Compare commits

...

286 Commits

Author SHA1 Message Date
49e83b4348 patch 21Feb17 sync with GHub 2017-02-21 16:07:26 -07:00
6e89ccd522 Merge pull request #385 from akohlmey/collected-small-bugfixes
collected small bugfixes and updates
2017-02-21 15:59:06 -07:00
53f3df5bfc Merge pull request #384 from lammps/another_neigh_refactor
more neighbor list changes, some new options
2017-02-21 15:57:23 -07:00
3dbbea342a remove a debug print line 2017-02-21 15:57:03 -07:00
b70c670aac Merge pull request #383 from stanmoore1/rshan_class2_kk
Kokkos version of class2 bond, angle, dihedral, and improper from Ray Shan
2017-02-21 15:52:10 -07:00
1d17cae407 Merge pull request #382 from timattox/master_kokkos_neigh_bugfix
neighbor_kokkos.cpp: Don't call grow() on neighbor lists that are copies
2017-02-21 15:51:35 -07:00
429264a12b Merge pull request #380 from hheenen/core_shell_documentation
updated documentation and examples for coreshell
2017-02-21 15:50:53 -07:00
d001a09345 Merge pull request #379 from ndtrung81/pppm-gpu-compute-group-group
Fixed bugs with pppm/gpu when used with compute group/group
2017-02-21 15:50:28 -07:00
cb9d42da08 Merge pull request #378 from timattox/USER-DPD_ssa_update
USER-DPD: performance optimizations to ssa_update() in fix_shardlow
2017-02-21 15:50:07 -07:00
7185ec92b3 Merge pull request #377 from stanmoore1/kokkos_update
Kokkos library update
2017-02-21 15:49:50 -07:00
1cd4c48ccc new SNAP potential for W 2017-02-21 15:49:21 -07:00
a88136c3f5 correct a logic bug in fix wall/gran/region 2017-02-17 17:58:24 -05:00
ce20c7ffe9 remove debug code 2017-02-17 12:42:07 -05:00
4a80df3a99 more neighbor list changes, some new options 2017-02-15 16:45:33 -07:00
5f93fad012 Add copymode protection to class2 styles 2017-02-15 13:56:16 -07:00
ccaec315db Updating docs for Kokkos class2 2017-02-15 13:00:33 -07:00
c6c1852b3b Fix a few issues with Kokkos class2 files 2017-02-15 12:44:54 -07:00
69a8e19dc5 Add files from Ray Shan for Kokkos version of class2 angle, bond, etc. 2017-02-15 12:29:52 -07:00
928947dcea neighbor_kokkos.cpp: Don't call grow() on neighbor lists that are copies.
This corresponds to a bugfix from commit 9161bd98 on neighbor.cpp
2017-02-15 11:49:34 -05:00
48070011d9 update names in example, too 2017-02-14 07:42:36 -05:00
0fb8dacc00 one more Finchham to Fincham change 2017-02-14 07:41:05 -05:00
6b923476b9 updated documentation and examples for coreshell 2017-02-14 13:14:22 +01:00
20806dd86a Fixed bugs with pppm/gpu when used with compute group/group 2017-02-14 00:26:55 -06:00
90e5ae965d Add missing flags to Kokkos Makefile 2017-02-13 11:19:46 -07:00
15008c9d18 USER-DPD: performance optimizations to ssa_update() in fix_shardlow
Overall improvements range from 2% to 18% on our benchmarks
1) Newton has to be turned on for SSA, so remove those conditionals
2) Rework the math in ssa_update() to eliminate many ops and temporaries
3) Split ssa_update() into two versions, based on DPD vs. DPDE
4) Reorder code in ssa_update_*() to reduce register pressure
2017-02-13 13:11:19 -05:00
33af7ab248 Remove merge line 2017-02-13 10:59:22 -07:00
8f9b2aca06 Removing unused files in Kokkos lib 2017-02-13 10:53:51 -07:00
383da816c2 Updating Kokkos lib 2017-02-13 10:50:34 -07:00
cb982f2f28 sync 13Feb17 patch back to GH 2017-02-13 09:05:03 -07:00
4843296d4e Merge pull request #372 from akohlmey/fft-cleanup
simplify FFT3d code by removing support for outdated FFT libraries
2017-02-13 08:53:13 -07:00
2bdda8f6c0 patch 12Feb17 - change int to tagint for compute group/group 2017-02-13 08:40:54 -07:00
0068ef5616 added molecule option to compute group/group command 2017-02-10 09:25:32 -07:00
02b0e6cc55 Merge pull request #375 from akohlmey/small-updates-and-fixes
Small updates and fixes
2017-02-10 09:23:51 -07:00
fbb24c2406 Merge pull request #374 from agiliopadua/master
Updated polarizer.py in USER-DRUDE to use coul/long/cs
2017-02-10 09:22:22 -07:00
a5f830c40c fix typo
(cherry picked from commit 6410797697)
2017-02-08 14:33:45 -05:00
8c074a363a Merge branch 'master' into small-updates-and-fixes 2017-02-08 14:32:44 -05:00
27aca14094 Updated polarizer.py to use coul/long/cs 2017-02-04 15:02:08 +01:00
191453e1c7 Merge branch 'master' into fft-cleanup 2017-02-03 16:53:10 -05:00
207adc3968 Merge pull request #373 from stanmoore1/kk_more_bugfixes
Fixing Kokkos per-atom energy/virial issues
2017-02-03 14:45:31 -07:00
84c517159d Merge pull request #368 from Pakketeretet2/kokkos_morse
Kokkos morse
2017-02-03 14:45:07 -07:00
6ca377436f Merge pull request #366 from rbberger/kokkos_lammps_bigbig_fix
Fix data type of molecule array in npair_kokkos.h
2017-02-03 14:43:33 -07:00
dc34a32602 Merge pull request #362 from ibaned/warnings2
fix Kokkos+kspace warnings
2017-02-03 14:43:12 -07:00
067119f6c6 Adding missing friend statement to pair_lj_class2_coul_cut_kokkos 2017-02-02 15:21:30 -07:00
1834a5e46c Fixing more Kokkos per-atom and fdotr issues 2017-02-02 15:21:21 -07:00
6a4918b39a Fixing typo in pair_buck_coul_cut_kokkos 2017-02-02 15:21:05 -07:00
5da0d39392 Fixing fdotr in pair_buck_coul_cut_kokkos 2017-02-02 13:35:51 -07:00
6f92429602 Fixing per-atom ev issue 2017-02-02 13:34:27 -07:00
38e0e4bb69 Add missing typedef in Kokkos pair styles 2017-02-02 13:24:05 -07:00
daf9f95381 Fixing Kokkos per-atom e/v issue 2017-02-02 13:09:52 -07:00
6595fde0a1 explain in more detail the handling of error checking for numerical inputs 2017-02-02 11:58:12 -05:00
6bcec9c61d Merge pull request #2 from stanmoore1/kk_tag_bugfixes
Fixing tagint and imageint issues in Kokkos package
2017-02-02 08:57:21 -05:00
9d1991bf84 remove support for obsolete legacy FFT libraries and point -DFFT_FFTW to FFTW3 2017-02-02 08:10:23 -05:00
0a87b7443a Updated contributing authors and docs 2017-02-02 13:42:47 +01:00
7ee45ec5f3 Fixing tagint and imageint issues in Kokkos package 2017-02-01 11:52:27 -07:00
d4c9e2500b Ported Morse to KOKKOS 2017-02-01 17:45:21 +01:00
6232073d3b Removed traces of pair morse/kk 2017-02-01 17:39:37 +01:00
ed59193d13 Removed traces of pair morse/kk 2017-02-01 17:39:06 +01:00
67bed8e853 Merge pull request #1 from akohlmey/tagint-issue
Fix additional tagint issue in fix qeq/reax/kk
2017-01-31 18:34:35 -05:00
bcb1d94b9a silence compiler warning about dead code 2017-01-31 18:28:04 -05:00
fbe30b5683 correct issue with compiling for -DLAMMPS_BIGBIG in fix qeq/reax/kk 2017-01-31 18:13:44 -05:00
9ef55fedf7 Merge branch 'kokkos_lammps_bigbig_fix' of https://github.com/rbberger/lammps into tagint-issue 2017-01-31 17:23:51 -05:00
997142a4c1 Merge pull request #364 from stanmoore1/kk_triclinic_neighlist
Add triclinic neighbor list support to Kokkos
2017-01-30 07:27:02 -07:00
033b07fdb7 Merge pull request #363 from ibaned/obey-datamask
Fix GPU sync bugs
2017-01-30 07:26:49 -07:00
51a0b6b445 Fix data type of molecule array in npair_kokkos.h
This showed up when trying to compile with -DLAMMPS_BIGBIG.
Fixes issue #365
2017-01-28 07:49:08 -05:00
59f4a77dd5 Whitespace change to npair_kokkos 2017-01-27 15:17:39 -07:00
579cc6d7aa More tweaks to npair_kokkos for triclinic 2017-01-27 15:13:37 -07:00
5afd3e995b Adding support to npair_kokkos for triclinic-newton-on neighborlists 2017-01-27 14:18:01 -07:00
2a6f5e651c more preference of datamask over custom sync
see commit 09fc8b0 for details on why
2017-01-27 09:35:55 -07:00
09fc8b0bd7 kspace & dihedral can't do their own sync/modify
because the verlet_kokkos system has
a "clever" optimization which will
alter the datamasks before calling sync/modify,
so the datamask framework must be
strictly obeyed for GPU correctness.
(the optimization is to concurrently
compute forces on the host and GPU,
and add them up at the end of an iteration.
calling your own sync will overwrite
the partial GPU forces with the
partial host forces).
2017-01-27 08:39:55 -07:00
e5d0bde783 pppm_kokkos: remove useless statement 2017-01-27 08:35:37 -07:00
9daf7fb650 pppm_kokkos: don't shadow member variables 2017-01-27 08:35:37 -07:00
b5d622c6a3 pppm_kokkos: remove unused variables 2017-01-27 08:35:37 -07:00
2023fa28e0 consistent #ifdefs for fft3d variable (2)
this variable is only used when FFTW3
is enabled, so its declaration and
initialization should be protected
under the same conditions to avoid
compiler warnings
2017-01-27 08:35:37 -07:00
5b29515849 fft3d: use C++ loop declarations
the variable (offset) is only
used in a subset of numerous
scenarios with #ifdef, it seems
better just to have each loop
declare it as needed.
(avoids compiler warnings)
2017-01-27 08:35:37 -07:00
5b18421dd2 fft3d : remove unused variables 2017-01-27 08:35:37 -07:00
cf95ea0709 fft3d: only declare variables when used
avoids compiler warnings
2017-01-27 08:35:36 -07:00
6a74a81da0 consistent #ifdefs for fft3d variable
this variable is only used when FFTW3
is enabled, so its declaration and
initialization should be protected
under the same conditions to avoid
compiler warnings
2017-01-27 08:35:36 -07:00
f0a4ed615d add missing KOKKOS_INLINE_FUNCTION for params 2017-01-27 08:35:36 -07:00
cfe818a175 remove unused variables from fix_cmap 2017-01-27 08:35:36 -07:00
f8506fee23 sync GHub with SVN 2017-01-26 14:06:43 -07:00
18e5584311 Merge pull request #354 from stanmoore1/kokkos_bugfixes
Kokkos bugfixes
2017-01-26 13:51:47 -07:00
851f80464f Merge pull request #361 from akohlmey/user-omp-fix-per-atom-data
fix USER-OMP bug on per-atom data with hybrid styles
2017-01-26 13:50:13 -07:00
5971d4c994 Merge pull request #358 from ibaned/warnings
warning fixes (Kokkos+CUDA)
2017-01-26 13:49:56 -07:00
868d95f0a5 Merge pull request #352 from akohlmey/fix-skip-with-ghost-issue
Fix skip with ghost issue
2017-01-26 13:47:12 -07:00
a5ff35435a Merge pull request #351 from timattox/USER-DPD_pair_exp6_bugfix
USER-DPD: Possible uninitialized variable in pair_exp6_rx.cpp bugfix.
2017-01-26 13:45:45 -07:00
8b7bd9d88e fix bug where per atom data for USER-OMP was reducing the wrong arrays with hybrid styles 2017-01-26 14:59:10 -05:00
672bbbe494 add more missing KOKKOS_INLINE_FUNCTION attributes 2017-01-25 16:03:11 -07:00
03c9c46533 add missing KOKKOS_INLINE_FUNCTION attributes 2017-01-25 15:49:05 -07:00
e992bfe510 remove unused variable 2017-01-25 15:40:52 -07:00
053ee54a27 remove unused variable 2017-01-25 15:38:41 -07:00
1074c6734b add missing return keywords 2017-01-25 15:37:27 -07:00
60b48c9d66 add missing KOKKOS_INLINE_FUNCTION attributes
this structure gets put inside a DualView,
so these members need to be able to execute
on the GPU
2017-01-25 15:36:24 -07:00
3d40b51708 remove unused variable 2017-01-25 15:24:52 -07:00
effbe18c46 fix domain boundary indexing
the compiler pointed out that
boundary[2][2] doesn't exist.
If I understand this correctly,
those checks should be against
boundary[*][0].
2017-01-25 15:24:01 -07:00
6328beb7d7 fix double-return warning
this #ifdef adds a return statement
for little endian machines, but leaves
the old one, which the compiler comlains
is unreachable. this commit combines
the conditionals so we can use #else
2017-01-25 15:22:42 -07:00
26c8d3d98f Fixing GPU memory issue in fix_langevin_kokkos 2017-01-25 12:53:55 -07:00
73177d650d Fixing GPU memory issue in domain_kokkos 2017-01-25 11:18:03 -07:00
b5cb74bd33 skip list build is compatible with NP_GHOST 2017-01-23 19:21:48 -05:00
31976d1dee skip list definition was missing NP_HALFFULL flag 2017-01-23 19:20:05 -05:00
c8260af37c Possible uninitialized variable in USER-DPD/pair_exp6_rx.cpp bugfix.
Added explicit initialization (to zero) for several variables inside the
inner j-loop to avoid using them uninitialized or from prior iterations
within rmOldij_12 == 0.
2017-01-23 13:34:51 -05:00
caea8973a3 add neighbor list kind output to screen 2017-01-20 13:24:09 -07:00
aa0ad9b483 Merge pull request #349 from akohlmey/collected-small-fixes
collected fixes and improvements
2017-01-20 13:19:43 -07:00
5d0e4e1ba9 Merge pull request #346 from stanmoore1/kokkos_fixes
Kokkos fixes
2017-01-20 13:15:16 -07:00
f8d3c4c740 Merge pull request #345 from timattox/USER-DPD_another_zero_compute
USER-DPD another zero compute optimization
2017-01-20 13:14:59 -07:00
e6996121d1 remove dead code 2017-01-20 14:30:46 -05:00
fbfb1df5eb fix typo causing wrong neighbor list copy selections 2017-01-19 20:47:10 -05:00
9a299875da simplified neighbor list copying to avoid possible same-timestep re-build issues 2017-01-19 17:01:15 -07:00
fc94f1bd18 Fixing GPU memory issues in Kokkos 2017-01-19 12:14:25 -07:00
5ce8e2fbae Fixing GPU memory issue in modify_kokkos, need to cherry pick back to Master 2017-01-19 12:13:48 -07:00
f6cd98636b USER-DPD: Also apply "check if a0 is zero" optimization to pair_dpd_fdt
This relates to commit 4eb08a5822 that was applied to pair_dpd_fdt_energy
2017-01-18 16:17:11 -05:00
05cafb716f USER-DPD: cleanup initialization of splitFDT_flag in pair_dpd_fdt.cpp 2017-01-18 15:51:50 -05:00
3af4b3c28c Merge pull request #337 from ohenrich/user-cgdna
Added source code and documentation for USER-CGDNA
2017-01-18 11:31:35 -07:00
7fc0970587 Merge pull request #344 from timattox/USER-DPD_zero_compute
USER-DPD: Skip a0*stuff computations, if a0 was set to zero in pair_coeff
2017-01-18 11:31:14 -07:00
93262b52b4 Merge pull request #343 from timattox/USER-DPD_bugfix_molecule
USER-DPD: bugfix for a segfault when using MOLECULE and DPD together.
2017-01-18 11:30:58 -07:00
4eb08a5822 USER-DPD: Skip a0*stuff computations, if a0 was set to zero in pair_coeff.
This saves around 10% of the runtime for many of our tests using SSA.
2017-01-17 15:55:39 -05:00
01609f55e2 USER-DPD: bugfix for a segfault when using MOLECULE and DPD together. 2017-01-17 12:47:59 -05:00
d2fc88a626 patch 17Jan17 2017-01-17 10:14:53 -07:00
c52a26382f Merge pull request #339 from akohlmey/fixes-for-srp-example
Fixes for srp example
2017-01-17 09:36:28 -07:00
ad4d299975 Merge pull request #335 from stanmoore1/neighbor_fixes
Neighbor fixes
2017-01-17 09:33:25 -07:00
83408b195f Merge pull request #342 from epfl-cosmo/ipi-multiinit-bug
Bugfix in the fix_ipi initialization - prevents multiple open_socket calls
2017-01-17 09:14:03 -07:00
cd7bdf9251 Merge pull request #341 from stanmoore1/qeq_kk_neighlist
Make fix_qeq_reax_kokkos request its own neighbor list
2017-01-17 09:13:47 -07:00
8c5b108900 Merge pull request #340 from stanmoore1/fix_rx_neighborlist
Make fix_rx request its own neighbor list
2017-01-17 09:13:27 -07:00
c19d2011bb Merge pull request #334 from sstrong99/flow_gauss_changeRef
Updated the reference for the flow/gauss method
2017-01-17 09:12:22 -07:00
973bef4d45 Merge pull request #332 from akohlmey/coord-atom-orientorder-atom-enhancements
Coord atom orientorder atom enhancements
2017-01-17 09:11:45 -07:00
1b9e50c8cb Merge pull request #331 from timattox/USER-DPD_fix_example_typo
USER-DPD: fix a typo in the DPD-H example input; update reference output.
2017-01-17 09:08:14 -07:00
252e07e083 Merge pull request #330 from akohlmey/collected-small-bugfixes
Collected small bugfixes
2017-01-17 09:08:00 -07:00
74a661ae26 Merge pull request #328 from akohlmey/print-last-command-on-error
print the last input line, when error->all() is called
2017-01-17 09:05:19 -07:00
d8bc590aaf Merge pull request #327 from stanmoore1/kokkos_lib_update
Updating Kokkos lib
2017-01-17 09:04:12 -07:00
c9bea60710 Merge pull request #326 from Pakketeretet2/github-tutorial-update
Updated images of succesful merge.
2017-01-17 09:03:46 -07:00
5cd856c97f fix spring doc page update 2017-01-17 09:02:56 -07:00
2f13365cf5 avoid spurious error message, when no storage fix is active/used 2017-01-16 17:08:00 -05:00
0a2b78acb8 rather than adjusting the communication cutoff, we just print out the minimum value needed and error out
i suspect, this communication cutoff adjustment was included into the code before it was possible to separately set it via comm_modify. stopping with an error message printing the needed/current value is cleaner, in keeping with other modules in LAMMPS and much less problematic.
2017-01-16 15:47:02 -05:00
3f46b6d782 fix bugs from incorrect code synchronization 2017-01-16 11:15:54 -05:00
5abd6e5122 reordering operations in Pair::init_style() to avoid segfaults w/o a kspace style 2017-01-16 11:08:48 -05:00
f3a82f454e Included a flag to prevent multiple open_socket calls if run is included multiple times in the LAMMPS input 2017-01-16 08:42:23 +01:00
473a3ebeef fix for bug with compute rdf with pair reax/c. we must not copy a neighbor list, if newton settings are not compatible
an alternate route to address this issue would be to allow an "ANY" setting for neighbor list requests and then query the neighbor list for newton setting instead of the force class.
2017-01-15 12:05:19 -05:00
b220850377 Removing neighbor list hack in fix_qeq_reax_kokkos 2017-01-14 16:16:02 -07:00
fa00e0593f Make fix_rx request its own neighbor list 2017-01-14 15:39:37 -07:00
4a09399dc6 during setup, checking timestep doesn't seem to be sufficient. comparing bins and stencil point, too.
in addition, relevant pointers were not properly initialized to NULL
2017-01-14 17:13:22 -05:00
5821fe8dd5 correct out-of-bounds accesses 2017-01-14 17:06:23 -05:00
8360e70f4e update USER-CGDNA examples to follow LAMMPS style 2017-01-13 18:56:45 -05:00
b988b29413 remove dead code 2017-01-13 18:43:35 -05:00
5d48bfdcab USER-CGDNA whitespace cleanup: expand tabs and remove trailing whitespace 2017-01-13 18:40:34 -05:00
fe8caa8a56 apply some LAMMPS formatting style conventions for include files 2017-01-13 18:33:32 -05:00
afaacc6173 add USER-CGDNA package with dependencies into the build system 2017-01-13 18:32:32 -05:00
98ceb6feb1 add missing html files to lammps.book 2017-01-13 18:11:23 -05:00
374abea0f0 some minor documentation integration tweaks for USER-CGDNA package 2017-01-13 18:09:45 -05:00
61cff85435 avoid not only division by zero, but also computing variance for short runs with insufficient resolution 2017-01-13 14:35:35 -05:00
aa0b327f7e Merge branch 'bugfix_dividebyzero' of https://github.com/timattox/lammps_USER-DPD into collected-small-bugfixes 2017-01-13 14:26:10 -05:00
04fe071968 Merge pull request #6 from ibaned/cuda-lj-ctor-warning
fix a CUDA constructor warning
2017-01-13 12:13:43 -07:00
78498715b4 Protect from divide by zero in mpi_timings() when printing results.
e.g. If neighbor list(s) are never rebuilt, the Neigh time will be zero.
2017-01-13 13:32:15 -05:00
96259ea2d2 Added source code and documentation for USER-CGDNA 2017-01-13 13:36:54 +00:00
b2f67fea30 Merge branch 'collected-small-bugfixes' of github.com:akohlmey/lammps into collected-small-bugfixes 2017-01-13 08:12:10 -05:00
c59bcf31d1 change $MKLROOT to $(MKLROOT) as reported by @WeiLiPenguin
This closes #336
2017-01-13 08:10:51 -05:00
2540fc281c Merge branch 'flow_gauss_changeRef' of github.com:sstrong99/lammps into pull-334 2017-01-12 23:54:52 -05:00
e8e03dd440 Updated the reference for the flow/gauss method, the new reference is much more comprehensive 2017-01-12 23:44:33 -05:00
daf766d4f8 Fixing Kokkos neighbor bug 2017-01-12 16:22:38 -07:00
630783c8e8 Fixing neighbor bug 2017-01-12 16:22:24 -07:00
c94030d966 put pair_lj_coul in kokkos_type.h
also rename pair_lj_coul_gromacs
so it doesn't conflict with the
one now in kokkos_type.h
2017-01-12 13:37:53 -07:00
1229f6f60b Updated the reference for the flow/gauss method, the new reference is much more comprehensive 2017-01-12 10:15:18 -07:00
0b081b0086 whitespace cleanup 2017-01-11 21:05:32 -05:00
8e1cf6643c apply bugfix to fix wall/gran by eric_lyster@agilent.com on lammps-users 2017-01-11 20:59:40 -05:00
6950a99162 Revert "remove obsolete warning about fix rigid image flag restrictions"
This reverts commit 51e52b477a.
2017-01-11 19:49:58 -05:00
9f4e5e0661 fix a CUDA constructor warning
The class params_lj_coul was copy-pasted
into many different pair styles, and only
one of them had the proper KOKKOS_INLINE_FUNCTION
annotations for CUDA.
created a header file for this class that
most of the pair styles now include.
One pair style did add extra members,
so it keeps a local copy of the class.
2017-01-11 09:11:35 -07:00
34cb4027df make formatting comment consistent 2017-01-11 07:46:07 -05:00
1d0e600ab7 formatting improvements and small corrections for timer settings and output discussions 2017-01-10 23:47:14 -05:00
7162cafdf5 Squelching output from Makefile 2017-01-10 14:46:30 -07:00
ee9e7cfbd5 Fixing Kokkos CUDA Makefile issue 2017-01-10 13:22:36 -07:00
7839c335da Fixing compile error with Kokkos CUDA Makefiles 2017-01-10 13:05:00 -07:00
622d926849 adapt example inputs for TAD and PRD to the change in compute coord/atom 2017-01-10 13:41:35 -05:00
92d15d4a89 replace string compare with enums, fix memory leak, formatting cleanup 2017-01-10 12:52:37 -05:00
95706ac846 import contributed code for computes coord/atom and orientorder/atom 2017-01-10 12:29:22 -05:00
d06688bb91 USER-DPD: fix a typo in the DPD-H example input; update reference output. 2017-01-10 12:11:20 -05:00
d014e00e53 ignore some newly added styles from packages. 2017-01-09 17:51:38 -05:00
0db2a07993 another workaround for duplicate labels (which sphinx does not like) 2017-01-09 17:51:19 -05:00
33412c76ed correct some formatting issues with USER-NC-DUMP 2017-01-09 17:50:49 -05:00
e5ac49d1de Merge branch 'master' into collected-small-bugfixes 2017-01-09 17:13:46 -05:00
1a81da0f73 print the last input line, when error->all() is called
this should help tracking down input file errors for many
common cases without having to repeat the run with -echo screen
and avoid having to explain how to use that feature all the time
2017-01-09 17:03:06 -05:00
c31f1e9f22 add fix mscg command, example, lib 2017-01-09 13:36:40 -07:00
ebd25cc078 Updating docs for Kokkos package 2017-01-09 12:40:33 -07:00
9250a55923 Adding enable_lambda to KOKKOS_CUDA_OPTIONS 2017-01-09 12:24:30 -07:00
a9f0b7d523 Updating Kokkos lib 2017-01-09 10:39:46 -07:00
20f8a8c219 Merge branch 'master' into github-tutorial-update 2017-01-09 14:38:09 +01:00
09af780aa8 remove misleading comments 2017-01-06 21:31:39 -05:00
51e52b477a remove obsolete warning about fix rigid image flag restrictions 2017-01-06 21:30:33 -05:00
20a4e365b7 reduce warning when processing manual with sphinx 2017-01-06 21:30:13 -05:00
51fa33a407 patch 6Jan17 2017-01-06 11:14:48 -07:00
ccd09e3967 Updated images of succesful merge. 2017-01-06 19:04:26 +01:00
142770cb2a enable pppm/tip4p to work with triclinic 2017-01-06 10:38:32 -07:00
63f202501b Merge pull request #324 from ibaned/pair-table-kokkos-inherit
get PairTableKokkos to inherit from PairTable (also fix GPU)
2017-01-06 10:10:59 -07:00
83da5d3b5d Merge pull request #323 from akohlmey/pppm-cg-triclinic
synchronize pppm/cg with changes in pppm and remove block on triclinic
2017-01-06 10:10:09 -07:00
ebbf60b112 Merge pull request #319 from andeplane/domain_bug
Fixed bug in lamda_box_corners function
2017-01-06 10:03:32 -07:00
12c4fa25e8 Merge pull request #318 from andeplane/initialize_pointers
Initializing pointers in neighbor.cpp
2017-01-06 10:03:05 -07:00
3ac58452de Merge pull request #310 from EfremBraun/master
Fix nvk implemented
2017-01-06 10:02:22 -07:00
9b348d567b Merge pull request #315 from Pakketeretet2/github-tutorial-update
GitHub tutorial update
2017-01-06 10:01:57 -07:00
467377094a Merge pull request #314 from stanmoore1/fix-momentum-kokkos
Fix momentum kokkos
2017-01-06 10:01:17 -07:00
5656e90b78 Merge pull request #313 from stanmoore1/kokkos_bugfixes
Kokkos bugfixes
2017-01-06 10:00:33 -07:00
41a6a3076e Merge pull request #309 from giacomofiorin/colvars-2016-12-22
Update Colvars library to version 2016-12-22
2017-01-06 09:58:20 -07:00
d4e8d47387 Merge pull request #306 from timattox/USER-DPD_updates
USER-DPD updates
2017-01-06 09:58:01 -07:00
f6a819580c pair TIP4P bug fix for cutoffs >> box size 2017-01-06 09:57:27 -07:00
6af56e686d polish the introduction, some more clarifications, corrections and formatting improvements 2017-01-06 08:31:02 -05:00
eb1c6a225c typo fixed 2017-01-06 11:54:30 +01:00
4d0a6d83bd Merged Axel's suggestions and updated text 2017-01-06 11:51:42 +01:00
958722573f Merge branch 'github-tutorial-update' of https://github.com/Pakketeretet2/lammps into github-tutorial-update 2017-01-06 11:44:16 +01:00
9d46670972 Updated text and images on reverse pull requests 2017-01-06 11:44:14 +01:00
1a9f2df3d0 Updated text and images on reverse pull requests 2017-01-06 11:44:00 +01:00
1310438c8b Merge pull request #1 from akohlmey/pull-315
some formatting updates and text rewrites for your pull request
2017-01-06 11:40:32 +01:00
9bf771207d make PairTable::allocate() virtual
forgot to extract this change when
separating the commits for PairTableRX
and PairTableKokkos.
2017-01-05 20:46:05 -07:00
b9144d6332 Revert "move enum to pair.h"
This reverts commit aebc8ea826.
2017-01-05 20:22:15 -07:00
267f05e5ca protect PairTable dtor with copymode 2017-01-05 15:38:45 -07:00
aebc8ea826 move enum to pair.h
to avoid having it be replicated
in several different locations
2017-01-05 15:38:45 -07:00
53a1de1d40 fix several GPU memory bugs in pair_table_kokkos 2017-01-05 15:38:45 -07:00
d059b5d334 fix crash in create_kokkos_tables
the code was crashing when trying to
deep_copy or assign views that had
not been allocated
2017-01-05 15:38:45 -07:00
7cff343680 fix allocation regressions in PairTableKokkos 2017-01-05 15:38:45 -07:00
a1ac861084 PairTableKokkos : public PairTable 2017-01-05 15:38:45 -07:00
17bdb57bb4 try PairTableKokkos : public PairTable
realize that there is a lot of copy-paste
in this codebase.
2017-01-05 15:38:45 -07:00
fe14158c10 some formatting updates and text rewrites in the "do not use git add -a" section 2017-01-04 13:13:56 -05:00
0bcbcca140 Highlighted the assignee, maintainer changes, and mentioned LAMMPS collaborator 2017-01-04 17:28:22 +01:00
4cfe122ac6 fix warning about enum comparisons 2017-01-04 08:10:08 -07:00
b46629ee39 Merge pull request #5 from ibaned/kokkos-fixes
prevent implicit dereference of s_CTEMP
2017-01-04 08:06:55 -07:00
42bbeb3f16 NULLing pointers after delete 2017-01-04 16:04:05 +01:00
933b288ce9 Added explaination for assignee, changes pushed by others and collaborator. 2017-01-04 14:31:23 +01:00
a7c5905ca4 prevent implicit dereference of s_CTEMP 2017-01-03 15:17:33 -07:00
37d5567f6d Fixed bug in lamda_box_corners function 2017-01-03 11:54:14 +01:00
b10d0c17ec Initializing pointers in neighbor.cpp 2017-01-03 11:24:48 +01:00
4f45d39ac7 Add warning formatting
Any paragraph starting with IMPORTANT NOTE: is transformed into a warning.
2017-01-03 02:34:11 +01:00
7d057d4c83 make it more explicit, that master needs to be updated and feature branches should be created from master 2017-01-02 13:02:48 -05:00
4f096dbad5 Updated some inconsistent text. 2017-01-02 18:53:28 +01:00
18b12efc9f Small changes to tutorial text. 2017-01-02 18:25:36 +01:00
2c7fea1e0d Second update round to text and images, a third will follow after succesful merge. 2017-01-02 18:15:08 +01:00
4d98bbdfa5 Almost done with the tutorial now 2017-01-02 18:08:14 +01:00
391ab761a4 Finally updated the github tutorial. 2017-01-02 17:55:02 +01:00
b0ebd3ef4e Merge pull request #1 from akohlmey/pull-310
add authorship attribution to lammps PR #310
2016-12-28 23:12:16 +01:00
94c4f8fe5f add authorship attribution 2016-12-28 17:03:37 -05:00
aa146e9b38 Moved fix_nvk to USER-MISC, updated documentation to reflect move 2016-12-28 19:06:35 +01:00
eca9539f84 Disallowing full neighborlist for pair_tersoff_kokkos styles until a bugfix is released 2016-12-28 10:59:53 -07:00
27172c4a55 Fixing Kokkos bug when many atom types 2016-12-28 10:59:42 -07:00
4f195254af Fixing bug with Kokkos and reading restart files 2016-12-28 10:59:30 -07:00
9a0007a13f rename region_block_kokkos inside()
this prevents compiler confusion with
the inside() function provided by
the normal region_block, as the two
should be completely separate.
2016-12-28 10:56:16 -07:00
994f36bc6f silence "implicit dereference" warning
see kokkos/kokkos#177 for detailed
discussion of the issue and fix
2016-12-28 10:56:06 -07:00
b3557bfbf5 add missing return in comm_tiled_kokkos 2016-12-28 10:55:51 -07:00
371df8ea72 repair sync bugs in fix_momentum_kokkos
Since the Group class is completely
unaware of Kokkos, the direct calls from
FixMomentumKokkos to Group methods
need to be preceded by atomKK->sync calls
for every atom variable that Group intends
to use.
fix_momentum_kokkos definitely does not
work on GPUs prior to this commit.
2016-12-28 10:51:59 -07:00
06ae2804f6 ensure velocity is marked as modified before syncing
it worked before, but this seems more reliable
2016-12-28 10:51:20 -07:00
68814d4fc8 Made documentation changes to fix nvk 2016-12-28 16:26:05 +01:00
616ca1de03 Fix nvk implemented. 2016-12-28 16:17:07 +01:00
b0263e87bb Fix missing force with extended-Lagrangian mass 2016-12-27 17:16:32 -05:00
925f42727f Fix typo 2016-12-27 14:26:43 -05:00
f553e230db Update Colvars library to version 2016-12-22
Significant code cleanup and several fixes (walls + extended Lagrangian)

