:23 -06:00
7cce002cf9 Makefile fix from the mailing list 2018-10-10 14:18:24 -06:00
2def00d4c9 Add missing files to .gitignore 2018-10-10 14:18:00 -06:00
3d0722b974 Merge branch 'master' of github.com:lammps/lammps into granular-kokkos 2018-10-10 10:43:54 -06:00
747f72aca2 Merge branch 'granular-kokkos' of https://github.com/valleymouth/lammps into granular-kokkos 2018-10-10 09:53:15 +01:00
0c1ff5ac3e Fixing issues with AtomVecSphereKokkos not correctly handling cases with varying and constant radius. 2018-10-05 17:10:31 +01:00
43ae9656d7 add a "deprecated" command style for flagging future removed commands 2018-10-05 17:23:09 +02:00
b02d3b1b94 cosmetic change 2018-10-04 12:24:46 +02:00
a1a9f34c18 pair style deprecated now functional and compatible with hybrid pair styles 2018-10-04 12:18:28 +02:00
c3abf13af1 don't allow hybrid/overlay as hybrid substyle as well 2018-10-04 12:18:01 +02:00
b481af51d6 add pair_style deprecated and some tweaks for fix style 2018-10-02 16:26:20 +02:00
2da999d864 cmake: prevent in-source build 2018-09-27 12:18:43 -06:00
cca1e0a399 Merge branch 'master' into granular-kokkos 2018-08-20 22:02:41 -04:00
9765a9a430 Implementing forward/border comm in Kokkos. 2018-08-13 16:03:23 +01:00
5412204ff7 Merge branch 'master' into granular-kokkos 2018-08-02 10:11:50 +02:00
591e782415 Optimizing PairGranHookeHistoryKokkos to be less divergent. 2018-07-19 17:08:44 +01:00
406aaf011f Improving global memory access pattern for firstflag and firstvalue in FixNeighHistoryKokkos. 2018-07-16 15:30:24 +01:00
c442166ded Tidied up example directory for PLUMED 2018-07-12 16:22:40 +01:00
6d9face1ec Added documentation describing PLUMED package installation 2018-07-12 12:26:09 +01:00
4734bc09dc Added descriptions of static linking of PLUMED to README files 2018-07-11 21:56:08 +01:00
56c2127127 Merge branch 'granular-kokkos' of github.com:valleymouth/lammps into granular-kokkos 2018-07-11 12:03:57 -06:00
b5816f2637 Update docs for Kokkos version of GRANULAR package 2018-07-11 12:03:34 -06:00
492e945b5a Added options to link plumed statically 2018-07-11 16:39:52 +01:00
0d1e55c99d Removing unnecessary calls to sync/modified in AtomVecSphereKokkos. 2018-07-11 11:06:16 -04:00
c83b5ec226 Prevent error when Kokkos debug mode turned on 2018-07-10 19:49:41 -06:00
687a4427da Fix runtime error in pair_dpd_fdt_energy_kokkos due to rmass change 2018-07-10 12:15:08 -06:00
af0eb52410 Error out if using fix pour with the KOKKOS package 2018-07-10 10:21:42 -06:00
a49f946f2f Add missing modify in atom_vec_sphere_kokkos 2018-07-10 10:04:13 -06:00
8c3cbad7ae Fix runtime error in fix_nve_kokkos 2018-07-10 09:15:24 -06:00
4d5635a3c4 Fixed virial contribution from PLUMED 2018-07-10 16:01:45 +01:00
ca8b109a1c Fix issues with rmass in KOKKOS package 2018-07-10 08:59:06 -06:00
55980294f1 Fix issues in atom_vec_sphere_kokkos 2018-07-09 18:47:17 -06:00
c84ae38e34 Fixed installation scripts for PLUMED 2018-07-09 17:27:41 +01:00
43cdca80f2 Fixed passing of charges 2018-07-09 15:06:10 +01:00
ee98daeba5 Fix bug in atom_vec_sphere_kokkos 2018-07-06 16:47:55 -06:00
2cd95d1a99 Fix misnamed variable in comm_kokkos 2018-07-06 15:47:14 -06:00
13d562e969 Removed wrong which variable 2018-07-06 12:06:09 -06:00
228caa3fab Remove randomread from radius to prevent Kokkos runtime error when radius isn't defined 2018-07-06 11:59:25 -06:00
64fb7674b1 Fix compile warning in fix_freeze_kokkos 2018-07-06 11:58:42 -06:00
cce0755ee9 Fix memory free issue in fix_neigh_history_kokkos 2018-07-06 10:08:21 -06:00
67ed11a960 Allow Kokkos version of fix gravity in fix pour, including kk/device and kk/host suffixes 2018-07-06 09:52:41 -06:00
acb0436057 Allow Kokkos version of fix gravity in fix pour 2018-07-06 09:31:48 -06:00
2f3343b7ed Fixing dependencies with GRANULAR. 2018-07-06 05:24:26 -04:00
13efc1b76d Attempt to fix compilation issue with kokkos_omp. 2018-07-05 18:32:19 -04:00
dc93d4ceea Added virial computation to PairGranHookeHistoryKokkos. 2018-07-05 06:03:27 -04:00
a6df61a637 Making ComputeTempKokkos compatible with rmass in device memory. 2018-07-03 12:05:21 -04:00
f394ed94f3 dump vtk also works with VTK version 8. 2018-07-03 11:33:55 -04:00
11a5ed0e03 Porting fix freeze to Kokkos. 2018-07-03 11:29:13 -04:00
a365246e3a Porting fix gravity to Kokkos. 2018-07-03 11:21:54 -04:00
8ebe38474d Porting fix nve/sphere to Kokkos. 2018-07-03 11:13:27 -04:00
0a5b027bac Porting pair gran/hooke/history to Kokkos. 2018-07-03 11:10:27 -04:00
7f5a83cb1d Added first go at checks on PLUMED interface to LAMMPS 2018-07-02 17:04:19 +01:00
b299bfa821 Started adding tests on PLUMED interface 2018-07-02 13:58:38 +01:00
2c5f2a6683 Added running example of PLUMED + LAMMPS
Not sure if this has been done correctly.  I add both the input and the output
2018-07-02 10:22:23 +01:00
9b44529591 Added an example 2018-06-29 17:46:51 +01:00
f5642ac292 Removed reference to local version of PLUMED from interface 2018-06-29 16:28:53 +01:00
ef0f9c0451 First attempt at permanent PLUMED interface 2018-06-29 12:26:19 +01:00
729 changed files with 54931 additions and 4192 deletions

1
.github/CODEOWNERS vendored
View File

@ -29,6 +29,7 @@ src/USER-MEAMC/* @martok
src/USER-MOFFF/* @hheenen
src/USER-MOLFILE/* @akohlmey
src/USER-NETCDF/* @pastewka
src/USER-PLUMED/* @gtribello
src/USER-PHONON/* @lingtikong
src/USER-PTM/* @pmla
src/USER-OMP/* @akohlmey

View File

@ -6,7 +6,7 @@ The following is a set of guidelines as well as explanations of policies and wor
Thus please also have a look at:
* [The Section on submitting new features for inclusion in LAMMPS of the Manual](http://lammps.sandia.gov/doc/Section_modify.html#mod-15)
* [The LAMMPS GitHub Tutorial in the Manual](http://lammps.sandia.gov/doc/tutorial_github.html)
* [The LAMMPS GitHub Tutorial in the Manual](http://lammps.sandia.gov/doc/Howto_github.html)
## Table of Contents
@ -62,7 +62,7 @@ To be able to submit an issue on GitHub, you have to register for an account (fo
We encourage users to submit new features or modifications for LAMMPS to the core developers so they can be added to the LAMMPS distribution. The preferred way to manage and coordinate this is by submitting a pull request at the LAMMPS project on GitHub. For any larger modifications or programming project, you are encouraged to contact the LAMMPS developers ahead of time, in order to discuss implementation strategies and coding guidelines, that will make it easier to integrate your contribution and result in less work for everybody involved. You are also encouraged to search through the list of open issues on GitHub and submit a new issue for a planned feature, so you would not duplicate the work of others (and possibly get scooped by them) or have your work duplicated by others.
How quickly your contribution will be integrated depends largely on how much effort it will cause to integrate and test it, how much it requires changes to the core code base, and of how much interest it is to the larger LAMMPS community. Please see below for a checklist of typical requirements. Once you have prepared everything, see [this tutorial](http://lammps.sandia.gov/doc/tutorial_github.html)
How quickly your contribution will be integrated depends largely on how much effort it will cause to integrate and test it, how much it requires changes to the core code base, and of how much interest it is to the larger LAMMPS community. Please see below for a checklist of typical requirements. Once you have prepared everything, see [this tutorial](http://lammps.sandia.gov/doc/Howto_github.html)
for instructions on how to submit your changes or new files through a GitHub pull request
Here is a checklist of steps you need to follow to submit a single file or user package for our consideration. Following these steps will save both you and us time. See existing files in packages in the source directory for examples. If you are uncertain, please ask on the lammps-users mailing list.
@ -102,11 +102,11 @@ For bug reports, the next step is that one of the core LAMMPS developers will se
### Pull Requests
For submitting pull requests, there is a [detailed tutorial](http://lammps.sandia.gov/doc/tutorial_github.html) in the LAMMPS manual. Thus only a brief breakdown of the steps is presented here.
For submitting pull requests, there is a [detailed tutorial](http://lammps.sandia.gov/doc/Howto_github.html) in the LAMMPS manual. Thus only a brief breakdown of the steps is presented here. Please note, that the LAMMPS developers are still reviewing and trying to improve the process. If you are unsure about something, do not hesitate to post a question on the lammps-users mailing list or contact one fo the core LAMMPS developers.
Immediately after the submission, the LAMMPS continuing integration server at ci.lammps.org will download your submitted branch and perform a simple compilation test, i.e. will test whether your submitted code can be compiled under various conditions. It will also do a check on whether your included documentation translates cleanly. Whether these tests are successful or fail will be recorded. If a test fails, please inspect the corresponding output on the CI server and take the necessary steps, if needed, so that the code can compile cleanly again. The test will be re-run each the pull request is updated with a push to the remote branch on GitHub.
Next a LAMMPS core developer will self-assign and do an overall technical assessment of the submission. If you are not yet registered as a LAMMPS collaborator, you will receive an invitation for that.
You may also receive comments and suggestions on the overall submission or specific details. If permitted, additional changes may be pushed into your pull request branch or a pull request may be filed in your LAMMPS fork on GitHub to include those changes.
The LAMMPS developer may then decide to assign the pull request to another developer (e.g. when that developer is more knowledgeable about the submitted feature or enhancement or has written the modified code). It may also happen, that additional developers are requested to provide a review and approve the changes. For submissions, that may change the general behavior of LAMMPS, or where a possibility of unwanted side effects exists, additional tests may be requested by the assigned developer.
If the assigned developer is satisfied and considers the submission ready for inclusion into LAMMPS, the pull request will be assigned to the LAMMPS lead developer, Steve Plimpton (@sjplimp), who will then have the final decision on whether the submission will be included, additional changes are required or it will be ultimately rejected. After the pull request is merged, you may delete the pull request branch in your personal LAMMPS fork.
Since the learning curve for git is quite steep for efficiently managing remote repositories, local and remote branches, pull requests and more, do not hesitate to ask questions, if you are not sure about how to do certain steps that are asked of you. Even if the changes asked of you do not make sense to you, they may be important for the LAMMPS developers. Please also note, that these all are guidelines and not set in stone.
If the assigned developer is satisfied and considers the submission ready for inclusion into LAMMPS, the pull request will receive approvals and be merged into the master branch by one of the core LAMMPS developers. After the pull request is merged, you may delete the feature branch used for the pull request in your personal LAMMPS fork.
Since the learning curve for git is quite steep for efficiently managing remote repositories, local and remote branches, pull requests and more, do not hesitate to ask questions, if you are not sure about how to do certain steps that are asked of you. Even if the changes asked of you do not make sense to you, they may be important for the LAMMPS developers. Please also note, that these all are guidelines and nothing set in stone. So depending on the nature of the contribution, the workflow may be adjusted.

View File

@ -69,6 +69,8 @@ get_lammps_version(${LAMMPS_SOURCE_DIR}/version.h LAMMPS_VERSION)
# Cmake modules/macros are in a subdirectory to keep this file cleaner
set(CMAKE_MODULE_PATH ${CMAKE_CURRENT_SOURCE_DIR}/Modules)
include(PreventInSourceBuilds)
if(NOT CMAKE_BUILD_TYPE AND NOT CMAKE_CXX_FLAGS)
#release comes with -O3 by default
set(CMAKE_BUILD_TYPE Release CACHE STRING "Choose the type of build, options are: None Debug Release RelWithDebInfo MinSizeRel." FORCE)
@ -169,8 +171,9 @@ set(DEFAULT_PACKAGES ASPHERE BODY CLASS2 COLLOID COMPRESS DIPOLE GRANULAR
USER-BOCS USER-CGDNA USER-MESO USER-CGSDK USER-COLVARS USER-DIFFRACTION
USER-DPD USER-DRUDE USER-EFF USER-FEP USER-H5MD USER-LB USER-MANIFOLD
USER-MEAMC USER-MGPT USER-MISC USER-MOFFF USER-MOLFILE USER-NETCDF
USER-PHONON USER-PTM USER-QTB USER-REAXC USER-SCAFACOS USER-SMD USER-SMTBQ
USER-SPH USER-TALLY USER-UEF USER-VTK USER-QUIP USER-QMMM)
USER-PHONON USER-PLUMED USER-PTM USER-QTB USER-REAXC USER-SCAFACOS
USER-SDPD USER-SMD USER-SMTBQ USER-SPH USER-TALLY USER-UEF USER-VTK
USER-QUIP USER-QMMM)
set(ACCEL_PACKAGES USER-OMP KOKKOS OPT USER-INTEL GPU)
set(OTHER_PACKAGES CORESHELL QEQ)
foreach(PKG ${DEFAULT_PACKAGES})
@ -191,6 +194,8 @@ if(PKG_MEAM OR PKG_USER-H5MD OR PKG_USER-QMMM OR PKG_USER-SCAFACOS)
enable_language(C)
endif()
include_directories(${LAMMPS_SOURCE_DIR})
# do MPI detection after language activation, if MPI for these language is required
find_package(MPI QUIET)
option(BUILD_MPI "Build MPI version" ${MPI_FOUND})
@ -299,7 +304,7 @@ pkg_depends(USER-SCAFACOS MPI)
find_package(OpenMP QUIET)
option(BUILD_OMP "Build with OpenMP support" ${OpenMP_FOUND})
if(BUILD_OMP OR PKG_USER-OMP OR PKG_KOKKOS OR PKG_USER-INTEL)
if(BUILD_OMP OR PKG_KOKKOS OR PKG_USER-INTEL)
find_package(OpenMP REQUIRED)
set (CMAKE_C_FLAGS "${CMAKE_C_FLAGS} ${OpenMP_C_FLAGS}")
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${OpenMP_CXX_FLAGS}")
@ -344,7 +349,7 @@ if(PKG_KSPACE)
endif()
endif()
if(PKG_MSCG OR PKG_USER-ATC OR PKG_USER-AWPMD OR PKG_USER-QUIP OR PKG_LATTE)
if(PKG_MSCG OR PKG_USER-ATC OR PKG_USER-AWPMD OR PKG_USER-QUIP OR PKG_LATTE OR PKG_USER-PLUMED)
find_package(LAPACK)
find_package(BLAS)
if(NOT LAPACK_FOUND OR NOT BLAS_FOUND)
@ -524,6 +529,54 @@ if(PKG_USER-SCAFACOS)
include_directories(${SCAFACOS_INCLUDE_DIRS})
endif()
if(PKG_USER-PLUMED)
find_package(GSL REQUIRED)
set(PLUMED_MODE "static" CACHE STRING "Linkage mode for Plumed2 library")
set(PLUMED_MODE_VALUES static shared runtime)
set_property(CACHE PLUMED_MODE PROPERTY STRINGS ${PLUMED_MODE_VALUES})
validate_option(PLUMED_MODE PLUMED_MODE_VALUES)
string(TOUPPER ${PLUMED_MODE} PLUMED_MODE)
option(DOWNLOAD_PLUMED "Download Plumed (instead of using the system's one)" OFF)
if(DOWNLOAD_PLUMED)
include(ExternalProject)
ExternalProject_Add(plumed_build
URL https://github.com/plumed/plumed2/releases/download/v2.4.3/plumed-src-2.4.3.tgz
URL_MD5 b1be7c48971627febc11c61b70767fc5
BUILD_IN_SOURCE 1
CONFIGURE_COMMAND <SOURCE_DIR>/configure --prefix=<INSTALL_DIR>
$<$<BOOL:${BUILD_SHARED_LIBS}>:--with-pic> )
ExternalProject_get_property(plumed_build INSTALL_DIR)
set(PLUMED_INSTALL_DIR ${INSTALL_DIR})
list(APPEND LAMMPS_DEPS plumed_build)
if(PLUMED_MODE STREQUAL "STATIC")
add_definitions(-D__PLUMED_WRAPPER_CXX=1)
list(APPEND LAMMPS_LINK_LIBS ${PLUMED_INSTALL_DIR}/lib/plumed/obj/kernel.o
"${PLUMED_INSTALL_DIR}/lib/plumed/obj/PlumedStatic.o" ${GSL_LIBRARIES} ${CMAKE_DL_LIBS} ${LAPACK_LIBRARIES})
elseif(PLUMED_MODE STREQUAL "SHARED")
list(APPEND LAMMPS_LINK_LIBS ${PLUMED_INSTALL_DIR}/lib/libplumed.so ${CMAKE_DL_LIBS})
elseif(PLUMED_MODE STREQUAL "RUNTIME")
add_definitions(-D__PLUMED_HAS_DLOPEN=1 -D__PLUMED_DEFAULT_KERNEL=${PLUMED_INSTALL_DIR}/lib/libplumedKernel.so)
list(APPEND LAMMPS_LINK_LIBS ${PLUMED_INSTALL_DIR}/lib/libplumedWrapper.a -rdynamic ${CMAKE_DL_LIBS})
endif()
set(PLUMED_INCLUDE_DIRS "${PLUMED_INSTALL_DIR}/include")
else()
find_package(PkgConfig REQUIRED)
pkg_check_modules(PLUMED plumed REQUIRED)
if(PLUMED_MODE STREQUAL "STATIC")
add_definitions(-D__PLUMED_WRAPPER_CXX=1)
include(${PLUMED_LIBDIR}/plumed/src/lib/Plumed.cmake.static)
elseif(PLUMED_MODE STREQUAL "SHARED")
include(${PLUMED_LIBDIR}/plumed/src/lib/Plumed.cmake.shared)
elseif(PLUMED_MODE STREQUAL "RUNTIME")
add_definitions(-D__PLUMED_HAS_DLOPEN=1 -D__PLUMED_DEFAULT_KERNEL=${PLUMED_LIBDIR}/libplumedKernel.so)
include(${PLUMED_LIBDIR}/plumed/src/lib/Plumed.cmake.runtime)
endif()
list(APPEND LAMMPS_LINK_LIBS ${PLUMED_LOAD})
endif()
include_directories(${PLUMED_INCLUDE_DIRS})
endif()
if(PKG_USER-MOLFILE)
add_library(molfile INTERFACE)
target_include_directories(molfile INTERFACE ${LAMMPS_LIB_SOURCE_DIR}/molfile)
@ -874,6 +927,20 @@ if(PKG_USER-OMP)
include_directories(${USER-OMP_SOURCES_DIR})
endif()
# Fix rigid/meso requires RIGID to be installed
if(PKG_USER-SDPD)
set(USER-SDPD_SOURCES_DIR ${LAMMPS_SOURCE_DIR}/USER-SDPD)
get_property(hlist GLOBAL PROPERTY FIX)
if(NOT PKG_RIGID)
list(REMOVE_ITEM hlist ${USER-SDPD_SOURCES_DIR}/fix_rigid_meso.h)
list(REMOVE_ITEM LIB_SOURCES ${USER-SDPD_SOURCES_DIR}/fix_rigid_meso.cpp)
endif()
set_property(GLOBAL PROPERTY FIX "${hlist}")
include_directories(${USER-SDPD_SOURCES_DIR})
endif()
if(PKG_KOKKOS)
set(LAMMPS_LIB_KOKKOS_SRC_DIR ${LAMMPS_LIB_SOURCE_DIR}/kokkos)
set(LAMMPS_LIB_KOKKOS_BIN_DIR ${LAMMPS_LIB_BINARY_DIR}/kokkos)
@ -1164,7 +1231,6 @@ set(LAMMPS_STYLE_HEADERS_DIR ${CMAKE_CURRENT_BINARY_DIR}/styles)
GenerateStyleHeaders(${LAMMPS_STYLE_HEADERS_DIR})
include_directories(${LAMMPS_SOURCE_DIR})
include_directories(${LAMMPS_STYLE_HEADERS_DIR})
######################################

View File

@ -0,0 +1,23 @@
# - Prevent in-source builds.
# https://stackoverflow.com/questions/1208681/with-cmake-how-would-you-disable-in-source-builds/
function(prevent_in_source_builds)
# make sure the user doesn't play dirty with symlinks
get_filename_component(srcdir "${CMAKE_SOURCE_DIR}" REALPATH)
get_filename_component(srcdir2 "${CMAKE_SOURCE_DIR}/.." REALPATH)
get_filename_component(srcdir3 "${CMAKE_SOURCE_DIR}/../src" REALPATH)
get_filename_component(bindir "${CMAKE_BINARY_DIR}" REALPATH)
# disallow in-source builds
if("${srcdir}" STREQUAL "${bindir}" OR "${srcdir2}" STREQUAL "${bindir}" OR "${srcdir3}" STREQUAL "${bindir}")
message(FATAL_ERROR "\
CMake must not to be run in the source directory. \
Rather create a dedicated build directory and run CMake there. \
To clean up after this aborted in-place compilation:
rm -r CMakeCache.txt CMakeFiles
")
endif()
endfunction()
prevent_in_source_builds()

View File

@ -1492,6 +1492,11 @@ target API.
</dl>
</td>
</tr>
<tr>
<td><code>BIN2C</code> (CUDA only)</td>
<td>Path to bin2c executable, will automatically pick up the first one in your $PATH.</td>
<td>(automatic)</td>
</tr>
</tbody>
</table>
@ -1647,9 +1652,8 @@ requires `gzip` to be in your `PATH`
</tr>
<tr>
<td><code>GZIP_EXECUTABLE</code></td>
<td></td>
<td>
</td>
<td>Path to gzip executable, will automatically pick up the first one in your $PATH.</td>
<td>(automatic)</td>
</tr>
</tbody>
</table>
@ -1679,9 +1683,8 @@ requires `ffmpeg` to be in your `PATH`
</tr>
<tr>
<td><code>FFMPEG_EXECUTABLE</code></td>
<td></td>
<td>
</td>
<td>Path to ffmpeg executable, will automatically pick up the first one in your $PATH.</td>
<td>(automatic)</td>
</tr>
</tbody>
</table>

View File

@ -1,9 +1,29 @@
# pkg-config file for lammps
# https://people.freedesktop.org/~dbn/pkg-config-guide.html
# Usage: cc `pkg-config --cflags --libs liblammps` -o myapp myapp.c
# after you added @CMAKE_INSTALL_FULL_LIBDIR@/pkg-config to PKG_CONFIG_PATH,
# Add the directory where lammps.pc got installed to your PKG_CONFIG_PATH
# e.g. export PKG_CONFIG_PATH=@CMAKE_INSTALL_FULL_LIBDIR@/pkgconfig
# Use this on commandline with:
# c++ `pkg-config --cflags --libs lammps` -o myapp myapp.cpp
# Use this in a Makefile:
# myapp: myapp.cpp
# $(CC) `pkg-config --cflags --libs lammps` -o $@ $<
# Use this in autotools:
# configure.ac:
# PKG_CHECK_MODULES([LAMMPS], [lammps])
# Makefile.am:
# myapp_CFLAGS = $(LAMMPS_CFLAGS)
# myapp_LDADD = $(LAMMPS_LIBS)
# Use this in CMake:
# CMakeLists.txt:
# find_package(PkgConfig)
# pkg_check_modules(LAMMPS IMPORTED_TARGET lammps)
# target_link_libraries(<lib> PkgConfig::LAMMPS)
prefix=@CMAKE_INSTALL_PREFIX@
libdir=@CMAKE_INSTALL_FULL_LIBDIR@
includedir=@CMAKE_INSTALL_FULL_INCLUDEDIR@

View File

@ -8,12 +8,12 @@ set(USER_PACKAGES USER-ATC USER-AWPMD USER-BOCS USER-CGDNA USER-CGSDK USER-COLVA
USER-INTEL USER-LB USER-MANIFOLD USER-MEAMC USER-MESO
USER-MGPT USER-MISC USER-MOFFF USER-MOLFILE
USER-NETCDF USER-OMP USER-PHONON USER-QMMM USER-QTB
USER-QUIP USER-REAXC USER-SMD USER-SMTBQ USER-SPH USER-TALLY
USER-QUIP USER-REAXC USER-SDPD USER-SMD USER-SMTBQ USER-SPH USER-TALLY
USER-UEF USER-VTK)
set(PACKAGES_WITH_LIB COMPRESS GPU KIM KOKKOS LATTE MEAM MPIIO MSCG POEMS PYTHON REAX VORONOI
USER-ATC USER-AWPMD USER-COLVARS USER-H5MD USER-LB USER-MOLFILE
USER-NETCDF USER-QMMM USER-QUIP USER-SMD USER-VTK)
USER-NETCDF USER-PLUMED USER-QMMM USER-QUIP USER-SMD USER-VTK)
set(ALL_PACKAGES ${STANDARD_PACKAGES} ${USER_PACKAGES})

View File

@ -8,12 +8,12 @@ set(USER_PACKAGES USER-ATC USER-AWPMD USER-BOCS USER-CGDNA USER-CGSDK USER-COLVA
USER-INTEL USER-LB USER-MANIFOLD USER-MEAMC USER-MESO
USER-MGPT USER-MISC USER-MOFFF USER-MOLFILE
USER-NETCDF USER-OMP USER-PHONON USER-QMMM USER-QTB
USER-QUIP USER-REAXC USER-SMD USER-SMTBQ USER-SPH USER-TALLY
USER-QUIP USER-REAXC USER-SDPD USER-SMD USER-SMTBQ USER-SPH USER-TALLY
USER-UEF USER-VTK)
set(PACKAGES_WITH_LIB COMPRESS GPU KIM KOKKOS LATTE MEAM MPIIO MSCG POEMS PYTHON REAX VORONOI
USER-ATC USER-AWPMD USER-COLVARS USER-H5MD USER-LB USER-MOLFILE
USER-NETCDF USER-QMMM USER-QUIP USER-SMD USER-VTK)
USER-NETCDF USER-PLUMED USER-QMMM USER-QUIP USER-SMD USER-VTK)
set(ALL_PACKAGES ${STANDARD_PACKAGES} ${USER_PACKAGES})

View File

@ -56,11 +56,13 @@ set(PKG_USER-MOFFF OFF CACHE BOOL "" FORCE)
set(PKG_USER-MOLFILE OFF CACHE BOOL "" FORCE)
set(PKG_USER-NETCDF OFF CACHE BOOL "" FORCE)
set(PKG_USER-OMP OFF CACHE BOOL "" FORCE)
set(PKG_USER-PHOFFOFF OFF CACHE BOOL "" FORCE)
set(PKG_USER-PHONON OFF CACHE BOOL "" FORCE)
set(PKG_USER-PLUMED OFF CACHE BOOL "" FORCE)
set(PKG_USER-QMMM OFF CACHE BOOL "" FORCE)
set(PKG_USER-QTB OFF CACHE BOOL "" FORCE)
set(PKG_USER-QUIP OFF CACHE BOOL "" FORCE)
set(PKG_USER-REAXC OFF CACHE BOOL "" FORCE)
set(PKG_USER-SDPD OFF CACHE BOOL "" FORCE)
set(PKG_USER-SMD OFF CACHE BOOL "" FORCE)
set(PKG_USER-SMTBQ OFF CACHE BOOL "" FORCE)
set(PKG_USER-SPH OFF CACHE BOOL "" FORCE)

View File

@ -8,12 +8,12 @@ set(USER_PACKAGES USER-ATC USER-AWPMD USER-BOCS USER-CGDNA USER-CGSDK USER-COLVA
USER-INTEL USER-LB USER-MANIFOLD USER-MEAMC USER-MESO
USER-MGPT USER-MISC USER-MOFFF USER-MOLFILE
USER-NETCDF USER-OMP USER-PHONON USER-QMMM USER-QTB
USER-QUIP USER-REAXC USER-SMD USER-SMTBQ USER-SPH USER-TALLY
USER-QUIP USER-REAXC USER-SDPD USER-SMD USER-SMTBQ USER-SPH USER-TALLY
USER-UEF USER-VTK)
set(PACKAGES_WITH_LIB COMPRESS GPU KIM KOKKOS LATTE MEAM MPIIO MSCG POEMS PYTHON REAX VORONOI
USER-ATC USER-AWPMD USER-COLVARS USER-H5MD USER-LB USER-MOLFILE
USER-NETCDF USER-QMMM USER-QUIP USER-SMD USER-VTK)
USER-NETCDF USER-PLUMED USER-QMMM USER-QUIP USER-SMD USER-VTK)
set(ALL_PACKAGES ${STANDARD_PACKAGES} ${USER_PACKAGES})

View File

@ -8,7 +8,7 @@ set(USER_PACKAGES USER-ATC USER-AWPMD USER-BOCS USER-CGDNA USER-CGSDK USER-COLVA
USER-INTEL USER-LB USER-MANIFOLD USER-MEAMC USER-MESO
USER-MGPT USER-MISC USER-MOFFF USER-MOLFILE
USER-NETCDF USER-OMP USER-PHONON USER-QMMM USER-QTB
USER-QUIP USER-REAXC USER-SMD USER-SMTBQ USER-SPH USER-TALLY
USER-QUIP USER-REAXC USER-SDPD USER-SMD USER-SMTBQ USER-SPH USER-TALLY
USER-UEF USER-VTK)
set(PACKAGES_WITH_LIB COMPRESS GPU KIM KOKKOS LATTE MEAM MPIIO MSCG POEMS PYTHON REAX VORONOI

View File

@ -8,7 +8,7 @@ set(USER_PACKAGES USER-ATC USER-AWPMD USER-BOCS USER-CGDNA USER-CGSDK USER-COLVA
USER-INTEL USER-LB USER-MANIFOLD USER-MEAMC USER-MESO
USER-MGPT USER-MISC USER-MOFFF USER-MOLFILE
USER-NETCDF USER-OMP USER-PHONON USER-QMMM USER-QTB
USER-QUIP USER-REAXC USER-SMD USER-SMTBQ USER-SPH USER-TALLY
USER-QUIP USER-REAXC USER-SDPD USER-SMD USER-SMTBQ USER-SPH USER-TALLY
USER-UEF USER-VTK)
set(PACKAGES_WITH_LIB COMPRESS GPU KIM KOKKOS LATTE MEAM MPIIO MSCG POEMS PYTHON REAX VORONOI

View File

@ -8,12 +8,12 @@ set(USER_PACKAGES USER-ATC USER-AWPMD USER-BOCS USER-CGDNA USER-CGSDK USER-COLVA
USER-INTEL USER-LB USER-MANIFOLD USER-MEAMC USER-MESO
USER-MGPT USER-MISC USER-MOFFF USER-MOLFILE
USER-NETCDF USER-OMP USER-PHONON USER-QMMM USER-QTB
USER-QUIP USER-REAXC USER-SMD USER-SMTBQ USER-SPH USER-TALLY
USER-QUIP USER-REAXC USER-SDPD USER-SMD USER-SMTBQ USER-SPH USER-TALLY
USER-UEF USER-VTK)
set(PACKAGES_WITH_LIB COMPRESS GPU KIM KOKKOS LATTE MEAM MPIIO MSCG POEMS PYTHON REAX VORONOI
USER-ATC USER-AWPMD USER-COLVARS USER-H5MD USER-LB USER-MOLFILE
USER-NETCDF USER-QMMM USER-QUIP USER-SMD USER-VTK)
USER-NETCDF USER-PLUMED USER-QMMM USER-QUIP USER-SMD USER-VTK)
set(ALL_PACKAGES ${STANDARD_PACKAGES} ${USER_PACKAGES})

View File

@ -95,9 +95,10 @@ spelling: $(OBJECTS) utils/sphinx-config/false_positives.txt
@echo "Spell check finished."
epub: $(OBJECTS)
@mkdir -p epub
@mkdir -p epub/JPG
@rm -f LAMMPS.epub
@cp src/JPG/lammps-logo.png epub/
@cp src/JPG/*.* epub/JPG
@(\
. $(VENV)/bin/activate ;\
cp -r src/* $(RSTDIR)/ ;\
@ -123,9 +124,9 @@ pdf: utils/txt2html/txt2html.exe
cd ..; \
../utils/txt2html/txt2html.exe -b *.txt; \
htmldoc --batch lammps.book; \
for s in `echo *.txt | sed -e 's,\.txt,\.html,g'` ; \
do grep -q $$s lammps.book || \
echo doc file $$s missing in src/lammps.book; done; \
for s in `echo *.txt | sed -e 's/ \(pairs\|bonds\|angles\|dihedrals\|impropers\|commands_list\|fixes\|computes\).txt/ /g' | sed -e 's,\.txt,\.html,g'` ; \
do grep -q ^$$s lammps.book || \
echo WARNING: doc file $$s missing in src/lammps.book; done; \
rm *.html; \
)

View File

@ -0,0 +1,184 @@
# Outline of the GitHub Development Workflow
This purpose of this document is to provide a point of reference for the
core LAMMPS developers and other LAMMPS contibutors to understand the
choices the LAMMPS developers have agreed on. Git and GitHub provide the
tools, but do not set policies, so it is up to the developers to come to
an agreement as to how to define and interpret policies. This document
is likely to change as our experiences and needs change and we try to
adapt accordingly. Last change 2018-11-15.
## Table of Contents
* [GitHub Merge Management](#github-merge-management)
* [Pull Requests](#pull-requests)
* [Pull Request Assignments](#pull-request-assignments)
* [Pull Request Reviews](#pull-request-reviews)
* [Pull Request Discussions](#pull-request-discussions)
* [Checklist for Pull Requests](#checklist-for-pull-requests)
* [GitHub Issues](#github-issues)
* [Milestones and Release Planning](#milestones-and-release-planning)
## GitHub Merge Management
In the interest of consistency, ONLY ONE of the core LAMMPS developers
should doing the merging itself. This is currently
[@akohlmey](https://github.com/akohlmey) (Axel Kohlmeyer).
If this assignment needs to be changed, it shall be done right after a
stable release.
## Pull Requests
ALL changes to the LAMMPS code and documentation, however trivial, MUST
be submitted as a pull request to GitHub. All changes to the "master"
branch must be made exclusively through merging pull requests. The
"unstable" and "stable" branches, respectively are only to be updated
upon patch or stable releases with fast-forward merges based on the
associated tags. Pull requests may also be submitted to (long-running)
feature branches created by LAMMPS developers inside the LAMMPS project,
if needed. Those are not subject to the merge and review restrictions
discussed in this document, though, but get manages as needed on a
case-by-case basis.
### Pull Request Assignments
Pull requests can be "chaperoned" by one of the LAMMPS core developers.
This is indicated by who the pull request is assigned to. LAMMPS core
developers can self-assign or they can decide to assign a pull request
to a different LAMMPS developer. Being assigned to a pull request means,
that this pull request may need some work and the assignee is tasked to
determine what this might be needed or not, and may either implement the
required changes or ask the submitter of the pull request to implement
them. Even though, all LAMMPS developers may have write access to pull
requests (if enabled by the submitter, which is the default), only the
submitter or the assignee of a pull request may do so. During this
period the "work_in_progress" label shall be applied to the pull
request. The assignee gets to decide what happens to the pull request
next, e.g. whether it should be assigned to a different developer for
additional checks and changes, or is recommended to be merged. Removing
the "work_in_progress" label and assigning the pull request to the
developer tasked with merging signals that a pull request is ready to be
merged.
### Pull Request Reviews
People can be assigned to review a pull request in two ways:
* They can be assigned manually to review a pull request
by the submitter or a LAMMPS developer
* They can be automatically assigned, because a developers matches
a file pattern in the `.github/CODEOWNERS` file, which associates
developers with the code they contributed and maintain.
Reviewers are requested to state their appraisal of the proposed changes
and either approve or request changes. People may unassign themselves
from review, if they feel not competent about the changes proposed. At
least one review from a LAMMPS developer with write access is required
before merging in addition to the automated compilation tests. The
feature, that reviews from code owners are "hard" reviews (i.e. they
must all be approved before merging is allowed), is currently disabled
and it is in the discretion of the merge maintainer to assess when
a sufficient degree of approval has been reached. Reviews may be
(automatically) dismissed, when the reviewed code has been changed,
and then approval is required a second time.
### Pull Request Discussions
All discussions about a pull request should be kept as much as possible
on the pull request discussion page on GitHub, so that other developers
can later review the entire discussion after the fact and understand the
rationale behind choices made. Exceptions to this policy are technical
discussions, that are centered on tools or policies themselves
(git, github, c++) rather than on the content of the pull request.
### Checklist for Pull Requests
Here are some items to check:
* source and text files should not have CR/LF line endings (use dos2unix to remove)
* every new command or style should have documentation. The names of
source files (c++ and manual) should follow the name of the style.
(example: `src/fix_nve.cpp`, `src/fix_nve.h` for `fix nve` command,
implementing the class `FixNVE`, documented in `doc/src/fix_nve.txt`)
* all new style names should be lower case, the must be no dashes,
blanks, or underscores separating words, only forward slashes.
* new style docs should be added to the "overview" files in
`doc/src/Commands_*.txt`, `doc/src/{fixes,computes,pairs,bonds,...}.txt`
and `doc/src/lammps.book`
* new files in packages should be added to `src/.gitignore`
* removed or renamed files in packages should be added to `src/Purge.list`
* C++ source files should use C++ style include files for accessing
C-library APIs, e.g. `#include <cstdlib>` instead of `#include <stdlib.h>`.
And they should use angular brackets instead of double quotes. Full list:
* assert.h -> cassert
* ctype.h -> cctype
* errno.h -> cerrno
* float.h -> cfloat
* limits.h -> climits
* math.h -> cmath
* omplex.h -> complex
* setjmp.h -> csetjmp
* signal.h -> csignal
* stddef.h -> cstddef
* stdint.h -> cstdint
* stdio.h -> cstdio
* stdlib.h -> cstdlib
* string.h -> cstring
* time.h -> ctime
Do not replace (as they are C++-11): `inttypes.h` and `stdint.h`.
* Code should follow the C++-98 standard. C++-11 is only accepted
in individual special purpose packages
* indentation is two spaces per level
* there should be no tabs and no trailing whitespace
* header files, especially of new styles, should not include any
other headers, except the header with the base class or cstdio.
Forward declarations should be used instead when possible.
* iostreams should be avoided. LAMMPS uses stdio from the C-library.
* use of STL in headers and class definitions should be avoided.
* static class members should be avoided at all cost.
* anything storing atom IDs should be using `tagint` and not `int`.
This can be flagged by the compiler only for pointers and only when
compiling LAMMPS with `-DLAMMPS_BIGBIG`.
* when including both `lmptype.h` (and using defines or macros from it)
and `mpi.h`, `lmptype.h` must be included first.
## GitHub Issues
The GitHub issue tracker is the location where the LAMMPS developers
and other contributors or LAMMPS users can report issues or bugs with
the LAMMPS code or request new features to be added. Feature requests
are usually indicated by a `[Feature Request]` marker in the subject.
Issues are assigned to a person, if this person is working on this
feature or working to resolve an issue. Issues that have nobody working
on them at the moment, have the label `volunteer needed` attached.
When an issue, say `#125` is resolved by a specific pull request,
the comment for the pull request shall contain the text `closes #125`
or `fixes #125`, so that the issue is automatically deleted when
the pull request is merged.
## Milestones and Release Planning
LAMMPS uses a continuous release development model with incremental
changes, i.e. significant effort is made - including automated pre-merge
testing - that the code in the branch "master" does not get broken.
More extensive testing (including regression testing) is performed after
code is merged to the "master" branch. There are patch releases of
LAMMPS every 1-3 weeks at a point, when the LAMMPS developers feel, that
a sufficient amount of changes have happened, and the post-merge testing
has been successful. These patch releases are marked with a
`patch_<version date>` tag and the "unstable" branch follows only these
versions (and thus is always supposed to be of production quality,
unlike "master", which may be temporary broken, in the case of larger
change sets or unexpected incompatibilities or side effects.
About 3-4 times each year, there are going to be "stable" releases
of LAMMPS. These have seen additional, manual testing and review of
results from testing with instrumented code and static code analysis.
Also, in the last 2-3 patch releases before a stable release are
"release candidate" versions which only contain bugfixes and
documentation updates. For release planning and the information of
code contributors, issues and pull requests being actively worked on
are assigned a "milestone", which corresponds to the next stable
release or the stable release after that, with a tentative release
date.

View File

@ -137,9 +137,9 @@ simply loading the appropriate module before building LAMMPS.
-D CMAKE_C_COMPILER=name # name of C compiler
-D CMAKE_Fortran_COMPILER=name # name of Fortran compiler :pre
-D CMAKE_CXX_FlAGS=string # flags to use with C++ compiler
-D CMAKE_C_FlAGS=string # flags to use with C compiler
-D CMAKE_Fortran_FlAGS=string # flags to use with Fortran compiler :pre
-D CMAKE_CXX_FLAGS=string # flags to use with C++ compiler
-D CMAKE_C_FLAGS=string # flags to use with C compiler
-D CMAKE_Fortran_FLAGS=string # flags to use with Fortran compiler :pre
By default CMake will use a compiler it finds and it will add
optimization flags appropriate to that compiler and any "accelerator

View File

@ -45,6 +45,7 @@ This is the list of packages that may require additional steps.
"USER-INTEL"_#user-intel,
"USER-MOLFILE"_#user-molfile,
"USER-NETCDF"_#user-netcdf,
"USER-PLUMED"_#user-plumed,
"USER-OMP"_#user-omp,
"USER-QMMM"_#user-qmmm,
"USER-QUIP"_#user-quip,
@ -563,9 +564,9 @@ file.
VORONOI package :h4,link(voronoi)
To build with this package, you must download and build the "Voro++
library"_voro_home.
library"_voro-home.
:link(voro_home,http://math.lbl.gov/voro++)
:link(voro-home,http://math.lbl.gov/voro++)
[CMake build]:
@ -712,6 +713,103 @@ a corresponding Makefile.lammps.machine file.
:line
USER-PLUMED package :h4,link(user-plumed)
Before building LAMMPS with this package, you must first build PLUMED.
PLUMED can be built as part of the LAMMPS build or installed separately
from LAMMPS using the generic "plumed installation instructions"_plumedinstall.
:link(plumedinstall,http://plumed.github.io/doc-master/user-doc/html/_installation.html)
PLUMED can be linked into MD codes in three different modes: static,
shared, and runtime. With the "static" mode, all required PLUMED code
is linked statically into the MD code. The MD code is then fully
independent from the PLUMED installation, but also you have to
rebuild/relink the MD code to update the PLUMED code inside it. With
"shared" linkage mode, the MD code is linked to a shared library
containing the PLUMED code, preferably after it was installed in a
globally accessible location. This way the same installed PLUMED code
can be shared across multiple MD packages and can be updated, for as
long as the shared PLUMED library is ABI-compatible. The third linkage
mode is "runtime" which allows to switch the PLUMED kernel at runtime
between different variants through setting the PLUMED_KERNEL environment
varible, which has to point to the location of the libplumedKernel.so
dynamical shared object, which is then loaded at runtime. This is
particularly convenient for doing PLUMED development and comparing
multiple PLUMED versions without having to recompile the hosting MD
code. All three linkage modes are supported by LAMMPS on selected
operating systems (e.g. Linux) and using either CMake or traditional
make build. The "static" mode should be most portable, the "runtime"
mode support in LAMMPS makes the most assumptions about operating
system and compiler environment. If one mode does not work, try a
different one, or switch to a different build system, or consider
a global PLUMED installation or downloading it during building LAMMPS.
[CMake build]:
-D DOWNLOAD_PLUMED=value # download PLUMED for build, value = no (default) or yes
-D PLUMED_MODE=value # Linkage mode for PLUMED, value = static (default), shared, or runtime :pre
If DOWNLOAD_PLUMED is set to "yes", the PLUMED library will be
downloaded (the version of that is hardcoded to a vetted version of
PLUMED, usually a recent stable release version) and built inside the
CMake build directory. If DOWNLOAD_PLUMED is set to "no" (the default),
CMake will try to detect an installed version of PLUMED and link to
that. For this to work, the PLUMED library has to be installed into a
location where the pkg-config tool can find it or the PKG_CONFIG_PATH
environment variable has to be set up accordingly.
The PLUMED_MODE setting determines the linkage mode of the PLUMED
library. Allowed values are "static" (default), "shared", or "runtime".
For a discussion of PLUMED linkage modes, please see above. When
enabling DOWNLOAD_PLUMED, the static linkage mode is recommended.
[Traditional make]:
Before installing the USER-PLUMED package, first the PLUMED library
needs to be configured so that LAMMPS can find the right settings when
compiling and linking the LAMMPS executable itself. You can either
download and build PLUMED inside the LAMMPS plumed library folder or use
a previously installed PLUMED library and point LAMMPS to its
location. You also have to choose the linkage mode: "static" (default),
"shared" or "runtime". For a discussion of PLUMED linkage modes, please
see above.
Download/compilation/configuration of the plumed library can be done
from the src folder through the following make args:
make lib-plumed # print help message
make lib-plumed args="-b" # download and build PLUMED in lib/plumed/plumed2
make lib-plumed args="-p $HOME/.local" # use existing PLUMED installation in $HOME/.local
make lib-plumed args="-p /usr/local -m shared" # use existing PLUMED installation in
# /usr/local and use shared linkage mode
:pre
Note that 2 symbolic (soft) links, "includelink" and "liblink" are
created in lib/plumed to point into the location of the PLUMED build to
use and also a new file lib/plumed/Makefile.lammps is created with
settings suitable for LAMMPS to compile and link PLUMED in the desired
linkage mode. After this step is compleded, you can install the
USER-PLUMED package and compile LAMMPS in the usual manner:
make yes-user-plumed
make machine :pre
Once this compilation completes you should be able to run LAMMPS in the
usual way. For shared linkage mode, libplumed.so must be found by the
LAMMPS executable, which on many operating systems means, you have to
set the LD_LIBRARY_PATH environment variable accordingly.
Support for the different linkage modes in LAMMPS varies for different
operating systems, using the static linkage is expected to be the most
portable, and thus set to be the default.
If you want to change the linkage mode, you have to re-run "make
lib-plumed" with the desired settings [and] do a reinstall if the
USER-PLUMED package with "make yes-user-plumed" to update the required
makefile settings with the changes in the lib/plumed folder.
:line
USER-H5MD package :h4,link(user-h5md)
To build with this package you must have the HDF5 software package
@ -932,9 +1030,9 @@ successfully build on your system.
USER-SCAFACOS package :h4,link(user-scafacos)
To build with this package, you must download and build the "ScaFaCoS
Coulomb solver library"_scafacos_home
Coulomb solver library"_scafacos-home
:link(scafacos_home,http://www.scafacos.de)
:link(scafacos-home,http://www.scafacos.de)
[CMake build]:

View File

@ -56,6 +56,7 @@ packages:
"USER-INTEL"_Build_extras.html#user-intel,
"USER-MOLFILE"_Build_extras.html#user-molfile,
"USER-NETCDF"_Build_extras.html#user-netcdf,
"USER-PLUMED"_Build_extras.html#user-plumed,
"USER-OMP"_Build_extras.html#user-omp,
"USER-QMMM"_Build_extras.html#user-qmmm,
"USER-QUIP"_Build_extras.html#user-quip,

View File

@ -59,6 +59,7 @@ An alphabetic list of all LAMMPS commands.
"fix_modify"_fix_modify.html,
"group"_group.html,
"group2ndx"_group2ndx.html,
"hyper"_hyper.html,
"if"_if.html,
"info"_info.html,
"improper_coeff"_improper_coeff.html,

View File

@ -34,7 +34,7 @@ OPT.
"fene (iko)"_bond_fene.html,
"fene/expand (o)"_bond_fene_expand.html,
"gromos (o)"_bond_gromos.html,
"harmonic (ko)"_bond_harmonic.html,
"harmonic (iko)"_bond_harmonic.html,
"harmonic/shift (o)"_bond_harmonic_shift.html,
"harmonic/shift/cut (o)"_bond_harmonic_shift_cut.html,
"morse (o)"_bond_morse.html,
@ -57,9 +57,11 @@ OPT.
"zero"_angle_zero.html,
"hybrid"_angle_hybrid.html :tb(c=3,ea=c)
"charmm (ko)"_angle_charmm.html,
"charmm (iko)"_angle_charmm.html,
"class2 (ko)"_angle_class2.html,
"class2/p6"_angle_class2.html,
"cosine (o)"_angle_cosine.html,
"cosine/buck6d"_angle_cosine_buck6d.html,
"cosine/delta (o)"_angle_cosine_delta.html,
"cosine/periodic (o)"_angle_cosine_periodic.html,
"cosine/shift (o)"_angle_cosine_shift.html,
@ -97,7 +99,7 @@ OPT.
"nharmonic (o)"_dihedral_nharmonic.html,
"opls (iko)"_dihedral_opls.html,
"quadratic (o)"_dihedral_quadratic.html,
"spherical (o)"_dihedral_spherical.html,
"spherical"_dihedral_spherical.html,
"table (o)"_dihedral_table.html,
"table/cut"_dihedral_table_cut.html :tb(c=4,ea=c)
@ -112,7 +114,7 @@ OPT.
"none"_improper_none.html,
"zero"_improper_zero.html,
"hybrid"_improper_hybrid.html :tb(c=3,ea=c)
"hybrid"_improper_hybrid.html :tb(c=3,ea=c)
"class2 (ko)"_improper_class2.html,
"cossq (o)"_improper_cossq.html,
@ -120,5 +122,6 @@ OPT.
"distance"_improper_distance.html,
"fourier (o)"_improper_fourier.html,
"harmonic (iko)"_improper_harmonic.html,
"inversion/harmonic"_improper_inversion_harmonic.html,
"ring (o)"_improper_ring.html,
"umbrella (o)"_improper_umbrella.html :tb(c=4,ea=c)

View File

@ -25,6 +25,7 @@ additional letters in parenthesis: g = GPU, i = USER-INTEL, k =
KOKKOS, o = USER-OMP, t = OPT.
"ackland/atom"_compute_ackland_atom.html,
"adf"_compute_adf.html,
"aggregate/atom"_compute_cluster_atom.html,
"angle"_compute_angle.html,
"angle/local"_compute_angle_local.html,
@ -92,6 +93,7 @@ KOKKOS, o = USER-OMP, t = OPT.
"pe/tally"_compute_tally.html,
"plasticity/atom"_compute_plasticity_atom.html,
"pressure"_compute_pressure.html,
"pressure/cylinder"_compute_pressure_cylinder.html,
"pressure/uef"_compute_pressure_uef.html,
"property/atom"_compute_property_atom.html,
"property/chunk"_compute_property_chunk.html,
@ -118,7 +120,7 @@ KOKKOS, o = USER-OMP, t = OPT.
"smd/tlsph/strain"_compute_smd_tlsph_strain.html,
"smd/tlsph/strain/rate"_compute_smd_tlsph_strain_rate.html,
"smd/tlsph/stress"_compute_smd_tlsph_stress.html,
"smd/triangle/mesh/vertices"_compute_smd_triangle_vertices.html,
"smd/triangle/vertices"_compute_smd_triangle_vertices.html,
"smd/ulsph/num/neighs"_compute_smd_ulsph_num_neighs.html,
"smd/ulsph/strain"_compute_smd_ulsph_strain.html,
"smd/ulsph/strain/rate"_compute_smd_ulsph_strain_rate.html,
@ -129,6 +131,8 @@ KOKKOS, o = USER-OMP, t = OPT.
"snav/atom"_compute_sna_atom.html,
"spin"_compute_spin.html,
"stress/atom"_compute_stress_atom.html,
"stress/mop"_compute_stress_mop.html,
"stress/mop/profile"_compute_stress_mop.html,
"stress/tally"_compute_tally.html,
"tdpd/cc/atom"_compute_tdpd_cc_atom.html,
"temp (k)"_compute_temp.html,
@ -136,6 +140,7 @@ KOKKOS, o = USER-OMP, t = OPT.
"temp/body"_compute_temp_body.html,
"temp/chunk"_compute_temp_chunk.html,
"temp/com"_compute_temp_com.html,
"temp/cs"_compute_temp_cs.html,
"temp/deform"_compute_temp_deform.html,
"temp/deform/eff"_compute_temp_deform_eff.html,
"temp/drude"_compute_temp_drude.html,

View File

@ -40,11 +40,13 @@ OPT.
"ave/time"_fix_ave_time.html,
"aveforce"_fix_aveforce.html,
"balance"_fix_balance.html,
"bocs"_fix_bocs.html,
"bond/break"_fix_bond_break.html,
"bond/create"_fix_bond_create.html,
"bond/react"_fix_bond_react.html,
"bond/swap"_fix_bond_swap.html,
"box/relax"_fix_box_relax.html,
"client/md"_fix_client_md.html,
"cmap"_fix_cmap.html,
"colvars"_fix_colvars.html,
"controller"_fix_controller.html,
@ -54,7 +56,7 @@ OPT.
"drag"_fix_drag.html,
"drude"_fix_drude.html,
"drude/transform/direct"_fix_drude_transform.html,
"drude/transform/reverse"_fix_drude_transform.html,
"drude/transform/inverse"_fix_drude_transform.html,
"dt/reset"_fix_dt_reset.html,
"edpd/source"_fix_dpd_source.html,
"efield"_fix_efield.html,
@ -68,14 +70,16 @@ OPT.
"ffl"_fix_ffl.html,
"filter/corotate"_fix_filter_corotate.html,
"flow/gauss"_fix_flow_gauss.html,
"freeze"_fix_freeze.html,
"freeze (k)"_fix_freeze.html,
"gcmc"_fix_gcmc.html,
"gld"_fix_gld.html,
"gle"_fix_gle.html,
"gravity (o)"_fix_gravity.html,
"gravity (ko)"_fix_gravity.html,
"grem"_fix_grem.html,
"halt"_fix_halt.html,
"heat"_fix_heat.html,
"hyper/global"_fix_hyper_global.html,
"hyper/local"_fix_hyper_local.html,
"imd"_fix_imd.html,
"indent"_fix_indent.html,
"ipi"_fix_ipi.html,
@ -92,6 +96,7 @@ OPT.
"lineforce"_fix_lineforce.html,
"manifoldforce"_fix_manifoldforce.html,
"meso"_fix_meso.html,
"meso/move"_fix_meso_move.html,
"meso/stationary"_fix_meso_stationary.html,
"momentum (k)"_fix_momentum.html,
"move"_fix_move.html,
@ -107,15 +112,16 @@ OPT.
"nph/eff"_fix_nh_eff.html,
"nph/sphere (o)"_fix_nph_sphere.html,
"nphug (o)"_fix_nphug.html,
"npt (kio)"_fix_nh.html,
"npt (iko)"_fix_nh.html,
"npt/asphere (o)"_fix_npt_asphere.html,
"npt/body"_fix_npt_body.html,
"npt/eff"_fix_nh_eff.html,
"npt/sphere (o)"_fix_npt_sphere.html,
"npt/uef"_fix_nh_uef.html,
"nve (kio)"_fix_nve.html,
"nve (iko)"_fix_nve.html,
"nve/asphere (i)"_fix_nve_asphere.html,
"nve/asphere/noforce"_fix_nve_asphere_noforce.html,
"nve/awpmd"_fix_nve_awpmd.html,
"nve/body"_fix_nve_body.html,
"nve/dot"_fix_nve_dot.html,
"nve/dotc/langevin"_fix_nve_dotc_langevin.html,
@ -124,7 +130,7 @@ OPT.
"nve/line"_fix_nve_line.html,
"nve/manifold/rattle"_fix_nve_manifold_rattle.html,
"nve/noforce"_fix_nve_noforce.html,
"nve/sphere (o)"_fix_nve_sphere.html,
"nve/sphere (ko)"_fix_nve_sphere.html,
"nve/spin"_fix_nve_spin.html,
"nve/tri"_fix_nve_tri.html,
"nvk"_fix_nvk.html,
@ -143,6 +149,7 @@ OPT.
"phonon"_fix_phonon.html,
"pimd"_fix_pimd.html,
"planeforce"_fix_planeforce.html,
"plumed"_fix_plumed.html,
"poems"_fix_poems.html,
"pour"_fix_pour.html,
"precession/spin"_fix_precession_spin.html,
@ -169,27 +176,28 @@ OPT.
"restrain"_fix_restrain.html,
"rhok"_fix_rhok.html,
"rigid (o)"_fix_rigid.html,
"rigid/meso"_fix_rigid_meso.html,
"rigid/nph (o)"_fix_rigid.html,
"rigid/nph/small"_fix_rigid.html,
"rigid/npt (o)"_fix_rigid.html,
"rigid/npt/small"_fix_rigid.html,
"rigid/nve (o)"_fix_rigid.html,
"rigid/nve/small"_fix_rigid.html,
"rigid/nvt (o)"_fix_rigid.html,
"rigid/nvt/small"_fix_rigid.html,
"rigid/small (o)"_fix_rigid.html,
"rigid/small/nph"_fix_rigid.html,
"rigid/small/npt"_fix_rigid.html,
"rigid/small/nve"_fix_rigid.html,
"rigid/small/nvt"_fix_rigid.html,
"rx (k)"_fix_rx.html,
"saed/vtk"_fix_saed_vtk.html,
"setforce (k)"_fix_setforce.html,
"shake"_fix_shake.html,
"shardlow (k)"_fix_shardlow.html,
"smd"_fix_smd.html,
"smd/adjust/dt"_fix_smd_adjust_dt.html,
"smd/integrate/tlsph"_fix_smd_integrate_tlsph.html,
"smd/integrate/ulsph"_fix_smd_integrate_ulsph.html,
"smd/move/triangulated/surface"_fix_smd_move_triangulated_surface.html,
"smd/adjust_dt"_fix_smd_adjust_dt.html,
"smd/integrate_tlsph"_fix_smd_integrate_tlsph.html,
"smd/integrate_ulsph"_fix_smd_integrate_ulsph.html,
"smd/move_tri_surf"_fix_smd_move_triangulated_surface.html,
"smd/setvel"_fix_smd_setvel.html,
"smd/wall/surface"_fix_smd_wall_surface.html,
"smd/wall_surface"_fix_smd_wall_surface.html,
"spring"_fix_spring.html,
"spring/chunk"_fix_spring_chunk.html,
"spring/rg"_fix_spring_rg.html,

View File

@ -31,8 +31,8 @@ OPT.
"adp (o)"_pair_adp.html,
"agni (o)"_pair_agni.html,
"airebo (oi)"_pair_airebo.html,
"airebo/morse (oi)"_pair_airebo.html,
"airebo (io)"_pair_airebo.html,
"airebo/morse (io)"_pair_airebo.html,
"atm"_pair_atm.html,
"awpmd/cut"_pair_awpmd.html,
"beck (go)"_pair_beck.html,
@ -42,21 +42,23 @@ OPT.
"bop"_pair_bop.html,
"born (go)"_pair_born.html,
"born/coul/dsf"_pair_born.html,
"born/coul/dsf/cs"_pair_born.html,
"born/coul/dsf/cs"_pair_cs.html,
"born/coul/long (go)"_pair_born.html,
"born/coul/long/cs"_pair_born.html,
"born/coul/long/cs (g)"_pair_cs.html,
"born/coul/msm (o)"_pair_born.html,
"born/coul/wolf (go)"_pair_born.html,
"born/coul/wolf/cs"_pair_born.html,
"born/coul/wolf/cs (g)"_pair_cs.html,
"brownian (o)"_pair_brownian.html,
"brownian/poly (o)"_pair_brownian.html,
"buck (giko)"_pair_buck.html,
"buck/coul/cut (giko)"_pair_buck.html,
"buck/coul/long (giko)"_pair_buck.html,
"buck/coul/long/cs"_pair_buck.html,
"buck/coul/long/cs"_pair_cs.html,
"buck/coul/msm (o)"_pair_buck.html,
"buck/long/coul/long (o)"_pair_buck_long.html,
"buck/mdf"_pair_mdf.html,
"buck6d/coul/gauss/dsf"_pair_buck6d_coul_gauss.html,
"buck6d/coul/gauss/long"_pair_buck6d_coul_gauss.html,
"colloid (go)"_pair_colloid.html,
"comb (o)"_pair_comb.html,
"comb3"_pair_comb.html,
@ -66,13 +68,13 @@ OPT.
"coul/diel (o)"_pair_coul_diel.html,
"coul/dsf (gko)"_pair_coul.html,
"coul/long (gko)"_pair_coul.html,
"coul/long/cs"_pair_coul.html,
"coul/long/cs (g)"_pair_cs.html,
"coul/long/soft (o)"_pair_lj_soft.html,
"coul/msm"_pair_coul.html,
"coul/msm (o)"_pair_coul.html,
"coul/shield"_pair_coul_shield.html,
"coul/streitz"_pair_coul.html,
"coul/wolf (ko)"_pair_coul.html,
"coul/wolf/cs"_pair_coul.html,
"coul/wolf/cs"_pair_cs.html,
"dpd (gio)"_pair_dpd.html,
"dpd/fdt"_pair_dpd_fdt.html,
"dpd/fdt/energy (k)"_pair_dpd_fdt.html,
@ -91,11 +93,11 @@ OPT.
"exp6/rx (k)"_pair_exp6_rx.html,
"extep"_pair_extep.html,
"gauss (go)"_pair_gauss.html,
"gauss/cut"_pair_gauss.html,
"gauss/cut (o)"_pair_gauss.html,
"gayberne (gio)"_pair_gayberne.html,
"gran/hertz/history (o)"_pair_gran.html,
"gran/hooke (o)"_pair_gran.html,
"gran/hooke/history (o)"_pair_gran.html,
"gran/hooke/history (ko)"_pair_gran.html,
"gw"_pair_gw.html,
"gw/zbl"_pair_gw.html,
"hbond/dreiding/lj (o)"_pair_hbond_dreiding.html,
@ -110,9 +112,9 @@ OPT.
"list"_pair_list.html,
"lj/charmm/coul/charmm (iko)"_pair_charmm.html,
"lj/charmm/coul/charmm/implicit (ko)"_pair_charmm.html,
"lj/charmm/coul/long (giko)"_pair_charmm.html,
"lj/charmm/coul/long/soft (o)"_pair_charmm.html,
"lj/charmm/coul/msm"_pair_charmm.html,
"lj/charmm/coul/long (gikot)"_pair_charmm.html,
"lj/charmm/coul/long/soft (o)"_pair_lj_soft.html,
"lj/charmm/coul/msm (o)"_pair_charmm.html,
"lj/charmmfsw/coul/charmmfsh"_pair_charmm.html,
"lj/charmmfsw/coul/long"_pair_charmm.html,
"lj/class2 (gko)"_pair_class2.html,
@ -125,12 +127,12 @@ OPT.
"lj/cut/coul/debye (gko)"_pair_lj.html,
"lj/cut/coul/dsf (gko)"_pair_lj.html,
"lj/cut/coul/long (gikot)"_pair_lj.html,
"lj/cut/coul/long/cs"_pair_lj.html,
"lj/cut/coul/long/cs"_pair_cs.html,
"lj/cut/coul/long/soft (o)"_pair_lj_soft.html,
"lj/cut/coul/msm (go)"_pair_lj.html,
"lj/cut/coul/wolf (o)"_pair_lj.html,
"lj/cut/dipole/cut (go)"_pair_dipole.html,
"lj/cut/dipole/long"_pair_dipole.html,
"lj/cut/dipole/long (g)"_pair_dipole.html,
"lj/cut/dipole/sf (go)"_pair_dipole.html,
"lj/cut/soft (o)"_pair_lj_soft.html,
"lj/cut/thole/long (o)"_pair_thole.html,
@ -138,15 +140,17 @@ OPT.
"lj/cut/tip4p/long (ot)"_pair_lj.html,
"lj/cut/tip4p/long/soft (o)"_pair_lj_soft.html,
"lj/expand (gko)"_pair_lj_expand.html,
"lj/expand/coul/long (g)"_pair_lj_expand.html,
"lj/gromacs (gko)"_pair_gromacs.html,
"lj/gromacs/coul/gromacs (ko)"_pair_gromacs.html,
"lj/long/coul/long (io)"_pair_lj_long.html,
"lj/long/coul/long (iot)"_pair_lj_long.html,
"lj/long/dipole/long"_pair_dipole.html,
"lj/long/tip4p/long"_pair_lj_long.html,
"lj/long/tip4p/long (o)"_pair_lj_long.html,
"lj/mdf"_pair_mdf.html,
"lj/sdk (gko)"_pair_sdk.html,
"lj/sdk/coul/long (go)"_pair_sdk.html,
"lj/sdk/coul/msm (o)"_pair_sdk.html,
"lj/sf/dipole/sf (go)"_pair_dipole.html,
"lj/smooth (o)"_pair_lj_smooth.html,
"lj/smooth/linear (o)"_pair_lj_smooth_linear.html,
"lj96/cut (go)"_pair_lj96.html,
@ -161,10 +165,10 @@ OPT.
"meam/spline (o)"_pair_meam_spline.html,
"meam/sw/spline"_pair_meam_sw_spline.html,
"mgpt"_pair_mgpt.html,
"mie/cut (o)"_pair_mie.html,
"mie/cut (g)"_pair_mie.html,
"momb"_pair_momb.html,
"morse (gkot)"_pair_morse.html,
"morse/smooth/linear"_pair_morse.html,
"morse/smooth/linear (o)"_pair_morse.html,
"morse/soft"_pair_morse.html,
"multi/lucy"_pair_multi_lucy.html,
"multi/lucy/rx (k)"_pair_multi_lucy_rx.html,
@ -180,7 +184,9 @@ OPT.
"oxdna2/coaxstk"_pair_oxdna2.html,
"oxdna2/dh"_pair_oxdna2.html,
"oxdna2/excv"_pair_oxdna2.html,
"oxdna2/hbond"_pair_oxdna2.html,
"oxdna2/stk"_pair_oxdna2.html,
"oxdna2/xstk"_pair_oxdna2.html,
"peri/eps"_pair_peri.html,
"peri/lps (o)"_pair_peri.html,
"peri/pmb (o)"_pair_peri.html,
@ -190,11 +196,12 @@ OPT.
"quip"_pair_quip.html,
"reax"_pair_reax.html,
"reax/c (ko)"_pair_reaxc.html,
"rebo (oi)"_pair_airebo.html,
"rebo (io)"_pair_airebo.html,
"resquared (go)"_pair_resquared.html,
"sdpd/taitwater/isothermal"_pair_sdpd_taitwater_isothermal.html,
"smd/hertz"_pair_smd_hertz.html,
"smd/tlsph"_pair_smd_tlsph.html,
"smd/triangulated/surface"_pair_smd_triangulated_surface.html,
"smd/tri_surface"_pair_smd_triangulated_surface.html,
"smd/ulsph"_pair_smd_ulsph.html,
"smtbq"_pair_smtbq.html,
"snap (k)"_pair_snap.html,
@ -226,8 +233,8 @@ OPT.
"tip4p/long/soft (o)"_pair_lj_soft.html,
"tri/lj"_pair_tri_lj.html,
"ufm (got)"_pair_ufm.html,
"vashishta (ko)"_pair_vashishta.html,
"vashishta (gko)"_pair_vashishta.html,
"vashishta/table (o)"_pair_vashishta.html,
"yukawa (gok)"_pair_yukawa.html,
"yukawa (gko)"_pair_yukawa.html,
"yukawa/colloid (go)"_pair_yukawa_colloid.html,
"zbl (gok)"_pair_zbl.html :tb(c=4,ea=c)
"zbl (gko)"_pair_zbl.html :tb(c=4,ea=c)

View File

@ -22,10 +22,10 @@ users.
LAMMPS source files are in two directories of the distribution
tarball. The src directory has the majority of them, all of which are
C++ files (*.cpp and *.h). Many of these files are in the src
directory itself. There are also dozens of "packages", which can be
directory itself. There are also dozens of ``packages'', which can be
included or excluded when LAMMPS is built. See the
doc/Section\_build.html section of the manual for more information
about packages, or type "make" from within the src directory, which
about packages, or type ``make'' from within the src directory, which
lists package-related commands, such as ``make package-status''. The
source files for each package are in an all-uppercase sub-directory of
src, like src/MOLECULE or src/USER-CUDA. If the package is currently
@ -38,17 +38,17 @@ The lib directory also contains source code for external libraries,
used by a few of the packages. Each sub-directory, like meam or gpu,
contains the source files, some of which are in different languages
such as Fortran. The files are compiled into libraries from within
each sub-directory, e.g. performing a "make" in the lib/meam directory
each sub-directory, e.g. performing a ``make'' in the lib/meam directory
creates a libmeam.a file. These libraries are linked to during a
LAMMPS build, if the corresponding package is installed.
LAMMPS C++ source files almost always come in pairs, such as run.cpp
and run.h. The pair of files defines a C++ class, the Run class in
this case, which contains the code invoked by the "run" command in a
this case, which contains the code invoked by the ``run'' command in a
LAMMPS input script. As this example illustrates, source file and
class names often have a one-to-one correspondence with a command used
in a LAMMPS input script. Some source files and classes do not have a
corresponding input script command, e.g. force.cpp and the Force
corresponding input script command, e.g. ``force.cpp'' and the Force
class. They are discussed in the next section.
\pagebreak
@ -57,12 +57,12 @@ class. They are discussed in the next section.
Though LAMMPS has a lot of source files and classes, its class
hierarchy is quite simple, as outlined in Fig \ref{fig:classes}. Each
boxed name refers to a class and has a pair of associated source files
in lammps/src, e.g. memory.cpp and memory.h. More details on the
in lammps/src, e.g. ``memory.cpp'' and ``memory.h''. More details on the
class and its methods and data structures can be found by examining
its *.h file.
LAMMPS (lammps.cpp/h) is the top-level class for the entire code. It
holds an "instance" of LAMMPS and can be instantiated one or more
holds an ``instance'' of LAMMPS and can be instantiated one or more
times by a calling code. For example, the file src/main.cpp simply
instantiates one instance of LAMMPS and passes it the input script.
@ -81,7 +81,7 @@ enabled by a bit of cleverness in the Pointers class (see
src/pointers.h) which every class inherits from.
There are a handful of virtual parent classes in LAMMPS that define
what LAMMPS calls "styles". They are shaded red in Fig
what LAMMPS calls ``styles''. They are shaded red in Fig
\ref{fig:classes}. Each of these are parents of a number of child
classes that implement the interface defined by the parent class. For
example, the fix style has around 100 child classes. They are the
@ -89,17 +89,17 @@ possible fixes that can be specified by the fix command in an input
script, e.g. fix nve, fix shake, fix ave/time, etc. The corresponding
classes are Fix (for the parent class), FixNVE, FixShake, FixAveTime,
etc. The source files for these classes are easy to identify in the
src directory, since they begin with the word "fix", e,g,
src directory, since they begin with the word ``fix'', e,g,
fix\_nve.cpp, fix\_shake,cpp, fix\_ave\_time.cpp, etc.
The one exception is child class files for the "command" style. These
The one exception is child class files for the ``command'' style. These
implement specific commands in the input script that can be invoked
before/after/between runs or which launch a simulation. Examples are
the create\_box, minimize, run, and velocity commands which encode the
CreateBox, Minimize, Run, and Velocity classes. The corresponding
files are create\_box,cpp, minimize.cpp, run.cpp, and velocity.cpp.
The list of command style files can be found by typing "grep
COMMAND\_CLASS *.h" from within the src directory, since that word in
The list of command style files can be found by typing ``grep
COMMAND\_CLASS *.h'' from within the src directory, since that word in
the header file identifies the class as an input script command.
Similar words can be grepped to list files for the other LAMMPS
styles. E.g. ATOM\_CLASS, PAIR\_CLASS, BOND\_CLASS, REGION\_CLASS,
@ -471,13 +471,13 @@ FixStyle(your/fix/name,FixMine)
\end{verbatim}
\end{center}
Where "your/fix/name" is a name of your fix in the script and FixMine
Where ``your/fix/name'' is a name of your fix in the script and FixMine
is the name of the class. This code allows LAMMPS to find your fix
when it parses input script. In addition, your fix header must be
included in the file "style\_fix.h". In case if you use LAMMPS make,
included in the file ``style\_fix.h''. In case if you use LAMMPS make,
this file is generated automatically - all files starting with prefix
fix\_ are included, so call your header the same way. Otherwise, don't
forget to add your include into "style\_fix.h".
forget to add your include into ``style\_fix.h''.
Let's write a simple fix which will print average velocity at the end
of each timestep. First of all, implement a constructor:
@ -567,11 +567,11 @@ void FixPrintVel::end_of_step()
\end{center}
In the code above, we use MathExtra routines defined in
"math\_extra.h". There are bunch of math functions to work with
``math\_extra.h''. There are bunch of math functions to work with
arrays of doubles as with math vectors.
In this code we use an instance of Atom class. This object is stored
in the Pointers class (see "pointers.h"). This object contains all
in the Pointers class (see ``pointers.h''). This object contains all
global information about the simulation system. Data from Pointers
class available to all classes inherited from it using protected
inheritance. Hence when you write you own class, which is going to use
@ -689,7 +689,7 @@ int FixSavePos::unpack_exchange(int nlocal, double *buf)
Now, a little bit about memory allocation. We used Memory class which
is just a bunch of template functions for allocating 1D and 2D
arrays. So you need to add include "memory.h" to have access to them.
arrays. So you need to add include ``memory.h'' to have access to them.
Finally, if you need to write/read some global information used in
your fix to the restart file, you might do it by setting flag

View File

@ -49,7 +49,8 @@ Lennard-Jones benchmark file:
% brew test lammps -v :pre
If you have problems with the installation you can post issues to
"this link"_https://github.com/Homebrew/homebrew-science/issues.
"this link"_homebrew.
Thanks to Derek Thomas (derekt at cello.t.u-tokyo.ac.jp) for setting
up the Homebrew capability.
:link(homebrew,https://github.com/Homebrew/homebrew-science/issues)

View File

@ -1,7 +1,7 @@
<!-- HTML_ONLY -->
<HEAD>
<TITLE>LAMMPS Users Manual</TITLE>
<META NAME="docnumber" CONTENT="10 Oct 2018 version">
<META NAME="docnumber" CONTENT="15 Nov 2018 version">
<META NAME="author" CONTENT="http://lammps.sandia.gov - Sandia National Laboratories">
<META NAME="copyright" CONTENT="Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.">
</HEAD>
@ -21,7 +21,7 @@
:line
LAMMPS Documentation :c,h1
10 Oct 2018 version :c,h2
15 Nov 2018 version :c,h2
"What is a LAMMPS version?"_Manual_version.html

View File

@ -89,12 +89,14 @@ as contained in the file name.
"USER-NETCDF"_#PKG-USER-NETCDF,
"USER-OMP"_#PKG-USER-OMP,
"USER-PHONON"_#PKG-USER-PHONON,
"USER-PLUMED"_#PKG-USER-PLUMED,
"USER-PTM"_#PKG-USER-PTM,
"USER-QMMM"_#PKG-USER-QMMM,
"USER-QTB"_#PKG-USER-QTB,
"USER-QUIP"_#PKG-USER-QUIP,
"USER-REAXC"_#PKG-USER-REAXC,
"USER-SCAFACOS"_#PKG-USER-SCAFACOS,
"USER-SDPD"_#PKG-USER-SDPD,
"USER-SMD"_#PKG-USER-SMD,
"USER-SMTBQ"_#PKG-USER-SMTBQ,
"USER-SPH"_#PKG-USER-SPH,
@ -462,10 +464,10 @@ dynamics can be run with LAMMPS using density-functional tight-binding
quantum forces calculated by LATTE.
More information on LATTE can be found at this web site:
"https://github.com/lanl/LATTE"_latte_home. A brief technical
"https://github.com/lanl/LATTE"_latte-home. A brief technical
description is given with the "fix latte"_fix_latte.html command.
:link(latte_home,https://github.com/lanl/LATTE)
:link(latte-home,https://github.com/lanl/LATTE)
[Authors:] Christian Negre (LANL) and Steve Plimpton (Sandia). LATTE
itself is developed at Los Alamos National Laboratory by Marc
@ -668,9 +670,9 @@ MSCG package :link(PKG-mscg),h4
A "fix mscg"_fix_mscg.html command which can parameterize a
Multi-Scale Coarse-Graining (MSCG) model using the open-source "MS-CG
library"_mscg_home.
library"_mscg-home.
:link(mscg_home,https://github.com/uchicago-voth/MSCG-release)
:link(mscg-home,https://github.com/uchicago-voth/MSCG-release)
To use this package you must have the MS-CG library available on your
system.
@ -1008,11 +1010,11 @@ VORONOI package :link(PKG-VORONOI),h4
[Contents:]
A compute command which calculates the Voronoi tesselation of a
collection of atoms by wrapping the "Voro++ library"_voro_home. This
collection of atoms by wrapping the "Voro++ library"_voro-home. This
can be used to calculate the local volume or each atoms or its near
neighbors.
:link(voro_home,http://math.lbl.gov/voro++)
:link(voro-home,http://math.lbl.gov/voro++)
To use this package you must have the Voro++ library available on your
system.
@ -1186,7 +1188,7 @@ the NAMD MD code, but with portability in mind. Axel Kohlmeyer
[Install:]
This package has "specific installation
instructions"_Build_extras.html#gpu on the "Build
instructions"_Build_extras.html#user-colvars on the "Build
extras"_Build_extras.html doc page.
[Supporting info:]
@ -1200,6 +1202,36 @@ examples/USER/colvars :ul
:line
USER-PLUMED package :link(PKG-USER-PLUMED),h4
[Contents:]
The fix plumed command allows you to use the PLUMED free energy plugin
for molecular dynamics to analyse and bias your LAMMPS trajectory on
the fly. The PLUMED library is called from within the LAMMPS input
script by using the "fix plumed _fix_plumed.html command.
[Authors:] The "PLUMED library"_#PLUMED is written and maintained by
Massimilliano Bonomi, Giovanni Bussi, Carlo Camiloni and Gareth
Tribello.
:link(PLUMED,http://www.plumed.org)
[Install:]
This package has "specific installation
instructions"_Build_extras.html#gpu on the "Build
extras"_Build_extras.html doc page.
[Supporting info:]
src/USER-PLUMED/README
lib/plumed/README
"fix plumed"_fix_plumed.html
examples/USER/plumed :ul
:line
USER-DIFFRACTION package :link(PKG-USER-DIFFRACTION),h4
[Contents:]
@ -1520,7 +1552,7 @@ USER-MEAMC package :link(PKG-USER-MEAMC),h4
[Contents:]
A pair style for the modified embedded atom (MEAM) potential
translated from the Fortran version in the "MEAM"_MEAM package
translated from the Fortran version in the "MEAM"_#PKG-MEAM package
to plain C++. In contrast to the MEAM package, no library
needs to be compiled and the pair style can be instantiated
multiple times.
@ -1601,7 +1633,7 @@ USER-MOLFILE package :link(PKG-USER-MOLFILE),h4
[Contents:]
A "dump molfile"_dump_molfile.html command which uses molfile plugins
that are bundled with the "VMD"_vmd_home
that are bundled with the "VMD"_vmd-home
molecular visualization and analysis program, to enable LAMMPS to dump
snapshots in formats compatible with various molecular simulation
tools.
@ -1653,11 +1685,11 @@ Note that NetCDF files can be directly visualized with the following
tools:
"Ovito"_ovito (Ovito supports the AMBER convention and the extensions mentioned above)
"VMD"_vmd_home
"VMD"_vmd-home
"AtomEye"_atomeye (the libAtoms version of AtomEye contains a NetCDF reader not present in the standard distribution) :ul
:link(ovito,http://www.ovito.org)
:link(vmd_home,https://www.ks.uiuc.edu/Research/vmd/)
:link(vmd-home,https://www.ks.uiuc.edu/Research/vmd/)
:link(atomeye,http://www.libatoms.org)
[Author:] Lars Pastewka (Karlsruhe Institute of Technology).
@ -1757,7 +1789,8 @@ Matching methodology.
[Supporting info:]
src/USER-PTM: filename starting with ptm_ -> supporting code, other filenames -> commands
src/USER-PTM: filenames not starting with ptm_ -> commands
src/USER-PTM: filenames starting with ptm_ -> supporting code
src/USER-PTM/LICENSE
"compute ptm/atom"_compute_ptm_atom.html :ul
@ -1915,6 +1948,31 @@ examples/USER/scafacos :ul
:line
USER-SDPD package :link(PKG-USER-SDPD),h4
[Contents:]
A pair style for smoothed dissipative particle dynamics (SDPD), which
is an extension of smoothed particle hydrodynamics (SPH) to mesoscale
where thermal fluctuations are important (see the
"USER-SPH package"_#PKG-USER-SPH).
Also two fixes for moving and rigid body integration of SPH/SDPD particles
(particles of atom_style meso).
[Author:] Morteza Jalalvand (Institute for Advanced Studies in Basic
Sciences, Iran).
[Supporting info:]
src/USER-SDPD: filenames -> commands
src/USER-SDPD/README
"pair_style sdpd/taitwater/isothermal"_pair_sdpd_taitwater_isothermal.html
"fix meso/move"_fix_meso_move.html
"fix rigid/meso"_fix_rigid_meso.html
examples/USER/sdpd :ul
:line
USER-SMD package :link(PKG-USER-SMD),h4
[Contents:]

View File

@ -62,15 +62,20 @@ Package, Description, Doc page, Example, Library
"USER-NETCDF"_Packages_details.html#PKG-USER-NETCDF, dump output via NetCDF,"dump netcdf"_dump_netcdf.html, n/a, ext
"USER-OMP"_Packages_details.html#PKG-USER-OMP, OpenMP-enabled styles,"Speed omp"_Speed_omp.html, "Benchmarks"_http://lammps.sandia.gov/bench.html, no
"USER-PHONON"_Packages_details.html#PKG-USER-PHONON, phonon dynamical matrix,"fix phonon"_fix_phonon.html, USER/phonon, no
"USER-PLUMED"_Packages_details.html#PKG-USER-PLUMED, "PLUMED"_#PLUMED free energy library,"fix plumed"_fix_plumed.html, USER/plumed, ext
"USER-PTM"_Packages_details.html#PKG-USER-PTM, Polyhedral Template Matching,"compute ptm/atom"_compute_ptm_atom.html, n/a, no
"USER-QMMM"_Packages_details.html#PKG-USER-QMMM, QM/MM coupling,"fix qmmm"_fix_qmmm.html, USER/qmmm, ext
"USER-QTB"_Packages_details.html#PKG-USER-QTB, quantum nuclear effects,"fix qtb"_fix_qtb.html "fix qbmsst"_fix_qbmsst.html, qtb, no
"USER-QUIP"_Packages_details.html#PKG-USER-QUIP, QUIP/libatoms interface,"pair_style quip"_pair_quip.html, USER/quip, ext
"USER-REAXC"_Packages_details.html#PKG-USER-REAXC, ReaxFF potential (C/C++) ,"pair_style reaxc"_pair_reaxc.html, reax, no
"USER-SCAFACOS"_Packages_details.html#PKG-USER-SCAFACOS, wrapper on ScaFaCoS solver,"kspace_style scafacos"_kspace_style.html, USER/scafacos, ext
"USER-SDPD"_Packages_details.html#PKG-USER-SDPD, smoothed dissipative particle dynamics,"pair_style sdpd/taitwater/isothermal"_pair_sdpd_taitwater_isothermal.html, USER/sdpd, no
"USER-SMD"_Packages_details.html#PKG-USER-SMD, smoothed Mach dynamics,"SMD User Guide"_PDF/SMD_LAMMPS_userguide.pdf, USER/smd, ext
"USER-SMTBQ"_Packages_details.html#PKG-USER-SMTBQ, second moment tight binding QEq potential,"pair_style smtbq"_pair_smtbq.html, USER/smtbq, no
"USER-SPH"_Packages_details.html#PKG-USER-SPH, smoothed particle hydrodynamics,"SPH User Guide"_PDF/SPH_LAMMPS_userguide.pdf, USER/sph, no
"USER-TALLY"_Packages_details.html#PKG-USER-TALLY, pairwise tally computes,"compute XXX/tally"_compute_tally.html, USER/tally, no
"USER-UEF"_Packages_details.html#PKG-USER-UEF, extensional flow,"fix nvt/uef"_fix_nh_uef.html, USER/uef, no
"USER-VTK"_Packages_details.html#PKG-USER-VTK, dump output via VTK, "compute vtk"_dump_vtk.html, n/a, ext :tb(ea=c,ca1=l)
:link(MOFplus,https://www.mofplus.org/content/show/MOF-FF)
:link(PLUMED,http://www.plumed.org)