New harmonicWalls bias to apply confining boundaries with time-dependent force
constant & integration
2016-12-27 13:17:34 -05:00
6ab716164b Fix seg fault for gyration collective variable 2016-12-27 13:17:02 -05:00
7a45c72b97 Allow extended Lagrangian on non-scalar collective variables 2016-12-27 12:35:30 -05:00
634eb357d2 synchronize pppm/cg with pppm and remove block on triclinic 2016-12-24 16:09:18 -05:00
a1036f2d74 USER-DPD: bugfix for new PairExp6rx::polynomialScaling() function. 2016-12-23 11:36:59 -05:00
c301d70333 USER-DPD: update example input and output (see commits 3faa57 and eff7238) 2016-12-22 17:32:41 -05:00
781daad2a0 USER-DPD: update documentation for changes in commit 3faa57 2016-12-22 17:31:17 -05:00
3faa57a413 USER-DPD: Several updates to *_rx files:
1) Added MY_EPSILON to handle machine precision checks
2) Removed error checks for DPD-RX; enabled use with DPD-E simulations
3) Expanded the EOS functional form to allow corrections
   in the thermo file or on the command line
4) Updated naming convention from fraction to mixWtSite*
5) Changed the name of getParams() method to getMixingWeights()
6) getMixingWeights() now handles fractional and molecular weighting
7) Added optional argument (fractional or molecular) to pair_style command
8) Added argument to specify the exp6 parameter scaling method
   NOTE: Requires additional arguments in the pair coefficients,
   thus command line areguments are NOT backward-compatible.
2016-12-22 17:15:09 -05:00
fa435fb514 USER-DPD: remove unused variable, and convert some constants to MY_EPSILON 2016-12-22 17:05:49 -05:00
ba96fcc15a USER-DPD: update reference output to reflect changes from commit eff7238 2016-12-22 16:21:05 -05:00
304f65b164 Merge pull request #2 from ibaned/fix-momentum-kokkos
Fix momentum kokkos from Dan Ibanez
2016-12-21 12:23:32 -07:00
4c33f31265 Merge branch 'debug-cuda' into fix-momentum-kokkos 2016-12-21 10:57:44 -07:00
ae8d882b03 need to sync new velocities back to host 2016-12-21 10:57:18 -07:00
7559bc9c5f workaround CUDA View::reference_type
it is not an lvalue reference in CUDA.
also, the previous code assumed contiguous
entries for one atom; now it should be
robust in the case of LayoutLeft.
2016-12-21 10:21:55 -07:00
62dea1bb63 21Dec16 patch 2016-12-21 09:53:32 -07:00
800ff43413 Merge pull request #304 from timattox/USER-DPD_whitespace
USER-DPD: Whitespace cleanup to pair_dpd_fdt_energy.cpp
2016-12-21 09:51:10 -07:00
9161bd98bf fixed bug with pair hybrid/overaly and manybody potentials finding the right skip neighbor method 2016-12-21 09:50:29 -07:00
f3327ca214 allow constructing Few from array on device 2016-12-21 09:21:11 -07:00
54963ba7da allow fix momentum angular with CUDA 2016-12-21 08:55:33 -07:00
ea76041803 CUDA-friendly fix_momentum_kokkos angular 2016-12-21 08:54:40 -07:00
7fb4faa439 draft CUDA-callable version of Domain::unmap 2016-12-21 08:53:57 -07:00
41c9357dde allow constructing Few from C array 2016-12-21 08:53:27 -07:00
d1a55ad2e0 add kokkos_few.h to .gitignore for /src 2016-12-21 08:07:19 -07:00
d9a0f575f6 get fix_momentum_kokkos to compile on White 2016-12-21 08:01:19 -07:00
01e3a31639 put Few in the global namespace... 2016-12-21 08:01:06 -07:00
992becc75f silence warning about partial x2lamda overload 2016-12-21 08:00:42 -07:00
8b5e15e979 add a Makefile for the White testbed 2016-12-20 16:30:50 -07:00
b2b33cca16 start working on fix_momentum Kokkos+CUDA
it doesn't compile anymore,
all in good time...
2016-12-20 16:30:21 -07:00
2ceee6b9be install kokkos_few, and remove Int 2016-12-20 16:19:17 -07:00
386c12c970 start porting my Few class into this code 2016-12-20 16:09:29 -07:00
590f317550 fix_momentum_kokkos: don't override init() 2016-12-20 11:03:16 -07:00
c4e02a5d2b USER-DPD: more whitespace fixes 2016-12-20 11:17:11 -05:00
c7ac9e79cb preemptive changes for Kokkos+CUDA
I haven't compiled in that mode yet
(don't know how), but these are some
changes I suspect the compiler
will require.
2016-12-19 13:17:22 -07:00
2ba424e1a3 USER-DPD: Whitespace cleanup to pair_dpd_fdt_energy.cpp 2016-12-19 15:11:52 -05:00
ca30c1ec88 got fix_momentum_kokkos to compile
there are likely still some compile
errors for Kokkos+CUDA...
2016-12-19 13:08:09 -07:00
a1b441a71f draft the parallel_* constructs based on lambdas
LAMMPS_LAMBDA was added to kokkos_type.h to
facilitate this.

some member variables will likely need local copies
in the fix_momentum code.
2016-12-19 12:02:12 -07:00
f6f2170369 first draft
copied fix_momentum, work on the Kokkos
View types for the arrays.
the next step is parallel_for and parallel_reduce
transformations.
2016-12-19 11:28:24 -07:00
81a2db8a0c 17Dec16 patch 2016-12-16 11:36:54 -07:00
0a176841e7 extra python_wrapper change needed for last patch 2016-12-16 11:35:42 -07:00
993 changed files with 86031 additions and 64889 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.8 KiB

View File

@ -0,0 +1,10 @@
\documentclass[12pt]{article}
\pagestyle{empty}
\begin{document}
$$
E = - \frac{\epsilon}{2} \ln \left[ 1 - \left(\frac{r-r0}{\Delta}\right)^2\right]
$$
\end{document}

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 99 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 73 KiB

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 17 KiB

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 57 KiB

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 104 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

View File

@ -1,7 +1,7 @@
<!-- HTML_ONLY -->
<HEAD>
<TITLE>LAMMPS Users Manual</TITLE>
<META NAME="docnumber" CONTENT="16 Dec 2016 version">
<META NAME="docnumber" CONTENT="21 Feb 2017 version">
<META NAME="author" CONTENT="http://lammps.sandia.gov - Sandia National Laboratories">
<META NAME="copyright" CONTENT="Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.">
</HEAD>
@ -21,7 +21,7 @@
<H1></H1>
LAMMPS Documentation :c,h3
16 Dec 2016 version :c,h4
21 Feb 2017 version :c,h4
Version info: :h4

Binary file not shown.