View File

@ -24,8 +24,9 @@ letter abbreviation can be used:
"-p or -partition"_#partition
"-pl or -plog"_#plog
"-ps or -pscreen"_#pscreen
"-r or -restart"_#restart
"-ro or -reorder"_#reorder
"-r2data or -restart2data"_#restart2data
"-r2dump or -restart2dump"_#restart2dump
"-sc or -screen"_#screen
"-sf or -suffix"_#suffix
"-v or -var"_#var :ul
@ -280,34 +281,6 @@ specified by the -screen command-line option.
:line
[-restart restartfile {remap} datafile keyword value ...] :link(restart)
Convert the restart file into a data file and immediately exit. This
is the same operation as if the following 2-line input script were
run:
read_restart restartfile {remap}
write_data datafile keyword value ... :pre
Note that the specified restartfile and datafile can have wild-card
characters ("*",%") as described by the
"read_restart"_read_restart.html and "write_data"_write_data.html
commands. But a filename such as file.* will need to be enclosed in
quotes to avoid shell expansion of the "*" character.
Note that following restartfile, the optional flag {remap} can be
used. This has the same effect as adding it to the
"read_restart"_read_restart.html command, as explained on its doc
page. This is only useful if the reading of the restart file triggers
an error that atoms have been lost. In that case, use of the remap
flag should allow the data file to still be produced.
Also note that following datafile, the same optional keyword/value
pairs can be listed as used by the "write_data"_write_data.html
command.
:line
[-reorder] :link(reorder)
This option has 2 forms:
@ -381,6 +354,77 @@ the LAMMPS simulation domain.
:line
[-restart2data restartfile (remap) datafile keyword value ...] :link(restart2data)
Convert the restart file into a data file and immediately exit. This
is the same operation as if the following 2-line input script were
run:
read_restart restartfile (remap)
write_data datafile keyword value ... :pre
Note that the specified restartfile and/or datafile can have the
wild-card character "*". The restartfile can also have the wild-card
character "%". The meaning of these characters is explained on the
"read_restart"_read_restart.html and "write_data"_write_data.html doc
pages. The use of "%" means that a parallel restart file can be read.
Note that a filename such as file.* will need to be enclosed in quotes
to avoid shell expansion of the "*" character.
Note that following restartfile, the optional word "remap" can be
used. This has the effect of adding it to the
"read_restart"_read_restart.html command, as explained on its doc
page. This is useful if reading the restart file triggers an error
that atoms have been lost. In that case, use of the remap flag should
allow the data file to still be produced.
The syntax following restartfile (or remap), namely
datafile keyword value ... :pre
is identical to the arguments of the "write_data"_write_data.html
command. See its doc page for details. This includes its
optional keyword/value settings.
:line
[-restart2dump restartfile {remap} group-ID dumpstyle dumpfile arg1 arg2 ...] :link(restart2dump)
Convert the restart file into a dump file and immediately exit. This
is the same operation as if the following 2-line input script were
run:
read_restart restartfile (remap)
write_dump group-ID dumpstyle dumpfile arg1 arg2 ... :pre
Note that the specified restartfile and dumpfile can have wild-card
characters ("*","%") as explained on the
"read_restart"_read_restart.html and "write_dump"_write_dump.html doc
pages. The use of "%" means that a parallel restart file and/or
parallel dump file can be read and/or written. Note that a filename
such as file.* will need to be enclosed in quotes to avoid shell
expansion of the "*" character.
Note that following restartfile, the optional word "remap" can be
used. This has the effect as adding it to the
"read_restart"_read_restart.html command, as explained on its doc
page. This is useful if reading the restart file triggers an error
that atoms have been lost. In that case, use of the remap flag should
allow the dump file to still be produced.
The syntax following restartfile (or remap), namely
group-ID dumpstyle dumpfile arg1 arg2 ... :pre
is identical to the arguments of the "write_dump"_write_dump.html
command. See its doc page for details. This includes what per-atom
fields are written to the dump file and optional dump_modify settings,
including ones that affect how parallel dump files are written, e.g.
the {nfile} and {fileper} keywords. See the
"dump_modify"_dump_modify.html doc page for details.
:line
[-screen file] :link(screen)
Specify a file for LAMMPS to write its screen information to. In

View File

@ -499,7 +499,7 @@ MPI task.
When offloading to a coprocessor, "hybrid"_pair_hybrid.html styles
that require skip lists for neighbor builds cannot be offloaded.
Using "hybrid/overlay"_pair_hybrid.html is allowed. Only one intel
accelerated style may be used with hybrid styles.
accelerated style may be used with hybrid styles when offloading.
"Special_bonds"_special_bonds.html exclusion lists are not currently
supported with offload, however, the same effect can often be
accomplished by setting cutoffs for excluded atom types to 0. None of

View File

@ -7,8 +7,8 @@
:line
angle_style class2 command :h3
angle_style class2/omp command :h3
angle_style class2/kk command :h3
angle_style class2/omp command :h3
angle_style class2/p6 command :h3
[Syntax:]

View File

@ -38,10 +38,10 @@ Theta0 (degrees) :ul
Theta0 is specified in degrees, but LAMMPS converts it to radians
internally.
Additional to the cosine term the {cosine/buck6d} angle style computes
the short range (vdW) interaction belonging to the
"pair_buck6d"_pair_buck6d_coul_gauss.html between the end atoms of
the angle. For this reason this angle style only works in combination
Additional to the cosine term the {cosine/buck6d} angle style computes
the short range (vdW) interaction belonging to the
"pair_buck6d"_pair_buck6d_coul_gauss.html between the end atoms of the
angle. For this reason this angle style only works in combination
with the "pair_buck6d"_pair_buck6d_coul_gauss.html styles and needs
the "special_bonds"_special_bonds.html 1-3 interactions to be weighted
0.0 to prevent double counting.

View File

@ -62,18 +62,27 @@ which are included in the LAMMPS distribution. The full list of all
angle styles are is on the "Commands bond"_Commands_bond.html#angle
doc page.
"angle_style none"_angle_none.html - turn off angle interactions
"angle_style zero"_angle_zero.html - topology but no interactions
"angle_style hybrid"_angle_hybrid.html - define multiple styles of angle interactions :ul
"none"_angle_none.html - turn off angle interactions
"zero"_angle_zero.html - topology but no interactions
"hybrid"_angle_hybrid.html - define multiple styles of angle interactions :ul
"angle_style charmm"_angle_charmm.html - CHARMM angle
"angle_style class2"_angle_class2.html - COMPASS (class 2) angle
"angle_style cosine"_angle_cosine.html - cosine angle potential
"angle_style cosine/delta"_angle_cosine_delta.html - difference of cosines angle potential
"angle_style cosine/periodic"_angle_cosine_periodic.html - DREIDING angle
"angle_style cosine/squared"_angle_cosine_squared.html - cosine squared angle potential
"angle_style harmonic"_angle_harmonic.html - harmonic angle
"angle_style table"_angle_table.html - tabulated by angle :ul
"charmm"_angle_charmm.html - CHARMM angle
"class2"_angle_class2.html - COMPASS (class 2) angle
"class2/p6"_angle_class2.html - COMPASS (class 2) angle expanded to 6th order
"cosine"_angle_cosine.html - angle with cosine term
"cosine/buck6d"_angle_cosine_buck6d.html - same as cosine with Buckingham term between 1-3 atoms
"cosine/delta"_angle_cosine_delta.html - angle with difference of cosines
"cosine/periodic"_angle_cosine_periodic.html - DREIDING angle
"cosine/shift"_angle_cosine_shift.html - angle cosine with a shift
"cosine/shift/exp"_angle_cosine_shift_exp.html - cosine with shift and exponential term in spring constant
"cosine/squared"_angle_cosine_squared.html - angle with cosine squared term
"dipole"_angle_dipole.html - angle that controls orientation of a point dipole
"fourier"_angle_fourier.html - angle with multiple cosine terms
"fourier/simple"_angle_fourier_simple.html - angle with a single cosine term
"harmonic"_angle_harmonic.html - harmonic angle
"quartic"_angle_quartic.html - angle with cubic and quartic terms
"sdk"_angle_sdk.html - harmonic angle with repulsive SDK pair style between 1-3 atoms
"table"_angle_table.html - tabulated by angle :ul
:line

View File

@ -516,3 +516,4 @@ appear in {dimstr} for the {shift} style.
"fix balance"_fix_balance.html
[Default:] none
:link(pizza,http://pizza.sandia.gov)

View File

@ -28,34 +28,44 @@ The {oxdna/fene} and {oxdna2/fene} bond styles use the potential
:c,image(Eqs/bond_oxdna_fene.jpg)
to define a modified finite extensible nonlinear elastic (FENE) potential
"(Ouldridge)"_#oxdna_fene to model the connectivity of the phosphate backbone
in the oxDNA force field for coarse-grained modelling of DNA.
to define a modified finite extensible nonlinear elastic (FENE)
potential "(Ouldridge)"_#oxdna_fene to model the connectivity of the
phosphate backbone in the oxDNA force field for coarse-grained
modelling of DNA.
The following coefficients must be defined for the bond type via the
"bond_coeff"_bond_coeff.html command as given in the above example, or in
the data file or restart files read by the "read_data"_read_data.html
or "read_restart"_read_restart.html commands:
"bond_coeff"_bond_coeff.html command as given in the above example, or
in the data file or restart files read by the
"read_data"_read_data.html or "read_restart"_read_restart.html
commands:
epsilon (energy)
Delta (distance)
r0 (distance) :ul
NOTE: The oxDNA bond style has to be used together with the corresponding oxDNA pair styles
for excluded volume interaction {oxdna/excv}, stacking {oxdna/stk}, cross-stacking {oxdna/xstk}
and coaxial stacking interaction {oxdna/coaxstk} as well as hydrogen-bonding interaction {oxdna/hbond} (see also documentation of
"pair_style oxdna/excv"_pair_oxdna.html). For the oxDNA2 "(Snodin)"_#oxdna2 bond style the analogous pair styles and an additional Debye-Hueckel pair
style {oxdna2/dh} have to be defined.
The coefficients in the above example have to be kept fixed and cannot be changed without reparametrizing the entire model.
NOTE: The oxDNA bond style has to be used together with the
corresponding oxDNA pair styles for excluded volume interaction
{oxdna/excv}, stacking {oxdna/stk}, cross-stacking {oxdna/xstk} and
coaxial stacking interaction {oxdna/coaxstk} as well as
hydrogen-bonding interaction {oxdna/hbond} (see also documentation of
"pair_style oxdna/excv"_pair_oxdna.html). For the oxDNA2
"(Snodin)"_#oxdna2 bond style the analogous pair styles and an
additional Debye-Hueckel pair style {oxdna2/dh} have to be defined.
The coefficients in the above example have to be kept fixed and cannot
be changed without reparametrizing the entire model.
Example input and data files for DNA duplexes can be found in examples/USER/cgdna/examples/oxDNA/ and /oxDNA2/.
A simple python setup tool which creates single straight or helical DNA strands,
DNA duplexes or arrays of DNA duplexes can be found in examples/USER/cgdna/util/.
Example input and data files for DNA duplexes can be found in
examples/USER/cgdna/examples/oxDNA/ and /oxDNA2/. A simple python
setup tool which creates single straight or helical DNA strands, DNA
duplexes or arrays of DNA duplexes can be found in
examples/USER/cgdna/util/.
Please cite "(Henrich)"_#Henrich2 and the relevant oxDNA articles in any publication that uses this implementation.
The article contains more information on the model, the structure of the input file, the setup tool
and the performance of the LAMMPS-implementation of oxDNA.
The preprint version of the article can be found "here"_PDF/USER-CGDNA.pdf.
Please cite "(Henrich)"_#Henrich2 and the relevant oxDNA articles in
any publication that uses this implementation. The article contains
more information on the model, the structure of the input file, the
setup tool and the performance of the LAMMPS-implementation of oxDNA.
The preprint version of the article can be found
"here"_PDF/USER-CGDNA.pdf.
:line
@ -65,20 +75,25 @@ This bond style can only be used if LAMMPS was built with the
USER-CGDNA package and the MOLECULE and ASPHERE package. See the
"Build package"_Build_package.html doc page for more info.
[Related commands:]
"pair_style oxdna/excv"_pair_oxdna.html, "pair_style oxdna2/excv"_pair_oxdna2.html, "fix nve/dotc/langevin"_fix_nve_dotc_langevin.html, "bond_coeff"_bond_coeff.html
"pair_style oxdna/excv"_pair_oxdna.html, "pair_style
oxdna2/excv"_pair_oxdna2.html, "fix
nve/dotc/langevin"_fix_nve_dotc_langevin.html,
"bond_coeff"_bond_coeff.html
[Default:] none
:line
:link(Henrich2)
[(Henrich)] O. Henrich, Y. A. Gutierrez-Fosado, T. Curk, T. E. Ouldridge, Eur. Phys. J. E 41, 57 (2018).
[(Henrich)] O. Henrich, Y. A. Gutierrez-Fosado, T. Curk,
T. E. Ouldridge, Eur. Phys. J. E 41, 57 (2018).
:link(oxdna_fene)
[(Ouldridge)] T.E. Ouldridge, A.A. Louis, J.P.K. Doye, J. Chem. Phys. 134, 085101 (2011).
[(Ouldridge)] T.E. Ouldridge, A.A. Louis, J.P.K. Doye,
J. Chem. Phys. 134, 085101 (2011).
:link(oxdna2)
[(Snodin)] B.E. Snodin, F. Randisi, M. Mosayebi, et al., J. Chem. Phys. 142, 234901 (2015).
[(Snodin)] B.E. Snodin, F. Randisi, M. Mosayebi, et al.,
J. Chem. Phys. 142, 234901 (2015).

View File

@ -69,18 +69,23 @@ Note that there are also additional bond styles submitted by users
which are included in the LAMMPS distribution. The full list of all
bond styles is on the "Commands bond"_Commands_bond.html doc page.
"bond_style none"_bond_none.html - turn off bonded interactions
"bond_style zero"_bond_zero.html - topology but no interactions
"bond_style hybrid"_bond_hybrid.html - define multiple styles of bond interactions :ul
"none"_bond_none.html - turn off bonded interactions
"zero"_bond_zero.html - topology but no interactions
"hybrid"_bond_hybrid.html - define multiple styles of bond interactions :ul
"bond_style class2"_bond_class2.html - COMPASS (class 2) bond
"bond_style fene"_bond_fene.html - FENE (finite-extensible non-linear elastic) bond
"bond_style fene/expand"_bond_fene_expand.html - FENE bonds with variable size particles
"bond_style harmonic"_bond_harmonic.html - harmonic bond
"bond_style morse"_bond_morse.html - Morse bond
"bond_style nonlinear"_bond_nonlinear.html - nonlinear bond
"bond_style quartic"_bond_quartic.html - breakable quartic bond
"bond_style table"_bond_table.html - tabulated by bond length :ul
"class2"_bond_class2.html - COMPASS (class 2) bond
"fene"_bond_fene.html - FENE (finite-extensible non-linear elastic) bond
"fene/expand"_bond_fene_expand.html - FENE bonds with variable size particles
"gromos"_bond_gromos.html - GROMOS force field bond
"harmonic"_bond_harmonic.html - harmonic bond
"harmonic/shift"_bond_harmonic_shift.html - shifted harmonic bond
"harmonic/shift/cut"_bond_harmonic_shift_cut.html - shifted harmonic bond with a cutoff
"morse"_bond_morse.html - Morse bond
"nonlinear"_bond_nonlinear.html - nonlinear bond
"oxdna/fene"_bond_oxdna.html - modified FENE bond suitable for DNA modeling
"oxdna2/fene"_bond_oxdna.html - same as oxdna but used with different pair styles
"quartic"_bond_quartic.html - breakable quartic bond
"table"_bond_table.html - tabulated by bond length :ul
:line

View File

@ -44,6 +44,7 @@ Commands :h1
fix_modify
group
group2ndx
hyper
if
improper_coeff
improper_style

View File

@ -175,9 +175,14 @@ The individual style names on the "Commands
compute"_Commands_compute.html doc page are followed by one or more of
(g,i,k,o,t) to indicate which accelerated styles exist.
"ackland/atom"_compute_ackland_atom.html -
"adf"_compute_adf.html - angular distribution function
"aggregate/atom"_compute_cluster_atom.html - aggregate ID for each atom
"angle"_compute_angle.html -
"angle/local"_compute_angle_local.html -
"angle/local"_compute_bond_local.html - theta and energy of each angle
"angmom/chunk"_compute_angmom_chunk.html - angular momentum for each chunk
"basal/atom"_compute_basal_atom.html -
"body/local"_compute_body_local.html - attributes of body sub-particles
"bond"_compute_bond.html - values computed by a bond style
"bond/local"_compute_bond_local.html - distance and energy of each bond
@ -186,30 +191,48 @@ compute"_Commands_compute.html doc page are followed by one or more of
"chunk/spread/atom"_compute_chunk_spread_atom.html - spreads chunk values to each atom in chunk
"cluster/atom"_compute_cluster_atom.html - cluster ID for each atom
"cna/atom"_compute_cna_atom.html - common neighbor analysis (CNA) for each atom
"cnp/atom"_compute_cnp_atom.html -
"com"_compute_com.html - center-of-mass of group of atoms
"com/chunk"_compute_com_chunk.html - center-of-mass for each chunk
"contact/atom"_compute_contact_atom.html - contact count for each spherical particle
"coord/atom"_compute_coord_atom.html - coordination number for each atom
"damage/atom"_compute_damage_atom.html - Peridynamic damage for each atom
"dihedral"_compute_dihedral.html -
"dihedral/local"_compute_dihedral_local.html - angle of each dihedral
"dilatation/atom"_compute_dilatation_atom.html - Peridynamic dilatation for each atom
"dipole/chunk"_compute_dipole_chunk.html -
"displace/atom"_compute_displace_atom.html - displacement of each atom
"dpd"_compute_dpd.html -
"dpd/atom"_compute_dpd_atom.html -
"edpd/temp/atom"_compute_edpd_temp_atom.html -
"entropy/atom"_compute_entropy_atom.html -
"erotate/asphere"_compute_erotate_asphere.html - rotational energy of aspherical particles
"erotate/rigid"_compute_erotate_rigid.html - rotational energy of rigid bodies
"erotate/sphere"_compute_erotate_sphere.html - rotational energy of spherical particles
"erotate/sphere/atom"_compute_erotate_sphere.html - rotational energy for each spherical particle
"erotate/sphere/atom"_compute_erotate_sphere_atom.html -
"event/displace"_compute_event_displace.html - detect event on atom displacement
"fep"_compute_fep.html -
"force/tally"_compute_tally.html -
"fragment/atom"_compute_cluster_atom.html - fragment ID for each atom
"global/atom"_compute_global_atom.html -
"group/group"_compute_group_group.html - energy/force between two groups of atoms
"gyration"_compute_gyration.html - radius of gyration of group of atoms
"gyration/chunk"_compute_gyration_chunk.html - radius of gyration for each chunk
"heat/flux"_compute_heat_flux.html - heat flux through a group of atoms
"heat/flux/tally"_compute_tally.html -
"hexorder/atom"_compute_hexorder_atom.html - bond orientational order parameter q6
"improper"_compute_improper.html -
"improper/local"_compute_improper_local.html - angle of each improper
"inertia/chunk"_compute_inertia_chunk.html - inertia tensor for each chunk
"ke"_compute_ke.html - translational kinetic energy
"ke/atom"_compute_ke_atom.html - kinetic energy for each atom
"ke/atom/eff"_compute_ke_atom_eff.html -
"ke/eff"_compute_ke_eff.html -
"ke/rigid"_compute_ke_rigid.html - translational kinetic energy of rigid bodies
"meso/e/atom"_compute_meso_e_atom.html -
"meso/rho/atom"_compute_meso_rho_atom.html -
"meso/t/atom"_compute_meso_t_atom.html -
"msd"_compute_msd.html - mean-squared displacement of group of atoms
"msd/chunk"_compute_msd_chunk.html - mean-squared displacement for each chunk
"msd/nongauss"_compute_msd_nongauss.html - MSD and non-Gaussian parameter of group of atoms
@ -219,37 +242,77 @@ compute"_Commands_compute.html doc page are followed by one or more of
"pair/local"_compute_pair_local.html - distance/energy/force of each pairwise interaction
"pe"_compute_pe.html - potential energy
"pe/atom"_compute_pe_atom.html - potential energy for each atom
"pe/mol/tally"_compute_tally.html -
"pe/tally"_compute_tally.html -
"plasticity/atom"_compute_plasticity_atom.html - Peridynamic plasticity for each atom
"pressure"_compute_pressure.html - total pressure and pressure tensor
"pressure/cylinder"_compute_pressure_cylinder.html -
"pressure/uef"_compute_pressure_uef.html -
"property/atom"_compute_property_atom.html - convert atom attributes to per-atom vectors/arrays
"property/local"_compute_property_local.html - convert local attributes to localvectors/arrays
"property/chunk"_compute_property_chunk.html - extract various per-chunk attributes
"property/local"_compute_property_local.html - convert local attributes to localvectors/arrays
"ptm/atom"_compute_ptm_atom.html -
"rdf"_compute_rdf.html - radial distribution function g(r) histogram of group of atoms
"reduce"_compute_reduce.html - combine per-atom quantities into a single global value
"reduce/chunk"_compute_reduce_chunk.html - reduce per-atom quantities within each chunk
"reduce/region"_compute_reduce.html - same as compute reduce, within a region
"rigid/local"_compute_rigid_local.html - extract rigid body attributes
"saed"_compute_saed.html -
"slice"_compute_slice.html - extract values from global vector or array
"smd/contact/radius"_compute_smd_contact_radius.html -
"smd/damage"_compute_smd_damage.html -
"smd/hourglass/error"_compute_smd_hourglass_error.html -
"smd/internal/energy"_compute_smd_internal_energy.html -
"smd/plastic/strain"_compute_smd_plastic_strain.html -
"smd/plastic/strain/rate"_compute_smd_plastic_strain_rate.html -
"smd/rho"_compute_smd_rho.html -
"smd/tlsph/defgrad"_compute_smd_tlsph_defgrad.html -
"smd/tlsph/dt"_compute_smd_tlsph_dt.html -
"smd/tlsph/num/neighs"_compute_smd_tlsph_num_neighs.html -
"smd/tlsph/shape"_compute_smd_tlsph_shape.html -
"smd/tlsph/strain"_compute_smd_tlsph_strain.html -
"smd/tlsph/strain/rate"_compute_smd_tlsph_strain_rate.html -
"smd/tlsph/stress"_compute_smd_tlsph_stress.html -
"smd/triangle/vertices"_compute_smd_triangle_vertices.html -
"smd/triangle/vertices"_compute_smd_triangle_vertices.html -
"smd/ulsph/num/neighs"_compute_smd_ulsph_num_neighs.html -
"smd/ulsph/strain"_compute_smd_ulsph_strain.html -
"smd/ulsph/strain/rate"_compute_smd_ulsph_strain_rate.html -
"smd/ulsph/stress"_compute_smd_ulsph_stress.html -
"smd/vol"_compute_smd_vol.html -
"sna/atom"_compute_sna_atom.html - calculate bispectrum coefficients for each atom
"snad/atom"_compute_sna_atom.html - derivative of bispectrum coefficients for each atom
"snav/atom"_compute_sna_atom.html - virial contribution from bispectrum coefficients for each atom
"spin"_compute_spin.html -
"stress/atom"_compute_stress_atom.html - stress tensor for each atom
"stress/mop"_compute_stress_mop.html -
"stress/mop/profile"_compute_stress_mop.html -
"stress/tally"_compute_tally.html -
"tdpd/cc/atom"_compute_tdpd_cc_atom.html -
"temp"_compute_temp.html - temperature of group of atoms
"temp/asphere"_compute_temp_asphere.html - temperature of aspherical particles
"temp/body"_compute_temp_body.html - temperature of body particles
"temp/chunk"_compute_temp_chunk.html - temperature of each chunk
"temp/com"_compute_temp_com.html - temperature after subtracting center-of-mass velocity
"temp/cs"_compute_temp_cs.html -
"temp/deform"_compute_temp_deform.html - temperature excluding box deformation velocity
"temp/deform/eff"_compute_temp_deform_eff.html -
"temp/drude"_compute_temp_drude.html -
"temp/eff"_compute_temp_eff.html -
"temp/partial"_compute_temp_partial.html - temperature excluding one or more dimensions of velocity
"temp/profile"_compute_temp_profile.html - temperature excluding a binned velocity profile
"temp/ramp"_compute_temp_ramp.html - temperature excluding ramped velocity component
"temp/region"_compute_temp_region.html - temperature of a region of atoms
"temp/region/eff"_compute_temp_region_eff.html -
"temp/rotate"_compute_temp_rotate.html -
"temp/sphere"_compute_temp_sphere.html - temperature of spherical particles
"temp/uef"_compute_temp_uef.html -
"ti"_compute_ti.html - thermodynamic integration free energy values
"torque/chunk"_compute_torque_chunk.html - torque applied on each chunk
"vacf"_compute_vacf.html - velocity-autocorrelation function of group of atoms
"vcm/chunk"_compute_vcm_chunk.html - velocity of center-of-mass for each chunk
"voronoi/atom"_compute_voronoi_atom.html - Voronoi volume and neighbors for each atom :ul
"voronoi/atom"_compute_voronoi_atom.html - Voronoi volume and neighbors for each atom
"xrd"_compute_xrd.html - :ul
[Restrictions:] none

213
doc/src/compute_adf.txt Normal file
View File

@ -0,0 +1,213 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
compute adf command :h3
[Syntax:]
compute ID group-ID adf Nbin itype1 jtype1 ktype1 Rjinner1 Rjouter1 Rkinner1 Rkouter1 ... :pre
ID, group-ID are documented in "compute"_compute.html command :ulb,l
adf = style name of this compute command :l
Nbin = number of ADF bins :l
itypeN = central atom type for Nth ADF histogram (see asterisk form below) :l
jtypeN = J atom type for Nth ADF histogram (see asterisk form below) :l
ktypeN = K atom type for Nth ADF histogram (see asterisk form below) :l
RjinnerN = inner radius of J atom shell for Nth ADF histogram (distance units) :l
RjouterN = outer radius of J atom shell for Nth ADF histogram (distance units) :l
RkinnerN = inner radius of K atom shell for Nth ADF histogram (distance units) :l
RkouterN = outer radius of K atom shell for Nth ADF histogram (distance units) :l
zero or one keyword/value pairs may be appended :l
keyword = {ordinate} :l
{ordinate} value = {degree} or {radian} or {cosine}
Choose the ordinate parameter for the histogram :pre
:ule
[Examples:]
compute 1 fluid adf 32 1 1 1 0.0 1.2 0.0 1.2 &
1 1 2 0.0 1.2 0.0 1.5 &
1 2 2 0.0 1.5 0.0 1.5 &
2 1 1 0.0 1.2 0.0 1.2 &
2 1 2 0.0 1.5 2.0 3.5 &
2 2 2 2.0 3.5 2.0 3.5
compute 1 fluid adf 32 1*2 1*2 1*2 0.5 3.5
compute 1 fluid adf 32 :pre
[Description:]
Define a computation that calculates one or more angular distribution functions
(ADF) for a group of particles. Each ADF is calculated in histogram form
by measuring the angle formed by a central atom and two neighbor atoms and
binning these angles into {Nbin} bins.
Only neighbors for which {Rinner} < {R} < {Router} are counted, where
{Rinner} and {Router} are specified separately for the first and second
neighbor atom in each requested ADF.
NOTE: If you have a bonded system, then the settings of
"special_bonds"_special_bonds.html command can remove pairwise
interactions between atoms in the same bond, angle, or dihedral. This
is the default setting for the "special_bonds"_special_bonds.html
command, and means those pairwise interactions do not appear in the
neighbor list. Because this fix uses a neighbor list, it also means
those pairs will not be included in the ADF. This does not apply when
using long-range coulomb interactions ({coul/long}, {coul/msm},
{coul/wolf} or similar. One way to get around this would be to set
special_bond scaling factors to very tiny numbers that are not exactly
zero (e.g. 1.0e-50). Another workaround is to write a dump file, and
use the "rerun"_rerun.html command to compute the ADF for snapshots in
the dump file. The rerun script can use a
"special_bonds"_special_bonds.html command that includes all pairs in
the neighbor list.
NOTE: If you request any outer cutoff {Router} > force cutoff, or if no
pair style is defined, e.g. the "rerun"_rerun.html command is being used to
post-process a dump file of snapshots you must insure ghost atom information
out to the largest value of {Router} + {skin} is communicated, via the
"comm_modify cutoff"_comm_modify.html command, else the ADF computation
cannot be performed, and LAMMPS will give an error message. The {skin} value
is what is specified with the "neighbor"_neighbor.html command.
The {itypeN},{jtypeN},{ktypeN} settings can be specified in one of two
ways. An explicit numeric value can be used, as in the 1st example
above. Or a wild-card asterisk can be used to specify a range of atom
types as in the 2nd example above.
This takes the form "*" or "*n" or "n*" or "m*n". If N = the
number of atom types, then an asterisk with no numeric values means
all types from 1 to N. A leading asterisk means all types from 1 to n
(inclusive). A trailing asterisk means all types from n to N
(inclusive). A middle asterisk means all types from m to n
(inclusive).
If {itypeN}, {jtypeN}, and {ktypeN} are single values, as in the 1st example
above, this means that the ADF is computed where atoms of type {itypeN}
are the central atom, and neighbor atoms of type {jtypeN} and {ktypeN}
are forming the angle. If any of {itypeN}, {jtypeN}, or {ktypeN}
represent a range of values via
the wild-card asterisk, as in the 2nd example above, this means that the
ADF is computed where atoms of any of the range of types represented
by {itypeN} are the central atom, and the angle is formed by two neighbors,
one neighbor in the range of types represented by {jtypeN} and another neighbor
in the range of types represented by {ktypeN}.
If no {itypeN}, {jtypeN}, {ktypeN} settings are specified, then
LAMMPS will generate a single ADF for all atoms in the group.
The inner cutoff is set to zero and the outer cutoff is set
to the force cutoff. If no pair_style is specified, there is no
force cutoff and LAMMPS will give an error message. Note that
in most cases, generating an ADF for all atoms is not a good thing.
Such an ADF is both uninformative and
extremely expensive to compute. For example, with liquid water
with a 10 A force cutoff, there are 80,000 angles per atom.
In addition, most of the interesting angular structure occurs for
neighbors that are the closest to the central atom, involving
just a few dozen angles.
Angles for each ADF are generated by double-looping over the list of
neighbors of each central atom I,
just as they would be in the force calculation for
a threebody potential such as "Stillinger-Weber"_pair_sw.html.
The angle formed by central atom I and neighbor atoms J and K is included in an
ADF if the following criteria are met:
atoms I,J,K are all in the specified compute group
the distance between atoms I,J is between Rjinner and Rjouter
the distance between atoms I,K is between Rkinner and Rkouter
the type of the I atom matches itypeN (one or a range of types)
atoms I,J,K are distinct
the type of the J atom matches jtypeN (one or a range of types)
the type of the K atom matches ktypeN (one or a range of types) :ul
Each unique angle satisfying the above criteria is counted only once, regardless
of whether either or both of the neighbor atoms making up the
angle appear in both the J and K lists.
It is OK if a particular angle is included in more than
one individual histogram, due to the way the {itypeN}, {jtypeN}, {ktypeN}
arguments are specified.
The first ADF value for a bin is calculated from the histogram count by
dividing by the total number of triples satisfying the criteria,
so that the integral of the ADF w.r.t. angle is 1, i.e. the ADF
is a probability density function.
The second ADF value is reported as a cumulative sum of
all bins up to the current bins, averaged
over atoms of type {itypeN}. It represents the
number of angles per central atom with angle less
than or equal to the angle of the current bin,
analogous to the coordination
number radial distribution function.
The {ordinate} optional keyword determines
whether the bins are of uniform angular size from zero
to 180 ({degree}), zero to Pi ({radian}), or the
cosine of the angle uniform in the range \[-1,1\] ({cosine}).
{cosine} has the advantage of eliminating the {acos()} function
call, which speeds up the compute by 2-3x, and it is also preferred
on physical grounds, because the for uniformly distributed particles
in 3D, the angular probability density w.r.t dtheta is
sin(theta)/2, while for d(cos(theta)), it is 1/2,
Regardless of which ordinate is chosen, the first column of ADF
values is normalized w.r.t. the range of that ordinate, so that
the integral is 1.
The simplest way to output the results of the compute adf calculation
to a file is to use the "fix ave/time"_fix_ave_time.html command, for
example:
compute myADF all adf 32 2 2 2 0.5 3.5 0.5 3.5
fix 1 all ave/time 100 1 100 c_myADF\[*\] file tmp.adf mode vector :pre
[Output info:]
This compute calculates a global array with the number of rows =
{Nbins}, and the number of columns = 1 + 2*Ntriples, where Ntriples is the
number of I,J,K triples specified. The first column has the bin
coordinate (angle-related ordinate at midpoint of bin). Each subsequent column has
the two ADF values for a specific set of ({itypeN},{jtypeN},{ktypeN})
interactions, as described above. These values can be used
by any command that uses a global values from a compute as input. See
the "Howto output"_Howto_output.html doc page for an overview of
LAMMPS output options.
The array values calculated by this compute are all "intensive".
The first column of array values is the angle-related ordinate, either
the angle in degrees or radians, or the cosine of the angle. Each
subsequent pair of columns gives the first and second kinds of ADF
for a specific set of ({itypeN},{jtypeN},{ktypeN}). The values
in the first ADF column are normalized numbers >= 0.0,
whose integral w.r.t. the ordinate is 1,
i.e. the first ADF is a normalized probability distribution.
The values in the second ADF column are also numbers >= 0.0.
They are the cumulative density distribution of angles per atom.
By definition, this ADF is monotonically increasing from zero to
a maximum value equal to the average total number of
angles per atom satisfying the ADF criteria.
[Restrictions:]
The ADF is not computed for neighbors outside the force cutoff,
since processors (in parallel) don't know about atom coordinates for
atoms further away than that distance. If you want an ADF for larger
distances, you can use the "rerun"_rerun.html command to post-process
a dump file and set the cutoff for the potential to be longer in the
rerun script. Note that in the rerun context, the force cutoff is
arbitrary, since you aren't running dynamics and thus are not changing
your model.
[Related commands:]
"compute rdf"_compute_rdf.html, "fix ave/time"_fix_ave_time.html, "compute_modify"_compute_modify.html
[Default:]
The keyword default is ordinate = degree.

View File

@ -117,5 +117,5 @@ package"_Build_package.html doc page for more info.
:line
:link(Larsen)
[(Larsen)] Larsen, Schmidt, Schiøtz, Modelling Simul Mater Sci Eng, 24, 055007 (2016).
[(Larsen)] Larsen, Schmidt, Schiotz, Modelling Simul Mater Sci Eng, 24, 055007 (2016).

View File

@ -191,7 +191,8 @@ via "compute_modify dynamic yes"_compute_modify.html
[Related commands:]
"fix ave/time"_fix_ave_time.html, "compute_modify"_compute_modify.html
"fix ave/time"_fix_ave_time.html, "compute_modify"_compute_modify.html,
"compute adf"_compute_adf.html
[Default:]

View File

@ -6,6 +6,7 @@ Computes :h1
:maxdepth: 1
compute_ackland_atom
compute_adf
compute_angle
compute_angle_local
compute_angmom_chunk

View File

@ -85,16 +85,24 @@ which are included in the LAMMPS distribution. The full list of all
dihedral styles is on the "Commands bond"_Commands_bond.html#dihedral
doc page.
"dihedral_style none"_dihedral_none.html - turn off dihedral interactions
"dihedral_style zero"_dihedral_zero.html - topology but no interactions
"dihedral_style hybrid"_dihedral_hybrid.html - define multiple styles of dihedral interactions :ul
"none"_dihedral_none.html - turn off dihedral interactions
"zero"_dihedral_zero.html - topology but no interactions
"hybrid"_dihedral_hybrid.html - define multiple styles of dihedral interactions :ul
"dihedral_style charmm"_dihedral_charmm.html - CHARMM dihedral
"dihedral_style class2"_dihedral_class2.html - COMPASS (class 2) dihedral
"dihedral_style harmonic"_dihedral_harmonic.html - harmonic dihedral
"dihedral_style helix"_dihedral_helix.html - helix dihedral
"dihedral_style multi/harmonic"_dihedral_multi_harmonic.html - multi-harmonic dihedral
"dihedral_style opls"_dihedral_opls.html - OPLS dihedral :ul
"charmm"_dihedral_charmm.html - CHARMM dihedral
"charmmfsw"_dihedral_charmm.html - CHARMM dihedral with force switching
"class2"_dihedral_class2.html - COMPASS (class 2) dihedral
"cosine/shift/exp"_dihedral_cosine_shift_exp.html - dihedral with exponential in spring constant
"fourier"_dihedral_fourier.html - dihedral with multiple cosine terms
"harmonic"_dihedral_harmonic.html - harmonic dihedral
"helix"_dihedral_helix.html - helix dihedral
"multi/harmonic"_dihedral_multi_harmonic.html - dihedral with 5 harmonic terms
"nharmonic"_dihedral_nharmonic.html - same as multi-harmonic with N terms
"opls"_dihedral_opls.html - OPLS dihedral
"quadratic"_dihedral_quadratic.html - dihedral with quadratic term in angle
"spherical"_dihedral_spherical.html - dihedral which includes angle terms to avoid singularities
"table"_dihedral_table.html - tabulated dihedral
"table/cut"_dihedral_table_cut.html - tabulated dihedral with analytic cutoff :ul
:line

View File

@ -50,7 +50,7 @@ dump h5md1 all h5md 100 dump_h5md.h5 velocity author "John Doe" :pre
[Description:]
Dump a snapshot of atom coordinates every N timesteps in the
"HDF5"_HDF5_ws based "H5MD"_h5md file format "(de Buyl)"_#h5md_cpc.
"HDF5"_HDF5-ws based "H5MD"_h5md file format "(de Buyl)"_#h5md_cpc.
HDF5 files are binary, portable and self-describing. This dump style
will write only one file, on the root node.
@ -102,11 +102,11 @@ enabled if LAMMPS was built with that package. See the "Build
package"_Build_package.html doc page for more info. It also requires
(i) building the ch5md library provided with LAMMPS (See the "Build
package"_Build_package.html doc page for more info.) and (ii) having
the "HDF5"_HDF5_ws library installed (C bindings are sufficient) on
the "HDF5"_HDF5-ws library installed (C bindings are sufficient) on
your system. The library ch5md is compiled with the h5cc wrapper
provided by the HDF5 library.
:link(HDF5_ws,http://www.hdfgroup.org/HDF5/)
:link(HDF5-ws,http://www.hdfgroup.org/HDF5/)
:line

View File

@ -167,136 +167,217 @@ page are followed by one or more of (g,i,k,o,t) to indicate which
accelerated styles exist.
"adapt"_fix_adapt.html - change a simulation parameter over time
"adapt/fep"_fix_adapt_fep.html -
"addforce"_fix_addforce.html - add a force to each atom
"addtorque"_fix_addtorque.html -
"append/atoms"_fix_append_atoms.html - append atoms to a running simulation
"atc"_fix_atc.html -
"atom/swap"_fix_atom_swap.html - Monte Carlo atom type swapping
"aveforce"_fix_aveforce.html - add an averaged force to each atom
"ave/atom"_fix_ave_atom.html - compute per-atom time-averaged quantities
"ave/chunk"_fix_ave_chunk.html - compute per-chunk time-averaged quantities
"ave/correlate"_fix_ave_correlate.html - compute/output time correlations
"ave/correlate/long"_fix_ave_correlate_long.html -
"ave/histo"_fix_ave_histo.html - compute/output time-averaged histograms
"ave/histo/weight"_fix_ave_histo.html -
"ave/time"_fix_ave_time.html - compute/output global time-averaged quantities
"aveforce"_fix_aveforce.html - add an averaged force to each atom
"balance"_fix_balance.html - perform dynamic load-balancing
"bocs"_fix_bocs.html -
"bond/break"_fix_bond_break.html - break bonds on the fly
"bond/create"_fix_bond_create.html - create bonds on the fly
"bond/react"_fix_bond_react.html -
"bond/swap"_fix_bond_swap.html - Monte Carlo bond swapping
"box/relax"_fix_box_relax.html - relax box size during energy minimization
"client/md"_fix_client_md.html -
"cmap"_fix_cmap.html -
"colvars"_fix_colvars.html -
"controller"_fix_controller.html -
"deform"_fix_deform.html - change the simulation box size/shape
"deposit"_fix_deposit.html - add new atoms above a surface
"dpd/energy"_fix_dpd_energy.html -
"drag"_fix_drag.html - drag atoms towards a defined coordinate
"drude"_fix_drude.html -
"drude/transform/direct"_fix_drude_transform.html -
"drude/transform/inverse"_fix_drude_transform.html -
"dt/reset"_fix_dt_reset.html - reset the timestep based on velocity, forces
"edpd/source"_fix_dpd_source.html -
"efield"_fix_efield.html - impose electric field on system
"ehex"_fix_ehex.html - ehanced heat exchange algorithm
"enforce2d"_fix_enforce2d.html - zero out z-dimension velocity and force
"eos/cv"_fix_eos_cv.html -
"eos/table"_fix_eos_table.html -
"eos/table/rx"_fix_eos_table_rx.html -
"evaporate"_fix_evaporate.html - remove atoms from simulation periodically
"external"_fix_external.html - callback to an external driver program
"ffl"_fix_ffl.html -
"filter/corotate"_fix_filter_corotate.html -
"flow/gauss"_fix_flow_gauss.html -
"freeze"_fix_freeze.html - freeze atoms in a granular simulation
"gcmc"_fix_gcmc.html - grand canonical insertions/deletions
"gld"_fix_gcmc.html - generalized Langevin dynamics integrator
"gld"_fix_gld.html -
"gle"_fix_gle.html -
"gravity"_fix_gravity.html - add gravity to atoms in a granular simulation
"grem"_fix_grem.html -
"halt"_fix_halt.html - terminate a dynamics run or minimization
"heat"_fix_heat.html - add/subtract momentum-conserving heat
"hyper/global"_fix_hyper_global.html - global hyperdynamics
"hyper/local"_fix_hyper_local.html - local hyperdynamics
"imd"_fix_imd.html -
"indent"_fix_indent.html - impose force due to an indenter
"latte"_fix_latte.html - wrapper on LATTE density-functional tight-binding code
"ipi"_fix_ipi.html -
"langevin"_fix_langevin.html - Langevin temperature control
"langevin/drude"_fix_langevin_drude.html -
"langevin/eff"_fix_langevin_eff.html -
"langevin/spin"_fix_langevin_spin.html -
"latte"_fix_latte.html - wrapper on LATTE density-functional tight-binding code
"lb/fluid"_fix_lb_fluid.html -
"lb/momentum"_fix_lb_momentum.html -
"lb/pc"_fix_lb_pc.html -
"lb/rigid/pc/sphere"_fix_lb_rigid_pc_sphere.html -
"lb/viscous"_fix_lb_viscous.html -
"lineforce"_fix_lineforce.html - constrain atoms to move in a line
"manifoldforce"_fix_manifoldforce.html -
"meso"_fix_meso.html -
"meso"_fix_meso_move.html - move mesoscopic SPH/SDPD particles in a prescribed fashion
"meso/move"_fix_meso_move.html -
"meso/stationary"_fix_meso_stationary.html -
"momentum"_fix_momentum.html - zero the linear and/or angular momentum of a group of atoms
"move"_fix_move.html - move atoms in a prescribed fashion
"mscg"_fix_mscg.html -
"msst"_fix_msst.html - multi-scale shock technique (MSST) integration
"mvv/dpd"_fix_mvv_dpd.html -
"mvv/edpd"_fix_mvv_dpd.html -
"mvv/tdpd"_fix_mvv_dpd.html -
"neb"_fix_neb.html - nudged elastic band (NEB) spring forces
"nph"_fix_nh.html - constant NPH time integration via Nose/Hoover
"nphug"_fix_nphug.html - constant-stress Hugoniostat integration
"nph/asphere"_fix_nph_asphere.html - NPH for aspherical particles
"nph/body"_fix_nph_body.html -
"nph/body"_fix_nve_body.html - NPH for body particles
"nph/eff"_fix_nh_eff.html -
"nph/sphere"_fix_nph_sphere.html - NPH for spherical particles
"nphug"_fix_nphug.html - constant-stress Hugoniostat integration
"npt"_fix_nh.html - constant NPT time integration via Nose/Hoover
"npt/asphere"_fix_npt_asphere.html - NPT for aspherical particles
"npt/body"_fix_npt_body.html -
"npt/body"_fix_nve_body.html - NPT for body particles
"npt/eff"_fix_nh_eff.html -
"npt/sphere"_fix_npt_sphere.html - NPT for spherical particles
"npt/uef"_fix_nh_uef.html -
"nve"_fix_nve.html - constant NVE time integration
"nve/asphere"_fix_nve_asphere.html - NVE for aspherical particles
"nve/asphere/noforce"_fix_nve_asphere_noforce.html - NVE for aspherical particles without forces"
"nve/awpmd"_fix_nve_awpmd.html -
"nve/body"_fix_nve_body.html - NVE for body particles
"nve/dot"_fix_nve_dot.html -
"nve/dotc/langevin"_fix_nve_dotc_langevin.html -
"nve/eff"_fix_nve_eff.html -
"nve/limit"_fix_nve_limit.html - NVE with limited step length
"nve/line"_fix_nve_line.html - NVE for line segments
"nve/manifold/rattle"_fix_nve_manifold_rattle.html -
"nve/noforce"_fix_nve_noforce.html - NVE without forces (v only)
"nve/sphere"_fix_nve_sphere.html - NVE for spherical particles
"nve/spin"_fix_nve_spin.html -
"nve/tri"_fix_nve_tri.html - NVE for triangles
"nvk"_fix_nvk.html -
"nvt"_fix_nh.html - constant NVT time integration via Nose/Hoover
"nvt/asphere"_fix_nvt_asphere.html - NVT for aspherical particles
"nvt/body"_fix_nve_body.html - NVT for body particles
"nvt/body"_fix_nvt_body.html -
"nvt/eff"_fix_nh_eff.html -
"nvt/manifold/rattle"_fix_nvt_manifold_rattle.html -
"nvt/sllod"_fix_nvt_sllod.html - NVT for NEMD with SLLOD equations
"nvt/sllod/eff"_fix_nvt_sllod_eff.html -
"nvt/sphere"_fix_nvt_sphere.html - NVT for spherical particles
"nvt/uef"_fix_nh_uef.html -
"oneway"_fix_oneway.html - constrain particles on move in one direction
"orient/bcc"_fix_orient.html - add grain boundary migration force for BCC
"orient/fcc"_fix_orient.html - add grain boundary migration force for FCC
"phonon"_fix_phonon.html -
"pimd"_fix_pimd.html -
"planeforce"_fix_planeforce.html - constrain atoms to move in a plane
"poems"_fix_poems.html - constrain clusters of atoms to move \
as coupled rigid bodies
"plumed"_fix_plumed.html - wrapper on PLUMED free energy library
"poems"_fix_poems.html - constrain clusters of atoms to move as coupled rigid bodies
"pour"_fix_pour.html - pour new atoms/molecules into a granular simulation domain
"press/berendsen"_fix_press_berendsen.html - pressure control by \
Berendsen barostat
"precession/spin"_fix_precession_spin.html -
"press/berendsen"_fix_press_berendsen.html - pressure control by Berendsen barostat
"print"_fix_print.html - print text and variables during a simulation
"property/atom"_fix_property_atom.html - add customized per-atom values
"qeq/comb"_fix_qeq_comb.html - charge equilibration for COMB potential \
"qeq/dynamic"_fix_qeq.html - charge equilibration via dynamic method \
"qeq/fire"_fix_qeq.html - charge equilibration via FIRE minimizer \
"qeq/point"_fix_qeq.html - charge equilibration via point method \
"qeq/shielded"_fix_qeq.html - charge equilibration via shielded method \
"qeq/slater"_fix_qeq.html - charge equilibration via Slater method \
"python/invoke"_fix_python_invoke.html -
"python/move"_fix_python_move.html -
"qbmsst"_fix_qbmsst.html -
"qeq/comb"_fix_qeq_comb.html - charge equilibration for COMB potential
"qeq/dynamic"_fix_qeq.html - charge equilibration via dynamic method
"qeq/fire"_fix_qeq.html - charge equilibration via FIRE minimizer
"qeq/point"_fix_qeq.html - charge equilibration via point method
"qeq/reax"_fix_qeq_reax.html -
"qeq/shielded"_fix_qeq.html - charge equilibration via shielded method
"qeq/slater"_fix_qeq.html - charge equilibration via Slater method
"qmmm"_fix_qmmm.html -
"qtb"_fix_qtb.html -
"rattle"_fix_shake.html - RATTLE constraints on bonds and/or angles
"reax/bonds"_fix_reax_bonds.html - write out ReaxFF bond information \
"recenter"_fix_recenter.html - constrain the center-of-mass position \
of a group of atoms
"reax/bonds"_fix_reax_bonds.html - write out ReaxFF bond information
"reax/c/bonds"_fix_reax_bonds.html -
"reax/c/species"_fix_reaxc_species.html -
"recenter"_fix_recenter.html - constrain the center-of-mass position of a group of atoms
"restrain"_fix_restrain.html - constrain a bond, angle, dihedral
"rigid"_fix_rigid.html - constrain one or more clusters of atoms to \
move as a rigid body with NVE integration
"rigid/nph"_fix_rigid.html - constrain one or more clusters of atoms to \
move as a rigid body with NPH integration
"rigid/npt"_fix_rigid.html - constrain one or more clusters of atoms to \
move as a rigid body with NPT integration
"rigid/nve"_fix_rigid.html - constrain one or more clusters of atoms to \
move as a rigid body with alternate NVE integration
"rigid/nvt"_fix_rigid.html - constrain one or more clusters of atoms to \
move as a rigid body with NVT integration
"rigid/small"_fix_rigid.html - constrain many small clusters of atoms to \
move as a rigid body with NVE integration
"rigid/small/nph"_fix_rigid.html - constrain many small clusters of atoms to \
move as a rigid body with NPH integration
"rigid/small/npt"_fix_rigid.html - constrain many small clusters of atoms to \
move as a rigid body with NPT integration
"rigid/small/nve"_fix_rigid.html - constrain many small clusters of atoms to \
move as a rigid body with alternate NVE integration
"rigid/small/nvt"_fix_rigid.html - constrain many small clusters of atoms to \
move as a rigid body with NVT integration
"rhok"_fix_rhok.html -
"rigid"_fix_rigid.html - constrain one or more clusters of atoms to move as a rigid body with NVE integration
"rigid/nph"_fix_rigid.html - constrain one or more clusters of atoms to move as a rigid body with NPH integration
"rigid/nph/small"_fix_rigid.html -
"rigid/npt"_fix_rigid.html - constrain one or more clusters of atoms to move as a rigid body with NPT integration
"rigid/npt/small"_fix_rigid.html -
"rigid/nve"_fix_rigid.html - constrain one or more clusters of atoms to move as a rigid body with alternate NVE integration
"rigid/nve/small"_fix_rigid.html -
"rigid/nvt"_fix_rigid.html - constrain one or more clusters of atoms to move as a rigid body with NVT integration
"rigid/nvt/small"_fix_rigid.html -
"rigid/small"_fix_rigid.html - constrain many small clusters of atoms to move as a rigid body with NVE integration
"rigid/small/nph"_fix_rigid.html - constrain many small clusters of atoms to move as a rigid body with NPH integration
"rigid/small/npt"_fix_rigid.html - constrain many small clusters of atoms to move as a rigid body with NPT integration
"rigid/small/nve"_fix_rigid.html - constrain many small clusters of atoms to move as a rigid body with alternate NVE integration
"rigid/small/nvt"_fix_rigid.html - constrain many small clusters of atoms to move as a rigid body with NVT integration
"rigid/meso"_fix_rigid_meso.html - constrain clusters of mesoscopic SPH/SDPD particles to move as a rigid body
"rx"_fix_rx.html -
"saed/vtk"_fix_saed_vtk.html -
"setforce"_fix_setforce.html - set the force on each atom
"shake"_fix_shake.html - SHAKE constraints on bonds and/or angles
"shardlow"_fix_shardlow.html -
"smd"_fix_smd.html -
"smd/adjust_dt"_fix_smd_adjust_dt.html -
"smd/integrate_tlsph"_fix_smd_integrate_tlsph.html -
"smd/integrate_ulsph"_fix_smd_integrate_ulsph.html -
"smd/move_tri_surf"_fix_smd_move_triangulated_surface.html -
"smd/setvel"_fix_smd_setvel.html -
"smd/wall_surface"_fix_smd_wall_surface.html -
"spring"_fix_spring.html - apply harmonic spring force to group of atoms
"spring/chunk"_fix_spring_chunk.html - apply harmonic spring force to each chunk of atoms
"spring/rg"_fix_spring_rg.html - spring on radius of gyration of \
group of atoms
"spring/rg"_fix_spring_rg.html - spring on radius of gyration of group of atoms
"spring/self"_fix_spring_self.html - spring from each atom to its origin
"srd"_fix_srd.html - stochastic rotation dynamics (SRD)
"store/force"_fix_store_force.html - store force on each atom
"store/state"_fix_store_state.html - store attributes for each atom
"temp/berendsen"_fix_temp_berendsen.html - temperature control by \
Berendsen thermostat
"tdpd/source"_fix_dpd_source.html -
"temp/berendsen"_fix_temp_berendsen.html - temperature control by Berendsen thermostat
"temp/csld"_fix_temp_csvr.html - canonical sampling thermostat with Langevin dynamics
"temp/csvr"_fix_temp_csvr.html - canonical sampling thermostat with Hamiltonian dynamics
"temp/rescale"_fix_temp_rescale.html - temperature control by \
velocity rescaling
"temp/rescale"_fix_temp_rescale.html - temperature control by velocity rescaling
"temp/rescale/eff"_fix_temp_rescale_eff.html -
"tfmc"_fix_tfmc.html - perform force-bias Monte Carlo with time-stamped method
"thermal/conductivity"_fix_thermal_conductivity.html - Muller-Plathe kinetic energy exchange for \
thermal conductivity calculation
"thermal/conductivity"_fix_thermal_conductivity.html - Muller-Plathe kinetic energy exchange for thermal conductivity calculation
"ti/spring"_fix_ti_spring.html -
"tmd"_fix_tmd.html - guide a group of atoms to a new configuration
"ttm"_fix_ttm.html - two-temperature model for electronic/atomic coupling
"ttm/mod"_fix_ttm.html -
"tune/kspace"_fix_tune_kspace.html - auto-tune KSpace parameters
"vector"_fix_vector.html - accumulate a global vector every N timesteps
"viscosity"_fix_viscosity.html - Muller-Plathe momentum exchange for \
viscosity calculation
"viscosity"_fix_viscosity.html - Muller-Plathe momentum exchange for viscosity calculation
"viscous"_fix_viscous.html - viscous damping for granular simulations
"wall/body/polygon"_fix_wall_body_polygon.html -
"wall/body/polyhedron"_fix_wall_body_polyhedron.html -
"wall/colloid"_fix_wall.html - Lennard-Jones wall interacting with finite-size particles
"wall/ees"_fix_wall_ees.html -
"wall/gran"_fix_wall_gran.html - frictional wall(s) for granular simulations
"wall/gran/region"_fix_wall_gran_region.html -
"wall/harmonic"_fix_wall.html - harmonic spring wall
"wall/lj1043"_fix_wall.html - Lennard-Jones 10-4-3 wall
"wall/lj126"_fix_wall.html - Lennard-Jones 12-6 wall
@ -304,6 +385,7 @@ accelerated styles exist.
"wall/piston"_fix_wall_piston.html - moving reflective piston wall
"wall/reflect"_fix_wall_reflect.html - reflecting wall(s)
"wall/region"_fix_wall_region.html - use region surface as wall
"wall/region/ees"_fix_wall_ees.html -
"wall/srd"_fix_wall_srd.html - slip/no-slip wall for SRD particles :ul
[Restrictions:]

View File

@ -376,3 +376,4 @@ appear in {dimstr} for the {shift} style.
"group"_group.html, "processors"_processors.html, "balance"_balance.html
[Default:] none
:link(pizza,http://pizza.sandia.gov)

View File

@ -137,8 +137,8 @@ doc page for more info.
[Related commands:]
"fix bond/create"_fix_bond_create.html, "fix
bond/swap"_fix_bond_swap.html, "dump local"_dump.html,
"special_bonds"_special_bonds.html
bond/react"_fix_bond_react.html, "fix bond/swap"_fix_bond_swap.html,
"dump local"_dump.html, "special_bonds"_special_bonds.html
[Default:]

View File

@ -232,8 +232,8 @@ doc page for more info.
[Related commands:]
"fix bond/break"_fix_bond_break.html, "fix
bond/swap"_fix_bond_swap.html, "dump local"_dump.html,
"special_bonds"_special_bonds.html
bond/react"_fix_bond_react.html, "fix bond/swap"_fix_bond_swap.html,
"dump local"_dump.html, "special_bonds"_special_bonds.html
[Default:]

View File

@ -24,11 +24,11 @@ common_keyword = {stabilization} :l
{stabilization} values = {no} or {yes} {group-ID} {xmax}
{no} = no reaction site stabilization
{yes} = perform reaction site stabilization
{group-ID} = user-assigned ID for all non-reacting atoms (group created internally)
{group-ID} = user-assigned prefix for the dynamic group of non-reacting atoms
{xmax} = xmax value that is used by an internally created "nve/limit"_fix_nve_limit.html integrator :pre
react = mandatory argument indicating new reaction specification :l
react-ID = user-assigned name for the reaction :l
react-group-ID = only atoms in this group are available for the reaction :l
react-group-ID = only atoms in this group are considered for the reaction :l
Nevery = attempt reaction every this many steps :l
Rmin = bonding pair atoms must be separated by more than Rmin to initiate reaction (distance units) :l
Rmax = bonding pair atoms must be separated by less than Rmax to initiate reaction (distance units) :l
@ -41,14 +41,18 @@ react = mandatory argument indicating new reaction specification :l
fraction = initiate reaction with this probability if otherwise eligible
seed = random number seed (positive integer)
{stabilize_steps} value = timesteps
timesteps = number of timesteps to apply internally created nve/limit.html :pre
timesteps = number of timesteps to apply internally created nve/limit fix :pre
{update_edges} value = {none} or {charges} :l
none = do not update topology near the edges of reaction templates
charges = update atomic charges of all atoms in reaction templates
custom = force the update of user-specified atomic charges :pre
:ule
[Examples:]
molecule mol1 pre_reacted_topology.txt
molecule mol2 post_reacted_topology.txt
fix 5 all bond/react stabilization no react myrxn1 all 1 0 3.25 mol1 mol2 map_file.txt :pre
fix 5 all bond/react react myrxn1 all 1 0 3.25 mol1 mol2 map_file.txt :pre
molecule mol1 pre_reacted_rxn1.txt
molecule mol2 post_reacted_rxn1.txt
@ -57,7 +61,7 @@ molecule mol4 post_reacted_rxn2.txt
fix 5 all bond/react stabilization yes nvt_grp .03 &
react myrxn1 all 1 0 3.25 mol1 mol2 map_file_rxn1.txt prob 0.50 12345 &
react myrxn2 all 1 0 2.75 mol3 mol4 map_file_rxn2.txt prob 0.25 12345
fix 6 nvt_grp nvt temp 300 300 100 # set thermostat after bond/react :pre
fix 6 nvt_grp_REACT nvt temp 300 300 100 # set thermostat after bond/react :pre
[Description:]
@ -99,19 +103,29 @@ involved in any new reactions. The {xmax} value keyword should
typically be set to the maximum distance that non-reacting atoms move
during the simulation.
The group-ID set using the {stabilization} keyword should be a
previously unused group-ID. It cannot be specified as 'all'. The fix
bond/react command creates a "dynamic group"_group.html of this name
that includes all non-reacting atoms. This dynamic group-ID should
then be used by a subsequent system-wide time integrator such as nvt,
npt, or nve, as shown in the second example above. It is currently
necessary to place the time integration command after the fix
bond/react command due to the internal dynamic grouping performed by
fix bond/react.
The group-ID set using the {stabilization} keyword can be an existing
static group or a previously-unused group-ID. It cannot be specified
as 'all'. If the group-ID is previously unused, the fix bond/react
command creates a "dynamic group"_group.html that is initialized to
include all atoms. If the group-ID is that of an existing static
group, the group is used as the parent group of new,
internally-created dynamic group. In both cases, this new dynamic
group is named by appending '_REACT' to the group-ID, e.g.
nvt_grp_REACT. By specifying an existing group, you may thermostat
constant-topology parts of your system separately. The dynamic group
contains only non-reacting atoms at a given timestep, and therefore
should be used by a subsequent system-wide time integrator such as
nvt, npt, or nve, as shown in the second example above. The time
integration command should be placed after the fix bond/react command
due to the internal dynamic grouping performed by fix bond/react.
NOTE: The internally created group currently applies to all atoms in
the system, i.e. you should generally not have a separate thermostat
which acts on the 'all' group.
NOTE: If the group-ID is an existing static group, react-group-IDs
should also be specified as this static group, or a subset.
NOTE: If the group-ID is previously unused, the internally created
group applies to all atoms in the system, i.e. you should generally
not have a separate thermostat which acts on the 'all' group, or any
other group.
The following comments pertain to each {react} argument:
@ -155,7 +169,17 @@ Some atoms in the pre-reacted template that are not reacting may have
missing topology with respect to the simulation. For example, the
pre-reacted template may contain an atom that would connect to the
rest of a long polymer chain. These are referred to as edge atoms, and
are also specified in the map file.
are also specified in the map file. When the pre-reaction template
contains edge atoms, not all atoms, bonds, charges, etc. specified in
the reaction templates will be updated. Specifically, topology that
involves only atoms that are 'too near' to template edges will not be
updated. The definition of 'too near the edge' depends on which
interactions are defined in the simulation. If the simulation has
defined dihedrals, atoms within two bonds of edge atoms are considered
'too near the edge.' If the simulation defines angles, but not
dihedrals, atoms within one bond of edge atoms are considered 'too
near the edge.' If just bonds are defined, only edge atoms are
considered 'too near the edge.'
Note that some care must be taken when a building a molecule template
for a given simulation. All atom types in the pre-reacted template
@ -178,23 +202,30 @@ A discussion of correctly handling this is also provided on the
The map file is a text document with the following format:
A map file has a header and a body. The header of map file the
contains one mandatory keyword and one optional keyword. The mandatory
keyword is 'equivalences' and the optional keyword is 'edgeIDs':
contains one mandatory keyword and two optional keywords. The mandatory
keyword is 'equivalences' and the optional keywords are 'edgeIDs' and
'customIDs':
N {equivalences} = # of atoms N in the reaction molecule templates
N {edgeIDs} = # of edge atoms N in the pre-reacted molecule template :pre
N {edgeIDs} = # of edge atoms N in the pre-reacted molecule template
N {customIDs} = # of atoms N that are specified for a custom update :pre
The body of the map file contains two mandatory sections and one
optional section. The first mandatory section begins with the keyword
The body of the map file contains two mandatory sections and two
optional sections. The first mandatory section begins with the keyword
'BondingIDs' and lists the atom IDs of the bonding atom pair in the
pre-reacted molecule template. The second mandatory section begins
with the keyword 'Equivalences' and lists a one-to-one correspondence
between atom IDs of the pre- and post-reacted templates. The first
column is an atom ID of the pre-reacted molecule template, and the
second column is the corresponding atom ID of the post-reacted
molecule template. The optional section begins with the keyword
molecule template. The first optional section begins with the keyword
'EdgeIDs' and lists the atom IDs of edge atoms in the pre-reacted
molecule template.
molecule template. The second optional section begins with the keyword
'Custom Edges' and allows for forcing the update of a specific atom's
atomic charge. The first column is the ID of an atom near the edge of
the pre-reacted molecule template, and the value of the second column
is either 'none' or 'charges.' Further details are provided in the
discussion of the 'update_edges' keyword.
A sample map file is given below:
@ -255,6 +286,18 @@ The {stabilize_steps} keyword allows for the specification of how many
timesteps a reaction site is stabilized before being returned to the
overall system thermostat.
The {update_edges} keyword can increase the number of atoms whose
atomic charges are updated, when the pre-reaction template contains
edge atoms. When the value is set to 'charges,' all atoms' atomic
charges are updated to those specified by the post-reaction template,
including atoms near the edge of reaction templates. When the value is
set to 'custom,' an additional section must be included in the map
file that specifies whether to update charges, on a per-atom basis.
The format of this section is detailed above. Listing a pre-reaction
atom ID with a value of 'charges' will force the update of the atom's
charge, even if it is near a template edge. Atoms not near a template
edge are unaffected by this setting.
In order to produce the most physical behavior, this 'reaction site
equilibration time' should be tuned to be as small as possible while
retaining stability for a given system or reaction step. After a
@ -323,7 +366,7 @@ bond/break"_fix_bond_break.html, "fix bond/swap"_fix_bond_swap.html,
[Default:]
The option defaults are stabilization = no, prob = 1.0, stabilize_steps = 60
The option defaults are stabilization = no, prob = 1.0, stabilize_steps = 60, update_edges = none
:line

View File

@ -116,7 +116,8 @@ not a limitation of functionality.
[Related commands:]
"fix smd"_fix_smd.html
"fix smd"_fix_smd.html, "fix spring"_fix_spring.html,
"fix plumed"_fix_plumed.html
[Default:]
@ -126,4 +127,4 @@ and tstat = NULL.
:line
:link(Fiorin)
[(Fiorin)] Fiorin , Klein, Henin, Mol. Phys., DOI:10.1080/00268976.2013.813594
[(Fiorin)] Fiorin, Klein, Henin, Mol. Phys., DOI:10.1080/00268976.2013.813594

View File

@ -7,6 +7,7 @@
:line
fix freeze command :h3
fix freeze/kk command :h3
[Syntax:]

View File

@ -8,6 +8,7 @@
fix gravity command :h3
fix gravity/omp command :h3
fix gravity/kk command :h3
[Syntax:]

View File

@ -135,8 +135,7 @@ files"_restart.html. None of the "fix_modify"_fix_modify.html options
are relevant to this fix. No global or per-atom quantities are stored
by this fix for access by various "output commands"_Howto_output.html.
No parameter of this fix can be used with the {start/stop} keywords of
the "run"_run.html command. This fix is not invoked during "energy
minimization"_minimize.html.
the "run"_run.html command.
[Restrictions:] none

View File

@ -0,0 +1,260 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
fix hyper/global command :h3
[Syntax:]
fix ID group-ID hyper/global cutbond qfactor Vmax Tequil :pre
ID, group-ID are documented in "fix"_fix.html command
hyper/global = style name of this fix command
cutbond = max distance at which a pair of atoms is considered bonded (distance units)
qfactor = max strain at which bias potential goes to 0.0 (unitless)
Vmax = height of bias potential (energy units)
Tequil = equilibration temperature (temperature units) :ul
[Examples:]
fix 1 all hyper/global 1.0 0.3 0.8 300.0 :pre
[Description:]
This fix is meant to be used with the "hyper"_hyper.html command to
perform a bond-boost global hyperdynamics (GHD) simulation. The role
of this fix is to a select a single pair of atoms in the system at
each timestep to add a global bias potential to, which will alter the
dynamics of the system in a manner that effectively accelerates time.
This is in contrast to the "fix hyper/local"_fix_hyper_local.html
command, which can be user to perform a local hyperdynamics (LHD)
simulation, by adding a local bias potential to multiple pairs of
atoms at each timestep. GHD can time accelerate a small simulation
with up to a few 100 atoms. For larger systems, LHD is needed to
achieve good time acceleration.
For a system that undergoes rare transition events, where one or more
atoms move over an energy barrier to a new potential energy basin, the
effect of the bias potential is to induce more rapid transitions.
This can lead to a dramatic speed-up in the rate at which events
occurs, without altering their relative frequencies, thus leading to
an overall increase in the elapsed real time of the simulation as
compared to running for the same number of timesteps with normal MD.
See the "hyper"_hyper.html doc page for a more general discussion of
hyperdynamics and citations that explain both GHD and LHD.
The equations and logic used by this fix and described here to perform
GHD follow the description given in "(Voter2013)"_#Voter2013ghd. The
bond-boost form of a bias potential for HD is due to Miron and
Fichthorn as described in "(Miron)"_#Mironghd. In LAMMPS we use a
simplified version of bond-boost GHD where a single bond in the system
is biased at any one timestep.
Bonds are defined between each pair of I,J atoms whose R0ij distance
is less than {cutbond}, when the system is in a quenched state
(minimum) energy. Note that these are not "bonds" in a covalent
sense. A bond is simply any pair of atoms that meet the distance
criterion. {Cutbond} is an argument to this fix; it is discussed
below. A bond is only formed if one or both of the I.J atoms are in
the specified group.
The current strain of bond IJ (when running dynamics) is defined as
Eij = (Rij - R0ij) / R0ij :pre
where Rij is the current distance between atoms I,J, and R0ij is the
equilibrium distance in the quenched state.
The bias energy Vij of any bond IJ is defined as
Vij = Vmax * (1 - (Eij/q)^2) for abs(Eij) < qfactor
= 0 otherwise :pre
where the prefactor {Vmax} and the cutoff {qfactor} are arguments to
this fix; they are discussed below. This functional form is an
inverse parabola centered at 0.0 with height Vmax and which goes to
0.0 at +/- qfactor.
Let Emax = the maximum of abs(Eij) for all IJ bonds in the system on a
given timestep. On that step, Vij is added as a bias potential to
only the single bond with strain Emax, call it Vij(max). Note that
Vij(max) will be 0.0 if Emax >= qfactor on that timestep. Also note
that Vij(max) is added to the normal interatomic potential that is
computed between all atoms in the system at every step.
The derivative of Vij(max) with respect to the position of each atom
in the Emax bond gives a bias force Fij(max) acting on the bond as
Fij(max) = - dVij(max)/dEij = 2 Vmax Eij / qfactor^2 for abs(Eij) < qfactor
= 0 otherwise :pre
which can be decomposed into an equal and opposite force acting on
only the two I,J atoms in the Emax bond.
The time boost factor for the system is given each timestep I by
Bi = exp(beta * Vij(max)) :pre
where beta = 1/kTequil, and {Tequil} is the temperature of the system
and an argument to this fix. Note that Bi >= 1 at every step.
NOTE: To run GHD, the input script must also use the "fix
langevin"_fix_langevin.html command to thermostat the atoms at the
same {Tequil} as specified by this fix, so that the system is running
constant-temperature (NVT) dynamics. LAMMPS does not check that this
is done.
The elapsed time t_hyper for a GHD simulation running for {N}
timesteps is simply
t_hyper = Sum (i = 1 to N) Bi * dt :pre
where dt is the timestep size defined by the "timestep"_timestep.html
command. The effective time acceleration due to GHD is thus t_hyper /
N*dt, where N*dt is elapsed time for a normal MD run of N timesteps.
Note that in GHD, the boost factor varies from timestep to timestep.
Likewise, which bond has Emax strain and thus which pair of atoms the
bias potential is added to, will also vary from timestep to timestep.
This is in contrast to local hyperdynamics (LHD) where the boost
factor is an input parameter; see the "fix
hyper/local"_fix_hyper_local.html doc page for details.
:line
Here is additional information on the input parameters for GHD.
The {cutbond} argument is the cutoff distance for defining bonds
between pairs of nearby atoms. A pair of I,J atoms in their
equilibrium, minimum-energy configuration, which are separated by a
distance Rij < {cutbond}, are flagged as a bonded pair. Setting
{cubond} to be ~25% larger than the nearest-neighbor distance in a
crystalline lattice is a typical choice for solids, so that bonds
exist only between nearest neighbor pairs.
The {qfactor} argument is the limiting strain at which the bias
potential goes to 0.0. It is dimensionless, so a value of 0.3 means a
bond distance can be up to 30% larger or 30% smaller than the
equilibrium (quenched) R0ij distance and the two atoms in the bond
could still experience a non-zero bias force.
If {qfactor} is set too large, then transitions from one energy basin
to another are affected because the bias potential is non-zero at the
transition state (e.g. saddle point). If {qfactor} is set too small
than little boost is achieved because the Eij strain of some bond in
the system will (nearly) always exceed {qfactor}. A value of 0.3 for
{qfactor} is typically reasonable.
The {Vmax} argument is the prefactor on the bias potential. Ideally,
tt should be set to a value slightly less than the smallest barrier
height for an event to occur. Otherwise the applied bias potential
may be large enough (when added to the interatomic potential) to
produce a local energy basin with a maxima in the center. This can
produce artificial energy minima in the same basin that trap an atom.
Or if {Vmax} is even larger, it may induce an atom(s) to rapidly
transition to another energy basin. Both cases are "bad dynamics"
which violate the assumptions of GHD that guarantee an accelerated
time-accurate trajectory of the system.
Note that if {Vmax} is set too small, the GHD simulation will run
correctly. There will just be fewer events because the hyper time
(t_hyper equation above) will be shorter.
NOTE: If you have no physical intuition as to the smallest barrier
height in your system, a reasonable strategy to determine the largest
{Vmax} you can use for an LHD model, is to run a sequence of
simulations with smaller and smaller {Vmax} values, until the event
rate does not change.
The {Tequil} argument is the temperature at which the system is
simulated; see the comment above about the "fix
langevin"_fix_langevin.html thermostatting. It is also part of the
beta term in the exponential factor that determines how much boost is
achieved as a function of the bias potential.
In general, the lower the value of {Tequil} and the higher the value
of {Vmax}, the more boost will be achievable by the GHD algorithm.
:line
[Restart, fix_modify, output, run start/stop, minimize info:]
No information about this fix is written to "binary restart
files"_restart.html.
The "fix_modify"_fix_modify.html {energy} option is supported by this
fix to add the energy of the bias potential to the the system's
potential energy as part of "thermodynamic output"_thermo_style.html.
This fix computes a global scalar and global vector of length 11, which
can be accessed by various "output commands"_Howto_output.html. The
scalar is the magnitude of the bias potential (energy units) applied on
the current timestep. The vector stores the following quantities:
1 = boost factor on this step (unitless)
2 = max strain Eij of any bond on this step (unitless)
3 = ID of first atom in the max-strain bond
4 = ID of second atom in the max-strain bond
5 = average # of bonds/atom on this step :ul
6 = fraction of timesteps with bias = 0.0 during this run
7 = max drift distance of any atom during this run (distance units)
8 = max bond length during this run (distance units) :ul
9 = cummulative hyper time since fix was defined (time units)
10 = cummulative count of event timesteps since fix was defined
11 = cummulative count of atoms in events since fix was defined :ul
The first 5 quantities are for the current timestep. Quantities 6-8
are for the current hyper run. Quantities 9-11 are cummulative across
multiple runs (since the fix was defined in the input script).
For value 7, drift is the distance an atom moves between timesteps
when the bond list is reset, i.e. between events. Atoms involved in
an event will typically move the greatest distance since others are
typically oscillating around their lattice site.
For value 10, events are checked for by the "hyper"_hyper.html command
once every {Nevent} timesteps. This value is the count of those
timesteps on which one (or more) events was detected. It is NOT the
number of distinct events, since more than one event may occur in the
same {Nevent} time window.
For value 11, each time the "hyper"_hyper.html command checks for an
event, it invokes a compute to flag zero or more atoms as
participating in one or more events. E.g. atoms that have displaced
more than some distance from the previous quench state. Value 11 is
the cummulative count of the number of atoms participating in any of
the events that were found.
The scalar and vector values calculated by this fix are all
"intensive".
No parameter of this fix can be used with the {start/stop} keywords of
the "run"_run.html command. This fix is not invoked during "energy
minimization"_minimize.html.
[Restrictions:]
This command can only be used if LAMMPS was built with the REPLICA
package. See the "Build package"_Build_package.html doc page for more
info.
[Related commands:]
"hyper"_hyper.html, "fix hyper/local"_fix_hyper_local.html
[Default:] None
:line
:link(Voter2013ghd)
[(Voter2013)] S. Y. Kim, D. Perez, A. F. Voter, J Chem Phys, 139,
144110 (2013).
:link(Mironghd)
[(Miron)] R. A. Miron and K. A. Fichthorn, J Chem Phys, 119, 6210 (2003).