View File

@ -581,8 +581,9 @@ USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT.
"indent"_fix_indent.html,
"langevin (k)"_fix_langevin.html,
"lineforce"_fix_lineforce.html,
"momentum"_fix_momentum.html,
"momentum (k)"_fix_momentum.html,
"move"_fix_move.html,
"mscg"_fix_mscg.html,
"msst"_fix_msst.html,
"neb"_fix_neb.html,
"nph (ko)"_fix_nh.html,
@ -701,7 +702,10 @@ package"_Section_start.html#start_3.
"meso"_fix_meso.html,
"manifoldforce"_fix_manifoldforce.html,
"meso/stationary"_fix_meso_stationary.html,
"nve/dot"_fix_nve_dot.html,
"nve/dotc/langevin"_fix_nve_dotc_langevin.html,
"nve/manifold/rattle"_fix_nve_manifold_rattle.html,
"nvk"_fix_nvk.html,
"nvt/manifold/rattle"_fix_nvt_manifold_rattle.html,
"nph/eff"_fix_nh_eff.html,
"npt/eff"_fix_nh_eff.html,
@ -917,7 +921,7 @@ KOKKOS, o = USER-OMP, t = OPT.
"dpd (go)"_pair_dpd.html,
"dpd/tstat (go)"_pair_dpd.html,
"dsmc"_pair_dsmc.html,
"eam (gkot)"_pair_eam.html,
"eam (gkiot)"_pair_eam.html,
"eam/alloy (gkot)"_pair_eam.html,
"eam/fs (gkot)"_pair_eam.html,
"eim (o)"_pair_eim.html,
@ -965,7 +969,7 @@ KOKKOS, o = USER-OMP, t = OPT.
"lubricateU/poly"_pair_lubricateU.html,
"meam"_pair_meam.html,
"mie/cut (o)"_pair_mie.html,
"morse (got)"_pair_morse.html,
"morse (gkot)"_pair_morse.html,
"nb3b/harmonic (o)"_pair_nb3b_harmonic.html,
"nm/cut (o)"_pair_nm.html,
"nm/cut/coul/cut (o)"_pair_nm.html,
@ -1033,6 +1037,11 @@ package"_Section_start.html#start_3.
"morse/soft"_pair_morse.html,
"multi/lucy"_pair_multi_lucy.html,
"multi/lucy/rx"_pair_multi_lucy_rx.html,
"oxdna/coaxstk"_pair_oxdna.html,
"oxdna/excv"_pair_oxdna.html,
"oxdna/hbond"_pair_oxdna.html,
"oxdna/stk"_pair_oxdna.html,
"oxdna/xstk"_pair_oxdna.html,
"quip"_pair_quip.html,
"reax/c (k)"_pair_reax_c.html,
"smd/hertz"_pair_smd_hertz.html,
@ -1067,7 +1076,7 @@ KOKKOS, o = USER-OMP, t = OPT.
"none"_bond_none.html,
"zero"_bond_zero.html,
"hybrid"_bond_hybrid.html,
"class2 (o)"_bond_class2.html,
"class2 (ko)"_bond_class2.html,
"fene (iko)"_bond_fene.html,
"fene/expand (o)"_bond_fene_expand.html,
"harmonic (ko)"_bond_harmonic.html,
@ -1081,7 +1090,8 @@ if "LAMMPS is built with the appropriate
package"_Section_start.html#start_3.
"harmonic/shift (o)"_bond_harmonic_shift.html,
"harmonic/shift/cut (o)"_bond_harmonic_shift_cut.html :tb(c=4,ea=c)
"harmonic/shift/cut (o)"_bond_harmonic_shift_cut.html,
"oxdna/fene"_bond_oxdna_fene.html :tb(c=4,ea=c)
:line
@ -1099,7 +1109,7 @@ USER-OMP, t = OPT.
"zero"_angle_zero.html,
"hybrid"_angle_hybrid.html,
"charmm (ko)"_angle_charmm.html,
"class2 (o)"_angle_class2.html,
"class2 (ko)"_angle_class2.html,
"cosine (o)"_angle_cosine.html,
"cosine/delta (o)"_angle_cosine_delta.html,
"cosine/periodic (o)"_angle_cosine_periodic.html,
@ -1135,7 +1145,7 @@ USER-OMP, t = OPT.
"zero"_dihedral_zero.html,
"hybrid"_dihedral_hybrid.html,
"charmm (ko)"_dihedral_charmm.html,
"class2 (o)"_dihedral_class2.html,
"class2 (ko)"_dihedral_class2.html,
"harmonic (io)"_dihedral_harmonic.html,
"helix (o)"_dihedral_helix.html,
"multi/harmonic (o)"_dihedral_multi_harmonic.html,
@ -1167,7 +1177,7 @@ USER-OMP, t = OPT.
"none"_improper_none.html,
"zero"_improper_zero.html,
"hybrid"_improper_hybrid.html,
"class2 (o)"_improper_class2.html,
"class2 (ko)"_improper_class2.html,
"cvff (io)"_improper_cvff.html,
"harmonic (ko)"_improper_harmonic.html,
"umbrella (o)"_improper_umbrella.html :tb(c=4,ea=c)

View File

@ -22,7 +22,7 @@ either conceptually, or as printed out by the program.
12.1 Common problems :link(err_1),h4
If two LAMMPS runs do not produce the same answer on different
If two LAMMPS runs do not produce the exact same answer on different
machines or different numbers of processors, this is typically not a
bug. In theory you should get identical answers on any number of
processors and on any machine. In practice, numerical round-off can
@ -55,12 +55,13 @@ LAMMPS errors are detected at setup time; others like a bond
stretching too far may not occur until the middle of a run.
LAMMPS tries to flag errors and print informative error messages so
you can fix the problem. Of course, LAMMPS cannot figure out your
physics or numerical mistakes, like choosing too big a timestep,
specifying erroneous force field coefficients, or putting 2 atoms on
top of each other! If you run into errors that LAMMPS doesn't catch
that you think it should flag, please send an email to the
"developers"_http://lammps.sandia.gov/authors.html.
you can fix the problem. For most errors it will also print the last
input script command that it was processing. Of course, LAMMPS cannot
figure out your physics or numerical mistakes, like choosing too big a
timestep, specifying erroneous force field coefficients, or putting 2
atoms on top of each other! If you run into errors that LAMMPS
doesn't catch that you think it should flag, please send an email to
the "developers"_http://lammps.sandia.gov/authors.html.
If you get an error message about an invalid command in your input
script, you can determine what command is causing the problem by
@ -79,12 +80,24 @@ order. If you mess this up, LAMMPS will often flag the error, but it
may also simply read a bogus argument and assign a value that is
valid, but not what you wanted. E.g. trying to read the string "abc"
as an integer value of 0. Careful reading of the associated doc page
for the command should allow you to fix these problems. Note that
some commands allow for variables to be specified in place of numeric
constants so that the value can be evaluated and change over the
course of a run. This is typically done with the syntax {v_name} for
a parameter, where name is the name of the variable. This is only
allowed if the command documentation says it is.
for the command should allow you to fix these problems. In most cases,
where LAMMPS expects to read a number, either integer or floating point,
it performs a stringent test on whether the provided input actually
is an integer or floating-point number, respectively, and reject the
input with an error message (for instance, when an integer is required,
but a floating-point number 1.0 is provided):
ERROR: Expected integer parameter in input script or data file :pre
Some commands allow for using variable references in place of numeric
constants so that the value can be evaluated and may change over the
course of a run. This is typically done with the syntax {v_name} for a
parameter, where name is the name of the variable. On the other hand,
immediate variable expansion with the syntax ${name} is performed while
reading the input and before parsing commands,
NOTE: Using a variable reference (i.e. {v_name}) is only allowed if
the documentation of the corresponding command explicitly says it is.
Generally, LAMMPS will print a message to the screen and logfile and
exit gracefully when it encounters a fatal error. Sometimes it will

View File

@ -2573,7 +2573,7 @@ well.
6.26 Adiabatic core/shell model :link(howto_26),h4
The adiabatic core-shell model by "Mitchell and
Finchham"_#MitchellFinchham is a simple method for adding
Fincham"_#MitchellFincham is a simple method for adding
polarizability to a system. In order to mimic the electron shell of
an ion, a satellite particle is attached to it. This way the ions are
split into a core and a shell where the latter is meant to react to
@ -2667,13 +2667,16 @@ bond_coeff 1 63.014 0.0
bond_coeff 2 25.724 0.0 :pre
When running dynamics with the adiabatic core/shell model, the
following issues should be considered. Since the relative motion of
the core and shell particles corresponds to the polarization, typical
thermostats can alter the polarization behaviour, meaning the shell
will not react freely to its electrostatic environment. This is
critical during the equilibration of the system. Therefore
it's typically desirable to decouple the relative motion of the
core/shell pair, which is an imaginary degree of freedom, from the
following issues should be considered. The relative motion of
the core and shell particles corresponds to the polarization,
hereby an instantaneous relaxation of the shells is approximated
and a fast core/shell spring frequency ensures a nearly constant
internal kinetic energy during the simulation.
Thermostats can alter this polarization behaviour, by scaling the
internal kinetic energy, meaning the shell will not react freely to
its electrostatic environment.
Therefore it is typically desirable to decouple the relative motion of
the core/shell pair, which is an imaginary degree of freedom, from the
real physical system. To do that, the "compute
temp/cs"_compute_temp_cs.html command can be used, in conjunction with
any of the thermostat fixes, such as "fix nvt"_fix_nh.html or "fix
@ -2704,6 +2707,22 @@ fix thermostatequ all nve # integrator as needed f
fix_modify thermoberendsen temp CSequ
thermo_modify temp CSequ # output of center-of-mass derived temperature :pre
The pressure for the core/shell system is computed via the regular
LAMMPS convention by "treating the cores and shells as individual
particles"_#MitchellFincham2. For the thermo output of the pressure
as well as for the application of a barostat, it is necessary to
use an additional "pressure"_compute_pressure compute based on the
default "temperature"_compute_temp and specifying it as a second
argument in "fix modify"_fix_modify.html and
"thermo_modify"_thermo_modify.html resulting in:
(...)
compute CSequ all temp/cs cores shells
compute thermo_press_lmp all pressure thermo_temp # pressure for individual particles
thermo_modify temp CSequ press thermo_press_lmp # modify thermo to regular pressure
fix press_bar all npt temp 300 300 0.04 iso 0 0 0.4
fix_modify press_bar temp CSequ press thermo_press_lmp # pressure modification for correct kinetic scalar :pre
If "compute temp/cs"_compute_temp_cs.html is used, the decoupled
relative motion of the core and the shell should in theory be
stable. However numerical fluctuation can introduce a small
@ -2724,24 +2743,18 @@ temp/cs"_compute_temp_cs.html command to the {temp} keyword of the
velocity all create 1427 134 bias yes temp CSequ
velocity all scale 1427 temp CSequ :pre
It is important to note that the polarizability of the core/shell
pairs is based on their relative motion. Therefore the choice of
spring force and mass ratio need to ensure much faster relative motion
of the 2 atoms within the core/shell pair than their center-of-mass
velocity. This allow the shells to effectively react instantaneously
to the electrostatic environment. This fast movement also limits the
timestep size that can be used.
To maintain the correct polarizability of the core/shell pairs, the
kinetic energy of the internal motion shall remain nearly constant.
Therefore the choice of spring force and mass ratio need to ensure
much faster relative motion of the 2 atoms within the core/shell pair
than their center-of-mass velocity. This allows the shells to
effectively react instantaneously to the electrostatic environment and
limits energy transfer to or from the core/shell oscillators.
This fast movement also dictates the timestep that can be used.
The primary literature of the adiabatic core/shell model suggests that
the fast relative motion of the core/shell pairs only allows negligible
energy transfer to the environment. Therefore it is not intended to
decouple the core/shell degree of freedom from the physical system
during production runs. In other words, the "compute
temp/cs"_compute_temp_cs.html command should not be used during
production runs and is only required during equilibration. This way one
is consistent with literature (based on the code packages DL_POLY or
GULP for instance).
energy transfer to the environment.
The mentioned energy transfer will typically lead to a small drift
in total energy over time. This internal energy can be monitored
using the "compute chunk/atom"_compute_chunk_atom.html and "compute
@ -2761,14 +2774,20 @@ command, to use as input to the "compute
chunk/atom"_compute_chunk_atom.html command to define the core/shell
pairs as chunks.
For example,
For example if core/shell pairs are the only molecules:
read_data NaCl_CS_x0.1_prop.data
compute prop all property/atom molecule
compute cs_chunk all chunk/atom c_prop
compute cstherm all temp/chunk cs_chunk temp internal com yes cdof 3.0 # note the chosen degrees of freedom for the core/shell pairs
fix ave_chunk all ave/time 10 1 10 c_cstherm file chunk.dump mode vector :pre
For example if core/shell pairs and other molecules are present:
fix csinfo all property/atom i_CSID # property/atom command
read_data NaCl_CS_x0.1_prop.data fix csinfo NULL CS-Info # atom property added in the data-file
compute prop all property/atom i_CSID
compute cs_chunk all chunk/atom c_prop
compute cstherm all temp/chunk cs_chunk temp internal com yes cdof 3.0 # note the chosen degrees of freedom for the core/shell pairs
fix ave_chunk all ave/time 10 1 10 c_cstherm file chunk.dump mode vector :pre
(...) :pre
The additional section in the date file would be formatted like this:
@ -2890,9 +2909,13 @@ Phys, 79, 926 (1983).
:link(Shinoda)
[(Shinoda)] Shinoda, Shiga, and Mikami, Phys Rev B, 69, 134103 (2004).
:link(MitchellFinchham)
[(Mitchell and Finchham)] Mitchell, Finchham, J Phys Condensed Matter,
:link(MitchellFincham)
[(Mitchell and Fincham)] Mitchell, Fincham, J Phys Condensed Matter,
5, 1031-1038 (1993).
:link(MitchellFincham2)
[(Fincham)] Fincham, Mackrodt and Mitchell, J Phys Condensed Matter,
6, 393-404 (1994).
:link(howto-Lamoureux)
[(Lamoureux and Roux)] G. Lamoureux, B. Roux, J. Chem. Phys 119, 3025 (2003)

View File

@ -84,7 +84,7 @@ Package, Description, Author(s), Doc page, Example, Library
"PERI"_#PERI, Peridynamics models, Mike Parks (Sandia), "pair_style peri"_pair_peri.html, peri, -
"POEMS"_#POEMS, coupled rigid body motion, Rudra Mukherjee (JPL), "fix poems"_fix_poems.html, rigid, lib/poems
"PYTHON"_#PYTHON, embed Python code in an input script, -, "python"_python.html, python, lib/python
"REAX"_#REAX, ReaxFF potential, Aidan Thompson (Sandia), "pair_style reax"_pair_reax.html, reax, lib/reax
"REAX"_#REAX, ReaxFF potential, Aidan Thompson (Sandia), "pair_style reax"_pair_reax.html, reax, lib/reax
"REPLICA"_#REPLICA, multi-replica methods, -, "Section 6.6.5"_Section_howto.html#howto_5, tad, -
"RIGID"_#RIGID, rigid bodies, -, "fix rigid"_fix_rigid.html, rigid, -
"SHOCK"_#SHOCK, shock loading methods, -, "fix msst"_fix_msst.html, -, -
@ -1140,6 +1140,7 @@ Package, Description, Author(s), Doc page, Example, Pic/movie, Library
"USER-ATC"_#USER-ATC, atom-to-continuum coupling, Jones & Templeton & Zimmerman (1), "fix atc"_fix_atc.html, USER/atc, "atc"_atc, lib/atc
"USER-AWPMD"_#USER-AWPMD, wave-packet MD, Ilya Valuev (JIHT), "pair_style awpmd/cut"_pair_awpmd.html, USER/awpmd, -, lib/awpmd
"USER-CG-CMM"_#USER-CG-CMM, coarse-graining model, Axel Kohlmeyer (Temple U), "pair_style lj/sdk"_pair_sdk.html, USER/cg-cmm, "cg"_cg, -
"USER-CGDNA"_#USER-CGDNA, coarse-grained DNA force fields, Oliver Henrich (U Edinburgh), src/USER-CGDNA/README, USER/cgdna, -, -
"USER-COLVARS"_#USER-COLVARS, collective variables, Fiorin & Henin & Kohlmeyer (2), "fix colvars"_fix_colvars.html, USER/colvars, "colvars"_colvars, lib/colvars
"USER-DIFFRACTION"_#USER-DIFFRACTION, virutal x-ray and electron diffraction, Shawn Coleman (ARL),"compute xrd"_compute_xrd.html, USER/diffraction, -, -
"USER-DPD"_#USER-DPD, reactive dissipative particle dynamics (DPD), Larentzos & Mattox & Brennan (5), src/USER-DPD/README, USER/dpd, -, -
@ -1153,7 +1154,7 @@ Package, Description, Author(s), Doc page, Example, Pic/movie, Library
"USER-MISC"_#USER-MISC, single-file contributions, USER-MISC/README, USER-MISC/README, -, -, -
"USER-MANIFOLD"_#USER-MANIFOLD, motion on 2d surface, Stefan Paquay (Eindhoven U of Technology), "fix manifoldforce"_fix_manifoldforce.html, USER/manifold, "manifold"_manifold, -
"USER-MOLFILE"_#USER-MOLFILE, "VMD"_VMD molfile plug-ins, Axel Kohlmeyer (Temple U), "dump molfile"_dump_molfile.html, -, -, VMD-MOLFILE
"USER-NC-DUMP"_#USER-NC-DUMP, dump output via NetCDF, Lars Pastewka (Karlsruhe Institute of Technology, KIT), "dump nc, dump nc/mpiio"_dump_nc.html, -, -, lib/netcdf
"USER-NC-DUMP"_#USER-NC-DUMP, dump output via NetCDF, Lars Pastewka (Karlsruhe Institute of Technology, KIT), "dump nc / dump nc/mpiio"_dump_nc.html, -, -, lib/netcdf
"USER-OMP"_#USER-OMP, OpenMP threaded styles, Axel Kohlmeyer (Temple U), "Section 5.3.4"_accelerate_omp.html, -, -, -
"USER-PHONON"_#USER-PHONON, phonon dynamical matrix, Ling-Ti Kong (Shanghai Jiao Tong U), "fix phonon"_fix_phonon.html, USER/phonon, -, -
"USER-QMMM"_#USER-QMMM, QM/MM coupling, Axel Kohlmeyer (Temple U), "fix qmmm"_fix_qmmm.html, USER/qmmm, -, lib/qmmm
@ -1284,6 +1285,31 @@ him directly if you have questions.
:line
USER-CGDNA package :link(USER-CGDNA),h5
Contents: The CGDNA package implements coarse-grained force fields for
single- and double-stranded DNA. This is at the moment mainly the
oxDNA model, developed by Doye, Louis and Ouldridge at the University
of Oxford. The package also contains Langevin-type rigid-body
integrators with improved stability.
See these doc pages to get started:
"bond_style oxdna_fene"_bond_oxdna_fene.html
"pair_style oxdna_excv"_pair_oxdna_excv.html
"fix nve/dotc/langevin"_fix_nve_dotc_langevin.html :ul
Supporting info: /src/USER-CGDNA/README, "bond_style
oxdna_fene"_bond_oxdna_fene.html, "pair_style
oxdna_excv"_pair_oxdna_excv.html, "fix
nve/dotc/langevin"_fix_nve_dotc_langevin.html
Author: Oliver Henrich at the University of Edinburgh, UK (o.henrich
at epcc.ed.ac.uk or ohenrich at ph.ed.ac.uk). Contact him directly if
you have any questions.
:line
USER-COLVARS package :link(USER-COLVARS),h5
Contents: COLVARS stands for collective variables which can be used to
@ -1610,11 +1636,12 @@ and a "dump nc/mpiio"_dump_nc.html command to output LAMMPS snapshots
in this format. See src/USER-NC-DUMP/README for more details.
NetCDF files can be directly visualized with the following tools:
Ovito (http://www.ovito.org/). Ovito supports the AMBER convention
and all of the above extensions. :ulb,l
and all of the above extensions. :ulb,l
VMD (http://www.ks.uiuc.edu/Research/vmd/) :l
AtomEye (http://www.libatoms.org/). The libAtoms version of AtomEye contains
a NetCDF reader that is not present in the standard distribution of AtomEye :l,ule
a NetCDF reader that is not present in the standard distribution of AtomEye :l,ule
The person who created these files is Lars Pastewka at
Karlsruhe Institute of Technology (lars.pastewka at kit.edu).