404
doc/src/fix_hyper_local.txt Normal file
View File

@ -0,0 +1,404 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
fix hyper/local command :h3
[Syntax:]
fix ID group-ID hyper/local cutbond qfactor Vmax Tequil Dcut alpha Btarget :pre
ID, group-ID are documented in "fix"_fix.html command :ulb,l
hyper/local = style name of this fix command :l
cutbond = max distance at which a pair of atoms is considered bonded (distance units) :l
qfactor = max strain at which bias potential goes to 0.0 (unitless) :l
Vmax = estimated height of bias potential (energy units) :l
Tequil = equilibration temperature (temperature units) :l
Dcut = minimum distance between boosted bonds (distance units) :l
alpha = boostostat relaxation time (time units) :l
Btarget = desired time boost factor (unitless) :l
zero or more keyword/value pairs may be appended :l
keyword = {lost} or {check/bias} or {check/coeff}
{lostbond} value = error/warn/ignore
{check/bias} values = Nevery error/warn/ignore
{check/coeff} values = Nevery error/warn/ignore :pre
:ule
[Examples:]
fix 1 all hyper/local 1.0 0.3 0.8 300.0 :pre
[Description:]
This fix is meant to be used with the "hyper"_hyper.html command to
perform a bond-boost local hyperdynamics (LHD) simulation. The role
of this fix is to a select multiple pairs of atoms in the system at
each timestep to add a local bias potential to, which will alter the
dynamics of the system in a manner that effectively accelerates time.
This is in contrast to the "fix hyper/global"_fix_hyper_global.html
command, which can be user to perform a global hyperdynamics (GHD)
simulation, by adding a global bias potential to a single pair of
atoms at each timestep. GHD can time accelerate a small simulation
with up to a few 100 atoms. For larger systems, LHD is needed to
achieve good time acceleration.
For a system that undergoes rare transition events, where one or more
atoms move over an energy barrier to a new potential energy basin, the
effect of the bias potential is to induce more rapid transitions.
This can lead to a dramatic speed-up in the rate at which events
occurs, without altering their relative frequencies, thus leading to
an overall increase in the elapsed real time of the simulation as
compared to running for the same number of timesteps with normal MD.
See the "hyper"_hyper.html doc page for a more general discussion of
hyperdynamics and citations that explain both GHD and LHD.
The equations and logic used by this fix and described here to perform
LHD follow the description given in "(Voter2013)"_#Voter2013lhd. The
bond-boost form of a bias potential for HD is due to Miron and
Fichthorn as described in "(Miron)"_#Mironlhd.
To understand this description, you should first read the description
of the GHD algorithm on the "fix hyper/global"_fix_hyper_global.html
doc page. This description of LHD builds on the GHD description.
The definition of bonds, Eij, and Emax are the same for GHD and LHD.
The formulas for Vij(max) and Fij(max) are also the same except for a
pre-factor Cij, explained below.
The bias energy Vij applied to a bond IJ with maximum strain is
Vij(max) = Cij * Vmax * (1 - (Eij/q)^2) for abs(Eij) < qfactor
= 0 otherwise :pre
The derivative of Vij(max) with respect to the position of each atom
in the IJ bond gives a bias force Fij(max) acting on the bond as
Fij(max) = - dVij(max)/dEij = 2 Cij Vmax Eij / qfactor^2 for abs(Eij) < qfactor
= 0 otherwise :pre
which can be decomposed into an equal and opposite force acting on
only the two I,J atoms in the IJ bond.
The key difference is that in GHD a bias energy and force is added (on
a particular timestep) to only one bond (pair of atoms) in the system,
which is the bond with maximum strain Emax.
In LHD, a bias energy and force can be added to multiple bonds
separated by the specified {Dcut} distance or more. A bond IJ is
biased if it is the maximum strain bond within its local
"neighborhood", which is defined as the bond IJ plus any neighbor
bonds within a distance {Dcut} from IJ. The "distance" between bond
IJ and bond KL is the minimum distance between any of the IK, IL, JK,
JL pairs of atoms.
For a large system, multiple bonds will typically meet this
requirement, and thus a bias potential Vij(max) will be applied to
many bonds on the same timestep.
In LHD, all bonds store a Cij prefactor which appears in the Vij(max)
and Fij(max) equations above. Note that the Cij factor scales the
strength of the bias energy and forces whenever bond IJ is the maximum
strain bond in its neighborhood.
Cij is initialized to 1.0 when a bond between the I,J atoms is first
defined. The specified {Btarget} factor is then used to adjust the
Cij prefactors for each bond every timestep in the following manner.
An instantaneous boost factor Bij is computed each timestep
for each bond, as
Bij = exp(beta * Vkl(max)) :pre
where Vkl(max) is the bias energy of the maxstrain bond KL within bond
IJ's neighborhood, beta = 1/kTequil, and {Tequil} is the temperature
of the system and an argument to this fix.
NOTE: To run LHD, the input script must also use the "fix
langevin"_fix_langevin.html command to thermostat the atoms at the
same {Tequil} as specified by this fix, so that the system is running
constant-temperature (NVT) dynamics. LAMMPS does not check that this
is done.
Note that if IJ = KL, then bond IJ is a biased bond on that timestep,
otherwise it is not. But regardless, the boost factor Bij can be
thought of an estimate of time boost currently being applied within a
local region centered on bond IJ. For LHD, we want this to be the
specified {Btarget} value everywhere in the simulation domain.
To accomplish this, if Bij < Btarget, the Cij prefactor for bond IJ is
incremented on the current timestep by an amount proportional to the
inverse of the specified {alpha} and the difference (Bij - Btarget).
Conversely if Bij > Btarget, Cij is decremented by the same amount.
This procedure is termed "boostostatting" in
"(Voter2013)"_#Voter2013lhd. It drives all of the individual Cij to
values such that when Vij{max} is applied as a bias to bond IJ, the
resulting boost factor Bij will be close to {Btarget} on average.
Thus the LHD time acceleration factor for the overall system is
effectively {Btarget}.
Note that in LHD, the boost factor {Btarget} is specified by the user.
This is in contrast to global hyperdynamics (GHD) where the boost
factor varies each timestep and is computed as a function of {Vmax},
Emax, and {Tequil}; see the "fix hyper/global"_fix_hyper_global.html
doc page for details.
:line
Here is additional information on the input parameters for LHD.
Note that the {cutbond}, {qfactor}, and {Tequil} arguments have the
same meaning as for GHD. The {Vmax} argument is slightly different.
The {Dcut}, {alpha}, and {Btarget} parameters are unique to LHD.
The {cutbond} argument is the cutoff distance for defining bonds
between pairs of nearby atoms. A pair of I,J atoms in their
equilibrium, minimum-energy configuration, which are separated by a
distance Rij < {cutbond}, are flagged as a bonded pair. Setting
{cubond} to be ~25% larger than the nearest-neighbor distance in a
crystalline lattice is a typical choice for solids, so that bonds
exist only between nearest neighbor pairs.
The {qfactor} argument is the limiting strain at which the bias
potential goes to 0.0. It is dimensionless, so a value of 0.3 means a
bond distance can be up to 30% larger or 30% smaller than the
equilibrium (quenched) R0ij distance and the two atoms in the bond
could still experience a non-zero bias force.
If {qfactor} is set too large, then transitions from one energy basin
to another are affected because the bias potential is non-zero at the
transition state (e.g. saddle point). If {qfactor} is set too small
than little boost can be achieved because the Eij strain of some bond in
the system will (nearly) always exceed {qfactor}. A value of 0.3 for
{qfactor} is typically a reasonable value.
The {Vmax} argument is a fixed prefactor on the bias potential. There
is a also a dynamic prefactor Cij, driven by the choice of {Btarget}
as discussed above. The product of these should be a value less than
the smallest barrier height for an event to occur. Otherwise the
applied bias potential may be large enough (when added to the
interatomic potential) to produce a local energy basin with a maxima
in the center. This can produce artificial energy minima in the same
basin that trap an atom. Or if Cij*{Vmax} is even larger, it may
induce an atom(s) to rapidly transition to another energy basin. Both
cases are "bad dynamics" which violate the assumptions of LHD that
guarantee an accelerated time-accurate trajectory of the system.
NOTE: It may seem that {Vmax} can be set to any value, and Cij will
compensate to reduce the overall prefactor if necessary. However the
Cij are initialized to 1.0 and the boostostatting procedure typically
operates slowly enough that there can be a time period of bad dynamics
if {Vmax} is set too large. A better strategy is to set {Vmax} to the
smallest barrier height for an event (the same as for GHD), so that
the Cij remain near unity.
The {Tequil} argument is the temperature at which the system is
simulated; see the comment above about the "fix
langevin"_fix_langevin.html thermostatting. It is also part of the
beta term in the exponential factor that determines how much boost is
achieved as a function of the bias potential. See the discussion of
the {Btarget} argument below.
As discussed above, the {Dcut} argument is the distance required
between two locally maxstrain bonds for them to both be selected as
biased bonds on the same timestep. Computationally, the larger {Dcut}
is, the more work (computation and communication) must be done each
timestep within the LHD algorithm. And the fewer bonds can be
simultaneously biased, which may mean the specified {Btarget} time
acceleration cannot be achieved.
Physically {Dcut} should be a long enough distance that biasing two
pairs of atoms that close together will not influence the dynamics of
each pair. E.g. something like 2x the cutoff of the interatomic
potential. In practice a {Dcut} value of ~10 Angstroms seems to work
well for many solid-state systems.
NOTE: You must also insure that ghost atom communication is performed
for a distance of at least {Dcut} + {cutevent} where {cutevent} = the
distance one or more atoms move (between quenched states) to be
considered an "event". It is an argument to the "compute
event/displace" command used to detect events. By default the ghost
communication distance is set by the pair_style cutoff, which will
typically be < {Dcut}. The "comm_modify cutoff"_comm_modify.html
command can be used to set the ghost cutoff explicitly, e.g.
comm_modify cutoff 12.0 :pre
This fix does not know the {cutevent} parameter, but uses half the
bond length as an estimate to warn if the ghost cutoff is not long
enough.
As described above the {alpha} argument is a pre-factor in the
boostostat update equation for each bond's Cij prefactor. {Alpha} is
specified in time units, similar to other thermostat or barostat
damping parameters. It is roughly the physical time it will take the
boostostat to adjust a Cij value from a too high (or too low) value to
a correct one. An {alpha} setting of a few ps is typically good for
solid-state systems. Note that the {alpha} argument here is the
inverse of the alpha parameter discussed in
"(Voter2013)"_#Voter2013lhd.
The {Btarget} argument is the desired time boost factor (a value > 1)
that all the atoms in the system will experience. The elapsed time
t_hyper for an LHD simulation running for {N} timesteps is simply
t_hyper = Btarget * N*dt :pre
where dt is the timestep size defined by the "timestep"_timestep.html
command. The effective time acceleration due to LHD is thus t_hyper /
N*dt = Btarget, where N*dt is elapsed time for a normal MD run
of N timesteps.
You cannot choose an arbitrarily large setting for {Btarget}. The
maximum value you should choose is
Btarget = exp(beta * Vsmall) :pre
where Vsmall is the smallest event barrier height in your system, beta
= 1/kTequil, and {Tequil} is the specified temperature of the system
(both by this fix and the Langevin thermostat).
Note that if {Btarget} is set smaller than this, the LHD simulation
will run correctly. There will just be fewer events because the hyper
time (t_hyper equation above) will be shorter.
NOTE: If you have no physical intuition as to the smallest barrier
height in your system, a reasonable strategy to determine the largest
{Btarget} you can use for an LHD model, is to run a sequence of
simulations with smaller and smaller {Btarget} values, until the event
rate does not change.
:line
[Restart, fix_modify, output, run start/stop, minimize info:]
No information about this fix is written to "binary restart
files"_restart.html.
The "fix_modify"_fix_modify.html {energy} option is supported by this
fix to add the energy of the bias potential to the the system's
potential energy as part of "thermodynamic output"_thermo_style.html.
This fix computes a global scalar and global vector of length 23,
which can be accessed by various "output
commands"_Howto_output.html. The scalar is the magnitude of
the bias potential (energy units) applied on the current timestep,
summed over all biased bonds. The vector stores the following
quantities:
1 = # of biased bonds on this step
2 = max strain Eij of any bond on this step (unitless)
3 = average bias potential for all biased bonds on this step (energy units)
4 = average # of bonds/atom on this step
5 = average neighbor bonds/bond on this step within {Dcut} :ul
6 = fraction of steps and bonds with no bias during this run
7 = max drift distance of any atom during this run (distance units)
8 = max bond length during this run (distance units)
9 = average # of biased bonds/step during this run
10 = average bias potential for all biased bonds during this run (energy units)
11 = max bias potential for any biased bond during this run (energy units)
12 = min bias potential for any biased bond during this run (energy units)
13 = max distance from my sub-box of any ghost atom with maxstrain < qfactor during this run (distance units)
14 = max distance outside my box of any ghost atom with any maxstrain during this run (distance units)
15 = count of ghost neighbor atoms not found on reneighbor steps during this run
16 = count of lost bond partners during this run
17 = average bias coeff for lost bond partners during this run
18 = count of bias overlaps found during this run
19 = count of non-matching bias coefficients found during this run :ul
20 = cummulative hyper time since fix created (time units)
21 = cummulative count of event timesteps since fix created
22 = cummulative count of atoms in events since fix created
23 = cummulative # of new bonds since fix created :ul
The first quantities (1-5) are for the current timestep. Quantities
6-19 are for the current hyper run. They are reset each time a new
hyper run is performed. Quantities 20-23 are cummulative across
multiple runs (since the fix was defined in the input script).
For value 6, the numerator is a count of all biased bonds on every
timestep whose bias energy = 0.0 due to Eij >= {qfactor}. The
denominator is the count of all biased bonds on all timesteps.
For value 7, drift is the distance an atom moves between timesteps
when the bond list is reset, i.e. between events. Atoms involved in
an event will typically move the greatest distance since others are
typically oscillating around their lattice site.
For values 13 and 14, the maxstrain of a ghost atom is the maxstrain
of any bond it is part of, and it is checked for ghost atoms within
the bond neighbor cutoff.
Values 15-19 are mostly useful for debugging and diagnositc purposes.
For values 15-17, it is possible that a ghost atom owned by another
processor will move far enough (e.g. as part of an event-in-progress)
that it will no longer be within the communication cutoff distance for
acquiring ghost atoms. Likewise it may be a ghost atom bond partner
that cannot be found because it has moved too far. These values count
those occurrences. Because they typically involve atoms that are part
of events, they do not usually indicate bad dynamics. Value 16 is the
average bias coefficient for bonds where a partner atom was lost.
For value 18, no two bonds should be biased if they are within a
{Dcut} distance of each other. This value should be zero, indicating
that no pair of bonds "overlap", meaning they are closer than {Dcut}
from each other.
For value 19, the same bias coefficient is stored by both atoms in an
IJ bond. This value should be zero, indicating that for all bonds,
each atom in the bond stores the a bias coefficient with the same
value.
Value 20 is simply the specified {boost} factor times the number of
timestep times the timestep size.
For value 21, events are checked for by the "hyper"_hyper.html command
once every {Nevent} timesteps. This value is the count of those
timesteps on which one (or more) events was detected. It is NOT the
number of distinct events, since more than one event may occur in the
same {Nevent} time window.
For value 22, each time the "hyper"_hyper.html command checks for an
event, it invokes a compute to flag zero or more atoms as
participating in one or more events. E.g. atoms that have displaced
more than some distance from the previous quench state. Value 22 is
the cummulative count of the number of atoms participating in any of
the events that were found.
Value 23 tallies the number of new bonds created by the bond reset
operation. Bonds between a specific I,J pair of atoms may persist for
the entire hyperdynamics simulation if neither I or J are involved in
an event.
The scalar and vector values calculated by this fix are all
"intensive".
No parameter of this fix can be used with the {start/stop} keywords of
the "run"_run.html command. This fix is not invoked during "energy
minimization"_minimize.html.
[Restrictions:]
This fix is part of the REPLICA package. It is only enabled if LAMMPS
was built with that package. See the "Build package"_Build_package.html
doc page for more info.
[Related commands:]
"hyper"_hyper.html, "fix hyper/global"_fix_hyper_global.html
[Default:] None
:line
:link(Voter2013lhd)
[(Voter2013)] S. Y. Kim, D. Perez, A. F. Voter, J Chem Phys, 139,
144110 (2013).
:link(Mironlhd)
[(Miron)] R. A. Miron and K. A. Fichthorn, J Chem Phys, 119, 6210 (2003).

233
doc/src/fix_meso_move.txt Normal file
View File

@ -0,0 +1,233 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Commands_all.html)
:line
fix meso/move command :h3
[Syntax:]
fix ID group-ID meso/move style args keyword values ... :pre
ID, group-ID are documented in "fix"_fix.html command :ulb,l
meso/move = style name of this fix command :l
style = {linear} or {wiggle} or {rotate} or {variable} :l
{linear} args = Vx Vy Vz
Vx,Vy,Vz = components of velocity vector (velocity units), any component can be specified as NULL
{wiggle} args = Ax Ay Az period
Ax,Ay,Az = components of amplitude vector (distance units), any component can be specified as NULL
period = period of oscillation (time units)
{rotate} args = Px Py Pz Rx Ry Rz period
Px,Py,Pz = origin point of axis of rotation (distance units)
Rx,Ry,Rz = axis of rotation vector
period = period of rotation (time units)
{variable} args = v_dx v_dy v_dz v_vx v_vy v_vz
v_dx,v_dy,v_dz = 3 variable names that calculate x,y,z displacement as function of time, any component can be specified as NULL
v_vx,v_vy,v_vz = 3 variable names that calculate x,y,z velocity as function of time, any component can be specified as NULL :pre
zero or more keyword/value pairs may be appended :l
keyword = {units} :l
{units} value = {box} or {lattice} :pre
:ule
[Examples:]
fix 1 boundary meso/move wiggle 3.0 0.0 0.0 1.0 units box
fix 2 boundary meso/move rotate 0.0 0.0 0.0 0.0 0.0 1.0 5.0
fix 2 boundary meso/move variable v_myx v_myy NULL v_VX v_VY NULL :pre
[Description:]
Perform updates of position, velocity, internal energy and local
density for mesoscopic particles in the group each timestep using the
specified settings or formulas, without regard to forces on the
particles. This can be useful for boundary, solid bodies or other
particles, whose movement can influence nearby particles.
The operation of this fix is exactly like that described by the
"fix move"_fix_move.html command, except that particles' density,
internal energy and extrapolated velocity are also updated.
NOTE: The particles affected by this fix should not be time integrated
by other fixes (e.g. "fix meso"_fix_meso.html, "fix
meso/stationary"_fix_meso_stationary.html), since that will change their
positions and velocities twice.
NOTE: As particles move due to this fix, they will pass thru periodic
boundaries and be remapped to the other side of the simulation box,
just as they would during normal time integration (e.g. via the "fix
meso"_fix_meso.html command). It is up to you to decide whether periodic
boundaries are appropriate with the kind of particle motion you are
prescribing with this fix.
NOTE: As dicsussed below, particles are moved relative to their initial
position at the time the fix is specified. These initial coordinates
are stored by the fix in "unwrapped" form, by using the image flags
associated with each particle. See the "dump custom"_dump.html command
for a discussion of "unwrapped" coordinates. See the Atoms section of
the "read_data"_read_data.html command for a discussion of image flags
and how they are set for each particle. You can reset the image flags
(e.g. to 0) before invoking this fix by using the "set image"_set.html
command.
:line
The {linear} style moves particles at a constant velocity, so that their
position {X} = (x,y,z) as a function of time is given in vector
notation as
X(t) = X0 + V * delta :pre
where {X0} = (x0,y0,z0) is their position at the time the fix is
specified, {V} is the specified velocity vector with components
(Vx,Vy,Vz), and {delta} is the time elapsed since the fix was
specified. This style also sets the velocity of each particle to V =
(Vx,Vy,Vz). If any of the velocity components is specified as NULL,
then the position and velocity of that component is time integrated
the same as the "fix meso"_fix_meso.html command would perform, using
the corresponding force component on the particle.
Note that the {linear} style is identical to using the {variable}
style with an "equal-style variable"_variable.html that uses the
vdisplace() function. E.g.
variable V equal 10.0
variable x equal vdisplace(0.0,$V)
fix 1 boundary move variable v_x NULL NULL v_V NULL NULL :pre
The {wiggle} style moves particles in an oscillatory fashion, so that
their position {X} = (x,y,z) as a function of time is given in vector
notation as
X(t) = X0 + A sin(omega*delta) :pre
where {X0} = (x0,y0,z0) is their position at the time the fix is
specified, {A} is the specified amplitude vector with components
(Ax,Ay,Az), {omega} is 2 PI / {period}, and {delta} is the time
elapsed since the fix was specified. This style also sets the
velocity of each particle to the time derivative of this expression.
If any of the amplitude components is specified as NULL, then the
position and velocity of that component is time integrated the same as
the "fix meso"_fix_meso.html command would perform, using the
corresponding force component on the particle.
Note that the {wiggle} style is identical to using the {variable}
style with "equal-style variables"_variable.html that use the
swiggle() and cwiggle() functions. E.g.
variable A equal 10.0
variable T equal 5.0
variable omega equal 2.0*PI/$T
variable x equal swiggle(0.0,$A,$T)
variable v equal v_omega*($A-cwiggle(0.0,$A,$T))
fix 1 boundary move variable v_x NULL NULL v_v NULL NULL :pre
The {rotate} style rotates particles around a rotation axis {R} =
(Rx,Ry,Rz) that goes thru a point {P} = (Px,Py,Pz). The {period} of
the rotation is also specified. The direction of rotation for the
particles around the rotation axis is consistent with the right-hand
rule: if your right-hand thumb points along {R}, then your fingers wrap
around the axis in the direction of rotation.
This style also sets the velocity of each particle to (omega cross
Rperp) where omega is its angular velocity around the rotation axis and
Rperp is a perpendicular vector from the rotation axis to the particle.
The {variable} style allows the position and velocity components of
each particle to be set by formulas specified via the
"variable"_variable.html command. Each of the 6 variables is
specified as an argument to the fix as v_name, where name is the
variable name that is defined elsewhere in the input script.
Each variable must be of either the {equal} or {atom} style.
{Equal}-style variables compute a single numeric quantity, that can be
a function of the timestep as well as of other simulation values.
{Atom}-style variables compute a numeric quantity for each particle, that
can be a function per-atom quantities, such as the particle's position, as
well as of the timestep and other simulation values. Note that this
fix stores the original coordinates of each particle (see note below) so
that per-atom quantity can be used in an atom-style variable formula.
See the "variable"_variable.html command for details.
The first 3 variables (v_dx,v_dy,v_dz) specified for the {variable}
style are used to calculate a displacement from the particle's original
position at the time the fix was specified. The second 3 variables
(v_vx,v_vy,v_vz) specified are used to compute a velocity for each
particle.
Any of the 6 variables can be specified as NULL. If both the
displacement and velocity variables for a particular x,y,z component
are specified as NULL, then the position and velocity of that
component is time integrated the same as the "fix meso"_fix_meso.html
command would perform, using the corresponding force component on the
particle. If only the velocity variable for a component is specified as
NULL, then the displacement variable will be used to set the position
of the particle, and its velocity component will not be changed. If only
the displacement variable for a component is specified as NULL, then
the velocity variable will be used to set the velocity of the particle,
and the position of the particle will be time integrated using that
velocity.
The {units} keyword determines the meaning of the distance units used
to define the {linear} velocity and {wiggle} amplitude and {rotate}
origin. This setting is ignored for the {variable} style. A {box}
value selects standard units as defined by the "units"_units.html
command, e.g. velocity in Angstroms/fmsec and amplitude and position
in Angstroms for units = real. A {lattice} value means the velocity
units are in lattice spacings per time and the amplitude and position
are in lattice spacings. The "lattice"_lattice.html command must have
been previously used to define the lattice spacing. Each of these 3
quantities may be dependent on the x,y,z dimension, since the lattice
spacings can be different in x,y,z.
:line
[Restart, fix_modify, output, run start/stop, minimize info:]
This fix writes the original coordinates of moving particles to "binary
restart files"_restart.html, as well as the initial timestep, so that
the motion can be continuous in a restarted simulation. See the
"read_restart"_read_restart.html command for info on how to re-specify
a fix in an input script that reads a restart file, so that the
operation of the fix continues in an uninterrupted fashion.
NOTE: Because the move positions are a function of the current
timestep and the initial timestep, you cannot reset the timestep to a
different value after reading a restart file, if you expect a fix move
command to work in an uninterrupted fashion.
None of the "fix_modify"_fix_modify.html options are relevant to this
fix.
This fix produces a per-atom array which can be accessed by various
"output commands"_Howto_output.html. The number of columns for each
atom is 3, and the columns store the original unwrapped x,y,z coords
of each particle. The per-atom values can be accessed on any timestep.
No parameter of this fix can be used with the {start/stop} keywords of
the "run"_run.html command.
This fix is not invoked during "energy minimization"_minimize.html.
[Restrictions:]
This fix is part of the USER-SDPD package. It is only enabled if
LAMMPS was built with that package. See the "Build
package"_Build_package.html doc page for more info.
This fix requires that atoms store density and internal energy as
defined by the "atom_style meso"_atom_style.html command.
All particles in the group must be mesoscopic SPH/SDPD particles.
[Related commands:]
"fix move"_fix_move.html, "fix meso"_fix_meso.html,
"displace_atoms"_displace_atoms.html
[Default:]
The option default is units = lattice.

View File

@ -35,7 +35,7 @@ keyword = {parallel} or {perp} or {end} :l
fix 1 active neb 10.0
fix 2 all neb 1.0 perp 1.0 end last
fix 2 all neb 1.0 perp 1.0 end first 1.0 end last 1.0
fix 1 all neb 1.0 nudge ideal end last/efirst 1 :pre
fix 1 all neb 1.0 parallel ideal end last/efirst 1 :pre
[Description:]
@ -212,7 +212,7 @@ page for more info.
[Default:]
The option defaults are nudge = neigh, perp = 0.0, ends is not
The option defaults are parallel = neigh, perp = 0.0, ends is not
specified (no inter-replica force on the end replicas).
:line

View File

@ -36,8 +36,8 @@ The command is equivalent to the "fix nve"_fix_nve.html.
The particles are always considered to have a finite size.
An example input file can be found in /examples/USER/cgdna/examples/duplex1/.
A technical report with more information on this integrator can be found
"here"_PDF/USER-CGDNA-overview.pdf.
Further details of the implementation and stability of the integrator are contained in "(Henrich)"_#Henrich3.
The preprint version of the article can be found "here"_PDF/USER-CGDNA.pdf.
:line
@ -59,3 +59,5 @@ See the "Build package"_Build_package.html doc page for more info.
[(Davidchack)] R.L Davidchack, T.E. Ouldridge, and M.V. Tretyakov. J. Chem. Phys. 142, 144114 (2015).
:link(Miller1)
[(Miller)] T. F. Miller III, M. Eleftheriou, P. Pattnaik, A. Ndirango, G. J. Martyna, J. Chem. Phys., 116, 8649-8659 (2002).
:link(Henrich3)
[(Henrich)] O. Henrich, Y. A. Gutierrez-Fosado, T. Curk, T. E. Ouldridge, Eur. Phys. J. E 41, 57 (2018).

View File

@ -114,8 +114,8 @@ The scale factor after the {angmom} keyword gives the ratio of the rotational to
the translational friction coefficient.
An example input file can be found in /examples/USER/cgdna/examples/duplex2/.
A technical report with more information on this integrator can be found
"here"_PDF/USER-CGDNA-overview.pdf.
Further details of the implementation and stability of the integrators are contained in "(Henrich)"_#Henrich4.
The preprint version of the article can be found "here"_PDF/USER-CGDNA.pdf.
:line
@ -139,3 +139,5 @@ See the "Build package"_Build_package.html doc page for more info.
[(Miller)] T. F. Miller III, M. Eleftheriou, P. Pattnaik, A. Ndirango, G. J. Martyna, J. Chem. Phys., 116, 8649-8659 (2002).
:link(Dunweg3)
[(Dunweg)] B. Dunweg, W. Paul, Int. J. Mod. Phys. C, 2, 817-27 (1991).
:link(Henrich4)
[(Henrich)] O. Henrich, Y. A. Gutierrez-Fosado, T. Curk, T. E. Ouldridge, Eur. Phys. J. E 41, 57 (2018).

View File

@ -8,6 +8,7 @@
fix nve/sphere command :h3
fix nve/sphere/omp command :h3
fix nve/sphere/kk command :h3
[Syntax:]

117
doc/src/fix_plumed.txt Normal file
View File

@ -0,0 +1,117 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Commands_all.html)
:line
fix plumed command :h3
[Syntax:]
fix ID group-ID plumed keyword value ... :pre
ID, group-ID are documented in "fix"_fix.html command :ulb,l
plumed = style name of this fix command :l
keyword = {plumedfile} or {outfile} :l
{plumedfile} arg = name of PLUMED input file to use (default: NULL)
{outfile} arg = name of file on which to write the PLUMED log (default: NULL) :pre
:ule
[Examples:]
fix pl all plumed all plumed plumedfile plumed.dat outfile p.log
[Description:]
This fix instructs LAMMPS to call the "PLUMED"_plumedhome library, which
allows one to perform various forms of trajectory analysis on the fly
and to also use methods such as umbrella sampling and metadynamics to
enhance the sampling of phase space.
The documentation included here only describes the fix plumed command
itself. This command is LAMMPS specific, whereas most of the
functionality implemented in PLUMED, however, will work with a range of
MD codes, and when PLUMED is used as a stand alone code for analysis.
The full "documentation for PLUMED"_plumeddocs is available online and
included in the PLUMED source code. The PLUMED library development is
hosted at
"https://github.com/plumed/plumed2"_https://github.com/plumed/plumed2
A detailed discussion of the code can be found in "(PLUMED)"_#PLUMED.
There is an example input for using this package with LAMMPS in the
examples/USER/plumed directory.
:line
The command to make LAMMPS call PLUMED during a run requires two keyword
value pairs pointing to the PLUMED input file and an output file for the
PLUMED log. The user must specify these arguments every time PLUMED is
to be used. Furthermore, the fix plumed command should appear in the
LAMMPS input file [after] relevant input paramters (e.g. the timestep)
have been set.
The {group-ID} entry is ignored. LAMMPS will always pass all the atoms
to PLUMED and there can only be one instance of the plumed fix at a
time. The plumed fix communicates the minimum amount of information
required and the PLUMED supports multiple, completely independent
collective variables, multiple independent biases and multiple
independent forms of analysis. There is thus really no restriction in
functionality by only allowing only one plumed fix in the LAMMPS input.
The {plumedfile} keyword allows the user to specify the name of the
PLUMED input file. Instructions as to what should be included in a
plumed input file can be found in the "documentation for
PLUMED"_plumeddocs
The {outfile} keyword allows the user to specify the name of a file on
which to output the PLUMED log. This log file normally just parrots the
information that is contained in the input file. The names of the files
on which the results from the various analyses that have been performed
using PLUMED will be specified by the user in the PLUMED input file.
[Restart, fix_modify, output, run start/stop, minimize info:]
When performing a restart of a calculation that involves PLUMED you must
include a RESTART command in the PLUMED input file as detailed in the
"PLUMED documentation"_plumeddocs. When the restart command is found in
the PLUMED input PLUMED will append to the files that were generated in
the run that was performed previously. No part of the PLUMED restart
data is included in the LAMMPS restart files. Furthermore, any history
dependent bias potentials that were accumulated in previous calculations
will be read in when the RESTART command is included in the PLUMED
input.
The "fix_modify"_fix_modify.html {energy} option is not supported by
this fix.
Nothing is computed by this fix that can be accessed by any of the
"output commands"_Howto_output.html within LAMMPS. All the quantities
of interest can be output by commands that are native to PLUMED,
however.
[Restrictions:]
This fix is part of the USER-PLUMED package. It is only enabled if
LAMMPS was built with that package. See the "Build
package"_Build_package.html doc page for more info.
There can only be one plumed fix active at a time.
[Related commands:]
"fix smd"_fix_smd.html
"fix colvars"_fix_colvars.html
[Default:]
The default options are plumedfile = NULL and outfile = NULL
:line
:link(PLUMED)
[(PLUMED)] G.A. Tribello, M. Bonomi, D. Branduardi, C. Camilloni and G. Bussi, Comp. Phys. Comm 185, 604 (2014)
:link(plumeddocs,http://www.plumed.org/documentation)
:link(plumedhome,http://www.plumed.org/)

349
doc/src/fix_rigid_meso.txt Normal file
View File

@ -0,0 +1,349 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Commands_all.html)
:line
fix rigid/meso command :h3
[Syntax:]
fix ID group-ID rigid/meso bodystyle args keyword values ... :pre
ID, group-ID are documented in "fix"_fix.html command :ulb,l
rigid/meso = style name of this fix command :l
bodystyle = {single} or {molecule} or {group} :l
{single} args = none
{molecule} args = none
{custom} args = {i_propname} or {v_varname}
i_propname = an integer property defined via fix property/atom
v_varname = an atom-style or atomfile-style variable
{group} args = N groupID1 groupID2 ...
N = # of groups
groupID1, groupID2, ... = list of N group IDs :pre
zero or more keyword/value pairs may be appended :l
keyword = {reinit} or {force} or {torque} or {infile} :l
{reinit} = {yes} or {no}
{force} values = M xflag yflag zflag
M = which rigid body from 1-Nbody (see asterisk form below)
xflag,yflag,zflag = off/on if component of center-of-mass force is active
{torque} values = M xflag yflag zflag
M = which rigid body from 1-Nbody (see asterisk form below)
xflag,yflag,zflag = off/on if component of center-of-mass torque is active
{infile} filename
filename = file with per-body values of mass, center-of-mass, moments of inertia :pre
:ule
[Examples:]
fix 1 ellipsoid rigid/meso single
fix 1 rods rigid/meso molecule
fix 1 spheres rigid/meso single force 1 off off on
fix 1 particles rigid/meso molecule force 1*5 off off off force 6*10 off off on
fix 2 spheres rigid/meso group 3 sphere1 sphere2 sphere3 torque * off off off :pre
[Description:]
Treat one or more sets of mesoscopic SPH/SDPD particles as independent
rigid bodies. This means that each timestep the total force and torque
on each rigid body is computed as the sum of the forces and torques on
its constituent particles. The coordinates and velocities of the
particles in each body are then updated so that the body moves and
rotates as a single entity using the methods described in the paper by
"(Miller)"_#Miller. Density and internal energy of the particles will
also be updated. This is implemented by creating internal data structures
for each rigid body and performing time integration on these data
structures. Positions and velocities of the constituent particles are
regenerated from the rigid body data structures in every time step. This
restricts which operations and fixes can be applied to rigid bodies. See
below for a detailed discussion.
The operation of this fix is exactly like that described by the
"fix rigid/nve"_fix_rigid.html command, except that particles' density,
internal energy and extrapolated velocity are also updated.
NOTE: You should not update the particles in rigid bodies via other
time-integration fixes (e.g. "fix meso"_fix_meso.html,
"fix meso/stationary"_fix_meso_stationary.html), or you will have conflicting
updates to positions and velocities resulting in unphysical behavior in most
cases. When performing a hybrid simulation with some atoms in rigid bodies,
and some not, a separate time integration fix like "fix meso"_fix_meso.html
should be used for the non-rigid particles.
NOTE: These fixes are overkill if you simply want to hold a collection
of particles stationary or have them move with a constant velocity. To
hold particles stationary use "fix
meso/stationary"_fix_meso_stationary.html instead. If you would like to
move particles with a constant velocity use "fix
meso/move"_fix_meso_move.html.
IMPORTANT NOTE: The aggregate properties of each rigid body are
calculated at the start of a simulation run and are maintained in
internal data structures. The properties include the position and
velocity of the center-of-mass of the body, its moments of inertia, and
its angular momentum. This is done using the properties of the
constituent particles of the body at that point in time (or see the {infile}
keyword option). Thereafter, changing these properties of individual
particles in the body will have no effect on a rigid body's dynamics, unless
they effect any computation of per-particle forces or torques. If the
keyword {reinit} is set to {yes} (the default), the rigid body data
structures will be recreated at the beginning of each {run} command;
if the keyword {reinit} is set to {no}, the rigid body data structures
will be built only at the very first {run} command and maintained for
as long as the rigid fix is defined. For example, you might think you
could displace the particles in a body or add a large velocity to each particle
in a body to make it move in a desired direction before a 2nd run is
performed, using the "set"_set.html or
"displace_atoms"_displace_atoms.html or "velocity"_velocity.html
commands. But these commands will not affect the internal attributes
of the body unless {reinit} is set to {yes}. With {reinit} set to {no}
(or using the {infile} option, which implies {reinit} {no}) the position
and velocity of individual particles in the body will be reset when time
integration starts again.
:line
Each rigid body must have two or more particles. A particle can belong
to at most one rigid body. Which particles are in which bodies can be
defined via several options.
For bodystyle {single} the entire fix group of particles is treated as
one rigid body.
For bodystyle {molecule}, particles are grouped into rigid bodies by their
respective molecule IDs: each set of particles in the fix group with the
same molecule ID is treated as a different rigid body. Note that particles
with a molecule ID = 0 will be treated as a single rigid body. For a
system with solvent (typically this is particles with molecule ID = 0)
surrounding rigid bodies, this may not be what you want. Thus you
should be careful to use a fix group that only includes particles you
want to be part of rigid bodies.
Bodystyle {custom} is similar to bodystyle {molecule} except that it
is more flexible in using other per-atom properties to define the sets
of particles that form rigid bodies. An integer vector defined by the
"fix property/atom"_fix_property_atom.html command can be used. Or an
"atom-style or atomfile-style variable"_variable.html can be used; the
floating-point value produced by the variable is rounded to an
integer. As with bondstyle {molecule}, each set of particles in the fix
groups with the same integer value is treated as a different rigid
body. Since fix property/atom vectors and atom-style variables
produce values for all particles, you should be careful to use a fix group
that only includes particles you want to be part of rigid bodies.
For bodystyle {group}, each of the listed groups is treated as a
separate rigid body. Only particles that are also in the fix group are
included in each rigid body.
NOTE: To compute the initial center-of-mass position and other
properties of each rigid body, the image flags for each particle in the
body are used to "unwrap" the particle coordinates. Thus you must
insure that these image flags are consistent so that the unwrapping
creates a valid rigid body (one where the particles are close together)
, particularly if the particles in a single rigid body straddle a
periodic boundary. This means the input data file or restart file must
define the image flags for each particle consistently or that you have
used the "set"_set.html command to specify them correctly. If a
dimension is non-periodic then the image flag of each particle must be
0 in that dimension, else an error is generated.
By default, each rigid body is acted on by other particles which induce
an external force and torque on its center of mass, causing it to
translate and rotate. Components of the external center-of-mass force
and torque can be turned off by the {force} and {torque} keywords.
This may be useful if you wish a body to rotate but not translate, or
vice versa, or if you wish it to rotate or translate continuously
unaffected by interactions with other particles. Note that if you
expect a rigid body not to move or rotate by using these keywords, you
must insure its initial center-of-mass translational or angular
velocity is 0.0. Otherwise the initial translational or angular
momentum the body has will persist.
An xflag, yflag, or zflag set to {off} means turn off the component of
force or torque in that dimension. A setting of {on} means turn on
the component, which is the default. Which rigid body(s) the settings
apply to is determined by the first argument of the {force} and
{torque} keywords. It can be an integer M from 1 to Nbody, where
Nbody is the number of rigid bodies defined. A wild-card asterisk can
be used in place of, or in conjunction with, the M argument to set the
flags for multiple rigid bodies. This takes the form "*" or "*n" or
"n*" or "m*n". If N = the number of rigid bodies, then an asterisk
with no numeric values means all bodies from 1 to N. A leading
asterisk means all bodies from 1 to n (inclusive). A trailing
asterisk means all bodies from n to N (inclusive). A middle asterisk
means all bodies from m to n (inclusive). Note that you can use the
{force} or {torque} keywords as many times as you like. If a
particular rigid body has its component flags set multiple times, the
settings from the final keyword are used.
For computational efficiency, you should typically define one fix
rigid/meso command which includes all the desired rigid bodies. LAMMPS
will allow multiple rigid/meso fixes to be defined, but it is more
expensive.
:line
The keyword/value option pairs are used in the following ways.
The {reinit} keyword determines, whether the rigid body properties
are re-initialized between run commands. With the option {yes} (the
default) this is done, with the option {no} this is not done. Turning
off the re-initialization can be helpful to protect rigid bodies against
unphysical manipulations between runs or when properties cannot be
easily re-computed (e.g. when read from a file). When using the {infile}
keyword, the {reinit} option is automatically set to {no}.
:line
The {infile} keyword allows a file of rigid body attributes to be read
in from a file, rather then having LAMMPS compute them. There are 5
such attributes: the total mass of the rigid body, its center-of-mass
position, its 6 moments of inertia, its center-of-mass velocity, and
the 3 image flags of the center-of-mass position. For rigid bodies
consisting of point particles or non-overlapping finite-size
particles, LAMMPS can compute these values accurately. However, for
rigid bodies consisting of finite-size particles which overlap each
other, LAMMPS will ignore the overlaps when computing these 4
attributes. The amount of error this induces depends on the amount of
overlap. To avoid this issue, the values can be pre-computed
(e.g. using Monte Carlo integration).
The format of the file is as follows. Note that the file does not
have to list attributes for every rigid body integrated by fix rigid.
Only bodies which the file specifies will have their computed
attributes overridden. The file can contain initial blank lines or
comment lines starting with "#" which are ignored. The first
non-blank, non-comment line should list N = the number of lines to
follow. The N successive lines contain the following information:
ID1 masstotal xcm ycm zcm ixx iyy izz ixy ixz iyz vxcm vycm vzcm lx ly lz ixcm iycm izcm
ID2 masstotal xcm ycm zcm ixx iyy izz ixy ixz iyz vxcm vycm vzcm lx ly lz ixcm iycm izcm
...
IDN masstotal xcm ycm zcm ixx iyy izz ixy ixz iyz vxcm vycm vzcm lx ly lz ixcm iycm izcm :pre
The rigid body IDs are all positive integers. For the {single}
bodystyle, only an ID of 1 can be used. For the {group} bodystyle,
IDs from 1 to Ng can be used where Ng is the number of specified
groups. For the {molecule} bodystyle, use the molecule ID for the
atoms in a specific rigid body as the rigid body ID.
The masstotal and center-of-mass coordinates (xcm,ycm,zcm) are
self-explanatory. The center-of-mass should be consistent with what
is calculated for the position of the rigid body with all its atoms
unwrapped by their respective image flags. If this produces a
center-of-mass that is outside the simulation box, LAMMPS wraps it
back into the box.
The 6 moments of inertia (ixx,iyy,izz,ixy,ixz,iyz) should be the
values consistent with the current orientation of the rigid body
around its center of mass. The values are with respect to the
simulation box XYZ axes, not with respect to the principal axes of the
rigid body itself. LAMMPS performs the latter calculation internally.
The (vxcm,vycm,vzcm) values are the velocity of the center of mass.
The (lx,ly,lz) values are the angular momentum of the body. The
(vxcm,vycm,vzcm) and (lx,ly,lz) values can simply be set to 0 if you
wish the body to have no initial motion.
The (ixcm,iycm,izcm) values are the image flags of the center of mass
of the body. For periodic dimensions, they specify which image of the
simulation box the body is considered to be in. An image of 0 means
it is inside the box as defined. A value of 2 means add 2 box lengths
to get the true value. A value of -1 means subtract 1 box length to
get the true value. LAMMPS updates these flags as the rigid bodies
cross periodic boundaries during the simulation.
NOTE: If you use the {infile} keyword and write restart
files during a simulation, then each time a restart file is written,
the fix also write an auxiliary restart file with the name
rfile.rigid, where "rfile" is the name of the restart file,
e.g. tmp.restart.10000 and tmp.restart.10000.rigid. This auxiliary
file is in the same format described above. Thus it can be used in a
new input script that restarts the run and re-specifies a rigid fix
using an {infile} keyword and the appropriate filename. Note that the
auxiliary file will contain one line for every rigid body, even if the
original file only listed a subset of the rigid bodies.
:line
[Restart, fix_modify, output, run start/stop, minimize info:]
No information is written to "binary restart files"_restart.html.
If the {infile} keyword is used, an auxiliary file is written out
with rigid body information each time a restart file is written, as
explained above for the {infile} keyword.
None of the "fix_modify"_fix_modify.html options are relevant to this
fix.
This fix computes a global array of values which can be accessed by
various "output commands"_Howto_output.html.
The number of rows in the array is equal to the number of rigid
bodies. The number of columns is 28. Thus for each rigid body, 28
values are stored: the xyz coords of the center of mass (COM), the xyz
components of the COM velocity, the xyz components of the force acting
on the COM, the components of the 4-vector quaternion representing the
orientation of the rigid body, the xyz components of the angular momentum
of the body around its COM, the xyz components of the torque acting on the
COM, the 3 principal components of the moment of inertia and the xyz image
flags of the COM.
The center of mass (COM) for each body is similar to unwrapped
coordinates written to a dump file. It will always be inside (or
slightly outside) the simulation box. The image flags have the same
meaning as image flags for particle positions (see the "dump" command).
This means you can calculate the unwrapped COM by applying the image
flags to the COM, the same as when unwrapped coordinates are written
to a dump file.
The force and torque values in the array are not affected by the
{force} and {torque} keywords in the fix rigid command; they reflect
values before any changes are made by those keywords.
The ordering of the rigid bodies (by row in the array) is as follows.
For the {single} keyword there is just one rigid body. For the
{molecule} keyword, the bodies are ordered by ascending molecule ID.
For the {group} keyword, the list of group IDs determines the ordering
of bodies.
The array values calculated by this fix are "intensive", meaning they
are independent of the number of particles in the simulation.
No parameter of this fix can be used with the {start/stop} keywords of
the "run"_run.html command.
This fix is not invoked during "energy minimization"_minimize.html.
:line
[Restrictions:]
This fix is part of the USER-SDPD package and also depends on the RIGID
package. It is only enabled if LAMMPS was built with both packages. See
the "Build package"_Build_package.html doc page for more info.
This fix requires that atoms store density and internal energy as
defined by the "atom_style meso"_atom_style.html command.
All particles in the group must be mesoscopic SPH/SDPD particles.
[Related commands:]
"fix meso/move"_fix_meso_move.html, "fix rigid"_fix_rigid.html,
"neigh_modify exclude"_neigh_modify.html
[Default:]
The option defaults are force * on on on and torque * on on on,
meaning all rigid bodies are acted on by center-of-mass force and
torque. Also reinit = yes.
:line
:link(Miller)
[(Miller)] Miller, Eleftheriou, Pattnaik, Ndirango, and Newns,
J Chem Phys, 116, 8649 (2002).

View File

@ -137,7 +137,8 @@ package"_Build_package.html doc page for more info.
"fix drag"_fix_drag.html, "fix spring"_fix_spring.html,
"fix spring/self"_fix_spring_self.html,
"fix spring/rg"_fix_spring_rg.html
"fix spring/rg"_fix_spring_rg.html,
"fix colvars"_fix_colvars.html, "fix plumed"_fix_plumed.html
[Default:] none

View File

@ -57,6 +57,8 @@ Fixes :h1
fix_grem
fix_halt
fix_heat
fix_hyper_global
fix_hyper_local
fix_imd
fix_indent
fix_ipi
@ -73,6 +75,7 @@ Fixes :h1
fix_lineforce
fix_manifoldforce
fix_meso
fix_meso_move
fix_meso_stationary
fix_momentum
fix_move
@ -117,6 +120,7 @@ Fixes :h1
fix_phonon
fix_pimd
fix_planeforce
fix_plumed
fix_poems
fix_pour
fix_precession_spin
@ -137,6 +141,7 @@ Fixes :h1
fix_restrain
fix_rhok
fix_rigid
fix_rigid_meso
fix_rx
fix_saed_vtk
fix_setforce

View File

@ -225,8 +225,7 @@ atomfile-style variable. The variable is evaluated and atoms whose
per-atom values are 0.0, are removed from the dynamic group. If the {property}
keyword is used, the per-atom property name must be a previously defined
per-atom property. The per-atom property is evaluated and atoms whose
values are 0.0 are removed from the dynamic group, otherwise they
are added to the group.
values are 0.0 are removed from the dynamic group.
The assignment of atoms to a dynamic group is done at the beginning of
each run and on every timestep that is a multiple of {N}, which is the

192
doc/src/hyper.txt Normal file
View File

@ -0,0 +1,192 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
hyper command :h3
[Syntax:]
hyper N Nevent fix-ID compute-ID keyword values ... :pre
N = # of timesteps to run :ulb,l
Nevent = check for events every this many steps :l
fix-ID = ID of a fix that applies a global or local bias potential, can be NULL :l
compute-ID = ID of a compute that identifies when an event has occurred :l
zero or more keyword/value pairs may be appended :l
keyword = {min} or {dump} or {rebond} :l
{min} values = etol ftol maxiter maxeval
etol = stopping tolerance for energy, used in quenching
ftol = stopping tolerance for force, used in quenching
maxiter = max iterations of minimize, used in quenching
maxeval = max number of force/energy evaluations, used in quenching
{dump} value = dump-ID
dump-ID = ID of dump to trigger whenever an event takes place
{rebond} value = Nrebond
Nrebond = frequency at which to reset bonds, even if no event has occurred
:pre
:ule
[Examples:]
compute event all event/displace 1.0
fix HG mobile hyper/global 3.0 0.3 0.4 800.0
hyper 5000 100 HG event min 1.0e-6 1.0e-6 100 100 dump 1 dump 5 :pre
[Description:]
Run a bond-boost hyperdynamics (HD) simulation where time is
accelerated by application of a bias potential to one or more pairs of
nearby atoms in the system. This command can be used to run both
global and local hyperdyamics. In global HD a single bond within the
system is biased on each timestep. In local HD multiple bonds
(separated by a sufficient distance) can be biased simultaneously at
each timestep. In the bond-boost hyperdynamics context, a "bond" is
not a covalent bond between a pair of atoms in a molecule. Rather it
is simply a pair of nearby atoms as discussed below.
Both global and local HD are described in "(Voter2013)"_#Voter2013 by
Art Voter and collaborators. Similar to parallel replica dynamics
(PRD), global and local HD are methods for performing accelerated
dynamics that are suitable for infrequent-event systems that obey
first-order kinetics. A good overview of accelerated dynamics methods
for such systems in given in "(Voter2002)"_#Voter2002hd from the same
group. To quote from the review paper: "The dynamical evolution is
characterized by vibrational excursions within a potential basin,
punctuated by occasional transitions between basins." The transition
probability is characterized by p(t) = k*exp(-kt) where k is the rate
constant. Running multiple replicas gives an effective enhancement in
the timescale spanned by the multiple simulations, while waiting for
an event to occur.
Both HD and PRD produce a time-accurate trajectory that effectively
extends the timescale over which a system can be simulated, but they
do it differently. HD uses a single replica of the system and
accelerates time by biasing the interaction potential in a manner such
that each timestep is effectively longer. PRD creates Nr replicas of
the system and runs dynamics on each independently with a normal
unbiased potential until an event occurs in one of the replicas. The
time between events is reduced by a factor of Nr replicas. For both
methods, per CPU second, more physical time elapses and more events
occur. See the "prd"_prd.html doc page for more info about PRD.
An HD run has several stages, which are repeated each time an event
occurs, as explained below. The logic for an HD run is as follows:
quench
create initial list of bonds :pre
while (time remains):
run dynamics for Nevent steps
quench
check for an event
if event occurred: reset list of bonds
restore pre-quench state :pre
The list of bonds is the list of atom pairs of atoms that are within a
short cutoff distance of each other after the system energy is
minimized (quenched). This list is created and reset by a "fix
hyper/global"_fix_hyper_global.html or "fix
hyper/local"_fix_hyper_local.html command specified as {fix-ID}. At
every dynamics timestep, the same fix selects one of more bonds to
apply a bias potential to.
IMPORTANT NOTE: The style of fix associated with the specified
{fix-ID} determines whether you are running the global versus local
hyperdynamics algorithm.
Dynamics (with the bias potential) is run continuously, stopping every
{Nevent} steps to check if a transition event has occurred. The
specified {N} for total steps must be a multiple of {Nevent}. check
is performed by quenching the system and comparing the resulting atom
coordinates to the coordinates from the previous basin.
A quench is an energy minimization and is performed by whichever
algorithm has been defined by the "min_style"_min_style.html command.
Minimization parameters may be set via the
"min_modify"_min_modify.html command and by the {min} keyword of the
hyper command. The latter are the settings that would be used with
the "minimize"_minimize.html command. Note that typically, you do not
need to perform a highly-converged minimization to detect a transition
event, though you may need to in order to prevent a set of atoms in
the system from relaxing to a saddle point.
The event check is performed by a compute with the specified
{compute-ID}. Currently there is only one compute that works with the
hyper command, which is the "compute
event/displace"_compute_event_displace.html command. Other
event-checking computes may be added. "Compute
event/displace"_compute_event_displace.html checks whether any atom in
the compute group has moved further than a specified threshold
distance. If so, an event has occurred.
If this happens, the list of bonds is reset, since some bond pairs
are likely now too far apart, and new pairs are likely close enough
to be considered a bond. The pre-quenched state of the
system (coordinates and velocities) is restored, and dynamics continue.
At the end of the hyper run, a variety of statistics are output to the
screen and logfile. These include info relevant to both global and
local hyperdynamics, such as the number of events and the elapsed
hyper time (acclerated time), And it includes info specific to one or
the other, depending on which style of fix was specified by {fix-ID}.
:line
The optional keywords operate as follows.
As explained above, the {min} keyword can be used to specify
parameters for the quench. Their meaning is the same
as for the "minimize"_minimize.html command
The {dump} keyword can be used to trigger a specific dump command with
the specified {dump-ID} to output a snapshot each time an event is
detected. It can be specified multiple times with different {dump-ID}
values, as in the example above. These snapshots will be for the
quenched state of the system on a timestep that is a multiple of
{Nevent}, i.e. a timestep after the event has occurred. Note that any
dump command in the input script will also output snapshots at
whatever timestep interval it defines via its {N} argument; see the
"dump"_dump.html command for details. This means if you only want a
particular dump to output snapshots when events are detected, you
should specify its {N} as a value larger than the length of the
hyperdynamics run.
As in the code logic above, the bond list is normally only reset when
an event occurs. The {rebond} keyword will force a reset of the bond
list every {Nrebond} steps, even if an event has not occurred.
{Nrebond} must be a multiple of {Nevent}. This can be useful to check
if more frequent resets alter event statistics, perhaps because the
parameters chosen for defining what is a bond and what is an event are
producing bad dynamics in the presence of the bias potential.
:line
[Restrictions:]
This command can only be used if LAMMPS was built with the REPLICA
package. See the "Build package"_Build_package.html doc
page for more info.
[Related commands:]
"fix hyper/global"_fix_hyper_global.html, "fix
hyper/local"_fix_hyper_local.html, "compute
event/displace"_compute_event_displace.html, "prd"_prd.html
[Default:]
The option defaults are min = 0.1 0.1 40 50 and time = steps.
:line
:link(Voter2013)
[(Voter2013)] S. Y. Kim, D. Perez, A. F. Voter, J Chem Phys, 139,
144110 (2013).
:link(Voter2002hd)
[(Voter2002)] Voter, Montalenti, Germann, Annual Review of Materials
Research 32, 321 (2002).

View File

@ -64,14 +64,19 @@ which are included in the LAMMPS distribution. The full list of all
improper styles is on the "Commands bond"_Commands_bond.html#improper
doc page.
"improper_style none"_improper_none.html - turn off improper interactions
"improper_style zero"_improper_zero.html - topology but no interactions
"improper_style hybrid"_improper_hybrid.html - define multiple styles of improper interactions :ul
"none"_improper_none.html - turn off improper interactions
"zero"_improper_zero.html - topology but no interactions
"hybrid"_improper_hybrid.html - define multiple styles of improper interactions :ul
"improper_style class2"_improper_class2.html - COMPASS (class 2) improper
"improper_style cvff"_improper_cvff.html - CVFF improper
"improper_style harmonic"_improper_harmonic.html - harmonic improper
"improper_style umbrella"_improper_umbrella.html - DREIDING improper :ul
"class2"_improper_class2.html - COMPASS (class 2) improper
"cossq"_improper_cossq.html - improper with a cosine squared term
"cvff"_improper_cvff.html - CVFF improper
"distance"_improper_distance.html - improper based on distance between atom planes
"fourier"_improper_fourier.html - improper with multiple cosine terms
"harmonic"_improper_harmonic.html - harmonic improper
"inversion/harmonic"_improper_inversion_harmonic.html - harmonic improper with Wilson-Decius out-of-plane definition
"ring"_improper_ring.html - improper which prevents planar conformations
"umbrella"_improper_umbrella.html - DREIDING improper :ul
:line

View File

@ -160,6 +160,7 @@ dump_cfg_uef.html
echo.html
group.html
group2ndx.html
hyper.html
if.html
include.html
info.html
@ -277,6 +278,8 @@ fix_gravity.html
fix_grem.html
fix_halt.html
fix_heat.html
fix_hyper_global.html
fix_hyper_local.html
fix_imd.html
fix_indent.html
fix_ipi.html
@ -293,6 +296,7 @@ fix_lb_viscous.html
fix_lineforce.html
fix_manifoldforce.html
fix_meso.html
fix_meso_move.html
fix_meso_stationary.html
fix_momentum.html
fix_move.html
@ -337,6 +341,7 @@ fix_orient.html
fix_phonon.html
fix_pimd.html
fix_planeforce.html
fix_plumed.html
fix_poems.html
fix_pour.html
fix_precession_spin.html
@ -356,6 +361,7 @@ fix_reaxc_species.html
fix_recenter.html
fix_restrain.html
fix_rigid.html
fix_rigid_meso.html
fix_rhok.html
fix_rx.html
fix_saed_vtk.html
@ -404,6 +410,7 @@ lammps_commands_compute.html
compute.html
compute_modify.html
compute_ackland_atom.html
compute_adf.html
compute_angle.html
compute_angle_local.html
compute_angmom_chunk.html
@ -614,6 +621,7 @@ pair_reax.html
pair_reaxc.html
pair_resquared.html
pair_sdk.html
pair_sdpd_taitwater_isothermal.html
pair_smd_hertz.html
pair_smd_tlsph.html
pair_smd_triangulated_surface.html

View File

@ -137,8 +137,8 @@ If LAMMPS is the server code, it will begin receiving messages when
the "server"_server.html command is invoked.
A fix client command will terminate its messaging with the server when
LAMMPS ends, or the fix is deleted via the "unfix"_unfix command. The
server command will terminate its messaging with the client when the
LAMMPS ends, or the fix is deleted via the "unfix"_unfix.html command.
The server command will terminate its messaging with the client when the
client signals it. Then the remainder of the LAMMPS input script will
be processed.

View File

@ -24,21 +24,21 @@ pair_style born/coul/dsf command :h3
pair_style style args :pre
style = {born} or {born/coul/long} or {born/coul/long/cs} or {born/coul/msm} or {born/coul/wolf}
style = {born} or {born/coul/long} or {born/coul/msm} or {born/coul/wolf}
args = list of arguments for a particular style :ul
{born} args = cutoff
cutoff = global cutoff for non-Coulombic interactions (distance units)
{born/coul/long} or {born/coul/long/cs} args = cutoff (cutoff2)
{born/coul/long} args = cutoff (cutoff2)
cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units)
{born/coul/msm} args = cutoff (cutoff2)
cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units)
{born/coul/wolf} or {born/coul/wolf/cs} args = alpha cutoff (cutoff2)
{born/coul/wolf} args = alpha cutoff (cutoff2)
alpha = damping parameter (inverse distance units)
cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units)
{born/coul/dsf} or {born/coul/dsf/cs} args = alpha cutoff (cutoff2)
{born/coul/dsf} args = alpha cutoff (cutoff2)
alpha = damping parameter (inverse distance units)
cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (distance units) :pre

View File

@ -19,8 +19,6 @@ pair_style coul/dsf/gpu command :h3
pair_style coul/dsf/kk command :h3
pair_style coul/dsf/omp command :h3
pair_style coul/long command :h3
pair_style coul/long/cs command :h3
pair_style coul/long/cs/gpu command :h3
pair_style coul/long/omp command :h3
pair_style coul/long/gpu command :h3
pair_style coul/long/kk command :h3
@ -30,7 +28,6 @@ pair_style coul/streitz command :h3
pair_style coul/wolf command :h3
pair_style coul/wolf/kk command :h3
pair_style coul/wolf/omp command :h3
pair_style coul/wolf/cs command :h3
pair_style tip4p/cut command :h3
pair_style tip4p/long command :h3
pair_style tip4p/cut/omp command :h3
@ -42,10 +39,8 @@ pair_style coul/cut cutoff
pair_style coul/debye kappa cutoff
pair_style coul/dsf alpha cutoff
pair_style coul/long cutoff
pair_style coul/long/cs cutoff
pair_style coul/long/gpu cutoff
pair_style coul/wolf alpha cutoff
pair_style coul/wolf/cs alpha cutoff
pair_style coul/streitz cutoff keyword alpha
pair_style tip4p/cut otype htype btype atype qdist cutoff
pair_style tip4p/long otype htype btype atype qdist cutoff :pre
@ -68,14 +63,12 @@ pair_style coul/dsf 0.05 10.0
pair_coeff * * :pre
pair_style coul/long 10.0
pair_style coul/long/cs 10.0
pair_coeff * * :pre
pair_style coul/msm 10.0
pair_coeff * * :pre
pair_style coul/wolf 0.2 9.0
pair_style coul/wolf/cs 0.2 9.0
pair_coeff * * :pre
pair_style coul/streitz 12.0 ewald
@ -204,12 +197,6 @@ option. The Coulombic cutoff specified for this style means that
pairwise interactions within this distance are computed directly;
interactions outside that distance are computed in reciprocal space.
Style {coul/long/cs} is identical to {coul/long} except that a term is
added for the "core/shell model"_Howto_coreshell.html to allow charges
on core and shell particles to be separated by r = 0.0. The same
correction is introduced for the {coul/wolf/cs} style which is
identical to {coul/wolf}.
Styles {tip4p/cut} and {tip4p/long} implement the coulomb part of
the TIP4P water model of "(Jorgensen)"_#Jorgensen3, which introduces
a massless site located a short distance away from the oxygen atom
@ -317,9 +304,9 @@ This pair style can only be used via the {pair} keyword of the
[Restrictions:]
The {coul/long}, {coul/msm} and {tip4p/long} styles are part of the
KSPACE package. The {coul/long/cs} style is part of the CORESHELL
package. They are only enabled if LAMMPS was built with that package.
See the "Build package"_Build_package.html doc page for more info.
KSPACE package. They are only enabled if LAMMPS was built with that
package. See the "Build package"_Build_package.html doc page for more
info.
[Related commands:]

View File

@ -6,51 +6,74 @@
:line
pair_style born/coul/dsf/cs command :h3
pair_style born/coul/long/cs command :h3
pair_style born/coul/long/cs/gpu command :h3
pair_style buck/coul/long/cs command :h3
pair_style born/coul/dsf/cs command :h3
pair_style born/coul/wolf/cs command :h3
pair_style born/coul/wolf/cs/gpu command :h3
pair_style buck/coul/long/cs command :h3
pair_style coul/long/cs command :h3
pair_style coul/long/cs/gpu command :h3
pair_style coul/wolf/cs command :h3
pair_style lj/cut/coul/long/cs command :h3
[Syntax:]
pair_style style args :pre
style = {born/coul/long/cs} or {buck/coul/long/cs} or {born/coul/dsf/cs} or {born/coul/wolf/cs}
style = {born/coul/dsf/cs} or {born/coul/long/cs} or {born/coul/wolf/cs} or {buck/coul/long/cs} or {coul/long/cs} or {coul/wolf/cs} or {lj/cut/coul/long/cs}
args = list of arguments for a particular style :ul
{born/coul/long/cs} args = cutoff (cutoff2)
cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units)
{buck/coul/long/cs} args = cutoff (cutoff2)
cutoff = global cutoff for Buckingham (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units)
{born/coul/dsf/cs} args = alpha cutoff (cutoff2)
alpha = damping parameter (inverse distance units)
cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (distance units) :pre
cutoff2 = global cutoff for Coulombic (distance units)
{born/coul/long/cs} args = cutoff (cutoff2)
cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units)
{born/coul/wolf/cs} args = alpha cutoff (cutoff2)
alpha = damping parameter (inverse distance units)
cutoff = global cutoff for Buckingham (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units)
{buck/coul/long/cs} args = cutoff (cutoff2)
cutoff = global cutoff for Buckingham (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units)
{coul/long} args = cutoff
cutoff = global cutoff for Coulombic (distance units)
{coul/wolf} args = alpha cutoff
alpha = damping parameter (inverse distance units)
cutoff = global cutoff for Coulombic (distance units)
{lj/cut/coul/long/cs} args = cutoff (cutoff2)
cutoff = global cutoff for LJ (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units) :pre
[Examples:]
pair_style born/coul/dsf/cs 0.1 10.0 12.0
pair_coeff * * 0.0 1.00 0.00 0.00 0.00
pair_coeff 1 1 480.0 0.25 0.00 1.05 0.50 :pre
pair_style born/coul/long/cs 10.0 8.0
pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51 :pre
pair_style born/coul/wolf/cs 0.25 10.0 12.0
pair_coeff * * 0.0 1.00 0.00 0.00 0.00
pair_coeff 1 1 480.0 0.25 0.00 1.05 0.50 :pre
pair_style buck/coul/long/cs 10.0
pair_style buck/coul/long/cs 10.0 8.0
pair_coeff * * 100.0 1.5 200.0
pair_coeff 1 1 100.0 1.5 200.0 9.0 :pre
pair_style born/coul/dsf/cs 0.1 10.0 12.0
pair_coeff * * 0.0 1.00 0.00 0.00 0.00
pair_coeff 1 1 480.0 0.25 0.00 1.05 0.50 :pre
pair_style coul/long/cs 10.0
pair_coeff * * :pre
pair_style born/coul/wolf/cs 0.25 10.0 12.0
pair_coeff * * 0.0 1.00 0.00 0.00 0.00
pair_coeff 1 1 480.0 0.25 0.00 1.05 0.50 :pre
pair_style coul/wolf/cs 0.2 9.0
pair_coeff * * :pre
pair_style lj/cut/coul/long/cs 10.0
pair_style lj/cut/coul/long/cs 10.0 8.0
pair_coeff * * 100.0 3.0
pair_coeff 1 1 100.0 3.5 9.0 :pre
[Description:]
@ -59,16 +82,28 @@ core/shell model of "(Mitchell and Finchham)"_#MitchellFinchham2. See
the "Howto coreshell"_Howto_coreshell.html doc page for an overview of
the model as implemented in LAMMPS.
The styles with a {coul/long} term are identical to the "pair_style
born/coul/long"_pair_born.html and "pair_style
buck/coul/long"_pair_buck.html styles, except they correctly treat the
special case where the distance between two charged core and shell
atoms in the same core/shell pair approach r = 0.0. This needs
special treatment when a long-range solver for Coulombic interactions
is also used, i.e. via the "kspace_style"_kspace_style.html command.
All the styles are identical to the corresponding pair style without
the "/cs" in the name:
More specifically, the short-range Coulomb interaction between a core
and its shell should be turned off using the
"pair_style born/coul/dsf"_pair_born.html
"pair_style born/coul/long"_pair_born.html
"pair_style born/coul/wolf"_pair_born.html
"pair_style buck/coul/long"_pair_buck.html
"pair_style coul/long"_pair_coul.html
"pair_style coul/wolf"_pair_coul.html
"pair_style lj/cut/coul/long"_pair_lj.html :ul
except that they correctly treat the special case where the distance
between two charged core and shell atoms in the same core/shell pair
approach r = 0.0.
Styles with a "/long" in the name are used with a long-range solver
for Coulombic interactions via the "kspace_style"_kspace_style.html
command. They require special treatment of the short-range Coulombic
interactions within the cor/shell model.
Specifically, the short-range Coulomb interaction between a core and
its shell should be turned off using the
"special_bonds"_special_bonds.html command by setting the 1-2 weight
to 0.0, which works because the core and shell atoms are bonded to
each other. This induces a long-range correction approximation which
@ -83,21 +118,10 @@ where C is an energy-conversion constant, Qi and Qj are the charges on
the core and shell, epsilon is the dielectric constant and r_min is the
minimal distance.
The pair style {born/coul/dsf/cs} is identical to the
"pair_style born/coul/dsf"_pair_born.html style, which uses
the damped shifted force model as in "coul/dsf"_pair_coul.html
to compute the Coulomb contribution. This approach does not require
a long-range solver, thus the only correction is the addition of a
minimal distance to avoid the possible r = 0.0 case for a
core/shell pair.
The pair style {born/coul/wolf/cs} is identical to the
"pair_style born/coul/wolf"_pair_born.html style, which uses
the Wolf summation as in "coul/wolf"_pair_coul.html to compute
the Coulomb contribution. This approach does not require
a long-range solver, thus the only correction is the addition of a
minimal distance to avoid the possible r = 0.0 case for a
core/shell pair.
For styles that are not used with a long-range solver, i.e. those with
"/dsf" or "/wolf" in the name, the only correction is the addition of
a minimal distance to avoid the possible r = 0.0 case for a core/shell
pair.
:line

View File

@ -10,6 +10,7 @@ pair_style gran/hooke command :h3
pair_style gran/hooke/omp command :h3
pair_style gran/hooke/history command :h3
pair_style gran/hooke/history/omp command :h3
pair_style gran/hooke/history/kk command :h3
pair_style gran/hertz/history command :h3
pair_style gran/hertz/history/omp command :h3

View File

@ -25,7 +25,6 @@ pair_style lj/cut/coul/dsf/gpu command :h3
pair_style lj/cut/coul/dsf/kk command :h3
pair_style lj/cut/coul/dsf/omp command :h3
pair_style lj/cut/coul/long command :h3
pair_style lj/cut/coul/long/cs command :h3
pair_style lj/cut/coul/long/gpu command :h3
pair_style lj/cut/coul/long/kk command :h3
pair_style lj/cut/coul/long/intel command :h3
@ -46,7 +45,7 @@ pair_style lj/cut/tip4p/long/opt command :h3
pair_style style args :pre
style = {lj/cut} or {lj/cut/coul/cut} or {lj/cut/coul/debye} or {lj/cut/coul/dsf} or {lj/cut/coul/long} or {lj/cut/coul/long/cs} or {lj/cut/coul/msm} or {lj/cut/tip4p/long}
style = {lj/cut} or {lj/cut/coul/cut} or {lj/cut/coul/debye} or {lj/cut/coul/dsf} or {lj/cut/coul/long} {lj/cut/coul/msm} or {lj/cut/tip4p/long}
args = list of arguments for a particular style :ul
{lj/cut} args = cutoff
cutoff = global cutoff for Lennard Jones interactions (distance units)
@ -107,9 +106,7 @@ pair_coeff * * 1.0 1.0
pair_coeff 1 1 1.0 1.0 2.5 :pre
pair_style lj/cut/coul/long 10.0
pair_style lj/cut/coul/long/cs 10.0
pair_style lj/cut/coul/long 10.0 8.0
pair_style lj/cut/coul/long/cs 10.0 8.0
pair_coeff * * 100.0 3.0
pair_coeff 1 1 100.0 3.5 9.0 :pre
@ -186,11 +183,6 @@ specified for this style means that pairwise interactions within this
distance are computed directly; interactions outside that distance are
computed in reciprocal space.
Style {lj/cut/coul/long/cs} is identical to {lj/cut/coul/long} except
that a term is added for the "core/shell model"_Howto_coreshell.html
to allow charges on core and shell particles to be separated by r =
0.0.
Style {coul/wolf} adds a Coulombic pairwise interaction via the Wolf
summation method, described in "Wolf"_#Wolf1, given by:

View File

@ -0,0 +1,108 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Commands_all.html)
:line
pair_style sdpd/taitwater/isothermal command :h3
[Syntax:]
pair_style sdpd/taitwater/isothermal temperature viscosity seed
:pre
temperature = temperature of the fluid (temperature units)
viscosity = dynamic viscosity of the fluid (mass*distance/time units)
seed = random number generator seed (positive integer, optional) :ul
[Examples:]
pair_style sdpd/taitwater/isothermal 300. 1. 28681
pair_coeff * * 1000.0 1430.0 2.4 :pre
[Description:]
The sdpd/taitwater/isothermal style computes forces between mesoscopic
particles according to the Smoothed Dissipative Particle Dynamics model
described in this paper by "(Espanol and Revenga)"_#Espanol_Revenga under
the following assumptions:
:olb
The temperature is constant and uniform. :l
The shear viscosity is constant and uniform. :l
The volume viscosity is negligible before the shear viscosity. :l
The Boltzmann constant is negligible before the heat capacity of a
single mesoscopic particle of fluid. :ole,l
The third assumption is true for water in nearly incompressible flows.
The fourth holds true for water for any reasonable size one can
imagine for a mesoscopic particle.
The pressure forces between particles will be computed according to
Tait's equation of state:
:c,image(Eqs/pair_sph_tait.jpg)
where gamma = 7 and B = c_0^2 rho_0 / gamma, with rho_0 being the
reference density and c_0 the reference speed of sound.
The laminar viscosity and the random forces will be computed according
to formulas described in "(Espanol and Revenga)"_#Espanol_Revenga.
IMPORTANT NOTE: Similar to "brownian"_pair_brownian.html and
"dpd"_pair_dpd.html styles, the "newton"_newton.html setting for
pairwise interactions needs to be on when running LAMMPS in parallel
if you want to ensure linear momentum conservation. Otherwise random
forces generated for pairs straddling processor boundary will not be
equal and opposite.
NOTE: The actual random seed used will be a mix of what you specify
and other parameters like the MPI ranks. This is to ensure that
different MPI tasks have distinct seeds.
The following coefficients must be defined for each pair of atoms
types via the "pair_coeff"_pair_coeff.html command as in the examples
above.
rho0 reference density (mass/volume units)
c0 reference soundspeed (distance/time units)
h kernel function cutoff (distance units) :ul
:line
[Mixing, shift, table, tail correction, restart, rRESPA info]:
This style does not support mixing. Thus, coefficients for all
I,J pairs must be specified explicitly.
This style does not support the "pair_modify"_pair_modify.html
shift, table, and tail options.
This style does not write information to "binary restart
files"_restart.html. Thus, you need to re-specify the pair_style and
pair_coeff commands in an input script that reads a restart file.
This style can only be used via the {pair} keyword of the "run_style
respa"_run_style.html command. It does not support the {inner},
{middle}, {outer} keywords.
[Restrictions:]
This pair style is part of the USER-SDPD package. It is only enabled
if LAMMPS was built with that package. See the "Build
package"_Build_package.html doc page for more info.
[Related commands:]
"pair coeff"_pair_coeff.html, "pair sph/rhosum"_pair_sph_rhosum.html
[Default:]
The default seed is 0 (before mixing).
:line
:link(Espanol_Revenga)
[(Espanol and Revenga)] Espanol, Revenga, Physical Review E, 67, 026705 (2003).

View File

@ -95,120 +95,218 @@ GPUs, and KNLs. The individual style names on the "Commands
pair"_Commands_pair.html doc page are followed by one or more of
(g,i,k,o,t) to indicate which accelerated styles exist.
"pair_style none"_pair_none.html - turn off pairwise interactions
"pair_style hybrid"_pair_hybrid.html - multiple styles of pairwise interactions
"pair_style hybrid/overlay"_pair_hybrid.html - multiple styles of superposed pairwise interactions
"pair_style zero"_pair_zero.html - neighbor list but no interactions :ul
"none"_pair_none.html - turn off pairwise interactions
"hybrid"_pair_hybrid.html - multiple styles of pairwise interactions
"hybrid/overlay"_pair_hybrid.html - multiple styles of superposed pairwise interactions
"zero"_pair_zero.html - neighbor list but no interactions :ul
"pair_style adp"_pair_adp.html - angular dependent potential (ADP) of Mishin
"pair_style airebo"_pair_airebo.html - AIREBO potential of Stuart
"pair_style airebo/morse"_pair_airebo.html - AIREBO with Morse instead of LJ
"pair_style atm"_pair_atm.html - Axilrod-Teller-Muto potential
"pair_style beck"_pair_beck.html - Beck potential
"pair_style body/nparticle"_pair_body_nparticle.html - interactions between body particles
"pair_style bop"_pair_bop.html - BOP potential of Pettifor
"pair_style born"_pair_born.html - Born-Mayer-Huggins potential
"pair_style born/coul/long"_pair_born.html - Born-Mayer-Huggins with long-range Coulombics
"pair_style born/coul/long/cs"_pair_born.html - Born-Mayer-Huggins with long-range Coulombics and core/shell
"pair_style born/coul/msm"_pair_born.html - Born-Mayer-Huggins with long-range MSM Coulombics
"pair_style born/coul/wolf"_pair_born.html - Born-Mayer-Huggins with Coulombics via Wolf potential
"pair_style brownian"_pair_brownian.html - Brownian potential for Fast Lubrication Dynamics
"pair_style brownian/poly"_pair_brownian.html - Brownian potential for Fast Lubrication Dynamics with polydispersity
"pair_style buck"_pair_buck.html - Buckingham potential
"pair_style buck/coul/cut"_pair_buck.html - Buckingham with cutoff Coulomb
"pair_style buck/coul/long"_pair_buck.html - Buckingham with long-range Coulombics
"pair_style buck/coul/long/cs"_pair_buck.html - Buckingham with long-range Coulombics and core/shell
"pair_style buck/coul/msm"_pair_buck.html - Buckingham long-range MSM Coulombics
"pair_style buck/long/coul/long"_pair_buck_long.html - long-range Buckingham with long-range Coulombics
"pair_style colloid"_pair_colloid.html - integrated colloidal potential
"pair_style comb"_pair_comb.html - charge-optimized many-body (COMB) potential
"pair_style comb3"_pair_comb.html - charge-optimized many-body (COMB3) potential
"pair_style coul/cut"_pair_coul.html - cutoff Coulombic potential
"pair_style coul/debye"_pair_coul.html - cutoff Coulombic potential with Debye screening
"pair_style coul/dsf"_pair_coul.html - Coulombics via damped shifted forces
"pair_style coul/long"_pair_coul.html - long-range Coulombic potential
"pair_style coul/long/cs"_pair_coul.html - long-range Coulombic potential and core/shell
"pair_style coul/msm"_pair_coul.html - long-range MSM Coulombics
"pair_style coul/streitz"_pair_coul.html - Coulombics via Streitz/Mintmire Slater orbitals
"pair_style coul/wolf"_pair_coul.html - Coulombics via Wolf potential
"pair_style dpd"_pair_dpd.html - dissipative particle dynamics (DPD)
"pair_style dpd/tstat"_pair_dpd.html - DPD thermostatting
"pair_style dsmc"_pair_dsmc.html - Direct Simulation Monte Carlo (DSMC)
"pair_style eam"_pair_eam.html - embedded atom method (EAM)
"pair_style eam/alloy"_pair_eam.html - alloy EAM
"pair_style eam/fs"_pair_eam.html - Finnis-Sinclair EAM
"pair_style eim"_pair_eim.html - embedded ion method (EIM)
"pair_style gauss"_pair_gauss.html - Gaussian potential
"pair_style gayberne"_pair_gayberne.html - Gay-Berne ellipsoidal potential
"pair_style gran/hertz/history"_pair_gran.html - granular potential with Hertzian interactions
"pair_style gran/hooke"_pair_gran.html - granular potential with history effects
"pair_style gran/hooke/history"_pair_gran.html - granular potential without history effects
"pair_style hbond/dreiding/lj"_pair_hbond_dreiding.html - DREIDING hydrogen bonding LJ potential
"pair_style hbond/dreiding/morse"_pair_hbond_dreiding.html - DREIDING hydrogen bonding Morse potential
"pair_style kim"_pair_kim.html - interface to potentials provided by KIM project
"pair_style lcbop"_pair_lcbop.html - long-range bond-order potential (LCBOP)
"pair_style line/lj"_pair_line_lj.html - LJ potential between line segments
"pair_style lj/charmm/coul/charmm"_pair_charmm.html - CHARMM potential with cutoff Coulomb
"pair_style lj/charmm/coul/charmm/implicit"_pair_charmm.html - CHARMM for implicit solvent
"pair_style lj/charmm/coul/long"_pair_charmm.html - CHARMM with long-range Coulomb
"pair_style lj/charmm/coul/msm"_pair_charmm.html - CHARMM with long-range MSM Coulombics
"pair_style lj/class2"_pair_class2.html - COMPASS (class 2) force field with no Coulomb
"pair_style lj/class2/coul/cut"_pair_class2.html - COMPASS with cutoff Coulomb
"pair_style lj/class2/coul/long"_pair_class2.html - COMPASS with long-range Coulomb
"pair_style lj/cubic"_pair_lj_cubic.html - LJ with cubic after inflection point
"pair_style lj/cut"_pair_lj.html - cutoff Lennard-Jones potential with no Coulomb
"pair_style lj/cut/coul/cut"_pair_lj.html - LJ with cutoff Coulomb
"pair_style lj/cut/coul/debye"_pair_lj.html - LJ with Debye screening added to Coulomb
"pair_style lj/cut/coul/dsf"_pair_lj.html - LJ with Coulombics via damped shifted forces
"pair_style lj/cut/coul/long"_pair_lj.html - LJ with long-range Coulombics
"pair_style lj/cut/coul/long/cs"_pair_lj.html - LJ with long-range Coulombics and core/shell
"pair_style lj/cut/coul/msm"_pair_lj.html - LJ with long-range MSM Coulombics
"pair_style lj/cut/dipole/cut"_pair_dipole.html - point dipoles with cutoff
"pair_style lj/cut/dipole/long"_pair_dipole.html - point dipoles with long-range Ewald
"pair_style lj/cut/tip4p/cut"_pair_lj.html - LJ with cutoff Coulomb for TIP4P water
"pair_style lj/cut/tip4p/long"_pair_lj.html - LJ with long-range Coulomb for TIP4P water
"pair_style lj/expand"_pair_lj_expand.html - Lennard-Jones for variable size particles
"pair_style lj/gromacs"_pair_gromacs.html - GROMACS-style Lennard-Jones potential
"pair_style lj/gromacs/coul/gromacs"_pair_gromacs.html - GROMACS-style LJ and Coulombic potential
"pair_style lj/long/coul/long"_pair_lj_long.html - long-range LJ and long-range Coulombics
"pair_style lj/long/dipole/long"_pair_dipole.html - long-range LJ and long-range point dipoles
"pair_style lj/long/tip4p/long"_pair_lj_long.html - long-range LJ and long-range Coulomb for TIP4P water
"pair_style lj/smooth"_pair_lj_smooth.html - smoothed Lennard-Jones potential
"pair_style lj/smooth/linear"_pair_lj_smooth_linear.html - linear smoothed Lennard-Jones potential
"pair_style lj96/cut"_pair_lj96.html - Lennard-Jones 9/6 potential
"pair_style lubricate"_pair_lubricate.html - hydrodynamic lubrication forces
"pair_style lubricate/poly"_pair_lubricate.html - hydrodynamic lubrication forces with polydispersity
"pair_style lubricateU"_pair_lubricateU.html - hydrodynamic lubrication forces for Fast Lubrication Dynamics
"pair_style lubricateU/poly"_pair_lubricateU.html - hydrodynamic lubrication forces for Fast Lubrication with polydispersity
"pair_style meam"_pair_meam.html - modified embedded atom method (MEAM)
"pair_style mie/cut"_pair_mie.html - Mie potential
"pair_style morse"_pair_morse.html - Morse potential
"pair_style nb3b/harmonic"_pair_nb3b_harmonic.html - nonbonded 3-body harmonic potential
"pair_style nm/cut"_pair_nm.html - N-M potential
"pair_style nm/cut/coul/cut"_pair_nm.html - N-M potential with cutoff Coulomb
"pair_style nm/cut/coul/long"_pair_nm.html - N-M potential with long-range Coulombics
"pair_style peri/eps"_pair_peri.html - peridynamic EPS potential
"pair_style peri/lps"_pair_peri.html - peridynamic LPS potential
"pair_style peri/pmb"_pair_peri.html - peridynamic PMB potential
"pair_style peri/ves"_pair_peri.html - peridynamic VES potential
"pair_style polymorphic"_pair_polymorphic.html - polymorphic 3-body potential
"pair_style reax"_pair_reax.html - ReaxFF potential
"pair_style rebo"_pair_airebo.html - 2nd generation REBO potential of Brenner
"pair_style resquared"_pair_resquared.html - Everaers RE-Squared ellipsoidal potential
"pair_style snap"_pair_snap.html - SNAP quantum-accurate potential
"pair_style soft"_pair_soft.html - Soft (cosine) potential
"pair_style sw"_pair_sw.html - Stillinger-Weber 3-body potential
"pair_style table"_pair_table.html - tabulated pair potential
"pair_style tersoff"_pair_tersoff.html - Tersoff 3-body potential
"pair_style tersoff/mod"_pair_tersoff_mod.html - modified Tersoff 3-body potential
"pair_style tersoff/zbl"_pair_tersoff_zbl.html - Tersoff/ZBL 3-body potential
"pair_style tip4p/cut"_pair_coul.html - Coulomb for TIP4P water w/out LJ
"pair_style tip4p/long"_pair_coul.html - long-range Coulombics for TIP4P water w/out LJ
"pair_style tri/lj"_pair_tri_lj.html - LJ potential between triangles
"pair_style vashishta"_pair_vashishta.html - Vashishta 2-body and 3-body potential
"pair_style yukawa"_pair_yukawa.html - Yukawa potential
"pair_style yukawa/colloid"_pair_yukawa_colloid.html - screened Yukawa potential for finite-size particles
"pair_style zbl"_pair_zbl.html - Ziegler-Biersack-Littmark potential :ul
"adp"_pair_adp.html - angular dependent potential (ADP) of Mishin
"agni"_pair_agni.html - machine learned potential mapping atomic environment to forces
"airebo"_pair_airebo.html - AIREBO potential of Stuart
"airebo/morse"_pair_airebo.html - AIREBO with Morse instead of LJ
"atm"_pair_atm.html - Axilrod-Teller-Muto potential
"awpmd/cut"_pair_awpmd.html - Antisymmetrized Wave Packet MD potential for atoms and electrons
"beck"_pair_beck.html - Beck potential
"body/nparticle"_pair_body_nparticle.html - interactions between body particles
"body/rounded/polygon"_pair_body_rounded_polygon.html - granular-style 2d polygon potential
"body/rounded/polyhedron"_pair_body_rounded_polyhedron.html - granular-style 3d polyhedron potential
"bop"_pair_bop.html - BOP potential of Pettifor
"born"_pair_born.html - Born-Mayer-Huggins potential
"born/coul/dsf"_pair_born.html - Born with damped-shifted-force model
"born/coul/dsf/cs"_pair_cs.html - Born with damped-shifted-force and core/shell model
"born/coul/long"_pair_born.html - Born with long-range Coulombics
"born/coul/long/cs"_pair_cs.html - Born with long-range Coulombics and core/shell
"born/coul/msm"_pair_born.html - Born with long-range MSM Coulombics
"born/coul/wolf"_pair_born.html - Born with Wolf potential for Coulombics
"born/coul/wolf/cs"_pair_cs.html - Born with Wolf potential for Coulombics and core/shell model
"brownian"_pair_brownian.html - Brownian potential for Fast Lubrication Dynamics
"brownian/poly"_pair_brownian.html - Brownian potential for Fast Lubrication Dynamics with polydispersity
"buck"_pair_buck.html - Buckingham potential
"buck/coul/cut"_pair_buck.html - Buckingham with cutoff Coulomb
"buck/coul/long"_pair_buck.html - Buckingham with long-range Coulombics
"buck/coul/long/cs"_pair_cs.html - Buckingham with long-range Coulombics and core/shell
"buck/coul/msm"_pair_buck.html - Buckingham with long-range MSM Coulombics
"buck/long/coul/long"_pair_buck_long.html - long-range Buckingham with long-range Coulombics
"buck/mdf"_pair_mdf.html - Buckingham with a taper function
"buck6d/coul/gauss/dsf"_pair_buck6d_coul_gauss.html - dispersion-damped Buckingham with damped-shift-force model
"buck6d/coul/gauss/long"_pair_buck6d_coul_gauss.html - dispersion-damped Buckingham with long-range Coulombics
"colloid"_pair_colloid.html - integrated colloidal potential
"comb"_pair_comb.html - charge-optimized many-body (COMB) potential
"comb3"_pair_comb.html - charge-optimized many-body (COMB3) potential
"coul/cut"_pair_coul.html - cutoff Coulombic potential
"coul/cut/soft"_pair_lj_soft.html - Coulombic potential with a soft core
"coul/debye"_pair_coul.html - cutoff Coulombic potential with Debye screening
"coul/diel"_pair_coul_diel.html - Coulomb potential with dielectric permittivity
"coul/dsf"_pair_coul.html - Coulombics with damped-shifted-force model
"coul/long"_pair_coul.html - long-range Coulombic potential
"coul/long/cs"_pair_cs.html - long-range Coulombic potential and core/shell
"coul/long/soft"_pair_lj_soft.html - long-range Coulombic potential with a soft core
"coul/msm"_pair_coul.html - long-range MSM Coulombics
"coul/shield"_pair_coul_shield.html - Coulombics for boron nitride for use with "ilp/graphene/hbn"_pair_ilp_graphene_hbn.html potential
"coul/streitz"_pair_coul.html - Coulombics via Streitz/Mintmire Slater orbitals
"coul/wolf"_pair_coul.html - Coulombics via Wolf potential
"coul/wolf/cs"_pair_cs.html - ditto with core/shell adjustments
"dpd"_pair_dpd.html - dissipative particle dynamics (DPD)
"dpd/fdt"_pair_dpd_fdt.html - DPD for constant temperature and pressure
"dpd/fdt/energy"_pair_dpd_fdt.html - DPD for constant energy and enthalpy
"dpd/tstat"_pair_dpd.html - pair-wise DPD thermostatting
"dsmc"_pair_dsmc.html - Direct Simulation Monte Carlo (DSMC)
"eam"_pair_eam.html - embedded atom method (EAM)
"eam/alloy"_pair_eam.html - alloy EAM
"eam/cd"_pair_eam.html - concentration-dependent EAM
"eam/cd/old"_pair_eam.html - older two-site model for concentration-dependent EAM
"eam/fs"_pair_eam.html - Finnis-Sinclair EAM
"edip"_pair_edip.html - three-body EDIP potential
"edip/multi"_pair_edip.html - multi-element EDIP potential
"edpd"_pair_meso.html - eDPD particle interactions
"eff/cut"_pair_eff.html - electron force field with a cutoff
"eim"_pair_eim.html - embedded ion method (EIM)
"exp6/rx"_pair_exp6_rx.html - reactive DPD potential
"extep"_pair_extep.html - extended Tersoff potential
"gauss"_pair_gauss.html - Gaussian potential
"gauss/cut"_pair_gauss.html - generalized Gaussian potential
"gayberne"_pair_gayberne.html - Gay-Berne ellipsoidal potential
"gran/hertz/history"_pair_gran.html - granular potential with Hertzian interactions
"gran/hooke"_pair_gran.html - granular potential with history effects
"gran/hooke/history"_pair_gran.html - granular potential without history effects
"gw"_pair_gw.html - Gao-Weber potential
"gw/zbl"_pair_gw.html - Gao-Weber potential with a repulsive ZBL core
"hbond/dreiding/lj"_pair_hbond_dreiding.html - DREIDING hydrogen bonding LJ potential
"hbond/dreiding/morse"_pair_hbond_dreiding.html - DREIDING hydrogen bonding Morse potential
"ilp/graphene/hbn"_pair_ilp_graphene_hbn.html - registry-dependent interlayer potential (ILP)
"kim"_pair_kim.html - interface to potentials provided by KIM project
"kolmogorov/crespi/full"_pair_kolmogorov_crespi_full.html - Kolmogorov-Crespi (KC) potential with no simplifications
"kolmogorov/crespi/z"_pair_kolmogorov_crespi_z.html - Kolmogorov-Crespi (KC) potential with normals along z-axis
"lcbop"_pair_lcbop.html - long-range bond-order potential (LCBOP)
"lennard/mdf"_pair_mdf.html - LJ potential in A/B form with a taper function
"line/lj"_pair_line_lj.html - LJ potential between line segments
"list"_pair_list.html - potential between pairs of atoms explicitly listed in an input file
"lj/charmm/coul/charmm"_pair_charmm.html - CHARMM potential with cutoff Coulomb
"lj/charmm/coul/charmm/implicit"_pair_charmm.html - CHARMM for implicit solvent
"lj/charmm/coul/long"_pair_charmm.html - CHARMM with long-range Coulomb
"lj/charmm/coul/long/soft"_pair_lj_soft.html - CHARMM with long-range Coulomb and a soft core
"lj/charmm/coul/msm"_pair_charmm.html - CHARMM with long-range MSM Coulombics
"lj/charmmfsw/coul/charmmfsh"_pair_charmm.html - CHARMM with force switching and shifting
"lj/charmmfsw/coul/long"_pair_charmm.html - CHARMM with force switching and long-rnage Coulombics
"lj/class2"_pair_class2.html - COMPASS (class 2) force field with no Coulomb
"lj/class2/coul/cut"_pair_class2.html - COMPASS with cutoff Coulomb
"lj/class2/coul/long"_pair_class2.html - COMPASS with long-range Coulomb
"lj/cubic"_pair_lj_cubic.html - LJ with cubic after inflection point
"lj/cut"_pair_lj.html - cutoff Lennard-Jones potential with no Coulomb
"lj/cut/coul/cut"_pair_lj.html - LJ with cutoff Coulomb
"lj/cut/coul/cut/soft"_pair_lj_soft.html - LJ with cutoff Coulomb with a soft core
"lj/cut/coul/debye"_pair_lj.html - LJ with Debye screening added to Coulomb
"lj/cut/coul/dsf"_pair_lj.html - LJ with Coulombics via damped shifted forces
"lj/cut/coul/long"_pair_lj.html - LJ with long-range Coulombics
"lj/cut/coul/long/cs"_pair_cs.html - ditto with core/shell adjustments
"lj/cut/coul/long/soft"_pair_lj_soft.html - LJ with long-range Coulombics with a soft core
"lj/cut/coul/msm"_pair_lj.html - LJ with long-range MSM Coulombics
"lj/cut/coul/wolf"_pair_lj.html - LJ with Coulombics via Wolf potential
"lj/cut/dipole/cut"_pair_dipole.html - point dipoles with cutoff
"lj/cut/dipole/long"_pair_dipole.html - point dipoles with long-range Ewald
"lj/cut/soft"_pair_lj_soft.html - LJ with a soft core
"lj/cut/thole/long"_pair_thole.html - LJ with Coulomibics with thole damping
"lj/cut/tip4p/cut"_pair_lj.html - LJ with cutoff Coulomb for TIP4P water
"lj/cut/tip4p/long"_pair_lj.html - LJ with long-range Coulomb for TIP4P water
"lj/cut/tip4p/long/soft"_pair_lj_soft.html - LJ with cutoff Coulomb for TIP4P water with a soft core
"lj/expand"_pair_lj_expand.html - Lennard-Jones for variable size particles
"lj/expand/coul/long"_pair_lj_expand.html - Lennard-Jones for variable size particles with long-range Coulombics
"lj/gromacs"_pair_gromacs.html - GROMACS-style Lennard-Jones potential
"lj/gromacs/coul/gromacs"_pair_gromacs.html - GROMACS-style LJ and Coulombic potential
"lj/long/coul/long"_pair_lj_long.html - long-range LJ and long-range Coulombics
"lj/long/dipole/long"_pair_dipole.html - long-range LJ and long-range point dipoles
"lj/long/tip4p/long"_pair_lj_long.html - long-range LJ and long-range Coulombics for TIP4P water
"lj/mdf"_pair_mdf.html - LJ potential with a taper function
"lj/sdk"_pair_sdk.html - LJ for SDK coarse-graining
"lj/sdk/coul/long"_pair_sdk.html - LJ for SDK coarse-graining with long-range Coulombics
"lj/sdk/coul/msm"_pair_sdk.html - LJ for SDK coarse-graining with long-range Coulombics via MSM
"lj/sf/dipole/sf"_pair_dipole.html - LJ with dipole interaction with shifted forces
"lj/smooth"_pair_lj_smooth.html - smoothed Lennard-Jones potential
"lj/smooth/linear"_pair_lj_smooth_linear.html - linear smoothed LJ potential
"lj96/cut"_pair_lj96.html - Lennard-Jones 9/6 potential
"lubricate"_pair_lubricate.html - hydrodynamic lubrication forces
"lubricate/poly"_pair_lubricate.html - hydrodynamic lubrication forces with polydispersity
"lubricateU"_pair_lubricateU.html - hydrodynamic lubrication forces for Fast Lubrication Dynamics
"lubricateU/poly"_pair_lubricateU.html - hydrodynamic lubrication forces for Fast Lubrication with polydispersity
"mdpd"_pair_meso.html - mDPD particle interactions
"mdpd/rhosum"_pair_meso.html - mDPD particle interactions for mass density
"meam"_pair_meam.html - modified embedded atom method (MEAM) in Fortran
"meam/c"_pair_meam.html - modified embedded atom method (MEAM) in C
"meam/spline"_pair_meam_spline.html - splined version of MEAM
"meam/sw/spline"_pair_meam_sw_spline.html - splined version of MEAM with a Stillinger-Weber term
"mgpt"_pair_mgpt.html - simplified model generalized pseudopotential theory (MGPT) potential
"mie/cut"_pair_mie.html - Mie potential
"momb"_pair_momb.html - Many-Body Metal-Organic (MOMB) force field
"morse"_pair_morse.html - Morse potential
"morse/smooth/linear"_pair_morse.html - linear smoothed Morse potential
"morse/soft"_pair_morse.html - Morse potential with a soft core
"multi/lucy"_pair_multi_lucy.html - DPD potential with density-dependent force
"multi/lucy/rx"_pair_multi_lucy_rx.html - reactive DPD potential with density-dependent force
"nb3b/harmonic"_pair_nb3b_harmonic.html - nonbonded 3-body harmonic potential
"nm/cut"_pair_nm.html - N-M potential
"nm/cut/coul/cut"_pair_nm.html - N-M potential with cutoff Coulomb
"nm/cut/coul/long"_pair_nm.html - N-M potential with long-range Coulombics
"oxdna/coaxstk"_pair_oxdna.html -
"oxdna/excv"_pair_oxdna.html -
"oxdna/hbond"_pair_oxdna.html -
"oxdna/stk"_pair_oxdna.html -
"oxdna/xstk"_pair_oxdna.html -
"oxdna2/coaxstk"_pair_oxdna2.html -
"oxdna2/dh"_pair_oxdna2.html -
"oxdna2/excv"_pair_oxdna2.html -
"oxdna2/hbond"_pair_oxdna2.html -
"oxdna2/stk"_pair_oxdna2.html -
"oxdna2/xstk"_pair_oxdna2.html -
"peri/eps"_pair_peri.html - peridynamic EPS potential
"peri/lps"_pair_peri.html - peridynamic LPS potential
"peri/pmb"_pair_peri.html - peridynamic PMB potential
"peri/ves"_pair_peri.html - peridynamic VES potential
"polymorphic"_pair_polymorphic.html - polymorphic 3-body potential
"python"_pair_python.html -
"quip"_pair_quip.html -
"reax"_pair_reax.html - ReaxFF potential in Fortran
"reax/c"_pair_reaxc.html - ReaxFF potential in C
"rebo"_pair_airebo.html - 2nd generation REBO potential of Brenner
"resquared"_pair_resquared.html - Everaers RE-Squared ellipsoidal potential
"sdpd/taitwater/isothermal"_pair_sdpd_taitwater_isothermal.html - smoothed dissipative particle dynamics for water at isothermal conditions
"smd/hertz"_pair_smd_hertz.html -
"smd/tlsph"_pair_smd_tlsph.html -
"smd/tri_surface"_pair_smd_triangulated_surface.html -
"smd/ulsph"_pair_smd_ulsph.html -
"smtbq"_pair_smtbq.html -
"snap"_pair_snap.html - SNAP quantum-accurate potential
"soft"_pair_soft.html - Soft (cosine) potential
"sph/heatconduction"_pair_sph_heatconduction.html -
"sph/idealgas"_pair_sph_idealgas.html -
"sph/lj"_pair_sph_lj.html -
"sph/rhosum"_pair_sph_rhosum.html -
"sph/taitwater"_pair_sph_taitwater.html -
"sph/taitwater/morris"_pair_sph_taitwater_morris.html -
"spin/dmi"_pair_spin_dmi.html -
"spin/exchange"_pair_spin_exchange.html -
"spin/magelec"_pair_spin_magelec.html -
"spin/neel"_pair_spin_neel.html -
"srp"_pair_srp.html -
"sw"_pair_sw.html - Stillinger-Weber 3-body potential
"table"_pair_table.html - tabulated pair potential
"table/rx"_pair_table_rx.html -
"tdpd"_pair_meso.html - tDPD particle interactions
"tersoff"_pair_tersoff.html - Tersoff 3-body potential
"tersoff/mod"_pair_tersoff_mod.html - modified Tersoff 3-body potential
"tersoff/mod/c"_pair_tersoff_mod.html -
"tersoff/table"_pair_tersoff.html -
"tersoff/zbl"_pair_tersoff_zbl.html - Tersoff/ZBL 3-body potential
"thole"_pair_thole.html - Coulomb interactions with thole damping
"tip4p/cut"_pair_coul.html - Coulomb for TIP4P water w/out LJ
"tip4p/long"_pair_coul.html - long-range Coulombics for TIP4P water w/out LJ
"tip4p/long/soft"_pair_lj_soft.html -
"tri/lj"_pair_tri_lj.html - LJ potential between triangles
"ufm"_pair_ufm.html -
"vashishta"_pair_vashishta.html - Vashishta 2-body and 3-body potential
"vashishta/table"_pair_vashishta.html -
"yukawa"_pair_yukawa.html - Yukawa potential
"yukawa/colloid"_pair_yukawa_colloid.html - screened Yukawa potential for finite-size particles
"zbl"_pair_zbl.html - Ziegler-Biersack-Littmark potential :ul
:line