View File

@ -413,7 +413,7 @@ uses (for performing 1d FFTs) when running the particle-particle
particle-mesh (PPPM) option for long-range Coulombics via the
"kspace_style"_kspace_style.html command.
LAMMPS supports various open-source or vendor-supplied FFT libraries
LAMMPS supports common open-source or vendor-supplied FFT libraries
for this purpose. If you leave these 3 variables blank, LAMMPS will
use the open-source "KISS FFT library"_http://kissfft.sf.net, which is
included in the LAMMPS distribution. This library is portable to all
@ -423,10 +423,9 @@ package in your build, you can also leave the 3 variables blank.
Otherwise, select which kinds of FFTs to use as part of the FFT_INC
setting by a switch of the form -DFFT_XXX. Recommended values for XXX
are: MKL, SCSL, FFTW2, and FFTW3. Legacy options are: INTEL, SGI,
ACML, and T3E. For backward compatability, using -DFFT_FFTW will use
the FFTW2 library. Using -DFFT_NONE will use the KISS library
described above.
are: MKL or FFTW3. FFTW2 and NONE are supported as legacy options.
Selecting -DFFT_FFTW will use the FFTW3 library and -DFFT_NONE will
use the KISS library described above.
You may also need to set the FFT_INC, FFT_PATH, and FFT_LIB variables,
so the compiler and linker can find the needed FFT header and library
@ -1727,7 +1726,7 @@ thermodynamic state and a total run time for the simulation. It then
appends statistics about the CPU time and storage requirements for the
simulation. An example set of statistics is shown here:
Loop time of 2.81192 on 4 procs for 300 steps with 2004 atoms
Loop time of 2.81192 on 4 procs for 300 steps with 2004 atoms :pre
Performance: 18.436 ns/day 1.302 hours/ns 106.689 timesteps/s
97.0% CPU use with 4 MPI tasks x no OpenMP threads :pre
@ -1757,14 +1756,14 @@ Ave special neighs/atom = 2.34032
Neighbor list builds = 26
Dangerous builds = 0 :pre
The first section provides a global loop timing summary. The loop time
The first section provides a global loop timing summary. The {loop time}
is the total wall time for the section. The {Performance} line is
provided for convenience to help predicting the number of loop
continuations required and for comparing performance with other
similar MD codes. The CPU use line provides the CPU utilzation per
continuations required and for comparing performance with other,
similar MD codes. The {CPU use} line provides the CPU utilzation per
MPI task; it should be close to 100% times the number of OpenMP
threads (or 1). Lower numbers correspond to delays due to file I/O or
insufficient thread utilization.
threads (or 1 of no OpenMP). Lower numbers correspond to delays due
to file I/O or insufficient thread utilization.
The MPI task section gives the breakdown of the CPU run time (in
seconds) into major categories:
@ -1791,7 +1790,7 @@ is present that also prints the CPU utilization in percent. In
addition, when using {timer full} and the "package omp"_package.html
command are active, a similar timing summary of time spent in threaded
regions to monitor thread utilization and load balance is provided. A
new entry is the {Reduce} section, which lists the time spend in
new entry is the {Reduce} section, which lists the time spent in
reducing the per-thread data elements to the storage for non-threaded
computation. These thread timings are taking from the first MPI rank
only and and thus, as the breakdown for MPI tasks can change from MPI

View File

@ -29,7 +29,7 @@ Bond Styles: fene, harmonic :l
Dihedral Styles: charmm, harmonic, opls :l
Fixes: nve, npt, nvt, nvt/sllod :l
Improper Styles: cvff, harmonic :l
Pair Styles: buck/coul/cut, buck/coul/long, buck, gayberne,
Pair Styles: buck/coul/cut, buck/coul/long, buck, eam, gayberne,
charmm/coul/long, lj/cut, lj/cut/coul/long, sw, tersoff :l
K-Space Styles: pppm :l
:ule

View File

@ -110,14 +110,14 @@ mpirun -np 96 -ppn 12 lmp_g++ -k on t 20 -sf kk -in in.lj # ditto on 8 Phis :p
[Required hardware/software:]
Kokkos support within LAMMPS must be built with a C++11 compatible
compiler. If using gcc, version 4.8.1 or later is required.
compiler. If using gcc, version 4.7.2 or later is required.
To build with Kokkos support for CPUs, your compiler must support the
OpenMP interface. You should have one or more multi-core CPUs so that
multiple threads can be launched by each MPI task running on a CPU.
To build with Kokkos support for NVIDIA GPUs, NVIDIA Cuda software
version 6.5 or later must be installed on your system. See the
version 7.5 or later must be installed on your system. See the
discussion for the "GPU"_accelerate_gpu.html package for details of
how to check and do this.

View File

@ -8,6 +8,7 @@
angle_style class2 command :h3
angle_style class2/omp command :h3
angle_style class2/kk command :h3
[Syntax:]

View File

@ -8,6 +8,7 @@
bond_style class2 command :h3
bond_style class2/omp command :h3
bond_style class2/kk command :h3
[Syntax:]

View File

@ -0,0 +1,70 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
bond_style oxdna_fene command :h3
[Syntax:]
bond_style oxdna_fene :pre
[Examples:]
bond_style oxdna_fene
bond_coeff * 2.0 0.25 0.7525 :pre
[Description:]
The {oxdna_fene} bond style uses the potential
:c,image(Eqs/bond_oxdna_fene.jpg)
to define a modified finite extensible nonlinear elastic (FENE) potential
"(Ouldridge)"_#oxdna_fene to model the connectivity of the phosphate backbone
in the oxDNA force field for coarse-grained modelling of DNA.
The following coefficients must be defined for the bond type via the
"bond_coeff"_bond_coeff.html command as given in the above example, or in
the data file or restart files read by the "read_data"_read_data.html
or "read_restart"_read_restart.html commands:
epsilon (energy)
Delta (distance)
r0 (distance) :ul
NOTE: This bond style has to be used together with the corresponding oxDNA pair styles
for excluded volume interaction {oxdna_excv}, stacking {oxdna_stk}, cross-stacking {oxdna_xstk}
and coaxial stacking interaction {oxdna_coaxstk} as well as hydrogen-bonding interaction {oxdna_hbond} (see also documentation of
"pair_style oxdna_excv"_pair_oxdna_excv.html). The coefficients
in the above example have to be kept fixed and cannot be changed without reparametrizing the entire model.
Example input and data files can be found in /examples/USER/cgdna/examples/duplex1/ and /duplex2/.
A simple python setup tool which creates single straight or helical DNA strands,
DNA duplexes or arrays of DNA duplexes can be found in /examples/USER/cgdna/util/.
A technical report with more information on the model, the structure of the input file,
the setup tool and the performance of the LAMMPS-implementation of oxDNA
can be found "here"_PDF/USER-CGDNA-overview.pdf.
:line
[Restrictions:]
This bond style can only be used if LAMMPS was built with the
USER-CGDNA package and the MOLECULE and ASPHERE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]
"pair_style oxdna_excv"_pair_oxdna_excv.html, "fix nve/dotc/langevin"_fix_nve_dotc_langevin.html, "bond_coeff"_bond_coeff.html
[Default:] none
:line
:link(oxdna_fene)
[(Ouldridge)] T.E. Ouldridge, A.A. Louis, J.P.K. Doye, J. Chem. Phys. 134, 085101 (2011).

View File

@ -15,6 +15,7 @@ Bond Styles :h1
bond_morse
bond_none
bond_nonlinear
bond_oxdna_fene
bond_quartic
bond_table
bond_zero

View File

@ -91,6 +91,7 @@ Commands :h1
suffix
tad
temper
temper_grem
thermo
thermo_modify
thermo_style

View File

@ -10,34 +10,43 @@ compute coord/atom command :h3
[Syntax:]
compute ID group-ID coord/atom cutoff type1 type2 ... :pre
compute ID group-ID coord/atom cstyle args ... :pre
ID, group-ID are documented in "compute"_compute.html command
coord/atom = style name of this compute command
cutoff = distance within which to count coordination neighbors (distance units)
typeN = atom type for Nth coordination count (see asterisk form below) :ul
ID, group-ID are documented in "compute"_compute.html command :ulb,l
coord/atom = style name of this compute command :l
cstyle = {cutoff} or {orientorder} :l
{cutoff} args = cutoff typeN
cutoff = distance within which to count coordination neighbors (distance units)
typeN = atom type for Nth coordination count (see asterisk form below)
{orientorder} args = orientorderID threshold
orientorderID = ID of an orientorder/atom compute
threshold = minimum value of the product of two "connected" atoms :pre
:ule
[Examples:]
compute 1 all coord/atom 2.0
compute 1 all coord/atom 6.0 1 2
compute 1 all coord/atom 6.0 2*4 5*8 * :pre
compute 1 all coord/atom cutoff 2.0
compute 1 all coord/atom cutoff 6.0 1 2
compute 1 all coord/atom cutoff 6.0 2*4 5*8 *
compute 1 all coord/atom orientorder 2 0.5 :pre
[Description:]
Define a computation that calculates one or more coordination numbers
for each atom in a group.
This compute performs calculations between neighboring atoms to
determine a coordination value. The specific calculation and the
meaning of the resulting value depend on the {cstyle} keyword used.
A coordination number is defined as the number of neighbor atoms with
specified atom type(s) that are within the specified cutoff distance
from the central atom. Atoms not in the group are included in a
coordination number of atoms in the group.
The {cutoff} cstyle calculates one or more traditional coordination
numbers for each atom. A coordination number is defined as the number
of neighbor atoms with specified atom type(s) that are within the
specified cutoff distance from the central atom. Atoms not in the
specified group are included in the coordination number tally.
The {typeN} keywords allow you to specify which atom types contribute
to each coordination number. One coordination number is computed for
each of the {typeN} keywords listed. If no {typeN} keywords are
listed, a single coordination number is calculated, which includes
atoms of all types (same as the "*" format, see below).
The {typeN} keywords allow specification of which atom types
contribute to each coordination number. One coordination number is
computed for each of the {typeN} keywords listed. If no {typeN}
keywords are listed, a single coordination number is calculated, which
includes atoms of all types (same as the "*" format, see below).
The {typeN} keywords can be specified in one of two ways. An explicit
numeric value can be used, as in the 2nd example above. Or a
@ -49,8 +58,27 @@ from 1 to N. A leading asterisk means all types from 1 to n
(inclusive). A middle asterisk means all types from m to n
(inclusive).
The value of all coordination numbers will be 0.0 for atoms not in the
specified compute group.
The {orientorder} cstyle calculates the number of "connected" neighbor
atoms J around each central atom I. For this {cstyle}, connected is
defined by the orientational order parameter calculated by the
"compute orientorder/atom"_compute_orientorder_atom.html command.
This {cstyle} thus allows one to apply the ten Wolde's criterion to
identify crystal-like atoms in a system, as discussed in "ten
Wolde"_#tenWolde.
The ID of the previously specified "compute
orientorder/atom"_compute_orientorder/atom command is specified as
{orientorderID}. The compute must invoke its {components} option to
calculate components of the {Ybar_lm} vector for each atoms, as
described in its documenation. Note that orientorder/atom compute
defines its own criteria for identifying neighboring atoms. If the
scalar product ({Ybar_lm(i)},{Ybar_lm(j)}), calculated by the
orientorder/atom compute is larger than the specified {threshold},
then I and J are connected, and the coordination value of I is
incremented by one.
For all {cstyle} settings, all coordination values will be 0.0 for
atoms not in the specified compute group.
The neighbor list needed to compute this quantity is constructed each
time the calculation is performed (i.e. each time a snapshot of atoms
@ -72,11 +100,16 @@ the neighbor list.
[Output info:]
If single {type1} keyword is specified (or if none are specified),
this compute calculates a per-atom vector. If multiple {typeN}
keywords are specified, this compute calculates a per-atom array, with
N columns. These values can be accessed by any command that uses
per-atom values from a compute as input. See "Section
For {cstyle} cutoff, this compute can calculate a per-atom vector or
array. If single {type1} keyword is specified (or if none are
specified), this compute calculates a per-atom vector. If multiple
{typeN} keywords are specified, this compute calculates a per-atom
array, with N columns.
For {cstyle} orientorder, this compute calculates a per-atom vector.
These values can be accessed by any command that uses per-atom values
from a compute as input. See "Section
6.15"_Section_howto.html#howto_15 for an overview of LAMMPS output
options.
@ -88,5 +121,12 @@ explained above.
[Related commands:]
"compute cluster/atom"_compute_cluster_atom.html
"compute orientorder/atom"_compute_orientorder_atom.html
[Default:] none
:line
:link(tenWolde)
[(tenWolde)] P. R. ten Wolde, M. J. Ruiz-Montero, D. Frenkel,
J. Chem. Phys. 104, 9932 (1996).

View File

@ -16,10 +16,11 @@ ID, group-ID are documented in "compute"_compute.html command :ulb,l
group/group = style name of this compute command :l
group2-ID = group ID of second (or same) group :l
zero or more keyword/value pairs may be appended :l
keyword = {pair} or {kspace} or {boundary} :l
keyword = {pair} or {kspace} or {boundary} or {molecule} :l
{pair} value = {yes} or {no}
{kspace} value = {yes} or {no}
{boundary} value = {yes} or {no} :pre
{boundary} value = {yes} or {no}
{molecule} value = {off} or {inter} or {intra} :pre
:ule
[Examples:]
@ -46,6 +47,13 @@ NOTE: The energies computed by the {pair} keyword do not include tail
corrections, even if they are enabled via the
"pair_modify"_pair_modify.html command.
If the {molecule} keyword is set to {inter} or {intra} than an
additional check is made based on the molecule IDs of the two atoms in
each pair before including their pairwise interaction energy and
force. For the {inter} setting, the two atoms must be in different
molecules. For the {intra} setting, the two atoms must be in the same
molecule.
If the {kspace} keyword is set to {yes}, which is not the default, and
if a "kspace_style"_kspace_style.html is defined, then the interaction
energy will include a Kspace component which is the long-range
@ -66,6 +74,10 @@ affect the force calculation and will be zero if one or both of the
groups are charge neutral. This energy correction term is the same as
that included in the regular Ewald and PPPM routines.
NOTE: The {molecule} setting only affects the group/group
contributions calculated by the {pair} keyword. It does not affect
the group/group contributions calculated by the {kspace} keyword.
This compute does not calculate any bond or angle or dihedral or
improper interactions between atoms in the two groups.
@ -78,6 +90,22 @@ work (FFTs, Ewald summation) as computing long-range forces for the
entire system. Thus it can be costly to invoke this compute too
frequently.
NOTE: If you have a bonded system, then the settings of
"special_bonds"_special_bonds.html command can remove pairwise
interactions between atoms in the same bond, angle, or dihedral. This
is the default setting for the "special_bonds"_special_bonds.html
command, and means those pairwise interactions do not appear in the
neighbor list. Because this compute uses a neighbor list, it also
means those pairs will not be included in the group/group interaction.
This does not apply when using long-range coulomb interactions
({coul/long}, {coul/msm}, {coul/wolf} or similar. One way to get
around this would be to set special_bond scaling factors to very tiny
numbers that are not exactly zero (e.g. 1.0e-50). Another workaround
is to write a dump file, and use the "rerun"_rerun.html command to
compute the group/group interactions for snapshots in the dump file.
The rerun script can use a "special_bonds"_special_bonds.html command
that includes all pairs in the neighbor list.
If you desire a breakdown of the interactions into a pairwise and
Kspace component, simply invoke the compute twice with the appropriate
yes/no settings for the {pair} and {kspace} keywords. This is no more
@ -119,7 +147,8 @@ The {ewald} and {pppm} styles do.
[Default:]
The option defaults are pair = yes, kspace = no, and boundary = yes.
The option defaults are pair = yes, kspace = no, boundary = yes,
molecule = off.
:line

View File

@ -15,17 +15,19 @@ compute ID group-ID orientorder/atom keyword values ... :pre
ID, group-ID are documented in "compute"_compute.html command :ulb,l
orientorder/atom = style name of this compute command :l
one or more keyword/value pairs may be appended :l
keyword = {cutoff} or {nnn} or {degrees}
keyword = {cutoff} or {nnn} or {degrees} or {components}
{cutoff} value = distance cutoff
{nnn} value = number of nearest neighbors
{degrees} values = nlvalues, l1, l2,... :pre
{degrees} values = nlvalues, l1, l2,...
{components} value = ldegree :pre
:ule
[Examples:]
compute 1 all orientorder/atom
compute 1 all orientorder/atom degrees 5 4 6 8 10 12 nnn NULL cutoff 1.5 :pre
compute 1 all orientorder/atom degrees 5 4 6 8 10 12 nnn NULL cutoff 1.5
compute 1 all orientorder/atom degrees 4 6 components 6 nnn NULL cutoff 3.0 :pre
[Description:]
@ -62,14 +64,21 @@ specified distance cutoff are used.
The optional keyword {degrees} defines the list of order parameters to
be computed. The first argument {nlvalues} is the number of order
parameters. This is followed by that number of integers giving the
degree of each order parameter. Because {Q}2 and all odd-degree
order parameters are zero for atoms in cubic crystals
(see "Steinhardt"_#Steinhardt), the default order parameters
are {Q}4, {Q}6, {Q}8, {Q}10, and {Q}12. For the
FCC crystal with {nnn}=12, {Q}4 = sqrt(7/3)/8 = 0.19094....
The numerical values of all order parameters up to {Q}12
for a range of commonly encountered high-symmetry structures are given
in Table I of "Mickel et al."_#Mickel.
degree of each order parameter. Because {Q}2 and all odd-degree order
parameters are zero for atoms in cubic crystals (see
"Steinhardt"_#Steinhardt), the default order parameters are {Q}4,
{Q}6, {Q}8, {Q}10, and {Q}12. For the FCC crystal with {nnn}=12, {Q}4
= sqrt(7/3)/8 = 0.19094.... The numerical values of all order
parameters up to {Q}12 for a range of commonly encountered
high-symmetry structures are given in Table I of "Mickel et
al."_#Mickel.
The optional keyword {components} will output the components of the
normalized complex vector {Ybar_lm} of degree {ldegree}, which must be
explicitly included in the keyword {degrees}. This option can be used
in conjunction with "compute coord_atom"_compute_coord_atom.html to
calculate the ten Wolde's criterion to identify crystal-like
particles, as discussed in "ten Wolde"_#tenWolde.
The value of {Ql} is set to zero for atoms not in the
specified compute group, as well as for atoms that have less than
@ -95,8 +104,16 @@ the neighbor list.
[Output info:]
This compute calculates a per-atom array with {nlvalues} columns, giving the
{Ql} values for each atom, which are real numbers on the range 0 <= {Ql} <= 1.
This compute calculates a per-atom array with {nlvalues} columns,
giving the {Ql} values for each atom, which are real numbers on the
range 0 <= {Ql} <= 1.
If the keyword {components} is set, then the real and imaginary parts
of each component of (normalized) {Ybar_lm} will be added to the
output array in the following order: Re({Ybar_-m}) Im({Ybar_-m})
Re({Ybar_-m+1}) Im({Ybar_-m+1}) ... Re({Ybar_m}) Im({Ybar_m}). This
way, the per-atom array will have a total of {nlvalues}+2*(2{l}+1)
columns.
These values can be accessed by any command that uses
per-atom values from a compute as input. See "Section
@ -107,15 +124,25 @@ options.
[Related commands:]
"compute coord/atom"_compute_coord_atom.html, "compute centro/atom"_compute_centro_atom.html, "compute hexorder/atom"_compute_hexorder_atom.html
"compute coord/atom"_compute_coord_atom.html, "compute
centro/atom"_compute_centro_atom.html, "compute
hexorder/atom"_compute_hexorder_atom.html
[Default:]
The option defaults are {cutoff} = pair style cutoff, {nnn} = 12, {degrees} = 5 4 6 8 10 12 i.e. {Q}4, {Q}6, {Q}8, {Q}10, and {Q}12.
The option defaults are {cutoff} = pair style cutoff, {nnn} = 12,
{degrees} = 5 4 6 8 10 12 i.e. {Q}4, {Q}6, {Q}8, {Q}10, and {Q}12.
:line
:link(Steinhardt)
[(Steinhardt)] P. Steinhardt, D. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).
[(Steinhardt)] P. Steinhardt, D. Nelson, and M. Ronchetti,
Phys. Rev. B 28, 784 (1983).
:link(Mickel)
[(Mickel)] W. Mickel, S. C. Kapfer, G. E. Schroeder-Turkand, K. Mecke, J. Chem. Phys. 138, 044501 (2013).
[(Mickel)] W. Mickel, S. C. Kapfer, G. E. Schroeder-Turkand, K. Mecke,
J. Chem. Phys. 138, 044501 (2013).
:link(tenWolde)
[(tenWolde)] P. R. ten Wolde, M. J. Ruiz-Montero, D. Frenkel,
J. Chem. Phys. 104, 9932 (1996).

View File

@ -10,21 +10,27 @@ compute rdf command :h3
[Syntax:]
compute ID group-ID rdf Nbin itype1 jtype1 itype2 jtype2 ... :pre
compute ID group-ID rdf Nbin itype1 jtype1 itype2 jtype2 ... keyword/value ... :pre
ID, group-ID are documented in "compute"_compute.html command
rdf = style name of this compute command
Nbin = number of RDF bins
itypeN = central atom type for Nth RDF histogram (see asterisk form below)
jtypeN = distribution atom type for Nth RDF histogram (see asterisk form below) :ul
ID, group-ID are documented in "compute"_compute.html command :ulb,l
rdf = style name of this compute command :l
Nbin = number of RDF bins :l
itypeN = central atom type for Nth RDF histogram (see asterisk form below) :l
jtypeN = distribution atom type for Nth RDF histogram (see asterisk form below) :l
zero or more keyword/value pairs may be appended :l
keyword = {cutoff} :l
{cutoff} value = Rcut
Rcut = cutoff distance for RDF computation (distance units) :pre
:ule
[Examples:]
compute 1 all rdf 100
compute 1 all rdf 100 1 1
compute 1 all rdf 100 * 3
compute 1 all rdf 100 * 3 cutoff 5.0
compute 1 fluid rdf 500 1 1 1 2 2 1 2 2
compute 1 fluid rdf 500 1*3 2 5 *10 :pre
compute 1 fluid rdf 500 1*3 2 5 *10 cutoff 3.5 :pre
[Description:]
@ -32,7 +38,8 @@ Define a computation that calculates the radial distribution function
(RDF), also called g(r), and the coordination number for a group of
particles. Both are calculated in histogram form by binning pairwise
distances into {Nbin} bins from 0.0 to the maximum force cutoff
defined by the "pair_style"_pair_style.html command. The bins are of
defined by the "pair_style"_pair_style.html command or the cutoff
distance {Rcut} specified via the {cutoff} keyword. The bins are of
uniform size in radial distance. Thus a single bin encompasses a thin
shell of distances in 3d and a thin ring of distances in 2d.
@ -41,17 +48,41 @@ NOTE: If you have a bonded system, then the settings of
interactions between atoms in the same bond, angle, or dihedral. This
is the default setting for the "special_bonds"_special_bonds.html
command, and means those pairwise interactions do not appear in the
neighbor list. Because this fix uses the neighbor list, it also means
neighbor list. Because this fix uses a neighbor list, it also means
those pairs will not be included in the RDF. This does not apply when
using long-range coulomb ({coul/long}, {coul/msm}, {coul/wolf} or
similar. One way to get around this would be to set special_bond
scaling factors to very tiny numbers that are not exactly zero
(e.g. 1.0e-50). Another workaround is to write a dump file, and use
the "rerun"_rerun.html command to compute the RDF for snapshots in the
dump file. The rerun script can use a
using long-range coulomb interactions ({coul/long}, {coul/msm},
{coul/wolf} or similar. One way to get around this would be to set
special_bond scaling factors to very tiny numbers that are not exactly
zero (e.g. 1.0e-50). Another workaround is to write a dump file, and
use the "rerun"_rerun.html command to compute the RDF for snapshots in
the dump file. The rerun script can use a
"special_bonds"_special_bonds.html command that includes all pairs in
the neighbor list.
By default the RDF is computed out to the maximum force cutoff defined
by the "pair_style"_pair_style.html command. If the {cutoff} keyword
is used, then the RDF is computed accurately out to the {Rcut} > 0.0
distance specified.
NOTE: Normally, you should only use the {cutoff} keyword if no pair
style is defined, e.g. the "rerun"_rerun.html command is being used to
post-process a dump file of snapshots. Or if you really want the RDF
for distances beyond the pair_style force cutoff and cannot easily
post-process a dump file to calculate it. This is because using the
{cutoff} keyword incurs extra computation and possibly communication,
which may slow down your simulation. If you specify a {Rcut} <= force
cutoff, you will force an additional neighbor list to be built at
every timestep this command is invoked (or every reneighboring
timestep, whichever is less frequent), which is inefficent. LAMMPS
will warn you if this is the case. If you specify a {Rcut} > force
cutoff, you must insure ghost atom information out to {Rcut} + {skin}
is communicated, via the "comm_modify cutoff"_comm_modify.html
command, else the RDF computation cannot be performed, and LAMMPS will
give an error message. The {skin} value is what is specified with the
"neighbor"_neighbor.html command. In this case, you are forcing a
large neighbor list to be built just for the RDF computation, and
extra communication to be performed every timestep.
The {itypeN} and {jtypeN} arguments are optional. These arguments
must come in pairs. If no pairs are listed, then a single histogram
is computed for g(r) between all atom types. If one or more pairs are
@ -153,4 +184,6 @@ change from zero to one at the location of the spike in g(r).
"fix ave/time"_fix_ave_time.html
[Default:] none
[Default:]
The keyword defaults are cutoff = 0.0 (use the pairwise force cutoff).

View File

@ -35,6 +35,7 @@ Computes :h1
compute_erotate_sphere_atom
compute_event_displace
compute_fep
compute_global_atom
compute_group_group
compute_gyration
compute_gyration_chunk

View File

@ -8,6 +8,7 @@
dihedral_style class2 command :h3
dihedral_style class2/omp command :h3
dihedral_style class2/kk command :h3
[Syntax:]

View File

@ -31,21 +31,19 @@ fix abf all colvars colvars.inp tstat 1 :pre
[Description:]
This fix interfaces LAMMPS to a "collective variables" or "colvars"
module library which allows to calculate potentials of mean force
This fix interfaces LAMMPS to the collective variables "Colvars"
library, which allows to calculate potentials of mean force
(PMFs) for any set of colvars, using different sampling methods:
currently implemented are the Adaptive Biasing Force (ABF) method,
metadynamics, Steered Molecular Dynamics (SMD) and Umbrella Sampling
(US) via a flexible harmonic restraint bias. The colvars library is
hosted at "http://colvars.github.io/"_http://colvars.github.io/
(US) via a flexible harmonic restraint bias.
This documentation describes only the fix colvars command itself and
LAMMPS specific parts of the code. The full documentation of the
colvars library is available as "this supplementary PDF document"_PDF/colvars-refman-lammps.pdf
A detailed discussion of the implementation of the portable collective
variable library is in "(Fiorin)"_#Fiorin. Additional information can
be found in "(Henin)"_#Henin.
The Colvars library is developed at "https://github.com/colvars/colvars"_https://github.com/colvars/colvars
A detailed discussion of its implementation is in "(Fiorin)"_#Fiorin.
There are some example scripts for using this package with LAMMPS in the
examples/USER/colvars directory.
@ -129,8 +127,3 @@ and tstat = NULL.
:link(Fiorin)
[(Fiorin)] Fiorin , Klein, Henin, Mol. Phys., DOI:10.1080/00268976.2013.813594
:link(Henin)
[(Henin)] Henin, Fiorin, Chipot, Klein, J. Chem. Theory Comput., 6,
35-47 (2010)

View File

@ -10,7 +10,7 @@ fix eos/table/rx command :h3
[Syntax:]
fix ID group-ID eos/table/rx style file1 N keyword file2 :pre
fix ID group-ID eos/table/rx style file1 N keyword ... :pre
ID, group-ID are documented in "fix"_fix.html command
eos/table/rx = style name of this fix command
@ -18,11 +18,16 @@ style = {linear} = method of interpolation
file1 = filename containing the tabulated equation of state
N = use N values in {linear} tables
keyword = name of table keyword correponding to table file
file2 = filename containing the heats of formation of each species :ul
file2 = filename containing the heats of formation of each species (optional)
deltaHf = heat of formation for a single species in energy units (optional)
energyCorr = energy correction in energy units (optional)
tempCorrCoeff = temperature correction coefficient (optional) :ul
[Examples:]
fix 1 all eos/table/rx linear eos.table 10000 KEYWORD thermo.table :pre
fix 1 all eos/table/rx linear eos.table 10000 KEYWORD thermo.table
fix 1 all eos/table/rx linear eos.table 10000 KEYWORD 1.5
fix 1 all eos/table/rx linear eos.table 10000 KEYWORD 1.5 0.025 0.0 :pre
[Description:]
@ -39,7 +44,15 @@ where {m} is the number of species, {c_i,j} is the concentration of
species {j} in particle {i}, {u_j} is the internal energy of species j,
{DeltaH_f,j} is the heat of formation of species {j}, N is the number of
molecules represented by the coarse-grained particle, kb is the
Boltzmann constant, and T is the temperature of the system.
Boltzmann constant, and T is the temperature of the system. Additionally,
it is possible to modify the concentration-dependent particle internal
energy relation by adding an energy correction, temperature-dependent
correction, and/or a molecule-dependent correction. An energy correction can
be specified as a constant (in energy units). A temperature correction can be
specified by multiplying a temperature correction coefficient by the
internal temperature. A molecular correction can be specified by
by multiplying a molecule correction coefficient by the average number of
product gas particles in the coarse-grain particle.
Fix {eos/table/rx} creates interpolation tables of length {N} from {m}
internal energy values of each species {u_j} listed in a file as a
@ -58,6 +71,14 @@ file is described below.
The second filename specifies a file containing heat of formation
{DeltaH_f,j} for each species.
In cases where the coarse-grain particle represents a single molecular
species (i.e., no reactions occur and fix {rx} is not present in the input file),
fix {eos/table/rx} can be applied in a similar manner to fix {eos/table}
within a non-reactive DPD simulation. In this case, the heat of formation
filename is replaced with the heat of formation value for the single species.
Additionally, the energy correction and temperature correction coefficients may
also be specified as fix arguments.
:line
The format of a tabulated file is as follows (without the
@ -116,6 +137,19 @@ Note that the species can be listed in any order. The tag that is
used as the species name must correspond with the tags used to define
the reactions with the "fix rx"_fix_rx.html command.
Alternatively, corrections to the EOS can be included by specifying
three additional columns that correspond to the energy correction,
the temperature correction coefficient and molecule correction
coefficient. In this case, the format of the file is as follows:
# HEAT OF FORMATION TABLE (one or more comment or blank lines) :pre
(blank)
h2 0.00 1.23 0.025 0.0 (species name, heat of formation, energy correction, temperature correction coefficient, molecule correction coefficient)
no2 0.34 0.00 0.000 -1.76
n2 0.00 0.00 0.000 -1.76
...
no 0.93 0.00 0.000 -1.76 :pre
:line
[Restrictions:]

View File

@ -151,7 +151,7 @@ The option default for the {energy} keyword is energy = no.
:line
:link(Strong)
[(Strong)] Strong and Eaves, J. Phys. Chem. Lett. 7, 1907 (2016).
[(Strong)] Strong and Eaves, J. Phys. Chem. B 121, 189 (2017).
:link(Evans)
[(Evans)] Evans and Morriss, Phys. Rev. Lett. 56, 2172 (1986).

View File

@ -29,7 +29,7 @@ fix fxgREM all grem 502 -0.15 -80000 fxnvt :pre
[Description:]
This fix implements the molecular dynamics version of the generalized
replica exchange method (gREM) originally developed by "(Kim)"_#Kim,
replica exchange method (gREM) originally developed by "(Kim)"_#Kim2010,
which uses non-Boltzmann ensembles to sample over first order phase
transitions. The is done by defining replicas with an enthalpy
dependent effective temperature
@ -103,7 +103,7 @@ npt"_fix_nh.html, "thermo_modify"_thermo_modify.html
:line
:link(Kim)
:link(Kim2010)
[(Kim)] Kim, Keyes, Straub, J Chem. Phys, 132, 224107 (2010).
:link(Malolepsza)

View File

@ -7,6 +7,7 @@
:line
fix momentum command :h3
fix momentum/kk command :h3
[Syntax:]
@ -55,6 +56,29 @@ of atoms by rescaling the velocities after the momentum was removed.
Note that the "velocity"_velocity.html command can be used to create
initial velocities with zero aggregate linear and/or angular momentum.
:line
Styles with a {gpu}, {intel}, {kk}, {omp}, or {opt} suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed in "Section 5"_Section_accelerate.html
of the manual. The accelerated styles take the same arguments and
should produce the same results, except for round-off and precision
issues.
These accelerated styles are part of the GPU, USER-INTEL, KOKKOS,
USER-OMP and OPT packages, respectively. They are only enabled if
LAMMPS was built with those packages. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section 5"_Section_accelerate.html of the manual for
more instructions on how to use the accelerated styles effectively.
[Restart, fix_modify, output, run start/stop, minimize info:]
No information about this fix is written to "binary restart

130
doc/src/fix_mscg.txt Normal file
View File

@ -0,0 +1,130 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
fix mscg command :h3
[Syntax:]
fix ID group-ID mscg N keyword args ... :pre
ID, group-ID are documented in "fix"_fix.html command :ulb,l
mscg = style name of this fix command :l
N = envoke this fix every this many timesteps :l
zero or more keyword/value pairs may be appended :l
keyword = {range} or {name} or {max} :l
{range} arg = {on} or {off}
{on} = range finding functionality is performed
{off} = force matching functionality is performed
{name} args = name1 ... nameN
name1,...,nameN = string names for each atom type (1-Ntype)
{max} args = maxb maxa maxd
maxb,maxa,maxd = maximum bonds/angles/dihedrals per atom :pre
:ule
[Examples:]
fix 1 all mscg 1
fix 1 all mscg 1 range name A B
fix 1 all mscg 1 max 4 8 20 :pre
[Description:]
This fix applies the Multi-Scale Coarse-Graining (MSCG) method to
snapshots from a dump file to generate potentials for coarse-grained
simulations from all-atom simulations, using a force-matching
technique ("Izvekov"_#Izvekov, "Noid"_#Noid).
It makes use of the MS-CG library, written and maintained by Greg
Voth's group at the University of Chicago, which is freely available
on their "MS-CG GitHub
site"_https://github.com/uchicago-voth/MSCG-release. See instructions
on obtaining and installing the MS-CG library in the src/MSCG/README
file, which must be done before you build LAMMPS with this fix command
and use the command in a LAMMPS input script.
An example script using this fix is provided the examples/mscg
directory.
The general workflow for using LAMMPS in conjunction with the MS-CG
library to create a coarse-grained model and run coarse-grained
simulations is as follows:
Perform all-atom simulations on the system to be coarse grained.
Generate a trajectory mapped to the coarse-grained model.
Create input files for the MS-CG library.
Run the range finder functionality of the MS-CG library.
Run the force matching functionality of the MS-CG library.
Check the results of the force matching.
Run coarse-grained simulations using the new coarse-grained potentials. :ol
This fix can perform the range finding and force matching steps 4 and
5 of the above workflow when used in conjunction with the
"rerun"_rerun.html command. It does not perform steps 1-3 and 6-7.
Step 2 can be performed using a Python script (what is the name?)
provided with the MS-CG library which defines the coarse-grained model
and converts a standard LAMMPS dump file for an all-atom simulation
(step 1) into a LAMMPS dump file which has the positions of and forces
on the coarse-grained beads.
In step 3, an input file named "control.in" is needed by the MS-CG
library which sets parameters for the range finding and force matching
functionalities. See the examples/mscg/control.in file as an example.
And see the documentation provided with the MS-CG library for more
info on this file.
When this fix is used to perform steps 4 and 5, the MS-CG library also
produces additional output files. The range finder functionality
(step 4) outputs files defining pair and bonded interaction ranges.
The force matching functionality (step 5) outputs tabulated force
files for every interaction in the system. Other diagnostic files can
also be output depending on the paramters in the MS-CG library input
script. Again, see the documentation provided with the MS-CG library
for more info.
:line
The {range} keyword specifies which MS-CG library functionality should
be invoked. If {on}, the step 4 range finder functionality is invoked.
{off}, the step 5 force matching functionality is invoked.
If the {name} keyword is used, string names are defined to associate
with the integer atom types in LAMMPS. {Ntype} names must be
provided, one for each atom type (1-Ntype).
The {max} keyword specifies the maximum number of bonds, angles, and
dihedrals a bead can have in the coarse-grained model.
[Restrictions:]
This fix is part of the MSCG package. It is only enabled if LAMMPS was
built with that package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
The MS-CG library uses C++11, which may not be supported by older
compilers. The MS-CG library also has some additional numeric library
dependencies, which are describd in its documentation.
Currently, the MS-CG library is not setup to run in parallel with MPI,
so this fix can only be used in a serial LAMMPS build and run
on a single processor.
[Related commands:] none
[Default:]
The default keyword settings are range off, max 4 12 36.
:line
:link(Izvekov)
[(Izvekov)] Izvekov, Voth, J Chem Phys 123, 134105 (2005).
:link(Noid)
[(Noid)] Noid, Chu, Ayton, Krishna, Izvekov, Voth, Das, Andersen, J
Chem Phys 128, 134105 (2008).

61
doc/src/fix_nve_dot.txt Normal file
View File

@ -0,0 +1,61 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
fix nve/dot command :h3
[Syntax:]
fix ID group-ID nve/dot :pre
ID, group-ID are documented in "fix"_fix.html command :ulb,l
nve/dot = style name of this fix command :l
:ule
[Examples:]
fix 1 all nve/dot :pre
[Description:]
Apply a rigid-body integrator as described in "(Davidchack)"_#Davidchack
to a group of atoms, but without Langevin dynamics.
This command performs Molecular dynamics (MD)
via a velocity-Verlet algorithm and an evolution operator that rotates
the quaternion degrees of freedom, similar to the scheme outlined in "(Miller)"_#Miller.
This command is the equivalent of the "fix nve/dotc/langevin"_fix_nve_dotc_langevin.html
without damping and noise and can be used to determine the stability range
in a NVE ensemble prior to using the Langevin-type DOTC-integrator
(see also "fix nve/dotc/langevin"_fix_nve_dotc_langevin.html).
The command is equivalent to the "fix nve"_fix_nve.html.
The particles are always considered to have a finite size.
An example input file can be found in /examples/USER/cgdna/examples/duplex1/.
A technical report with more information on this integrator can be found
"here"_PDF/USER-CGDNA-overview.pdf.
:line
[Restrictions:]
These pair styles can only be used if LAMMPS was built with the
USER-CGDNA package and the MOLECULE and ASPHERE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]
"fix nve/dotc/langevin"_fix_nve_dotc_langevin.html, "fix nve"_fix_nve.html
[Default:] none
:line
:link(Davidchack)
[(Davidchack)] R.L Davidchack, T.E. Ouldridge, and M.V. Tretyakov. J. Chem. Phys. 142, 144114 (2015).
:link(Miller)
[(Miller)] T. F. Miller III, M. Eleftheriou, P. Pattnaik, A. Ndirango, G. J. Martyna, J. Chem. Phys., 116, 8649-8659 (2002).