View File

@ -86,6 +86,7 @@ Pair Styles :h1
pair_reaxc
pair_resquared
pair_sdk
pair_sdpd_taitwater_isothermal
pair_smd_hertz
pair_smd_tlsph
pair_smd_triangulated_surface

View File

@ -48,11 +48,12 @@ replicas of a system. One or more replicas can be used. The total
number of steps {N} to run can be interpreted in one of two ways; see
discussion of the {time} keyword below.
PRD is described in "this paper"_#Voter1998 by Art Voter. It is a method
for performing accelerated dynamics that is suitable for
infrequent-event systems that obey first-order kinetics. A good
overview of accelerated dynamics methods for such systems in given in
"this review paper"_#Voter2002prd from the same group. To quote from the
PRD is described in "(Voter1998)"_#Voter1998 by Art Voter. Similar to
global or local hyperdynamics (HD), PRD is a method for performing
accelerated dynamics that is suitable for infrequent-event systems
that obey first-order kinetics. A good overview of accelerated
dynamics methods for such systems in given in this review paper
"(Voter2002)"_#Voter2002prd from Art's group. To quote from the
paper: "The dynamical evolution is characterized by vibrational
excursions within a potential basin, punctuated by occasional
transitions between basins." The transition probability is
@ -61,15 +62,26 @@ Running multiple replicas gives an effective enhancement in the
timescale spanned by the multiple simulations, while waiting for an
event to occur.
Each replica runs on a partition of one or more processors. Processor
partitions are defined at run-time using the "-partition command-line
switch"_Run_options.html. Note that if you have MPI installed, you
can run a multi-replica simulation with more replicas (partitions)
than you have physical processors, e.g you can run a 10-replica
simulation on one or two processors. However for PRD, this makes
little sense, since running a replica on virtual instead of physical
processors,offers no effective parallel speed-up in searching for
infrequent events. See the "Howto replica"_Howto_replica.html doc
Both PRD and HD produce a time-accurate trajectory that effectively
extends the timescale over which a system can be simulated, but they
do it differently. PRD creates Nr replicas of the system and runs
dynamics on each independently with a normal unbiased potential until
an event occurs in one of the replicas. The time between events is
reduced by a factor of Nr replicas. HD uses a single replica of the
system and accelerates time by biasing the interaction potential in a
manner such that each timestep is effectively longer. For both
methods, per CPU second, more physical time elapses and more events
occur. See the "hyper"_hyper.html doc page for more info about HD.
In PRD, each replica runs on a partition of one or more processors.
Processor partitions are defined at run-time using the "-partition
command-line switch"_Run_options.html. Note that if you have MPI
installed, you can run a multi-replica simulation with more replicas
(partitions) than you have physical processors, e.g you can run a
10-replica simulation on one or two processors. However for PRD, this
makes little sense, since running a replica on virtual instead of
physical processors,offers no effective parallel speed-up in searching
for infrequent events. See the "Howto replica"_Howto_replica.html doc
page for further discussion.
When a PRD simulation is performed, it is assumed that each replica is
@ -78,8 +90,8 @@ I.e. the simulation domain, the number of atoms, the interaction
potentials, etc should be the same for every replica.
A PRD run has several stages, which are repeated each time an "event"
occurs in one of the replicas, as defined below. The logic for a PRD
run is as follows:
occurs in one of the replicas, as explained below. The logic for a
PRD run is as follows:
while (time remains):
dephase for n_dephase*t_dephase steps
@ -129,7 +141,8 @@ Minimization parameters may be set via the
PRD command. The latter are the settings that would be used with the
"minimize"_minimize.html command. Note that typically, you do not
need to perform a highly-converged minimization to detect a transition
event.
event, though you may need to in order to prevent a set of atoms in
the system from relaxing to a saddle point.
The event check is performed by a compute with the specified
{compute-ID}. Currently there is only one compute that works with the
@ -307,7 +320,7 @@ deposit"_fix_deposit.html.
"min_modify"_min_modify.html, "min_style"_min_style.html,
"run_style"_run_style.html, "minimize"_minimize.html,
"velocity"_velocity.html, "temper"_temper.html, "neb"_neb.html,
"tad"_tad.html
"tad"_tad.html, "hyper"_hyper.html
[Default:]

View File

@ -78,6 +78,7 @@ friction: frictional contact of spherical asperities between 2d surfaces
gcmc: Grand Canonical Monte Carlo (GCMC) via the fix gcmc command
granregion: use of fix wall/region/gran as boundary on granular particles
hugoniostat: Hugoniostat shock dynamics
hyper: global and local hyperdynamics of diffusion on Pt surface
indent: spherical indenter into a 2d solid
kim: use of potentials in Knowledge Base for Interatomic Models (KIM)
latte: use of LATTE density-functional tight-binding quantum code

View File

@ -36,7 +36,7 @@ fix myrxns all bond/react stabilization yes statted_grp .03 &
react rxn2 all 1 0.0 5.0 mol3 mol4 rxn1_stp2_map
# stable at 800K
fix 1 statted_grp nvt temp 800 800 100
fix 1 statted_grp_REACT nvt temp 800 800 100
# in order to customize behavior of reacting atoms,
# you can use the internally created 'bond_react_MASTER_group', like so:

View File

@ -36,7 +36,7 @@ fix myrxns all bond/react stabilization yes statted_grp .03 &
react rxn1 all 1 0.0 2.9 mol1 mol2 rxn1_stp1_map &
react rxn2 all 1 0.0 5.0 mol3 mol4 rxn1_stp2_map
fix 1 statted_grp nvt temp 300 300 100
fix 1 statted_grp_REACT nvt temp 300 300 100
fix 4 bond_react_MASTER_group temp/rescale 1 300 300 10 1

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,41 @@
# Solvated 5-mer peptide
units real
atom_style full
pair_style lj/charmm/coul/long 8.0 10.0 10.0
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
kspace_style pppm 0.0001
read_data data.peptide
neighbor 2.0 bin
neigh_modify delay 5
timestep 2.0
group peptide type <= 12
group one id 2 4 5 6
group two id 80 82 83 84
group ref id 37
group colvar union one two ref
fix 1 all nvt temp 275.0 275.0 100.0 tchain 1
fix 2 all plumed plumedfile plumed.dat outfile p.log
fix 2a ref setforce 0.0 0.0 0.0
fix 4 all shake 0.0001 10 100 b 4 6 8 10 12 14 18 a 31
#dump 1 colvar custom 1 dump.colvar.lammpstrj id xu yu zu fx fy fz
#dump_modify 1 sort id
thermo_style custom step temp etotal pe ke epair ebond f_2
thermo 10
variable step equal step
variable pe equal pe
run 101

View File

@ -0,0 +1,162 @@
LAMMPS (24 Oct 2018)
OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (../comm.cpp:87)
using 1 OpenMP thread(s) per MPI task
# Solvated 5-mer peptide
units real
atom_style full
pair_style lj/charmm/coul/long 8.0 10.0 10.0
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
kspace_style pppm 0.0001
read_data data.peptide
orthogonal box = (36.8402 41.0137 29.7681) to (64.2116 68.3851 57.1395)
1 by 1 by 1 MPI processor grid
reading atoms ...
2004 atoms
reading velocities ...
2004 velocities
scanning bonds ...
3 = max bonds/atom
scanning angles ...
6 = max angles/atom
scanning dihedrals ...
14 = max dihedrals/atom
scanning impropers ...
1 = max impropers/atom
reading bonds ...
1365 bonds
reading angles ...
786 angles
reading dihedrals ...
207 dihedrals
reading impropers ...
12 impropers
4 = max # of 1-2 neighbors
7 = max # of 1-3 neighbors
14 = max # of 1-4 neighbors
18 = max # of special neighbors
neighbor 2.0 bin
neigh_modify delay 5
timestep 2.0
group peptide type <= 12
84 atoms in group peptide
group one id 2 4 5 6
4 atoms in group one
group two id 80 82 83 84
4 atoms in group two
group ref id 37
1 atoms in group ref
group colvar union one two ref
9 atoms in group colvar
fix 1 all nvt temp 275.0 275.0 100.0 tchain 1
fix 2 all plumed plumedfile plumed.dat outfile p.log
fix 2a ref setforce 0.0 0.0 0.0
fix 4 all shake 0.0001 10 100 b 4 6 8 10 12 14 18 a 31
19 = # of size 2 clusters
6 = # of size 3 clusters
3 = # of size 4 clusters
640 = # of frozen angles
#dump 1 colvar custom 1 dump.colvar.lammpstrj id xu yu zu fx fy fz
#dump_modify 1 sort id
thermo_style custom step temp etotal pe ke epair ebond f_2
thermo 10
variable step equal step
variable pe equal pe
run 101
PPPM initialization ...
using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.268725
grid = 15 15 15
stencil order = 5
estimated absolute RMS force accuracy = 0.0228209
estimated relative force accuracy = 6.87243e-05
using double precision FFTs
3d grid and FFT values/proc = 10648 3375
Neighbor list info ...
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6, bins = 5 5 5
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/charmm/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
SHAKE stats (type/ave/delta) on step 0
4 1.111 1.44264e-05
6 0.996998 7.26967e-06
8 1.08 1.32536e-05
10 1.111 1.22749e-05
12 1.08 1.11767e-05
14 0.96 0
18 0.957206 4.37979e-05
31 104.519 0.00396029
Per MPI rank memory allocation (min/avg/max) = 18.7 | 18.7 | 18.7 Mbytes
Step Temp TotEng PotEng KinEng E_pair E_bond f_2
0 282.10052 -5237.458 -6372.3766 1134.9186 -6442.768 16.557152 0
10 276.9783 -5234.3057 -6348.6171 1114.3114 -6421.6171 17.024361 0.47785504
20 279.08532 -5226.4036 -6349.1917 1122.7881 -6441.0169 20.764378 0.52605302
30 282.32141 -5222.3866 -6358.1939 1135.8073 -6448.9785 22.945165 0.65106011
40 276.34173 -5218.7623 -6330.5128 1111.7504 -6423.7566 15.655345 0.23795099
50 286.12741 -5215.9248 -6367.0439 1151.1192 -6449.2655 17.420975 0.42646205
60 273.01449 -5217.7381 -6316.1026 1098.3646 -6406.4709 21.800931 0.92327815
70 274.67549 -5221.0246 -6326.0716 1105.047 -6409.7721 19.41235 0.0016975896
80 273.74824 -5224.7613 -6326.0778 1101.3165 -6418.5055 19.206793 0.48550348
90 284.32594 -5229.195 -6373.0667 1143.8717 -6461.3467 21.124789 0.5468014
SHAKE stats (type/ave/delta) on step 100
4 1.111 2.06868e-06
6 0.996999 2.09521e-06
8 1.08 1.10835e-06
10 1.111 2.46599e-06
12 1.08 8.86314e-07
14 0.959999 0
18 0.9572 9.14098e-06
31 104.52 0.000760401
100 270.40648 -5234.9604 -6322.8327 1087.8723 -6417.73 19.666404 0.0094784372
101 270.99811 -5235.8295 -6326.082 1090.2525 -6418.8974 17.285816 0.086681332
Loop time of 2.12948 on 1 procs for 101 steps with 2004 atoms
Performance: 8.196 ns/day, 2.928 hours/ns, 47.429 timesteps/s
99.8% CPU use with 1 MPI tasks x 1 OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.757 | 1.757 | 1.757 | 0.0 | 82.51
Bond | 0.0052233 | 0.0052233 | 0.0052233 | 0.0 | 0.25
Kspace | 0.14772 | 0.14772 | 0.14772 | 0.0 | 6.94
Neigh | 0.16455 | 0.16455 | 0.16455 | 0.0 | 7.73
Comm | 0.0083704 | 0.0083704 | 0.0083704 | 0.0 | 0.39
Output | 0.00031424 | 0.00031424 | 0.00031424 | 0.0 | 0.01
Modify | 0.044411 | 0.044411 | 0.044411 | 0.0 | 2.09
Other | | 0.001851 | | | 0.09
Nlocal: 2004 ave 2004 max 2004 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 11134 ave 11134 max 11134 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 707961 ave 707961 max 707961 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 707961
Ave neighs/atom = 353.274
Ave special neighs/atom = 2.34032
Neighbor list builds = 8
Dangerous builds = 0
Total wall time: 0:00:02

View File

@ -0,0 +1,162 @@
LAMMPS (24 Oct 2018)
OMP_NUM_THREADS environment is not set. Defaulting to 1 thread. (../comm.cpp:87)
using 1 OpenMP thread(s) per MPI task
# Solvated 5-mer peptide
units real
atom_style full
pair_style lj/charmm/coul/long 8.0 10.0 10.0
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
kspace_style pppm 0.0001
read_data data.peptide
orthogonal box = (36.8402 41.0137 29.7681) to (64.2116 68.3851 57.1395)
1 by 2 by 2 MPI processor grid
reading atoms ...
2004 atoms
reading velocities ...
2004 velocities
scanning bonds ...
3 = max bonds/atom
scanning angles ...
6 = max angles/atom
scanning dihedrals ...
14 = max dihedrals/atom
scanning impropers ...
1 = max impropers/atom
reading bonds ...
1365 bonds
reading angles ...
786 angles
reading dihedrals ...
207 dihedrals
reading impropers ...
12 impropers
4 = max # of 1-2 neighbors
7 = max # of 1-3 neighbors
14 = max # of 1-4 neighbors
18 = max # of special neighbors
neighbor 2.0 bin
neigh_modify delay 5
timestep 2.0
group peptide type <= 12
84 atoms in group peptide
group one id 2 4 5 6
4 atoms in group one
group two id 80 82 83 84
4 atoms in group two
group ref id 37
1 atoms in group ref
group colvar union one two ref
9 atoms in group colvar
fix 1 all nvt temp 275.0 275.0 100.0 tchain 1
fix 2 all plumed plumedfile plumed.dat outfile p.log
fix 2a ref setforce 0.0 0.0 0.0
fix 4 all shake 0.0001 10 100 b 4 6 8 10 12 14 18 a 31
19 = # of size 2 clusters
6 = # of size 3 clusters
3 = # of size 4 clusters
640 = # of frozen angles
#dump 1 colvar custom 1 dump.colvar.lammpstrj id xu yu zu fx fy fz
#dump_modify 1 sort id
thermo_style custom step temp etotal pe ke epair ebond f_2
thermo 10
variable step equal step
variable pe equal pe
run 101
PPPM initialization ...
using 12-bit tables for long-range coulomb (../kspace.cpp:321)
G vector (1/distance) = 0.268725
grid = 15 15 15
stencil order = 5
estimated absolute RMS force accuracy = 0.0228209
estimated relative force accuracy = 6.87243e-05
using double precision FFTs
3d grid and FFT values/proc = 4312 960
Neighbor list info ...
update every 1 steps, delay 5 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6, bins = 5 5 5
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair lj/charmm/coul/long, perpetual
attributes: half, newton on
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
SHAKE stats (type/ave/delta) on step 0
4 1.111 1.44264e-05
6 0.996998 7.26967e-06
8 1.08 1.32536e-05
10 1.111 1.22749e-05
12 1.08 1.11767e-05
14 0.96 0
18 0.957206 4.37979e-05
31 104.519 0.00396029
Per MPI rank memory allocation (min/avg/max) = 15.65 | 15.86 | 16.05 Mbytes
Step Temp TotEng PotEng KinEng E_pair E_bond f_2
0 282.10052 -5237.458 -6372.3766 1134.9186 -6442.768 16.557152 0
10 276.9783 -5234.3057 -6348.6171 1114.3114 -6421.6171 17.024361 0.47785504
20 279.08532 -5226.4036 -6349.1917 1122.7881 -6441.0169 20.764378 0.52605302
30 282.32141 -5222.3866 -6358.1939 1135.8073 -6448.9785 22.945165 0.65106011
40 276.34173 -5218.7623 -6330.5128 1111.7504 -6423.7566 15.655345 0.23795099
50 286.12741 -5215.9248 -6367.0439 1151.1192 -6449.2655 17.420975 0.42646205
60 273.01449 -5217.7381 -6316.1026 1098.3646 -6406.4709 21.800931 0.92327815
70 274.67549 -5221.0246 -6326.0716 1105.047 -6409.7721 19.41235 0.0016975896
80 273.74824 -5224.7613 -6326.0778 1101.3165 -6418.5055 19.206793 0.48550348
90 284.32594 -5229.195 -6373.0667 1143.8717 -6461.3466 21.124789 0.5468014
SHAKE stats (type/ave/delta) on step 100
4 1.111 2.06868e-06
6 0.996999 2.09521e-06
8 1.08 1.10835e-06
10 1.111 2.46599e-06
12 1.08 8.86314e-07
14 0.959999 0
18 0.9572 9.14098e-06
31 104.52 0.000760401
100 270.40648 -5234.9604 -6322.8327 1087.8723 -6417.73 19.666404 0.009478437
101 270.99811 -5235.8295 -6326.082 1090.2525 -6418.8974 17.285816 0.086681332
Loop time of 1.16767 on 4 procs for 101 steps with 2004 atoms
Performance: 14.947 ns/day, 1.606 hours/ns, 86.497 timesteps/s
97.8% CPU use with 4 MPI tasks x 1 OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.84633 | 0.86651 | 0.88617 | 1.6 | 74.21
Bond | 0.0010614 | 0.0027132 | 0.004288 | 3.0 | 0.23
Kspace | 0.095008 | 0.1162 | 0.13491 | 4.3 | 9.95
Neigh | 0.07834 | 0.078424 | 0.078516 | 0.0 | 6.72
Comm | 0.03314 | 0.033299 | 0.033426 | 0.1 | 2.85
Output | 0.00036979 | 0.00076199 | 0.0019338 | 0.0 | 0.07
Modify | 0.063471 | 0.064011 | 0.065312 | 0.3 | 5.48
Other | | 0.005751 | | | 0.49
Nlocal: 501 ave 512 max 492 min
Histogram: 1 0 0 1 0 1 0 0 0 1
Nghost: 6570.25 ave 6604 max 6529 min
Histogram: 1 0 0 1 0 0 0 0 1 1
Neighs: 176990 ave 181122 max 173551 min
Histogram: 1 1 0 0 0 0 1 0 0 1
Total # of neighbors = 707961
Ave neighs/atom = 353.274
Ave special neighs/atom = 2.34032
Neighbor list builds = 8
Dangerous builds = 0
Total wall time: 0:00:01

View File

@ -0,0 +1,4 @@
UNITS LENGTH=A ENERGY=kcal/mol
dd: DISTANCE ATOMS=45,48
RESTRAINT ARG=dd KAPPA=2000 AT=6.0
PRINT ARG=dd FILE=colvar

View File

@ -0,0 +1,103 @@
#! FIELDS time dd
0.000000 5.985554
0.002000 6.002880
0.004000 6.022015
0.006000 6.029922
0.008000 6.020103
0.010000 5.996906
0.012000 5.972734
0.014000 5.960079
0.016000 5.963714
0.018000 5.978140
0.020000 5.991813
0.022000 5.995155
0.024000 5.987021
0.026000 5.975340
0.028000 5.971456
0.030000 5.981945
0.032000 6.003550
0.034000 6.024743
0.036000 6.032990
0.038000 6.022936
0.040000 6.000131
0.042000 5.977800
0.044000 5.968692
0.046000 5.977224
0.048000 5.996934
0.050000 6.014800
0.052000 6.019586
0.054000 6.008803
0.056000 5.989809
0.058000 5.974484
0.060000 5.971140
0.062000 5.979074
0.064000 5.989379
0.066000 5.991356
0.068000 5.980176
0.070000 5.960625
0.072000 5.944401
0.074000 5.942614
0.076000 5.958402
0.078000 5.984574
0.080000 6.007964
0.082000 6.017667
0.084000 6.011795
0.086000 5.998304
0.088000 5.989405
0.090000 5.993275
0.092000 6.008545
0.094000 6.025183
0.096000 6.031186
0.098000 6.020651
0.100000 5.997952
0.102000 5.975230
0.104000 5.964757
0.106000 5.971150
0.108000 5.988568
0.110000 6.004676
0.112000 6.008731
0.114000 5.998481
0.116000 5.981406
0.118000 5.969615
0.120000 5.971827
0.122000 5.987658
0.124000 6.007888
0.126000 6.020477
0.128000 6.018377
0.130000 6.004046
0.132000 5.987682
0.134000 5.980338
0.136000 5.986534
0.138000 6.001303
0.140000 6.013589
0.142000 6.013717
0.144000 6.000028
0.146000 5.980283
0.148000 5.966836
0.150000 5.968670
0.152000 5.985459
0.154000 6.007612
0.156000 6.022374
0.158000 6.022034
0.160000 6.008851
0.162000 5.993355
0.164000 5.987212
0.166000 5.995452
0.168000 6.013111
0.170000 6.028386
0.172000 6.030387
0.174000 6.016468
0.176000 5.994191
0.178000 5.976616
0.180000 5.973983
0.182000 5.987185
0.184000 6.007275
0.186000 6.021338
0.188000 6.020837
0.190000 6.006955
0.192000 5.989433
0.194000 5.979796
0.196000 5.983601
0.198000 5.996921
0.200000 6.009310
0.202000 6.011114

View File

@ -0,0 +1,57 @@
PLUMED: PLUMED is starting
PLUMED: Version: 2.4.2 (git: Unknown) compiled on Jul 11 2018 at 19:09:03
PLUMED: Please cite this paper when using PLUMED [1]
PLUMED: For further information see the PLUMED web page at http://www.plumed.org
PLUMED: Root: /Users/gareth/MD_code/lammps-permanent/lammps/lib/plumed/plumed2-2.4.2/
PLUMED: For installed feature, see /Users/gareth/MD_code/lammps-permanent/lammps/lib/plumed/plumed2-2.4.2//src/config/config.txt
PLUMED: Molecular dynamics engine: LAMMPS
PLUMED: Precision of reals: 8
PLUMED: Running over 1 node
PLUMED: Number of threads: 1
PLUMED: Cache line size: 512
PLUMED: Number of atoms: 2004
PLUMED: File suffix:
PLUMED: FILE: plumed.dat
PLUMED: Action UNITS
PLUMED: with label @0
PLUMED: length: A
PLUMED: energy: kcal/mol
PLUMED: time: ps
PLUMED: charge: e
PLUMED: mass: amu
PLUMED: using physical units
PLUMED: inside PLUMED, Boltzmann constant is 0.001987
PLUMED: Action DISTANCE
PLUMED: with label dd
PLUMED: between atoms 45 48
PLUMED: using periodic boundary conditions
PLUMED: Action RESTRAINT
PLUMED: with label @2
PLUMED: with arguments dd
PLUMED: added component to this action: @2.bias
PLUMED: at 6.000000
PLUMED: with harmonic force constant 2000.000000
PLUMED: and linear force constant 0.000000
PLUMED: added component to this action: @2.force2
PLUMED: Action PRINT
PLUMED: with label @3
PLUMED: with stride 1
PLUMED: with arguments dd
PLUMED: on file colvar
PLUMED: with format %f
PLUMED: END FILE: plumed.dat
PLUMED: Timestep: 0.002000
PLUMED: KbT has not been set by the MD engine
PLUMED: It should be set by hand where needed
PLUMED: Relevant bibliography:
PLUMED: [1] Tribello, Bonomi, Branduardi, Camilloni, and Bussi, Comput. Phys. Commun. 185, 604 (2014)
PLUMED: Please read and cite where appropriate!
PLUMED: Finished setup
PLUMED: Cycles Total Average Minumum Maximum
PLUMED: 1 0.020354 0.020354 0.020354 0.020354
PLUMED: 1 Prepare dependencies 102 0.000256 0.000003 0.000001 0.000006
PLUMED: 2 Sharing data 102 0.010002 0.000098 0.000078 0.000546
PLUMED: 3 Waiting for data 102 0.001398 0.000014 0.000011 0.000072
PLUMED: 4 Calculating (forward loop) 102 0.001797 0.000018 0.000013 0.000058
PLUMED: 5 Applying (backward loop) 102 0.002666 0.000026 0.000022 0.000062
PLUMED: 6 Update 102 0.001126 0.000011 0.000007 0.000055

View File

@ -1,7 +1,7 @@
# Point dipoles in a 2d box
units lj
atom_style full
atom_style charge
read_data data.NaCl
@ -29,7 +29,7 @@ pair_coeff * *
#fix 2 all scafacos p3m tolerance field 0.001
kspace_style scafacos p3m 0.001
kspace_style scafacos tolerance field
#kspace_style scafacos tolerance field
timestep 0.005
thermo 10

View File

@ -0,0 +1,61 @@
dimension 2
units micro
atom_style meso
variable R equal 0.5 # radius of sphere micrometers
variable a equal $R/5 # lattice spacing micrometers
variable Lf equal $R*3
variable Lb equal $R*4
variable wall_velocity equal 0.01 # micrometers/microsecond
variable T equal 300.
variable rho_0 equal 1. # density picograms/micrometer^3
variable c_0 equal 100. # speed of sound micrometers/microsecond
variable mu equal 1. # dynamic viscosity picogram/(micrometer-microsecond)
variable h equal $a*4.5 # kernel function cutoff micrometers
variable mass equal $a*$a*$a*${rho_0}
variable dt equal 1e-3 # timestep microseconds
variable skin equal 0.2*$h
region box block -${Lb} ${Lb} -${Lb} ${Lb} 0 ${a} units box
create_box 4 box
lattice sq $a
create_atoms 1 box
region sphere sphere 0 0 0 $R units box
set region sphere type 2
region upper_wall block INF INF +${Lf} INF INF INF units box
set region upper_wall type 3
region lower_wall block INF INF INF -${Lf} INF INF units box
set region lower_wall type 4
group fluid type 1
group sphere type 2
group upper_wall type 3
group lower_wall type 4
mass * ${mass}
set group all meso/rho ${rho_0}
pair_style sdpd/taitwater/isothermal $T ${mu} 76787 # temperature viscosity random_seed
pair_coeff * * ${rho_0} ${c_0} ${h}
fix 1 fluid meso
fix 2 sphere rigid/meso single
fix 3 upper_wall meso/move linear +${wall_velocity} 0 0 units box
fix 4 lower_wall meso/move linear -${wall_velocity} 0 0 units box
fix 2d all enforce2d
neighbor ${skin} bin
neigh_modify delay 0 every 1 check yes
timestep ${dt}
dump dump_id all atom 100 dump.lammpstrj
thermo 100
thermo_style custom step time nbuild ndanger
run 10000

View File

@ -0,0 +1,247 @@
LAMMPS (24 Oct 2018)
dimension 2
units micro
atom_style meso
variable R equal 0.5 # radius of sphere micrometers
variable a equal $R/5 # lattice spacing micrometers
variable a equal 0.5/5
variable Lf equal $R*3
variable Lf equal 0.5*3
variable Lb equal $R*4
variable Lb equal 0.5*4
variable wall_velocity equal 0.01 # micrometers/microsecond
variable T equal 300.
variable rho_0 equal 1. # density picograms/micrometer^3
variable c_0 equal 100. # speed of sound micrometers/microsecond
variable mu equal 1. # dynamic viscosity picogram/(micrometer-microsecond)
variable h equal $a*4.5 # kernel function cutoff micrometers
variable h equal 0.1*4.5
variable mass equal $a*$a*$a*${rho_0}
variable mass equal 0.1*$a*$a*${rho_0}
variable mass equal 0.1*0.1*$a*${rho_0}
variable mass equal 0.1*0.1*0.1*${rho_0}
variable mass equal 0.1*0.1*0.1*1
variable dt equal 1e-3 # timestep microseconds
variable skin equal 0.2*$h
variable skin equal 0.2*0.45
region box block -${Lb} ${Lb} -${Lb} ${Lb} 0 ${a} units box
region box block -2 ${Lb} -${Lb} ${Lb} 0 ${a} units box
region box block -2 2 -${Lb} ${Lb} 0 ${a} units box
region box block -2 2 -2 ${Lb} 0 ${a} units box
region box block -2 2 -2 2 0 ${a} units box
region box block -2 2 -2 2 0 0.1 units box
create_box 4 box
Created orthogonal box = (-2 -2 0) to (2 2 0.1)
1 by 1 by 1 MPI processor grid
lattice sq $a
lattice sq 0.1
Lattice spacing in x,y,z = 0.1 0.1 0.1
create_atoms 1 box
Created 1600 atoms
Time spent = 0.00169706 secs
region sphere sphere 0 0 0 $R units box
region sphere sphere 0 0 0 0.5 units box
set region sphere type 2
81 settings made for type
region upper_wall block INF INF +${Lf} INF INF INF units box
region upper_wall block INF INF +1.5 INF INF INF units box
set region upper_wall type 3
200 settings made for type
region lower_wall block INF INF INF -${Lf} INF INF units box
region lower_wall block INF INF INF -1.5 INF INF units box
set region lower_wall type 4
240 settings made for type
group fluid type 1
1079 atoms in group fluid
group sphere type 2
81 atoms in group sphere
group upper_wall type 3
200 atoms in group upper_wall
group lower_wall type 4
240 atoms in group lower_wall
mass * ${mass}
mass * 0.001
set group all meso/rho ${rho_0}
set group all meso/rho 1
1600 settings made for meso/rho
pair_style sdpd/taitwater/isothermal $T ${mu} 76787 # temperature viscosity random_seed
pair_style sdpd/taitwater/isothermal 300 ${mu} 76787
pair_style sdpd/taitwater/isothermal 300 1 76787
pair_coeff * * ${rho_0} ${c_0} ${h}
pair_coeff * * 1 ${c_0} ${h}
pair_coeff * * 1 100 ${h}
pair_coeff * * 1 100 0.45
fix 1 fluid meso
fix 2 sphere rigid/meso single
1 rigid bodies with 81 atoms
fix 3 upper_wall meso/move linear +${wall_velocity} 0 0 units box
fix 3 upper_wall meso/move linear +0.01 0 0 units box
fix 4 lower_wall meso/move linear -${wall_velocity} 0 0 units box
fix 4 lower_wall meso/move linear -0.01 0 0 units box
fix 2d all enforce2d
neighbor ${skin} bin
neighbor 0.09 bin
neigh_modify delay 0 every 1 check yes
timestep ${dt}
timestep 0.001
dump dump_id all atom 100 dump.lammpstrj
thermo 100
thermo_style custom step time nbuild ndanger
run 10000
Neighbor list info ...
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 0.54
ghost atom cutoff = 0.54
binsize = 0.27, bins = 15 15 1
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair sdpd/taitwater/isothermal, perpetual
attributes: half, newton on
pair build: half/bin/atomonly/newton
stencil: half/bin/2d/newton
bin: standard
Per MPI rank memory allocation (min/avg/max) = 6.937 | 6.937 | 6.937 Mbytes
Step Time Nbuild Ndanger
0 0 0 0
100 0.1 0 0
200 0.2 0 0
300 0.3 0 0
400 0.4 0 0
500 0.5 1 0
600 0.6 1 0
700 0.7 2 0
800 0.8 2 0
900 0.9 2 0
1000 1 3 0
1100 1.1 3 0
1200 1.2 3 0
1300 1.3 4 0
1400 1.4 4 0
1500 1.5 4 0
1600 1.6 5 0
1700 1.7 5 0
1800 1.8 5 0
1900 1.9 6 0
2000 2 6 0
2100 2.1 6 0
2200 2.2 7 0
2300 2.3 7 0
2400 2.4 7 0
2500 2.5 8 0
2600 2.6 8 0
2700 2.7 8 0
2800 2.8 9 0
2900 2.9 9 0
3000 3 9 0
3100 3.1 10 0
3200 3.2 10 0
3300 3.3 10 0
3400 3.4 11 0
3500 3.5 11 0
3600 3.6 11 0
3700 3.7 12 0
3800 3.8 12 0
3900 3.9 12 0
4000 4 13 0
4100 4.1 13 0
4200 4.2 14 0
4300 4.3 14 0
4400 4.4 14 0
4500 4.5 15 0
4600 4.6 15 0
4700 4.7 15 0
4800 4.8 16 0
4900 4.9 16 0
5000 5 16 0
5100 5.1 17 0
5200 5.2 17 0
5300 5.3 17 0
5400 5.4 17 0
5500 5.5 18 0
5600 5.6 18 0
5700 5.7 19 0
5800 5.8 19 0
5900 5.9 19 0
6000 6 20 0
6100 6.1 20 0
6200 6.2 21 0
6300 6.3 21 0
6400 6.4 21 0
6500 6.5 22 0
6600 6.6 22 0
6700 6.7 22 0
6800 6.8 23 0
6900 6.9 23 0
7000 7 23 0
7100 7.1 24 0
7200 7.2 24 0
7300 7.3 25 0
7400 7.4 25 0
7500 7.5 25 0
7600 7.6 26 0
7700 7.7 26 0
7800 7.8 26 0
7900 7.9 27 0
8000 8 27 0
8100 8.1 27 0
8200 8.2 28 0
8300 8.3 28 0
8400 8.4 28 0
8500 8.5 29 0
8600 8.6 29 0
8700 8.7 30 0
8800 8.8 30 0
8900 8.9 30 0
9000 9 31 0
9100 9.1 31 0
9200 9.2 31 0
9300 9.3 32 0
9400 9.4 32 0
9500 9.5 32 0
9600 9.6 33 0
9700 9.7 33 0
9800 9.8 33 0
9900 9.9 34 0
10000 10 34 0
Loop time of 144.208 on 1 procs for 10000 steps with 1600 atoms
Performance: 5991348.580 ns/day, 0.000 hours/ns, 69.344 timesteps/s
99.7% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 143.08 | 143.08 | 143.08 | 0.0 | 99.22
Neigh | 0.033195 | 0.033195 | 0.033195 | 0.0 | 0.02
Comm | 0.24139 | 0.24139 | 0.24139 | 0.0 | 0.17
Output | 0.11687 | 0.11687 | 0.11687 | 0.0 | 0.08
Modify | 0.61566 | 0.61566 | 0.61566 | 0.0 | 0.43
Other | | 0.117 | | | 0.08
Nlocal: 1600 ave 1600 max 1600 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 993 ave 993 max 993 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 73236 ave 73236 max 73236 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 73236
Ave neighs/atom = 45.7725
Neighbor list builds = 34
Dangerous builds = 0
Total wall time: 0:02:24