View File

@ -0,0 +1,134 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
fix nve/dotc/langevin command :h3
[Syntax:]
fix ID group-ID nve/dotc/langevin Tstart Tstop damp seed keyword value :pre
ID, group-ID are documented in "fix"_fix.html command :ulb,l
nve/dotc/langevin = style name of this fix command :l
Tstart,Tstop = desired temperature at start/end of run (temperature units) :l
damp = damping parameter (time units) :l
seed = random number seed to use for white noise (positive integer) :l
keyword = {angmom} :l
{angmom} value = factor
factor = do thermostat rotational degrees of freedom via the angular momentum and apply numeric scale factor as discussed below :pre
:ule
[Examples:]
fix 1 all nve/dotc/langevin 1.0 1.0 0.03 457145 angmom 10 :pre
[Description:]
Apply a rigid-body Langevin-type integrator of the kind "Langevin C"
as described in "(Davidchack)"_#Davidchack
to a group of atoms, which models an interaction with an implicit background
solvent. This command performs Brownian dynamics (BD)
via a technique that splits the integration into a deterministic Hamiltonian
part and the Ornstein-Uhlenbeck process for noise and damping.
The quaternion degrees of freedom are updated though an evolution
operator which performs a rotation in quaternion space, preserves
the quaternion norm and is akin to "(Miller)"_#Miller.
In terms of syntax this command has been closely modelled on the
"fix langevin"_fix_langevin.html and its {angmom} option. But it combines
the "fix nve"_fix_nve.html and the "fix langevin"_fix_langevin.html in
one single command. The main feature is improved stability
over the standard integrator, permitting slightly larger timestep sizes.
NOTE: Unlike the "fix langevin"_fix_langevin.html this command performs
also time integration of the translational and quaternion degrees of freedom.
The total force on each atom will have the form:
F = Fc + Ff + Fr
Ff = - (m / damp) v
Fr is proportional to sqrt(Kb T m / (dt damp)) :pre
Fc is the conservative force computed via the usual inter-particle
interactions ("pair_style"_pair_style.html,
"bond_style"_bond_style.html, etc).
The Ff and Fr terms are implicitly taken into account by this fix
on a per-particle basis.
Ff is a frictional drag or viscous damping term proportional to the
particle's velocity. The proportionality constant for each atom is
computed as m/damp, where m is the mass of the particle and damp is
the damping factor specified by the user.
Fr is a force due to solvent atoms at a temperature T randomly bumping
into the particle. As derived from the fluctuation/dissipation
theorem, its magnitude as shown above is proportional to sqrt(Kb T m /
dt damp), where Kb is the Boltzmann constant, T is the desired
temperature, m is the mass of the particle, dt is the timestep size,
and damp is the damping factor. Random numbers are used to randomize
the direction and magnitude of this force as described in
"(Dunweg)"_#Dunweg, where a uniform random number is used (instead of
a Gaussian random number) for speed.
:line
{Tstart} and {Tstop} have to be constant values, i.e. they cannot
be variables.
The {damp} parameter is specified in time units and determines how
rapidly the temperature is relaxed. For example, a value of 0.03
means to relax the temperature in a timespan of (roughly) 0.03 time
units tau (see the "units"_units.html command).
The damp factor can be thought of as inversely related to the
viscosity of the solvent, i.e. a small relaxation time implies a
hi-viscosity solvent and vice versa. See the discussion about gamma
and viscosity in the documentation for the "fix
viscous"_fix_viscous.html command for more details.
The random # {seed} must be a positive integer. A Marsaglia random
number generator is used. Each processor uses the input seed to
generate its own unique seed and its own stream of random numbers.
Thus the dynamics of the system will not be identical on two runs on
different numbers of processors.
The keyword/value option has to be used in the following way:
This fix has to be used together with the {angmom} keyword. The
particles are always considered to have a finite size.
The keyword {angmom} enables thermostatting of the rotational degrees of
freedom in addition to the usual translational degrees of freedom.
The scale factor after the {angmom} keyword gives the ratio of the rotational to
the translational friction coefficient.
An example input file can be found in /examples/USER/cgdna/examples/duplex2/.
A technical report with more information on this integrator can be found
"here"_PDF/USER-CGDNA-overview.pdf.
:line
[Restrictions:]
These pair styles can only be used if LAMMPS was built with the
USER-CGDNA package and the MOLECULE and ASPHERE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]
"fix nve"_fix_nve.html, "fix langevin"_fix_langevin.html, "fix nve/dot"_fix_nve_dot.html,
[Default:] none
:line
:link(Davidchack)
[(Davidchack)] R.L Davidchack, T.E. Ouldridge, M.V. Tretyakov. J. Chem. Phys. 142, 144114 (2015).
:link(Miller)
[(Miller)] T. F. Miller III, M. Eleftheriou, P. Pattnaik, A. Ndirango, G. J. Martyna, J. Chem. Phys., 116, 8649-8659 (2002).
:link(Dunweg)
[(Dunweg)] B. Dunweg, W. Paul, Int. J. Mod. Phys. C, 2, 817-27 (1991).

71
doc/src/fix_nvk.txt Normal file
View File

@ -0,0 +1,71 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
fix nvk command :h3
[Syntax:]
fix ID group-ID nvk :pre
ID, group-ID are documented in "fix"_fix.html command
nvk = style name of this fix command :ul
[Examples:]
fix 1 all nvk :pre
[Description:]
Perform constant kinetic energy integration using the Gaussian
thermostat to update position and velocity for atoms in the group each
timestep. V is volume; K is kinetic energy. This creates a system
trajectory consistent with the isokinetic ensemble.
The equations of motion used are those of Minary et al in
"(Minary)"_#nvk-Minary, a variant of those initially given by Zhang in
"(Zhang)"_#nvk-Zhang.
The kinetic energy will be held constant at its value given when fix
nvk is initiated. If a different kinetic energy is desired, the
"velocity"_velocity.html command should be used to change the kinetic
energy prior to this fix.
:line
[Restart, fix_modify, output, run start/stop, minimize info:]
No information about this fix is written to "binary restart
files"_restart.html. None of the "fix_modify"_fix_modify.html options
are relevant to this fix. No global or per-atom quantities are stored
by this fix for access by various "output
commands"_Section_howto.html#howto_15. No parameter of this fix can
be used with the {start/stop} keywords of the "run"_run.html command.
This fix is not invoked during "energy minimization"_minimize.html.
[Restrictions:]
The Gaussian thermostat only works when it is applied to all atoms in
the simulation box. Therefore, the group must be set to all.
This fix has not yet been implemented to work with the RESPA integrator.
This fix is part of the USER-MISC package. It is only enabled if LAMMPS
was built with that package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
[Related commands:] none
[Default:] none
:line
:link(nvk-Minary)
[(Minary)] Minary, Martyna, and Tuckerman, J Chem Phys, 18, 2510 (2003).
:link(nvk-Zhang)
[(Zhang)] Zhang, J Chem Phys, 106, 6102 (1997).

View File

@ -89,11 +89,7 @@ NOTE: The center of mass of a group of atoms is calculated in
group can straddle a periodic boundary. See the "dump"_dump.html doc
page for a discussion of unwrapped coordinates. It also means that a
spring connecting two groups or a group and the tether point can cross
a periodic boundary and its length be calculated correctly. One
exception is for rigid bodies, which should not be used with the fix
spring command, if the rigid body will cross a periodic boundary.
This is because image flags for rigid bodies are used in a different
way, as explained on the "fix rigid"_fix_rigid.html doc page.
a periodic boundary and its length be calculated correctly.
[Restart, fix_modify, output, run start/stop, minimize info:]

View File

@ -68,6 +68,7 @@ Fixes :h1
fix_meso_stationary
fix_momentum
fix_move
fix_mscg
fix_msst
fix_neb
fix_nh
@ -83,6 +84,8 @@ Fixes :h1
fix_nve_asphere
fix_nve_asphere_noforce
fix_nve_body
fix_nve_dot
fix_nve_dotc_langevin
fix_nve_eff
fix_nve_limit
fix_nve_line
@ -90,6 +93,7 @@ Fixes :h1
fix_nve_noforce
fix_nve_sphere
fix_nve_tri
fix_nvk
fix_nvt_asphere
fix_nvt_body
fix_nvt_manifold_rattle

View File

@ -8,6 +8,7 @@
improper_style class2 command :h3
improper_style class2/omp command :h3
improper_style class2/kk command :h3
[Syntax:]

View File

@ -229,11 +229,16 @@ dramatically in z. For example, for a triclinic system with all three
tilt factors set to the maximum limit, the PPPM grid should be
increased roughly by a factor of 1.5 in the y direction and 2.0 in the
z direction as compared to the same system using a cubic orthogonal
simulation cell. One way to ensure the accuracy requirement is being
met is to run a short simulation at the maximum expected tilt or
length, note the required grid size, and then use the
simulation cell. One way to handle this issue if you have a long
simulation where the box size changes dramatically, is to break it
into shorter simulations (multiple "run"_run.html commands). This
works because the grid size is re-computed at the beginning of each
run. Another way to ensure the descired accuracy requirement is met
is to run a short simulation at the maximum expected tilt or length,
note the required grid size, and then use the
"kspace_modify"_kspace_modify.html {mesh} command to manually set the
PPPM grid size to this value.
PPPM grid size to this value for the long run. The simulation then
will be "too accurate" for some portion of the run.
RMS force errors in real space for {ewald} and {pppm} are estimated
using equation 18 of "(Kolafa)"_#Kolafa, which is also referenced as
@ -285,6 +290,8 @@ LAMMPS"_Section_start.html#start_3 section for more info.
See "Section 5"_Section_accelerate.html of the manual for
more instructions on how to use the accelerated styles effectively.
:line
[Restrictions:]
Note that the long-range electrostatic solvers in LAMMPS assume conducting

View File

@ -23,6 +23,7 @@ Section_history.html
tutorial_drude.html
tutorial_github.html
tutorial_pylammps.html
body.html
manifolds.html
@ -113,6 +114,7 @@ special_bonds.html
suffix.html
tad.html
temper.html
temper_grem.html
thermo.html
thermo_modify.html
thermo_style.html
@ -207,6 +209,8 @@ fix_nve.html
fix_nve_asphere.html
fix_nve_asphere_noforce.html
fix_nve_body.html
fix_nve_dot.html
fix_nve_dotc_langevin.html
fix_nve_eff.html
fix_nve_limit.html
fix_nve_line.html
@ -454,6 +458,7 @@ pair_multi_lucy_rx.html
pair_nb3b_harmonic.html
pair_nm.html
pair_none.html
pair_oxdna_excv.html
pair_peri.html
pair_polymorphic.html
pair_quip.html
@ -492,6 +497,7 @@ pair_zero.html
bond_class2.html
bond_fene.html
bond_fene_expand.html
bond_oxdna_fene.html
bond_harmonic.html
bond_harmonic_shift.html
bond_harmonic_shift_cut.html

View File

@ -8,6 +8,7 @@
pair_style eam command :h3
pair_style eam/gpu command :h3
pair_style eam/intel command :h3
pair_style eam/kk command :h3
pair_style eam/omp command :h3
pair_style eam/opt command :h3

View File

@ -10,16 +10,21 @@ pair_style exp6/rx command :h3
[Syntax:]
pair_style exp6/rx cutoff :pre
pair_style exp6/rx cutoff ... :pre
cutoff = global cutoff for DPD interactions (distance units) :ul
cutoff = global cutoff for DPD interactions (distance units)
weighting = fractional or molecular (optional) :ul
[Examples:]
pair_style exp6/rx 10.0
pair_coeff * * exp6.params h2o h2o 1.0 1.0 10.0
pair_coeff * * exp6.params h2o 1fluid 1.0 1.0 10.0
pair_coeff * * exp6.params 1fluid 1fluid 1.0 1.0 10.0 :pre
pair_style exp6/rx 10.0 fractional
pair_style exp6/rx 10.0 molecular
pair_coeff * * exp6.params h2o h2o exponent 1.0 1.0 10.0
pair_coeff * * exp6.params h2o 1fluid exponent 1.0 1.0 10.0
pair_coeff * * exp6.params 1fluid 1fluid exponent 1.0 1.0 10.0
pair_coeff * * exp6.params 1fluid 1fluid none 10.0
pair_coeff * * exp6.params 1fluid 1fluid polynomial filename 10.0 :pre
[Description:]
@ -50,14 +55,36 @@ defined in the reaction kinetics files specified with the "fix
rx"_fix_rx.html command or they must correspond to the tag "1fluid",
signifying interaction with a product species mixture determined
through a one-fluid approximation. The interaction potential is
weighted by the geometric average of the concentrations of the two
species. The coarse-grained potential is stored before and after the
weighted by the geometric average of either the mole fraction concentrations
or the number of molecules associated with the interacting coarse-grained
particles (see the {fractional} or {molecular} weighting pair style options).
The coarse-grained potential is stored before and after the
reaction kinetics solver is applied, where the difference is defined
to be the internal chemical energy (uChem).
The fourth and fifth arguments specify the {Rm} and {epsilon} scaling exponents.
The fourth argument specifies the type of scaling that will be used
to scale the EXP-6 paramters as reactions occur. Currently, there
are three scaling options: {exponent}, {polynomial} and {none}.
The final argument specifies the interaction cutoff.
Exponent scaling requires two additional arguments for scaling
the {Rm} and {epsilon} parameters, respectively. The scaling factor
is computed by phi^exponent, where phi is the number of molecules
represented by the coarse-grain particle and exponent is specified
as a pair coefficient argument for {Rm} and {epsilon}, respectively.
The {Rm} and {epsilon} parameters are multiplied by the scaling
factor to give the scaled interaction paramters for the CG particle.
Polynomial scaling requires a filename to be specified as a pair
coeff argument. The file contains the coefficients to a fifth order
polynomial for the {alpha}, {epsilon} and {Rm} parameters that depend
upon phi (the number of molecules represented by the CG particle).
The format of a polynomial file is provided below.
The {none} option to the scaling does not have any additional pair coeff
arguments. This is equivalent to specifying the {exponent} option with
{Rm} and {epsilon} exponents of 0.0 and 0.0, respectively.
The final argument specifies the interaction cutoff (optional).
:line
@ -70,6 +97,19 @@ no2 exp6 13.60 0.01 3.70
...
co2 exp6 13.00 0.03 3.20 :pre
The format of the polynomial scaling file as follows (without the
parenthesized comments):
# POLYNOMIAL FILE (one or more comment or blank lines) :pre
# General Functional Form:
# A*phi^5 + B*phi^4 + C*phi^3 + D*phi^2 + E*phi + F
#
# Parameter A B C D E F
(blank)
alpha 0.0000 0.00000 0.00008 0.04955 -0.73804 13.63201
epsilon 0.0000 0.00478 -0.06283 0.24486 -0.33737 2.60097
rm 0.0001 -0.00118 -0.00253 0.05812 -0.00509 1.50106 :pre
A section begins with a non-blank line whose 1st character is not a
"#"; blank lines or lines starting with "#" can be used as comments
between sections.
@ -117,4 +157,4 @@ LAMMPS"_Section_start.html#start_3 section for more info.
"pair_coeff"_pair_coeff.html
[Default:] none
[Default:] fractional weighting

View File

@ -13,6 +13,7 @@ pair_style morse/opt command :h3
pair_style morse/smooth/linear command :h3
pair_style morse/smooth/linear/omp command :h3
pair_style morse/soft command :h3
pair_style morse/kk command :h3
[Syntax:]

View File

@ -13,11 +13,14 @@ pair_style multi/lucy/rx command :h3
pair_style multi/lucy/rx style N keyword ... :pre
style = {lookup} or {linear} = method of interpolation
N = use N values in {lookup}, {linear} tables :ul
N = use N values in {lookup}, {linear} tables
weighting = fractional or molecular (optional) :ul
[Examples:]
pair_style multi/lucy/rx linear 1000
pair_style multi/lucy/rx linear 1000 fractional
pair_style multi/lucy/rx linear 1000 molecular
pair_coeff * * multibody.table ENTRY1 h2o h2o 7.0
pair_coeff * * multibody.table ENTRY1 h2o 1fluid 7.0 :pre
@ -94,8 +97,10 @@ tags must either correspond to the species defined in the reaction
kinetics files specified with the "fix rx"_fix_rx.html command or they
must correspond to the tag "1fluid", signifying interaction with a
product species mixture determined through a one-fluid approximation.
The interaction potential is weighted by the geometric average of the
concentrations of the two species. The coarse-grained potential is
The interaction potential is weighted by the geometric average of
either the mole fraction concentrations or the number of molecules
associated with the interacting coarse-grained particles (see the
{fractional} or {molecular} weighting pair style options). The coarse-grained potential is
stored before and after the reaction kinetics solver is applied, where
the difference is defined to be the internal chemical energy (uChem).
@ -205,7 +210,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
"pair_coeff"_pair_coeff.html
[Default:] none
[Default:] fractional weighting
:line

View File

@ -0,0 +1,80 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
pair_style oxdna_excv command :h3
pair_style oxdna_stk command :h3
pair_style oxdna_hbond command :h3
pair_style oxdna_xstk command :h3
pair_style oxdna_coaxstk command :h3
[Syntax:]
pair_style style :pre
style = {hybrid/overlay oxdna_excv oxdna_stk oxdna_hbond oxdna_xstk oxdna_coaxstk} :ul
[Examples:]
pair_style hybrid/overlay oxdna_excv oxdna_stk oxdna_hbond oxdna_xstk oxdna_coaxstk
pair_coeff * * oxdna_excv 2.0 0.7 0.675 2.0 0.515 0.5 2.0 0.33 0.32
pair_coeff * * oxdna_stk 1.61048 6.0 0.4 0.9 0.32 0.6 1.3 0 0.8 0.9 0 0.95 0.9 0 0.95 2.0 0.65 2.0 0.65
pair_coeff * * oxdna_hbond 0.0 8.0 0.4 0.75 0.34 0.7 1.5 0 0.7 1.5 0 0.7 1.5 0 0.7 0.46 3.141592653589793 0.7 4.0 1.5707963267948966 0.45 4.0 1.5707963267948966 0.45
pair_coeff 1 4 oxdna_hbond 1.077 8.0 0.4 0.75 0.34 0.7 1.5 0 0.7 1.5 0 0.7 1.5 0 0.7 0.46 3.141592653589793 0.7 4.0 1.5707963267948966 0.45 4.0 1.5707963267948966 0.45
pair_coeff 2 3 oxdna_hbond 1.077 8.0 0.4 0.75 0.34 0.7 1.5 0 0.7 1.5 0 0.7 1.5 0 0.7 0.46 3.141592653589793 0.7 4.0 1.5707963267948966 0.45 4.0 1.5707963267948966 0.45
pair_coeff * * oxdna_xstk 47.5 0.575 0.675 0.495 0.655 2.25 0.791592653589793 0.58 1.7 1.0 0.68 1.7 1.0 0.68 1.5 0 0.65 1.7 0.875 0.68 1.7 0.875 0.68
pair_coeff * * oxdna_coaxstk 46.0 0.4 0.6 0.22 0.58 2.0 2.541592653589793 0.65 1.3 0 0.8 0.9 0 0.95 0.9 0 0.95 2.0 -0.65 2.0 -0.65 :pre
[Description:]
The {oxdna} pair styles compute the pairwise-additive parts of the oxDNA force field
for coarse-grained modelling of DNA. The effective interaction between the nucleotides consists of potentials for the
excluded volume interaction {oxdna_excv}, the stacking {oxdna_stk}, cross-stacking {oxdna_xstk}
and coaxial stacking interaction {oxdna_coaxstk} as well
as the hydrogen-bonding interaction {oxdna_hbond} between complementary pairs of nucleotides on
opposite strands.
The exact functional form of the pair styles is rather complex, which manifests itself in the 144 coefficients
in the above example. The individual potentials consist of products of modulation factors,
which themselves are constructed from a number of more basic potentials
(Morse, Lennard-Jones, harmonic angle and distance) as well as quadratic smoothing and modulation terms.
We refer to "(Ouldridge-DPhil)"_#Ouldridge-DPhil and "(Ouldridge)"_#Ouldridge
for a detailed description of the oxDNA force field.
NOTE: These pair styles have to be used together with the related oxDNA bond style
{oxdna_fene} for the connectivity of the phosphate backbone (see also documentation of
"bond_style oxdna_fene"_bond_oxdna_fene.html). The coefficients
in the above example have to be kept fixed and cannot be changed without reparametrizing the entire model.
Example input and data files can be found in /examples/USER/cgdna/examples/duplex1/ and /duplex2/.
A simple python setup tool which creates single straight or helical DNA strands,
DNA duplexes or arrays of DNA duplexes can be found in /examples/USER/cgdna/util/.
A technical report with more information on the model, the structure of the input file,
the setup tool and the performance of the LAMMPS-implementation of oxDNA
can be found "here"_PDF/USER-CGDNA-overview.pdf.
:line
[Restrictions:]
These pair styles can only be used if LAMMPS was built with the
USER-CGDNA package and the MOLECULE and ASPHERE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]
"bond_style oxdna_fene"_bond_oxdna_fene.html, "fix nve/dotc/langevin"_fix_nve_dotc_langevin.html, "pair_coeff"_pair_coeff.html
[Default:] none
:line
:link(Ouldridge-DPhil)
[(Ouldrigde-DPhil)] T.E. Ouldridge, Coarse-grained modelling of DNA and DNA self-assembly, DPhil. University of Oxford (2011).
:link(Ouldridge)
[(Ouldridge)] T.E. Ouldridge, A.A. Louis, J.P.K. Doye, J. Chem. Phys. 134, 085101 (2011).

View File

@ -10,16 +10,17 @@ pair_style table/rx command :h3
[Syntax:]
pair_style table style N :pre
pair_style table style N ... :pre
style = {lookup} or {linear} or {spline} or {bitmap} = method of interpolation
N = use N values in {lookup}, {linear}, {spline} tables
N = use 2^N values in {bitmap} tables
weighting = fractional or molecular (optional) :ul
[Examples:]
pair_style table/rx linear 1000
pair_style table/rx bitmap 12
pair_style table/rx linear 1000 fractional
pair_style table/rx linear 1000 molecular
pair_coeff * * rxn.table ENTRY1 h2o h2o 10.0
pair_coeff * * rxn.table ENTRY1 1fluid 1fluid 10.0
pair_coeff * 3 rxn.table ENTRY1 h2o no2 10.0 :pre
@ -84,8 +85,10 @@ tags must either correspond to the species defined in the reaction
kinetics files specified with the "fix rx"_fix_rx.html command or they
must correspond to the tag "1fluid", signifying interaction with a
product species mixture determined through a one-fluid approximation.
The interaction potential is weighted by the geometric average of the
concentrations of the two species. The coarse-grained potential is
The interaction potential is weighted by the geometric average of
either the mole fraction concentrations or the number of molecules
associated with the interacting coarse-grained particles (see the
{fractional} or {molecular} weighting pair style options). The coarse-grained potential is
stored before and after the reaction kinetics solver is applied, where
the difference is defined to be the internal chemical energy (uChem).
@ -230,7 +233,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
"pair_coeff"_pair_coeff.html
[Default:] none
[Default:] fractional weighting
:line

View File

@ -65,6 +65,7 @@ Pair Styles :h1
pair_nb3b_harmonic
pair_nm
pair_none
pair_oxdna_excv
pair_peri
pair_polymorphic
pair_quip

View File

@ -15,11 +15,12 @@ read_dump file Nstep field1 field2 ... keyword values ... :pre
file = name of dump file to read :ulb,l
Nstep = snapshot timestep to read from file :l
one or more fields may be appended :l
field = {x} or {y} or {z} or {vx} or {vy} or {vz} or {q} or {ix} or {iy} or {iz}
field = {x} or {y} or {z} or {vx} or {vy} or {vz} or {q} or {ix} or {iy} or {iz} or {fx} or {fy} or {fz}
{x},{y},{z} = atom coordinates
{vx},{vy},{vz} = velocity components
{q} = charge
{ix},{iy},{iz} = image flags in each dimension :pre
{ix},{iy},{iz} = image flags in each dimension
{fx},{fy},{fz} = force components :pre
zero or more keyword/value pairs may be appended :l
keyword = {box} or {replace} or {purge} or {trim} or {add} or {label} or {scaled} or {wrapped} or {format} :l
{box} value = {yes} or {no} = replace simulation box with dump box

View File

@ -32,7 +32,7 @@ Run a parallel tempering or replica exchange simulation in LAMMPS
partition mode using multiple generalized replicas (ensembles) of a
system defined by "fix grem"_fix_grem.html, which stands for the
generalized replica exchange method (gREM) originally developed by
"(Kim)"_#Kim. It uses non-Boltzmann ensembles to sample over first
"(Kim)"_#KimStraub. It uses non-Boltzmann ensembles to sample over first
order phase transitions. The is done by defining replicas with an
enthalpy dependent effective temperature
@ -105,5 +105,5 @@ This command must be used with "fix grem"_fix_grem.html.
[Default:] none
:link(Kim)
:link(KimStraub)
[(Kim)] Kim, Keyes, Straub, J Chem Phys, 132, 224107 (2010).

View File

@ -33,14 +33,14 @@ timer loop :pre
Select the level of detail at which LAMMPS performs its CPU timings.
Multiple keywords can be specified with the {timer} command. For
keywords that are mutually exclusive, the last one specified takes
effect.
precedence.
During a simulation run LAMMPS collects information about how much
time is spent in different sections of the code and thus can provide
information for determining performance and load imbalance problems.
This can be done at different levels of detail and accuracy. For more
information about the timing output, see this "discussion of screen
output"_Section_start.html#start_8.
output in Section 2.8"_Section_start.html#start_8.
The {off} setting will turn all time measurements off. The {loop}
setting will only measure the total time for a run and not collect any
@ -52,20 +52,22 @@ procsessors. The {full} setting adds information about CPU
utilization and thread utilization, when multi-threading is enabled.
With the {sync} setting, all MPI tasks are synchronized at each timer
call which meaures load imbalance more accuractly, though it can also
slow down the simulation. Using the {nosync} setting (which is the
default) turns off this synchronization.
call which measures load imbalance for each section more accuractly,
though it can also slow down the simulation by prohibiting overlapping
independent computations on different MPI ranks Using the {nosync}
setting (which is the default) turns this synchronization off.
With the {timeout} keyword a walltime limit can be imposed that
With the {timeout} keyword a walltime limit can be imposed, that
affects the "run"_run.html and "minimize"_minimize.html commands.
This can be convenient when runs have to confirm to time limits,
e.g. when running under a batch system and you want to maximize
the utilization of the batch time slot, especially when the time
per timestep varies and is thus difficult to predict how many
steps a simulation can perform, or for difficult to converge
minimizations. The timeout {elapse} value should be somewhat smaller
than the time requested from the batch system, as there is usually
some overhead to launch jobs, and it may be advisable to write
This can be convenient when calculations have to comply with execution
time limits, e.g. when running under a batch system when you want to
maximize the utilization of the batch time slot, especially for runs
where the time per timestep varies much and thus it becomes difficult
to predict how many steps a simulation can perform for a given walltime
limit. This also applies for difficult to converge minimizations.
The timeout {elapse} value should be somewhat smaller than the maximum
wall time requested from the batch system, as there is usually
some overhead to launch jobs, and it is advisable to write
out a restart after terminating a run due to a timeout.
The timeout timer starts when the command is issued. When the time

View File

@ -11,10 +11,22 @@ LAMMPS GitHub tutorial :h3
:line
This document briefly describes how to use GitHub to merge changes you
make into LAMMPS, using GitHub. It assumes that you are familiar with
git. You may want to have a look at the "Git
book"_http://git-scm.com/book/ to reacquaint yourself.
This document describes the process of how to use GitHub to integrate
changes or additions you have made to LAMMPS into the official LAMMPS
distribution. It uses the process of updating this very tutorial as
an example to describe the individual steps and options. You need to
be familiar with git and you may want to have a look at the
"Git book"_http://git-scm.com/book/ to reacquaint yourself with some
of the more advanced git features used below.
As of fall 2016, submitting contributions to LAMMPS via pull requests
on GitHub is the preferred option for integrating contributed features
or improvements to LAMMPS, as it significantly reduces the amount of
work required by the LAMMPS developers. Consequently, creating a pull
request will increase your chances to have your contribution included
and will reduce the time until the integration is complete. For more
information on the requirements to have your code included into LAMMPS
please see "Section 10.15"_Section_modify.html#mod_15
:line
@ -30,106 +42,121 @@ username or e-mail address and password.
[Forking the repository]
To get changes into LAMMPS, you need to first fork the repository. At
the time of writing, LAMMPS-ICMS is the preferred fork. Go to "LAMMPS
on GitHub"_https://github.com/lammps/lammps and make sure branch is
set to "lammps-icms", see the figure below.
To get changes into LAMMPS, you need to first fork the `lammps/lammps`
repository on GitHub. At the time of writing, {master} is the preferred
target branch. Thus go to "LAMMPS on GitHub"_https://github.com/lammps/lammps
and make sure branch is set to "master", as shown in the figure below.
:c,image(JPG/tutorial_branch.png)
Now, click on fork in the top right corner:
If it is not, use the button to change it to {master}. Once it is, use the
fork button to create a fork.
:c,image(JPG/tutorial_fork.png)
This will create your own fork of the LAMMPS repository. You can make
changes in this fork and later file {pull requests} to allow the
upstream repository to merge changes from your own fork into the one
we just forked from. At the same time, you can set things up, so you
can include changes from upstream into your repository.
This will create a fork (which is essentially a copy, but uses less
resources) of the LAMMPS repository under your own GitHub account. You
can make changes in this fork and later file {pull requests} to allow
the upstream repository to merge changes from your own fork into the one
we just forked from (or others that were forked from the same repository).
At the same time, you can set things up, so you can include changes from
upstream into your repository and thus keep it in sync with the ongoing
LAMMPS development.
:line
[Adding changes to your own fork]
Before adding changes, it is better to first create a new branch that
will contain these changes, a so-called feature branch.
Additions to the upstream version of LAMMPS are handled using {feature
branches}. For every new feature, a so-called feature branch is
created, which contains only those modification relevant to one specific
feature. For example, adding a single fix would consist of creating a
branch with only the fix header and source file and nothing else. It is
explained in more detail here: "feature branch
workflow"_https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow.
[Feature branches]
Since LAMMPS is such a big project and most user contributions come in
small portions, the most ideal workflow for LAMMPS is the so-called
"Feature branch" workflow. It is explained in great detail here:
"feature branch
workflow"_https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow.
First of all, create a clone of your version on github on your local
machine via HTTPS:
The idea is that every new feature for LAMMPS gets its own
branch. This way, it is fairly painless to incorporate new features
into the upstream repository. I will explain briefly here how to do
it. In this feature branch, I will add a USER-package.
$ git clone https://github.com/<your user name>/lammps.git <some name> :pre
I assume that git is installed on the local machine and you know how
to use a command line.
or, if you have set up your GitHub account for using SSH keys, via SSH:
First of all, you need to clone your own fork of LAMMPS:
$ git clone https://github.com/<your user name>/lammps.git :pre
You can find the proper url to the right of the "HTTPS" block, see figure.
$ git clone git@github.com:<your user name>/lammps.git :pre
You can find the proper URL by clicking the "Clone or download"-button:
:c,image(JPG/tutorial_https_block.png)
The above command copies ("clones") the git repository to your local
machine. You can use this local clone to make changes and test them
without interfering with the repository on github. First, however, it
is recommended to make a new branch for a particular feature you would
like added to LAMMPS. In this example, I will try adding a new
USER-package called USER-MANIFOLD.
machine to a directory with the name you chose. If none is given, it will
default to "lammps". Typical names are "mylammps" or something similar.
To create a new branch, run the following git command in your repository:
You can use this local clone to make changes and
test them without interfering with the repository on Github.
$ git checkout -b add-user-manifold :pre
To pull changes from upstream into this copy, you can go to the directory
and use git pull:
The name of this new branch is "add-user-manifold" in my case. Just
name it after something that resembles the feature you want added to
LAMMPS.
$ cd mylammps
$ git checkout master
$ git pull https://github.com/lammps/lammps :pre
Now that you've changed branches, you can edit the files as you see
fit, add new files, and commit as much as you would like. Just
remember that if halfway you decide to add another, unrelated feature,
you should switch branches!
You can also add this URL as a remote:
$ git remote add lammps_upstream https://www.github.com/lammps/lammps :pre
At this point, you typically make a feature branch from the updated master
branch for the feature you want to work on. This tutorial contains the
workflow that updated this tutorial, and hence we will call the branch
"github-tutorial-update":
$ git checkout -b github-tutorial-update master :pre
Now that we have changed branches, we can make our changes to our local
repository. Just remember that if you want to start working on another,
unrelated feature, you should switch branches!
[After changes are made]
After everything is done, add the files to the branch and commit them:
$ git add src/USER-MANIFOLD examples/USER/manifold/
$ git add doc/fix_nv\{t,e\}_manifold_rattle.txt
$ git add doc/fix_manifoldforce.txt doc/user_manifolds.txt :pre
$ git add doc/src/tutorial_github.txt
$ git add doc/src/JPG/tutorial*.png :pre
After the files are added, the change should be comitted:
IMPORTANT NOTE: Do not use {git commit -a} (or {git add -A}). The -a
flag (or -A flag) will automatically include _all_ modified or new files
and that is rarely the behavior you want. It can easily lead to
accidentally adding unrelated and unwanted changes into the repository.
Instead it is preferable to explicitly use {git add}, {git rm}, {git mv}
for adding, removing, renaming individual files, respectively, and then
{git commit} to finalize the commit. Carefully check all pending
changes with {git status} before committing them. If you find doing
this on the command line too tedious, consider using a GUI, for example
the one included in git distributions written in Tk, i.e. use {git gui}
(on some Linux distributions it may be required to install an additional
package to use it).
$ git commit -m 'Added user-manifold package' :pre
After adding all files, the change set can be committed with some
useful message that explains the change.
The "-m" switch is used to add a message to the commit. Use this to
indicate what type of change was commited.
[Wisdom by Axel]
{"Do not use "git commit -a". the -a flag will automatically include
*all* modified or new files. mercurial does that and it find it
hugely annoying and often leading to accidental commits of files you
don't want. use git add, git rm, git mv for adding, removing,
renaming and then git commit to finalize the commit. personally, i
find it very convenient to use the bundled gui for commits, i.e. git
gui. typically, i will do git add and other operations, but then
verify and review them with git gui. git gui also allows to do
line-by-line unstaging and other convenient operations."}
$ git commit -m 'Finally updated the github tutorial' :pre
After the commit, the changes can be pushed to the same branch on GitHub:
$ git push :pre
Git will ask you for your user name and password on GitHub if you have
not configured anything. If you correctly type your user name and
password, the change should be added to your fork on GitHub.
not configured anything. If your local branch is not present on Github yet,
it will ask you to add it by running
$ git push --set-upstream origin github-tutorial-update :pre
If you correctly type your user name and
password, the feature branch should be added to your fork on GitHub.
If you want to make really sure you push to the right repository
(which is good practice), you can provide it explicitly:
@ -140,16 +167,20 @@ or using an explicit URL:
$ git push git@github.com:Pakketeretet2/lammps.git :pre
After that, you can file a new pull request based on this
branch. GitHub will now look like this:
:line
:c,image(JPG/tutorial_pull_request_feature_branch1.png)
[Filing a pull request]
Up to this point in the tutorial, all changes were to {your} clones of
LAMMPS. Eventually, however, you want this feature to be included into
the official LAMMPS version. To do this, you will want to file a pull
request by clicking on the "New pull request" button:
:c,image(JPG/tutorial_new_pull_request.png)
Make sure that the current branch is set to the correct one, which, in
this case, is "add-user-manifold". Now click "New pull request". If
done correctly, the only changes you will see are those that were made
on this branch, so in my case, I will see nothing related to
$\mathrm{pair\_dzugatov}.$
this case, is "github-tutorial-update". If done correctly, the only
changes you will see are those that were made on this branch.
This will open up a new window that lists changes made to the
repository. If you are just adding new files, there is not much to do,
@ -158,36 +189,162 @@ changes in existing files. If all changes can automatically be merged,
green text at the top will say so and you can click the "Create pull
request" button, see image.
:c,image(JPG/tutorial_pull_request2.png)
:c,image(JPG/tutorial_create_new_pull_request1.png)
After this you have to specify a short title and a comment with
details about your pull request. I guess here you write what your
modifications do and why they should be incorporated upstream. After
that, click the "Create pull request" button, see image below.
Before creating the pull request, make sure the short title is accurate
and add a comment with details about your pull request. Here you write
what your modifications do and why they should be incorporated upstream.
:c,image(JPG/tutorial_pull_request3.png)
Note the checkbox that says "Allow edits from maintainers".
This is checked by default checkbox (although in my version of Firefox, only the checkmark is visible):
Now just write some nice comments, click "Comment", and that is it. It
is now up to the maintainer(s) of the upstream repository to
incorporate the changes into the repository and to close the pull
request.
:c,image(JPG/tutorial_edits_maintainers.png)
:c,image(JPG/tutorial_pull_request4.png)
If it is checked, maintainers can immediately add their own edits to the
pull request. This helps the inclusion of your branch significantly, as
simple/trivial changes can be added directly to your pull request branch
by the LAMMPS maintainers. The alternative would be that they make
changes on their own version of the branch and file a reverse pull
request to you. Just leave this box checked unless you have a very good
reason not to.
Now just write some nice comments and click on "Create pull request".
:c,image(JPG/tutorial_create_new_pull_request2.png)
:line
[After filing a pull request]
NOTE: When you submit a pull request (or ask for a pull request) for the
first time, you will receive an invitation to become a LAMMPS project
collaborator. Please accept this invite as being a collaborator will
simplify certain administrative tasks and will probably speed up the
merging of your feature, too.
You will notice that after filing the pull request, some checks are
performed automatically:
:c,image(JPG/tutorial_automated_checks.png)
If all is fine, you will see this:
:c,image(JPG/tutorial_automated_checks_passed.png)
If any of the checks are failing, your pull request will not be
processed, as your changes may break compilation for certain
configurations or may not merge cleanly. It is your responsibility
to remove the reason(s) for the failed test(s). If you need help
with this, please contact the LAMMPS developers by adding a comment
explaining your problems with resolving the failed tests.
A few further interesting things (can) happen to pull requests before
they are included.
[Additional changes]
Before the pull request is accepted, any additional changes you push
into your repository will automatically become part of the pull
request.
First of all, any additional changes you push into your branch in your
repository will automatically become part of the pull request:
:c,image(JPG/tutorial_additional_changes.png)
This means you can add changes that should be part of the feature after
filing the pull request, which is useful in case you have forgotten
them, or if a developer has requested that something needs to be changed
before the feature can be accepted into the official LAMMPS version.
After each push, the automated checks are run again.
[Assignees]
There is an assignee label for pull requests. If the request has not
been reviewed by any developer yet, it is not assigned to anyone. After
revision, a developer can choose to assign it to either a) you, b) a
LAMMPS developer (including him/herself) or c) Steve Plimpton (sjplimp).
Case a) happens if changes are required on your part :ulb,l
Case b) means that at the moment, it is being tested and reviewed by a
LAMMPS developer with the expectation that some changes would be required.
After the review, the developer can choose to implement changes directly
or suggest them to you. :l
Case c) means that the pull request has been assigned to the lead
developer Steve Plimpton and means it is considered ready for merging. :ule,l
In this case, Axel assigned the tutorial to Steve:
:c,image(JPG/tutorial_steve_assignee.png)
[Edits from LAMMPS maintainers]
If you allowed edits from maintainers (the default), any LAMMPS
maintainer can add changes to your pull request. In this case, both
Axel and Richard made changes to the tutorial:
:c,image(JPG/tutorial_changes_others.png)
[Reverse pull requests]
Sometimes, however, you might not feel comfortable having other people
push changes into your own branch, or maybe the maintainers are not sure
their idea was the right one. In such a case, they can make changes,
reassign you as the assignee, and file a "reverse pull request", i.e.
file a pull request in your GitHub repository to include changes in the
branch, that you have submitted as a pull request yourself. In that
case, you can choose to merge their changes back into your branch,
possibly make additional changes or corrections and proceed from there.
It looks something like this:
:c,image(JPG/tutorial_reverse_pull_request.png)
For some reason, the highlighted button didn't work in my case, but I
can go to my own repository and merge the pull request from there:
:c,image(JPG/tutorial_reverse_pull_request2.png)
Be sure to check the changes to see if you agree with them by clicking
on the tab button:
:c,image(JPG/tutorial_reverse_pull_request3.png)
In this case, most of it is changes in the markup and a short rewrite of
Axel's explanation of the "git gui" and "git add" commands.
:c,image(JPG/tutorial_reverse_pull_request4.png)
Because the changes are OK with us, we are going to merge by clicking on
"Merge pull request". After a merge it looks like this:
:c,image(JPG/tutorial_reverse_pull_request5.png)
Now, since in the meantime our local text for the tutorial also changed,
we need to pull Axel's change back into our branch, and merge them:
$ git add tutorial_github.txt
$ git add JPG/tutorial_reverse_pull_request*.png
$ git commit -m "Updated text and images on reverse pull requests"
$ git pull :pre
In this case, the merge was painless because git could auto-merge:
:c,image(JPG/tutorial_reverse_pull_request6.png)
With Axel's changes merged in and some final text updates, our feature
branch is now perfect as far as we are concerned, so we are going to
commit and push again:
$ git add tutorial_github.txt
$ git add JPG/tutorial_reverse_pull_request6.png
$ git commit -m "Merged Axel's suggestions and updated text"
$ git push git@github.com:Pakketeretet2/lammps :pre
This merge also shows up on the lammps Github page:
:c,image(JPG/tutorial_reverse_pull_request7.png)
:line
[After a merge]
When everything is fine the feature branch is merged into the LAMMPS
repositories:
When everything is fine, the feature branch is merged into the master branch:
:c,image(JPG/tutorial_merged.png)
@ -198,17 +355,29 @@ It is in principle safe to delete them from your own fork. This helps
keep it a bit more tidy. Note that you first have to switch to another
branch!
$ git checkout lammps-icms
$ git pull lammps-icms
$ git branch -d add-user-manifold :pre
$ git checkout master
$ git pull master
$ git branch -d github-tutorial-update :pre
If you do not pull first, it is not really a problem but git will warn
you at the next statement that you are deleting a local branch that
was not yet fully merged into HEAD. This is because git does not yet
know your branch just got merged into lammps-icms upstream. If you
know your branch just got merged into LAMMPS upstream. If you
first delete and then pull, everything should still be fine.
Finally, if you delete the branch locally, you might want to push this
to your remote(s) as well:
$ git push origin :add-user-manifold :pre
$ git push origin :github-tutorial-update :pre
[Recent changes in the workflow]
Some changes to the workflow are not captured in this tutorial. For
example, in addition to the master branch, to which all new features
should be submitted, there is now also an "unstable" and a "stable"
branch; these have the same content as "master", but are only updated
after a patch release or stable release was made.
Furthermore, the naming of the patches now follow the pattern
"patch_<Day><Month><Year>" to simplify comparisons between releases.
Finally, all patches and submissions are subject to automatic testing
and code checks to make sure they at the very least compile.