View File

@ -0,0 +1,247 @@
LAMMPS (24 Oct 2018)
dimension 2
units micro
atom_style meso
variable R equal 0.5 # radius of sphere micrometers
variable a equal $R/5 # lattice spacing micrometers
variable a equal 0.5/5
variable Lf equal $R*3
variable Lf equal 0.5*3
variable Lb equal $R*4
variable Lb equal 0.5*4
variable wall_velocity equal 0.01 # micrometers/microsecond
variable T equal 300.
variable rho_0 equal 1. # density picograms/micrometer^3
variable c_0 equal 100. # speed of sound micrometers/microsecond
variable mu equal 1. # dynamic viscosity picogram/(micrometer-microsecond)
variable h equal $a*4.5 # kernel function cutoff micrometers
variable h equal 0.1*4.5
variable mass equal $a*$a*$a*${rho_0}
variable mass equal 0.1*$a*$a*${rho_0}
variable mass equal 0.1*0.1*$a*${rho_0}
variable mass equal 0.1*0.1*0.1*${rho_0}
variable mass equal 0.1*0.1*0.1*1
variable dt equal 1e-3 # timestep microseconds
variable skin equal 0.2*$h
variable skin equal 0.2*0.45
region box block -${Lb} ${Lb} -${Lb} ${Lb} 0 ${a} units box
region box block -2 ${Lb} -${Lb} ${Lb} 0 ${a} units box
region box block -2 2 -${Lb} ${Lb} 0 ${a} units box
region box block -2 2 -2 ${Lb} 0 ${a} units box
region box block -2 2 -2 2 0 ${a} units box
region box block -2 2 -2 2 0 0.1 units box
create_box 4 box
Created orthogonal box = (-2 -2 0) to (2 2 0.1)
2 by 2 by 1 MPI processor grid
lattice sq $a
lattice sq 0.1
Lattice spacing in x,y,z = 0.1 0.1 0.1
create_atoms 1 box
Created 1600 atoms
Time spent = 0.000589566 secs
region sphere sphere 0 0 0 $R units box
region sphere sphere 0 0 0 0.5 units box
set region sphere type 2
81 settings made for type
region upper_wall block INF INF +${Lf} INF INF INF units box
region upper_wall block INF INF +1.5 INF INF INF units box
set region upper_wall type 3
200 settings made for type
region lower_wall block INF INF INF -${Lf} INF INF units box
region lower_wall block INF INF INF -1.5 INF INF units box
set region lower_wall type 4
240 settings made for type
group fluid type 1
1079 atoms in group fluid
group sphere type 2
81 atoms in group sphere
group upper_wall type 3
200 atoms in group upper_wall
group lower_wall type 4
240 atoms in group lower_wall
mass * ${mass}
mass * 0.001
set group all meso/rho ${rho_0}
set group all meso/rho 1
1600 settings made for meso/rho
pair_style sdpd/taitwater/isothermal $T ${mu} 76787 # temperature viscosity random_seed
pair_style sdpd/taitwater/isothermal 300 ${mu} 76787
pair_style sdpd/taitwater/isothermal 300 1 76787
pair_coeff * * ${rho_0} ${c_0} ${h}
pair_coeff * * 1 ${c_0} ${h}
pair_coeff * * 1 100 ${h}
pair_coeff * * 1 100 0.45
fix 1 fluid meso
fix 2 sphere rigid/meso single
1 rigid bodies with 81 atoms
fix 3 upper_wall meso/move linear +${wall_velocity} 0 0 units box
fix 3 upper_wall meso/move linear +0.01 0 0 units box
fix 4 lower_wall meso/move linear -${wall_velocity} 0 0 units box
fix 4 lower_wall meso/move linear -0.01 0 0 units box
fix 2d all enforce2d
neighbor ${skin} bin
neighbor 0.09 bin
neigh_modify delay 0 every 1 check yes
timestep ${dt}
timestep 0.001
dump dump_id all atom 100 dump.lammpstrj
thermo 100
thermo_style custom step time nbuild ndanger
run 10000
Neighbor list info ...
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 0.54
ghost atom cutoff = 0.54
binsize = 0.27, bins = 15 15 1
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair sdpd/taitwater/isothermal, perpetual
attributes: half, newton on
pair build: half/bin/atomonly/newton
stencil: half/bin/2d/newton
bin: standard
Per MPI rank memory allocation (min/avg/max) = 6.854 | 6.854 | 6.854 Mbytes
Step Time Nbuild Ndanger
0 0 0 0
100 0.1 0 0
200 0.2 0 0
300 0.3 0 0
400 0.4 1 0
500 0.5 1 0
600 0.6 1 0
700 0.7 2 0
800 0.8 2 0
900 0.9 2 0
1000 1 3 0
1100 1.1 3 0
1200 1.2 4 0
1300 1.3 4 0
1400 1.4 4 0
1500 1.5 4 0
1600 1.6 5 0
1700 1.7 5 0
1800 1.8 5 0
1900 1.9 6 0
2000 2 6 0
2100 2.1 6 0
2200 2.2 6 0
2300 2.3 7 0
2400 2.4 7 0
2500 2.5 7 0
2600 2.6 8 0
2700 2.7 8 0
2800 2.8 8 0
2900 2.9 9 0
3000 3 9 0
3100 3.1 9 0
3200 3.2 10 0
3300 3.3 10 0
3400 3.4 10 0
3500 3.5 11 0
3600 3.6 11 0
3700 3.7 11 0
3800 3.8 12 0
3900 3.9 12 0
4000 4 12 0
4100 4.1 13 0
4200 4.2 13 0
4300 4.3 13 0
4400 4.4 14 0
4500 4.5 14 0
4600 4.6 15 0
4700 4.7 15 0
4800 4.8 15 0
4900 4.9 16 0
5000 5 16 0
5100 5.1 17 0
5200 5.2 17 0
5300 5.3 17 0
5400 5.4 17 0
5500 5.5 18 0
5600 5.6 18 0
5700 5.7 18 0
5800 5.8 19 0
5900 5.9 19 0
6000 6 20 0
6100 6.1 20 0
6200 6.2 20 0
6300 6.3 21 0
6400 6.4 21 0
6500 6.5 21 0
6600 6.6 22 0
6700 6.7 22 0
6800 6.8 22 0
6900 6.9 23 0
7000 7 23 0
7100 7.1 23 0
7200 7.2 24 0
7300 7.3 24 0
7400 7.4 25 0
7500 7.5 25 0
7600 7.6 25 0
7700 7.7 25 0
7800 7.8 26 0
7900 7.9 26 0
8000 8 26 0
8100 8.1 27 0
8200 8.2 27 0
8300 8.3 27 0
8400 8.4 28 0
8500 8.5 28 0
8600 8.6 28 0
8700 8.7 29 0
8800 8.8 29 0
8900 8.9 29 0
9000 9 30 0
9100 9.1 30 0
9200 9.2 31 0
9300 9.3 31 0
9400 9.4 31 0
9500 9.5 32 0
9600 9.6 32 0
9700 9.7 32 0
9800 9.8 32 0
9900 9.9 33 0
10000 10 33 0
Loop time of 63.2372 on 4 procs for 10000 steps with 1600 atoms
Performance: 13662841.706 ns/day, 0.000 hours/ns, 158.135 timesteps/s
94.3% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 51.576 | 53.662 | 55.484 | 23.9 | 84.86
Neigh | 0.011519 | 0.012395 | 0.013405 | 0.7 | 0.02
Comm | 6.8389 | 8.5423 | 10.517 | 56.1 | 13.51
Output | 0.12342 | 0.12513 | 0.1302 | 0.8 | 0.20
Modify | 0.58708 | 0.69128 | 0.78806 | 11.3 | 1.09
Other | | 0.2038 | | | 0.32
Nlocal: 400 ave 411 max 388 min
Histogram: 1 1 0 0 0 0 0 0 0 2
Nghost: 552.25 ave 567 max 539 min
Histogram: 2 0 0 0 0 0 0 0 1 1
Neighs: 18298.8 ave 18781 max 17829 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Total # of neighbors = 73195
Ave neighs/atom = 45.7469
Neighbor list builds = 33
Dangerous builds = 0
Total wall time: 0:01:03

View File

@ -0,0 +1,49 @@
dimension 2
units micro
atom_style meso
variable R equal 0.5 # radius of sphere micrometers
variable a equal $R/5 # lattice spacing micrometers
variable L equal $R*3
variable T equal 300.
variable rho_0 equal 1. # density picograms/micrometer^3
variable c_0 equal 100. # speed of sound micrometers/microsecond
variable mu equal 1. # dynamic viscosity picogram/(micrometer-microsecond)
variable h equal $a*4.5 # kernel function cutoff micrometers
variable mass equal $a*$a*$a*${rho_0}
variable dt equal 1e-3 # timestep microseconds
variable skin equal 0.2*$h
region box block -$L $L -$L $L 0 $a units box
create_box 2 box
lattice sq $a
create_atoms 1 box
region sphere sphere 0 0 0 $R units box
set region sphere type 2
group fluid type 1
group sphere type 2
mass * ${mass}
set group all meso/rho ${rho_0}
pair_style sdpd/taitwater/isothermal $T ${mu} 76787 # temperature viscosity random_seed
pair_coeff * * ${rho_0} ${c_0} ${h}
fix 1 fluid meso
fix 2 sphere rigid/meso single
fix 2d all enforce2d
neighbor ${skin} bin
neigh_modify delay 0 every 1 check yes
timestep ${dt}
dump dump_id all atom 100 dump.lammpstrj
thermo 100
thermo_style custom step time nbuild ndanger
run 10000

View File

@ -0,0 +1,226 @@
LAMMPS (24 Oct 2018)
dimension 2
units micro
atom_style meso
variable R equal 0.5 # radius of sphere micrometers
variable a equal $R/5 # lattice spacing micrometers
variable a equal 0.5/5
variable L equal $R*3
variable L equal 0.5*3
variable T equal 300.
variable rho_0 equal 1. # density picograms/micrometer^3
variable c_0 equal 100. # speed of sound micrometers/microsecond
variable mu equal 1. # dynamic viscosity picogram/(micrometer-microsecond)
variable h equal $a*4.5 # kernel function cutoff micrometers
variable h equal 0.1*4.5
variable mass equal $a*$a*$a*${rho_0}
variable mass equal 0.1*$a*$a*${rho_0}
variable mass equal 0.1*0.1*$a*${rho_0}
variable mass equal 0.1*0.1*0.1*${rho_0}
variable mass equal 0.1*0.1*0.1*1
variable dt equal 1e-3 # timestep microseconds
variable skin equal 0.2*$h
variable skin equal 0.2*0.45
region box block -$L $L -$L $L 0 $a units box
region box block -1.5 $L -$L $L 0 $a units box
region box block -1.5 1.5 -$L $L 0 $a units box
region box block -1.5 1.5 -1.5 $L 0 $a units box
region box block -1.5 1.5 -1.5 1.5 0 $a units box
region box block -1.5 1.5 -1.5 1.5 0 0.1 units box
create_box 2 box
Created orthogonal box = (-1.5 -1.5 0) to (1.5 1.5 0.1)
1 by 1 by 1 MPI processor grid
lattice sq $a
lattice sq 0.1
Lattice spacing in x,y,z = 0.1 0.1 0.1
create_atoms 1 box
Created 900 atoms
Time spent = 0.0015769 secs
region sphere sphere 0 0 0 $R units box
region sphere sphere 0 0 0 0.5 units box
set region sphere type 2
81 settings made for type
group fluid type 1
819 atoms in group fluid
group sphere type 2
81 atoms in group sphere
mass * ${mass}
mass * 0.001
set group all meso/rho ${rho_0}
set group all meso/rho 1
900 settings made for meso/rho
pair_style sdpd/taitwater/isothermal $T ${mu} 76787 # temperature viscosity random_seed
pair_style sdpd/taitwater/isothermal 300 ${mu} 76787
pair_style sdpd/taitwater/isothermal 300 1 76787
pair_coeff * * ${rho_0} ${c_0} ${h}
pair_coeff * * 1 ${c_0} ${h}
pair_coeff * * 1 100 ${h}
pair_coeff * * 1 100 0.45
fix 1 fluid meso
fix 2 sphere rigid/meso single
1 rigid bodies with 81 atoms
fix 2d all enforce2d
neighbor ${skin} bin
neighbor 0.09 bin
neigh_modify delay 0 every 1 check yes
timestep ${dt}
timestep 0.001
dump dump_id all atom 100 dump.lammpstrj
thermo 100
thermo_style custom step time nbuild ndanger
run 10000
Neighbor list info ...
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 0.54
ghost atom cutoff = 0.54
binsize = 0.27, bins = 12 12 1
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair sdpd/taitwater/isothermal, perpetual
attributes: half, newton on
pair build: half/bin/atomonly/newton
stencil: half/bin/2d/newton
bin: standard
Per MPI rank memory allocation (min/avg/max) = 6.137 | 6.137 | 6.137 Mbytes
Step Time Nbuild Ndanger
0 0 0 0
100 0.1 0 0
200 0.2 0 0
300 0.3 0 0
400 0.4 1 0
500 0.5 1 0
600 0.6 1 0
700 0.7 2 0
800 0.8 2 0
900 0.9 2 0
1000 1 3 0
1100 1.1 3 0
1200 1.2 3 0
1300 1.3 4 0
1400 1.4 4 0
1500 1.5 4 0
1600 1.6 5 0
1700 1.7 5 0
1800 1.8 6 0
1900 1.9 6 0
2000 2 6 0
2100 2.1 7 0
2200 2.2 7 0
2300 2.3 7 0
2400 2.4 7 0
2500 2.5 8 0
2600 2.6 8 0
2700 2.7 8 0
2800 2.8 9 0
2900 2.9 9 0
3000 3 10 0
3100 3.1 10 0
3200 3.2 10 0
3300 3.3 11 0
3400 3.4 11 0
3500 3.5 11 0
3600 3.6 12 0
3700 3.7 12 0
3800 3.8 12 0
3900 3.9 13 0
4000 4 13 0
4100 4.1 13 0
4200 4.2 14 0
4300 4.3 14 0
4400 4.4 14 0
4500 4.5 15 0
4600 4.6 15 0
4700 4.7 15 0
4800 4.8 16 0
4900 4.9 16 0
5000 5 17 0
5100 5.1 17 0
5200 5.2 17 0
5300 5.3 17 0
5400 5.4 18 0
5500 5.5 18 0
5600 5.6 18 0
5700 5.7 19 0
5800 5.8 19 0
5900 5.9 19 0
6000 6 19 0
6100 6.1 20 0
6200 6.2 20 0
6300 6.3 20 0
6400 6.4 21 0
6500 6.5 21 0
6600 6.6 21 0
6700 6.7 21 0
6800 6.8 22 0
6900 6.9 22 0
7000 7 22 0
7100 7.1 23 0
7200 7.2 23 0
7300 7.3 23 0
7400 7.4 24 0
7500 7.5 24 0
7600 7.6 24 0
7700 7.7 25 0
7800 7.8 25 0
7900 7.9 26 0
8000 8 26 0
8100 8.1 26 0
8200 8.2 26 0
8300 8.3 27 0
8400 8.4 27 0
8500 8.5 27 0
8600 8.6 28 0
8700 8.7 28 0
8800 8.8 28 0
8900 8.9 29 0
9000 9 29 0
9100 9.1 29 0
9200 9.2 30 0
9300 9.3 30 0
9400 9.4 30 0
9500 9.5 30 0
9600 9.6 31 0
9700 9.7 31 0
9800 9.8 32 0
9900 9.9 32 0
10000 10 32 0
Loop time of 80.9456 on 1 procs for 10000 steps with 900 atoms
Performance: 10673829.855 ns/day, 0.000 hours/ns, 123.540 timesteps/s
99.8% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 80.306 | 80.306 | 80.306 | 0.0 | 99.21
Neigh | 0.017418 | 0.017418 | 0.017418 | 0.0 | 0.02
Comm | 0.16939 | 0.16939 | 0.16939 | 0.0 | 0.21
Output | 0.070281 | 0.070281 | 0.070281 | 0.0 | 0.09
Modify | 0.3154 | 0.3154 | 0.3154 | 0.0 | 0.39
Other | | 0.067 | | | 0.08
Nlocal: 900 ave 900 max 900 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 762 ave 762 max 762 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 40697 ave 40697 max 40697 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 40697
Ave neighs/atom = 45.2189
Neighbor list builds = 32
Dangerous builds = 0
Total wall time: 0:01:20

View File

@ -0,0 +1,226 @@
LAMMPS (24 Oct 2018)
dimension 2
units micro
atom_style meso
variable R equal 0.5 # radius of sphere micrometers
variable a equal $R/5 # lattice spacing micrometers
variable a equal 0.5/5
variable L equal $R*3
variable L equal 0.5*3
variable T equal 300.
variable rho_0 equal 1. # density picograms/micrometer^3
variable c_0 equal 100. # speed of sound micrometers/microsecond
variable mu equal 1. # dynamic viscosity picogram/(micrometer-microsecond)
variable h equal $a*4.5 # kernel function cutoff micrometers
variable h equal 0.1*4.5
variable mass equal $a*$a*$a*${rho_0}
variable mass equal 0.1*$a*$a*${rho_0}
variable mass equal 0.1*0.1*$a*${rho_0}
variable mass equal 0.1*0.1*0.1*${rho_0}
variable mass equal 0.1*0.1*0.1*1
variable dt equal 1e-3 # timestep microseconds
variable skin equal 0.2*$h
variable skin equal 0.2*0.45
region box block -$L $L -$L $L 0 $a units box
region box block -1.5 $L -$L $L 0 $a units box
region box block -1.5 1.5 -$L $L 0 $a units box
region box block -1.5 1.5 -1.5 $L 0 $a units box
region box block -1.5 1.5 -1.5 1.5 0 $a units box
region box block -1.5 1.5 -1.5 1.5 0 0.1 units box
create_box 2 box
Created orthogonal box = (-1.5 -1.5 0) to (1.5 1.5 0.1)
2 by 2 by 1 MPI processor grid
lattice sq $a
lattice sq 0.1
Lattice spacing in x,y,z = 0.1 0.1 0.1
create_atoms 1 box
Created 900 atoms
Time spent = 0.0010246 secs
region sphere sphere 0 0 0 $R units box
region sphere sphere 0 0 0 0.5 units box
set region sphere type 2
81 settings made for type
group fluid type 1
819 atoms in group fluid
group sphere type 2
81 atoms in group sphere
mass * ${mass}
mass * 0.001
set group all meso/rho ${rho_0}
set group all meso/rho 1
900 settings made for meso/rho
pair_style sdpd/taitwater/isothermal $T ${mu} 76787 # temperature viscosity random_seed
pair_style sdpd/taitwater/isothermal 300 ${mu} 76787
pair_style sdpd/taitwater/isothermal 300 1 76787
pair_coeff * * ${rho_0} ${c_0} ${h}
pair_coeff * * 1 ${c_0} ${h}
pair_coeff * * 1 100 ${h}
pair_coeff * * 1 100 0.45
fix 1 fluid meso
fix 2 sphere rigid/meso single
1 rigid bodies with 81 atoms
fix 2d all enforce2d
neighbor ${skin} bin
neighbor 0.09 bin
neigh_modify delay 0 every 1 check yes
timestep ${dt}
timestep 0.001
dump dump_id all atom 100 dump.lammpstrj
thermo 100
thermo_style custom step time nbuild ndanger
run 10000
Neighbor list info ...
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 0.54
ghost atom cutoff = 0.54
binsize = 0.27, bins = 12 12 1
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair sdpd/taitwater/isothermal, perpetual
attributes: half, newton on
pair build: half/bin/atomonly/newton
stencil: half/bin/2d/newton
bin: standard
Per MPI rank memory allocation (min/avg/max) = 6.087 | 6.087 | 6.087 Mbytes
Step Time Nbuild Ndanger
0 0 0 0
100 0.1 0 0
200 0.2 0 0
300 0.3 0 0
400 0.4 1 0
500 0.5 1 0
600 0.6 1 0
700 0.7 2 0
800 0.8 2 0
900 0.9 2 0
1000 1 3 0
1100 1.1 3 0
1200 1.2 3 0
1300 1.3 4 0
1400 1.4 4 0
1500 1.5 5 0
1600 1.6 5 0
1700 1.7 5 0
1800 1.8 6 0
1900 1.9 6 0
2000 2 6 0
2100 2.1 7 0
2200 2.2 7 0
2300 2.3 7 0
2400 2.4 8 0
2500 2.5 8 0
2600 2.6 8 0
2700 2.7 9 0
2800 2.8 9 0
2900 2.9 9 0
3000 3 9 0
3100 3.1 10 0
3200 3.2 10 0
3300 3.3 10 0
3400 3.4 11 0
3500 3.5 11 0
3600 3.6 11 0
3700 3.7 12 0
3800 3.8 12 0
3900 3.9 12 0
4000 4 13 0
4100 4.1 13 0
4200 4.2 13 0
4300 4.3 14 0
4400 4.4 14 0
4500 4.5 15 0
4600 4.6 15 0
4700 4.7 15 0
4800 4.8 16 0
4900 4.9 16 0
5000 5 16 0
5100 5.1 16 0
5200 5.2 17 0
5300 5.3 17 0
5400 5.4 18 0
5500 5.5 18 0
5600 5.6 19 0
5700 5.7 19 0
5800 5.8 19 0
5900 5.9 20 0
6000 6 20 0
6100 6.1 20 0
6200 6.2 21 0
6300 6.3 21 0
6400 6.4 21 0
6500 6.5 22 0
6600 6.6 22 0
6700 6.7 22 0
6800 6.8 23 0
6900 6.9 23 0
7000 7 23 0
7100 7.1 24 0
7200 7.2 24 0
7300 7.3 24 0
7400 7.4 25 0
7500 7.5 25 0
7600 7.6 25 0
7700 7.7 26 0
7800 7.8 26 0
7900 7.9 26 0
8000 8 27 0
8100 8.1 27 0
8200 8.2 27 0
8300 8.3 28 0
8400 8.4 28 0
8500 8.5 28 0
8600 8.6 28 0
8700 8.7 29 0
8800 8.8 29 0
8900 8.9 29 0
9000 9 30 0
9100 9.1 30 0
9200 9.2 31 0
9300 9.3 31 0
9400 9.4 31 0
9500 9.5 31 0
9600 9.6 32 0
9700 9.7 32 0
9800 9.8 32 0
9900 9.9 33 0
10000 10 33 0
Loop time of 69.01 on 4 procs for 10000 steps with 900 atoms
Performance: 12519931.275 ns/day, 0.000 hours/ns, 144.907 timesteps/s
48.7% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 56.528 | 57.936 | 58.729 | 11.0 | 83.95
Neigh | 0.013157 | 0.013382 | 0.013551 | 0.1 | 0.02
Comm | 8.9594 | 9.7555 | 11.113 | 26.7 | 14.14
Output | 0.14644 | 0.15009 | 0.15809 | 1.2 | 0.22
Modify | 0.72913 | 0.91574 | 1.0524 | 12.4 | 1.33
Other | | 0.2389 | | | 0.35
Nlocal: 225 ave 229 max 223 min
Histogram: 1 2 0 0 0 0 0 0 0 1
Nghost: 442 ave 444 max 439 min
Histogram: 1 0 0 0 1 0 0 0 0 2
Neighs: 10188.8 ave 10437 max 9932 min
Histogram: 1 0 0 1 0 0 0 1 0 1
Total # of neighbors = 40755
Ave neighs/atom = 45.2833
Neighbor list builds = 33
Dangerous builds = 0
Total wall time: 0:01:09

24
examples/USER/sdpd/README Normal file
View File

@ -0,0 +1,24 @@
Smoothed Dissipative Particle Dynamics examples
equipartition-verification:
This example verifies the equipartition theorem.
It simulates a periodic box of water with no solid bodies.
If equipartition theorem holds true, the average of each component of
translational kinetic energy should be equal to k_B T, and therefore
vx_sq_check, vy_sq_check, and vz_sq_check should fluctuate near 1.
2d-diffusion:
This example demonstrates the free diffusion of a disk in 2D.
The 3D simulation is similar but takes much longer to complete.
As with other statistical experiments you need an ensemble to
extract meaningful average quantities.
For a more realistic simulation you should increase the resolution
of the disk/sphere which also necessitates reduction of timestep.
2d-diffusion-in-shear-flow:
This example demonstrates the diffusion of a disk in shear flow in 2D.
The 3D simulation is similar but takes much longer to complete.
As with other statistical experiments you need an ensemble to
extract meaningful average quantities.
For a more realistic simulation you should increase the resolution
of the disk/sphere which also necessitates reduction of timestep.

View File

@ -0,0 +1,45 @@
dimension 3
units micro
atom_style meso
variable a equal 0.1 # lattice spacing micrometers
variable L equal $a*10
variable T equal 300.
variable kB equal 1.3806504e-8 # picogram-micrometer^2/(microsecond^2-Kelvin)
variable rho_0 equal 1. # density picograms/micrometer^3
variable c_0 equal 10. # speed of sound micrometers/microsecond
variable mu equal 1. # dynamic viscosity picogram/(micrometer-microsecond)
variable h equal $a*4.0 # kernel function cutoff micrometers
variable mass equal $a*$a*$a*${rho_0}
variable dt equal 5e-4 # timestep microseconds
variable skin equal 0.1*$h
region box block -$L $L -$L $L -$L $L units box
create_box 1 box
lattice sc $a
create_atoms 1 box
mass * ${mass}
set group all meso/rho ${rho_0}
pair_style sdpd/taitwater/isothermal $T ${mu} 76787 # temperature viscosity random_seed
pair_coeff * * ${rho_0} ${c_0} ${h}
variable vx_sq atom vx*vx
variable vy_sq atom vy*vy
variable vz_sq atom vz*vz
compute v_sq all reduce ave v_vx_sq v_vy_sq v_vz_sq
variable vx_sq_check equal c_v_sq[1]*${mass}/${kB}/$T
variable vy_sq_check equal c_v_sq[2]*${mass}/${kB}/$T
variable vz_sq_check equal c_v_sq[3]*${mass}/${kB}/$T
fix 1 all meso
neighbor ${skin} bin
timestep ${dt}
thermo 10
thermo_style custom step time v_vx_sq_check v_vy_sq_check v_vz_sq_check
run 200

View File

@ -0,0 +1,146 @@
LAMMPS (24 Oct 2018)
dimension 3
units micro
atom_style meso
variable a equal 0.1 # lattice spacing micrometers
variable L equal $a*10
variable L equal 0.1*10
variable T equal 300.
variable kB equal 1.3806504e-8 # picogram-micrometer^2/(microsecond^2-Kelvin)
variable rho_0 equal 1. # density picograms/micrometer^3
variable c_0 equal 10. # speed of sound micrometers/microsecond
variable mu equal 1. # dynamic viscosity picogram/(micrometer-microsecond)
variable h equal $a*4.0 # kernel function cutoff micrometers
variable h equal 0.1*4.0
variable mass equal $a*$a*$a*${rho_0}
variable mass equal 0.1*$a*$a*${rho_0}
variable mass equal 0.1*0.1*$a*${rho_0}
variable mass equal 0.1*0.1*0.1*${rho_0}
variable mass equal 0.1*0.1*0.1*1
variable dt equal 5e-4 # timestep microseconds
variable skin equal 0.1*$h
variable skin equal 0.1*0.4
region box block -$L $L -$L $L -$L $L units box
region box block -1 $L -$L $L -$L $L units box
region box block -1 1 -$L $L -$L $L units box
region box block -1 1 -1 $L -$L $L units box
region box block -1 1 -1 1 -$L $L units box
region box block -1 1 -1 1 -1 $L units box
region box block -1 1 -1 1 -1 1 units box
create_box 1 box
Created orthogonal box = (-1 -1 -1) to (1 1 1)
1 by 1 by 1 MPI processor grid
lattice sc $a
lattice sc 0.1
Lattice spacing in x,y,z = 0.1 0.1 0.1
create_atoms 1 box
Created 8000 atoms
Time spent = 0.00285411 secs
mass * ${mass}
mass * 0.001
set group all meso/rho ${rho_0}
set group all meso/rho 1
8000 settings made for meso/rho
pair_style sdpd/taitwater/isothermal $T ${mu} 76787 # temperature viscosity random_seed
pair_style sdpd/taitwater/isothermal 300 ${mu} 76787
pair_style sdpd/taitwater/isothermal 300 1 76787
pair_coeff * * ${rho_0} ${c_0} ${h}
pair_coeff * * 1 ${c_0} ${h}
pair_coeff * * 1 10 ${h}
pair_coeff * * 1 10 0.4
variable vx_sq atom vx*vx
variable vy_sq atom vy*vy
variable vz_sq atom vz*vz
compute v_sq all reduce ave v_vx_sq v_vy_sq v_vz_sq
variable vx_sq_check equal c_v_sq[1]*${mass}/${kB}/$T
variable vx_sq_check equal c_v_sq[1]*0.001/${kB}/$T
variable vx_sq_check equal c_v_sq[1]*0.001/1.3806504e-08/$T
variable vx_sq_check equal c_v_sq[1]*0.001/1.3806504e-08/300
variable vy_sq_check equal c_v_sq[2]*${mass}/${kB}/$T
variable vy_sq_check equal c_v_sq[2]*0.001/${kB}/$T
variable vy_sq_check equal c_v_sq[2]*0.001/1.3806504e-08/$T
variable vy_sq_check equal c_v_sq[2]*0.001/1.3806504e-08/300
variable vz_sq_check equal c_v_sq[3]*${mass}/${kB}/$T
variable vz_sq_check equal c_v_sq[3]*0.001/${kB}/$T
variable vz_sq_check equal c_v_sq[3]*0.001/1.3806504e-08/$T
variable vz_sq_check equal c_v_sq[3]*0.001/1.3806504e-08/300
fix 1 all meso
neighbor ${skin} bin
neighbor 0.04 bin
timestep ${dt}
timestep 0.0005
thermo 10
thermo_style custom step time v_vx_sq_check v_vy_sq_check v_vz_sq_check
run 200
Neighbor list info ...
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 0.44
ghost atom cutoff = 0.44
binsize = 0.22, bins = 10 10 10
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair sdpd/taitwater/isothermal, perpetual
attributes: half, newton on
pair build: half/bin/atomonly/newton
stencil: half/bin/3d/newton
bin: standard
Per MPI rank memory allocation (min/avg/max) = 13.54 | 13.54 | 13.54 Mbytes
Step Time v_vx_sq_check v_vy_sq_check v_vz_sq_check
0 0 0 0 0
10 0.005 0.70973271 0.71495693 0.71910087
20 0.01 0.90418096 0.88845437 0.89659567
30 0.015 0.9590736 0.97880338 0.9619016
40 0.02 0.98533774 0.96057682 0.95600448
50 0.025 0.96433662 0.96650071 0.95509683
60 0.03 0.96598029 0.96373656 0.96734888
70 0.035 0.95433045 0.98004764 0.96255924
80 0.04 0.97872906 0.95987289 0.96623598
90 0.045 0.99913888 0.99255731 0.95616142
100 0.05 0.98872675 0.97141018 0.95338841
110 0.055 0.97794592 0.97389258 0.98473719
120 0.06 0.98389266 0.96716284 0.95504862
130 0.065 0.98572886 0.96680923 0.95599065
140 0.07 0.97602684 0.97580081 0.9886878
150 0.075 0.99172003 0.95027467 0.96028033
160 0.08 0.96793247 0.94590928 0.95644301
170 0.085 0.94167619 0.98048861 0.93439426
180 0.09 0.97277934 0.97383622 0.96900866
190 0.095 0.96647288 1.0027643 0.96230782
200 0.1 0.94864291 0.95902585 0.96398175
Loop time of 60.1095 on 1 procs for 200 steps with 8000 atoms
Performance: 143737.595 ns/day, 0.000 hours/ns, 3.327 timesteps/s
99.7% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 59.92 | 59.92 | 59.92 | 0.0 | 99.68
Neigh | 0 | 0 | 0 | 0.0 | 0.00
Comm | 0.11154 | 0.11154 | 0.11154 | 0.0 | 0.19
Output | 0.0063498 | 0.0063498 | 0.0063498 | 0.0 | 0.01
Modify | 0.043546 | 0.043546 | 0.043546 | 0.0 | 0.07
Other | | 0.02811 | | | 0.05
Nlocal: 8000 ave 8000 max 8000 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 16389 ave 16389 max 16389 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 1.456e+06 ave 1.456e+06 max 1.456e+06 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 1456000
Ave neighs/atom = 182
Neighbor list builds = 0
Dangerous builds = 0
Total wall time: 0:01:00

View File

@ -0,0 +1,146 @@
LAMMPS (24 Oct 2018)
dimension 3
units micro
atom_style meso
variable a equal 0.1 # lattice spacing micrometers
variable L equal $a*10
variable L equal 0.1*10
variable T equal 300.
variable kB equal 1.3806504e-8 # picogram-micrometer^2/(microsecond^2-Kelvin)
variable rho_0 equal 1. # density picograms/micrometer^3
variable c_0 equal 10. # speed of sound micrometers/microsecond
variable mu equal 1. # dynamic viscosity picogram/(micrometer-microsecond)
variable h equal $a*4.0 # kernel function cutoff micrometers
variable h equal 0.1*4.0
variable mass equal $a*$a*$a*${rho_0}
variable mass equal 0.1*$a*$a*${rho_0}
variable mass equal 0.1*0.1*$a*${rho_0}
variable mass equal 0.1*0.1*0.1*${rho_0}
variable mass equal 0.1*0.1*0.1*1
variable dt equal 5e-4 # timestep microseconds
variable skin equal 0.1*$h
variable skin equal 0.1*0.4
region box block -$L $L -$L $L -$L $L units box
region box block -1 $L -$L $L -$L $L units box
region box block -1 1 -$L $L -$L $L units box
region box block -1 1 -1 $L -$L $L units box
region box block -1 1 -1 1 -$L $L units box
region box block -1 1 -1 1 -1 $L units box
region box block -1 1 -1 1 -1 1 units box
create_box 1 box
Created orthogonal box = (-1 -1 -1) to (1 1 1)
1 by 2 by 2 MPI processor grid
lattice sc $a
lattice sc 0.1
Lattice spacing in x,y,z = 0.1 0.1 0.1
create_atoms 1 box
Created 8000 atoms
Time spent = 0.00252754 secs
mass * ${mass}
mass * 0.001
set group all meso/rho ${rho_0}
set group all meso/rho 1
8000 settings made for meso/rho
pair_style sdpd/taitwater/isothermal $T ${mu} 76787 # temperature viscosity random_seed
pair_style sdpd/taitwater/isothermal 300 ${mu} 76787
pair_style sdpd/taitwater/isothermal 300 1 76787
pair_coeff * * ${rho_0} ${c_0} ${h}
pair_coeff * * 1 ${c_0} ${h}
pair_coeff * * 1 10 ${h}
pair_coeff * * 1 10 0.4
variable vx_sq atom vx*vx
variable vy_sq atom vy*vy
variable vz_sq atom vz*vz
compute v_sq all reduce ave v_vx_sq v_vy_sq v_vz_sq
variable vx_sq_check equal c_v_sq[1]*${mass}/${kB}/$T
variable vx_sq_check equal c_v_sq[1]*0.001/${kB}/$T
variable vx_sq_check equal c_v_sq[1]*0.001/1.3806504e-08/$T
variable vx_sq_check equal c_v_sq[1]*0.001/1.3806504e-08/300
variable vy_sq_check equal c_v_sq[2]*${mass}/${kB}/$T
variable vy_sq_check equal c_v_sq[2]*0.001/${kB}/$T
variable vy_sq_check equal c_v_sq[2]*0.001/1.3806504e-08/$T
variable vy_sq_check equal c_v_sq[2]*0.001/1.3806504e-08/300
variable vz_sq_check equal c_v_sq[3]*${mass}/${kB}/$T
variable vz_sq_check equal c_v_sq[3]*0.001/${kB}/$T
variable vz_sq_check equal c_v_sq[3]*0.001/1.3806504e-08/$T
variable vz_sq_check equal c_v_sq[3]*0.001/1.3806504e-08/300
fix 1 all meso
neighbor ${skin} bin
neighbor 0.04 bin
timestep ${dt}
timestep 0.0005
thermo 10
thermo_style custom step time v_vx_sq_check v_vy_sq_check v_vz_sq_check
run 200
Neighbor list info ...
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 0.44
ghost atom cutoff = 0.44
binsize = 0.22, bins = 10 10 10
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair sdpd/taitwater/isothermal, perpetual
attributes: half, newton on
pair build: half/bin/atomonly/newton
stencil: half/bin/3d/newton
bin: standard
Per MPI rank memory allocation (min/avg/max) = 5.795 | 5.795 | 5.795 Mbytes
Step Time v_vx_sq_check v_vy_sq_check v_vz_sq_check
0 0 0 0 0
10 0.005 0.71224819 0.71470372 0.7008956
20 0.01 0.90627589 0.90683966 0.90116506
30 0.015 0.938505 0.95884272 0.93337542
40 0.02 0.94394649 0.93668038 0.96468004
50 0.025 0.97152309 0.97546161 0.95107762
60 0.03 0.94710871 0.95678322 0.97285504
70 0.035 0.96253148 0.95838642 0.95450883
80 0.04 0.97581495 0.95278681 0.95099478
90 0.045 0.96251614 0.9740684 0.96081505
100 0.05 0.94191275 0.97137523 0.94084858
110 0.055 0.953406 0.95739684 0.98574522
120 0.06 0.99001614 0.99608287 0.9839996
130 0.065 0.96575225 0.94309655 0.92847798
140 0.07 0.97642687 0.97458638 0.94696406
150 0.075 0.99316381 0.96876814 0.95440106
160 0.08 0.94589744 0.95264791 0.95495169
170 0.085 0.97599092 0.95336014 0.97687718
180 0.09 0.97214242 0.9726305 0.9726035
190 0.095 0.97577583 0.96523645 0.9756968
200 0.1 0.96386053 0.97268854 0.94582436
Loop time of 32.5247 on 4 procs for 200 steps with 8000 atoms
Performance: 265644.515 ns/day, 0.000 hours/ns, 6.149 timesteps/s
73.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 27.385 | 28.409 | 28.761 | 11.1 | 87.34
Neigh | 0 | 0 | 0 | 0.0 | 0.00
Comm | 3.582 | 3.9343 | 4.9531 | 29.7 | 12.10
Output | 0.022267 | 0.026073 | 0.033141 | 2.7 | 0.08
Modify | 0.031714 | 0.033134 | 0.034367 | 0.6 | 0.10
Other | | 0.1226 | | | 0.38
Nlocal: 2000 ave 2000 max 2000 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Nghost: 8469 ave 8469 max 8469 min
Histogram: 4 0 0 0 0 0 0 0 0 0
Neighs: 364000 ave 376628 max 351184 min
Histogram: 1 0 1 0 0 0 0 1 0 1
Total # of neighbors = 1456000
Ave neighs/atom = 182
Neighbor list builds = 0
Dangerous builds = 0
Total wall time: 0:00:32

Some files were not shown because too many files have changed in this diff Show More