View File

@ -82,6 +82,7 @@ meam: MEAM test for SiC and shear (same as shear examples)
melt: rapid melt of 3d LJ system
micelle: self-assembly of small lipid-like molecules into 2d bilayers
min: energy minimization of 2d LJ melt
mscg: parameterize a multi-scale coarse-graining (MSCG) model
msst: MSST shock dynamics
nb3b: use of nonbonded 3-body harmonic pair style
neb: nudged elastic band (NEB) calculation for barrier finding

View File

@ -0,0 +1,28 @@
This directory contains example data and input files
and utility scripts for the oxDNA coarse-grained model
for DNA.
/examples/duplex1:
Input, data and log files for a DNA duplex (double-stranded DNA)
consisiting of 5 base pairs. The duplex contains two strands with
complementary base pairs. The topology is
A - A - A - A - A
| | | | |
T - T - T - T - T
/examples/duplex2:
Input, data and log files for a nicked DNA duplex (double-stranded DNA)
consisiting of 8 base pairs. The duplex contains strands with
complementary base pairs, but the backbone on one side is not continuous:
two individual strands on one side form a duplex with a longer single
strand on the other side. The topology is
A - A - A - A - A - A - A - A
| | | | | | | |
T - T - T T - T - T - T - T
/util:
This directory contains a simple python setup tool which creates
single straight or helical DNA strands, DNA duplexes or arrays of DNA
duplexes.

View File

@ -0,0 +1,74 @@
# LAMMPS data file
10 atoms
10 ellipsoids
8 bonds
4 atom types
1 bond types
# System size
-20.000000 20.000000 xlo xhi
-20.000000 20.000000 ylo yhi
-20.000000 20.000000 zlo zhi
# Atom masses for each atom type
Masses
1 3.1575
2 3.1575
3 3.1575
4 3.1575
# Atom-ID, type, position, molecule-ID, ellipsoid flag, density
Atoms
1 1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 1 1 1
2 1 1.3274493266864451e-01 -4.2912827978022683e-01 3.7506163469402809e-01 1 1 1
3 1 4.8460810659772807e-01 -7.0834970533509178e-01 7.5012326938805618e-01 1 1 1
4 1 9.3267359196674593e-01 -7.4012419946742802e-01 1.1251849040820843e+00 1 1 1
5 1 1.3204192238113461e+00 -5.1335201721887447e-01 1.5002465387761124e+00 1 1 1
6 4 1.9958077618865377e-01 5.1335201721887447e-01 1.5002465387761124e+00 1 1 1
7 4 5.8732640803325409e-01 7.4012419946742802e-01 1.1251849040820843e+00 1 1 1
8 4 1.0353918934022719e+00 7.0834970533509178e-01 7.5012326938805618e-01 1 1 1
9 4 1.3872550673313555e+00 4.2912827978022683e-01 3.7506163469402809e-01 1 1 1
10 4 1.5200000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 1 1 1
# Atom-ID, translational, rotational velocity
Velocities
1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
2 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
3 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
4 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
5 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
6 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
7 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
8 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
9 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
10 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
# Atom-ID, shape, quaternion
Ellipsoids
1 1.1739845031423408e+00 1.1739845031423408e+00 1.1739845031423408e+00 1.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
2 1.1739845031423408e+00 1.1739845031423408e+00 1.1739845031423408e+00 9.5533648912560598e-01 0.0000000000000000e+00 0.0000000000000000e+00 2.9552020666133955e-01
3 1.1739845031423408e+00 1.1739845031423408e+00 1.1739845031423408e+00 8.2533561490967822e-01 0.0000000000000000e+00 0.0000000000000000e+00 5.6464247339503526e-01
4 1.1739845031423408e+00 1.1739845031423408e+00 1.1739845031423408e+00 6.2160996827066439e-01 0.0000000000000000e+00 0.0000000000000000e+00 7.8332690962748319e-01
5 1.1739845031423408e+00 1.1739845031423408e+00 1.1739845031423408e+00 3.6235775447667351e-01 0.0000000000000000e+00 0.0000000000000000e+00 9.3203908596722607e-01
6 1.1739845031423408e+00 1.1739845031423408e+00 1.1739845031423408e+00 0.0000000000000000e+00 9.3203908596722607e-01 -3.6235775447667351e-01 0.0000000000000000e+00
7 1.1739845031423408e+00 1.1739845031423408e+00 1.1739845031423408e+00 0.0000000000000000e+00 7.8332690962748319e-01 -6.2160996827066439e-01 0.0000000000000000e+00
8 1.1739845031423408e+00 1.1739845031423408e+00 1.1739845031423408e+00 0.0000000000000000e+00 5.6464247339503526e-01 -8.2533561490967822e-01 0.0000000000000000e+00
9 1.1739845031423408e+00 1.1739845031423408e+00 1.1739845031423408e+00 0.0000000000000000e+00 2.9552020666133955e-01 -9.5533648912560598e-01 0.0000000000000000e+00
10 1.1739845031423408e+00 1.1739845031423408e+00 1.1739845031423408e+00 0.0000000000000000e+00 0.0000000000000000e+00 -1.0000000000000000e+00 0.0000000000000000e+00
# Bond topology
Bonds
1 1 1 2
2 1 2 3
3 1 3 4
4 1 4 5
5 1 6 7
6 1 7 8
7 1 8 9
8 1 9 10

View File

@ -0,0 +1,75 @@
variable number equal 1
variable ofreq equal 1000
variable efreq equal 1000
units lj
dimension 3
newton off
boundary p p p
atom_style hybrid bond ellipsoid
atom_modify sort 0 1.0
# Pair interactions require lists of neighbours to be calculated
neighbor 1.0 bin
neigh_modify every 1 delay 0 check yes
read_data data.duplex1
set atom * mass 3.1575
group all type 1 4
# oxDNA bond interactions - FENE backbone
bond_style oxdna_fene
bond_coeff * 2.0 0.25 0.7525
# oxDNA pair interactions
pair_style hybrid/overlay oxdna_excv oxdna_stk oxdna_hbond oxdna_xstk oxdna_coaxstk
pair_coeff * * oxdna_excv 2.0 0.7 0.675 2.0 0.515 0.5 2.0 0.33 0.32
pair_coeff * * oxdna_stk 1.61048 6.0 0.4 0.9 0.32 0.6 1.3 0 0.8 0.9 0 0.95 0.9 0 0.95 2.0 0.65 2.0 0.65
pair_coeff * * oxdna_hbond 0.0 8.0 0.4 0.75 0.34 0.7 1.5 0 0.7 1.5 0 0.7 1.5 0 0.7 0.46 3.141592653589793 0.7 4.0 1.5707963267948966 0.45 4.0 1.5707963267948966 0.45
pair_coeff 1 4 oxdna_hbond 1.077 8.0 0.4 0.75 0.34 0.7 1.5 0 0.7 1.5 0 0.7 1.5 0 0.7 0.46 3.141592653589793 0.7 4.0 1.5707963267948966 0.45 4.0 1.5707963267948966 0.45
pair_coeff 2 3 oxdna_hbond 1.077 8.0 0.4 0.75 0.34 0.7 1.5 0 0.7 1.5 0 0.7 1.5 0 0.7 0.46 3.141592653589793 0.7 4.0 1.5707963267948966 0.45 4.0 1.5707963267948966 0.45
pair_coeff * * oxdna_xstk 47.5 0.575 0.675 0.495 0.655 2.25 0.791592653589793 0.58 1.7 1.0 0.68 1.7 1.0 0.68 1.5 0 0.65 1.7 0.875 0.68 1.7 0.875 0.68
pair_coeff * * oxdna_coaxstk 46.0 0.4 0.6 0.22 0.58 2.0 2.541592653589793 0.65 1.3 0 0.8 0.9 0 0.95 0.9 0 0.95 2.0 -0.65 2.0 -0.65
# NVE ensemble
#fix 1 all nve/dotc/langevin 0.1 0.1 0.03 457145 angmom 10
fix 1 all nve/dot
timestep 1e-5
#comm_style tiled
#fix 3 all balance 10000 1.1 rcb
#compute mol all chunk/atom molecule
#compute mychunk all vcm/chunk mol
#fix 4 all ave/time 10000 1 10000 c_mychunk[1] c_mychunk[2] c_mychunk[3] file vcm.txt mode vector
dump pos all xyz ${ofreq} traj.${number}.xyz
compute quat all property/atom quatw quati quatj quatk
dump quat all custom ${ofreq} quat.${number}.txt id c_quat[1] c_quat[2] c_quat[3] c_quat[4]
dump_modify quat sort id
dump_modify quat format line "%d %13.6le %13.6le %13.6le %13.6le"
compute erot all erotate/asphere
compute ekin all ke
compute epot all pe
variable erot equal c_erot
variable ekin equal c_ekin
variable epot equal c_epot
variable etot equal c_erot+c_ekin+c_epot
fix 5 all print ${efreq} "$(step) ekin = ${ekin} | erot = ${erot} | epot = ${epot} | etot = ${etot}" screen yes
dump out all custom ${ofreq} out.${number}.txt id x y z vx vy vz fx fy fz tqx tqy tqz
dump_modify out sort id
dump_modify out format line "%d %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le"
run 1000000
#write_restart config.${number}.*

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,97 @@
# LAMMPS data file
16 atoms
16 ellipsoids
13 bonds
4 atom types
1 bond types
# System size
-20.0 20.0 xlo xhi
-20.0 20.0 ylo yhi
-20.0 20.0 zlo zhi
# Atom masses for each atom type
Masses
1 3.1575
2 3.1575
3 3.1575
4 3.1575
# Atom-ID, type, position, molecule-ID, ellipsoid flag, density
Atoms
1 1 0.000000000000000e+00 0.000000000000000e+00 0.000000000000000e+00 1 1 1
2 1 1.327449326686445e-01 -4.291282797802268e-01 3.750616346940281e-01 1 1 1
3 1 4.846081065977281e-01 -7.083497053350921e-01 7.501232693880562e-01 1 1 1
4 1 9.326735919667459e-01 -7.401241994674285e-01 1.125184904082084e+00 1 1 1
5 1 1.320419223811347e+00 -5.133520172188747e-01 1.500246538776112e+00 1 1 1
6 1 1.512394297416339e+00 -1.072512061254991e-01 1.875308173470140e+00 1 1 1
7 1 1.441536396413952e+00 3.363155369040876e-01 2.250369808164169e+00 1 1 1
8 1 1.132598224218932e+00 6.623975870343269e-01 2.625431442858197e+00 1 1 1
9 4 5.873264080332541e-01 7.401241994674285e-01 1.125184904082084e+00 1 1 1
10 4 1.035391893402272e+00 7.083497053350921e-01 7.501232693880562e-01 1 1 1
11 4 1.387255067331356e+00 4.291282797802267e-01 3.750616346940281e-01 1 1 1
12 4 1.520000000000000e+00 1.260981291332700e-33 0.000000000000000e+00 1 1 1
13 4 3.874017757810680e-01 -6.623975870343268e-01 2.625431442858197e+00 1 1 1
14 4 7.846360358604798e-02 -3.363155369040874e-01 2.250369808164169e+00 1 1 1
15 4 7.605702583661333e-03 1.072512061254995e-01 1.875308173470140e+00 1 1 1
16 4 1.995807761886533e-01 5.133520172188748e-01 1.500246538776112e+00 1 1 1
# Atom-ID, translational, rotational velocity
Velocities
1 0.0 0.0 0.0 0.0 0.0 0.0
2 0.0 0.0 0.0 0.0 0.0 0.0
3 0.0 0.0 0.0 0.0 0.0 0.0
4 0.0 0.0 0.0 0.0 0.0 0.0
5 0.0 0.0 0.0 0.0 0.0 0.0
6 0.0 0.0 0.0 0.0 0.0 0.0
7 0.0 0.0 0.0 0.0 0.0 0.0
8 0.0 0.0 0.0 0.0 0.0 0.0
9 0.0 0.0 0.0 0.0 0.0 0.0
10 0.0 0.0 0.0 0.0 0.0 0.0
11 0.0 0.0 0.0 0.0 0.0 0.0
12 0.0 0.0 0.0 0.0 0.0 0.0
13 0.0 0.0 0.0 0.0 0.0 0.0
14 0.0 0.0 0.0 0.0 0.0 0.0
15 0.0 0.0 0.0 0.0 0.0 0.0
16 0.0 0.0 0.0 0.0 0.0 0.0
# Atom-ID, shape, quaternion
Ellipsoids
1 1.1739845031423408 1.1739845031423408 1.1739845031423408 1.000000000000000e+00 0.000000000000000e+00 0.000000000000000e+00 0.000000000000000e+00
2 1.1739845031423408 1.1739845031423408 1.1739845031423408 9.553364891256060e-01 0.000000000000000e+00 0.000000000000000e+00 2.955202066613395e-01
3 1.1739845031423408 1.1739845031423408 1.1739845031423408 8.253356149096783e-01 0.000000000000000e+00 0.000000000000000e+00 5.646424733950354e-01
4 1.1739845031423408 1.1739845031423408 1.1739845031423408 6.216099682706646e-01 0.000000000000000e+00 0.000000000000000e+00 7.833269096274833e-01
5 1.1739845031423408 1.1739845031423408 1.1739845031423408 3.623577544766736e-01 0.000000000000000e+00 0.000000000000000e+00 9.320390859672263e-01
6 1.1739845031423408 1.1739845031423408 1.1739845031423408 7.073720166770291e-02 0.000000000000000e+00 0.000000000000000e+00 9.974949866040544e-01
7 1.1739845031423408 1.1739845031423408 1.1739845031423408 -2.272020946930869e-01 -0.000000000000000e+00 0.000000000000000e+00 9.738476308781953e-01
8 1.1739845031423408 1.1739845031423408 1.1739845031423408 -5.048461045998575e-01 -0.000000000000000e+00 0.000000000000000e+00 8.632093666488738e-01
9 1.1739845031423408 1.1739845031423408 1.1739845031423408 4.796493962806427e-17 7.833269096274833e-01 -6.216099682706646e-01 3.806263289803786e-17
10 1.1739845031423408 1.1739845031423408 1.1739845031423408 5.707093416549944e-17 5.646424733950354e-01 -8.253356149096784e-01 2.218801320830406e-17
11 1.1739845031423408 1.1739845031423408 1.1739845031423408 6.107895212550935e-17 2.955202066613394e-01 -9.553364891256061e-01 4.331404380149668e-18
12 1.1739845031423408 1.1739845031423408 1.1739845031423408 5.963096920061075e-17 0.000000000000000e+00 -1.000000000000000e+00 -1.391211590127312e-17
13 1.1739845031423408 1.1739845031423408 1.1739845031423408 5.285632939302787e-17 8.632093666488739e-01 5.048461045998572e-01 -3.091290830301125e-17
14 1.1739845031423408 1.1739845031423408 1.1739845031423408 4.136019110019290e-17 9.738476308781953e-01 2.272020946930868e-01 -4.515234267244800e-17
15 1.1739845031423408 1.1739845031423408 1.1739845031423408 2.616947011741696e-17 9.974949866040544e-01 -7.073720166770313e-02 -5.535845274597425e-17
16 1.1739845031423408 1.1739845031423408 1.1739845031423408 8.641108308308281e-18 9.320390859672264e-01 -3.623577544766736e-01 -6.061955710708163e-17
# Bond-ID, type, atom pairs
Bonds
1 1 1 2
2 1 2 3
3 1 3 4
4 1 4 5
5 1 5 6
6 1 6 7
7 1 7 8
8 1 13 14
9 1 14 15
10 1 15 16
11 1 9 10
12 1 10 11
13 1 11 12

View File

@ -0,0 +1,75 @@
variable number equal 2
variable ofreq equal 1000
variable efreq equal 1000
units lj
dimension 3
newton off
boundary p p p
atom_style hybrid bond ellipsoid
atom_modify sort 0 1.0
# Pair interactions require lists of neighbours to be calculated
neighbor 1.0 bin
neigh_modify every 1 delay 0 check yes
read_data data.duplex2
set atom * mass 3.1575
group all type 1 4
# oxDNA bond interactions - FENE backbone
bond_style oxdna_fene
bond_coeff * 2.0 0.25 0.7525
# oxDNA pair interactions
pair_style hybrid/overlay oxdna_excv oxdna_stk oxdna_hbond oxdna_xstk oxdna_coaxstk
pair_coeff * * oxdna_excv 2.0 0.7 0.675 2.0 0.515 0.5 2.0 0.33 0.32
pair_coeff * * oxdna_stk 1.61048 6.0 0.4 0.9 0.32 0.6 1.3 0 0.8 0.9 0 0.95 0.9 0 0.95 2.0 0.65 2.0 0.65
pair_coeff * * oxdna_hbond 0.0 8.0 0.4 0.75 0.34 0.7 1.5 0 0.7 1.5 0 0.7 1.5 0 0.7 0.46 3.141592653589793 0.7 4.0 1.5707963267948966 0.45 4.0 1.5707963267948966 0.45
pair_coeff 1 4 oxdna_hbond 1.077 8.0 0.4 0.75 0.34 0.7 1.5 0 0.7 1.5 0 0.7 1.5 0 0.7 0.46 3.141592653589793 0.7 4.0 1.5707963267948966 0.45 4.0 1.5707963267948966 0.45
pair_coeff 2 3 oxdna_hbond 1.077 8.0 0.4 0.75 0.34 0.7 1.5 0 0.7 1.5 0 0.7 1.5 0 0.7 0.46 3.141592653589793 0.7 4.0 1.5707963267948966 0.45 4.0 1.5707963267948966 0.45
pair_coeff * * oxdna_xstk 47.5 0.575 0.675 0.495 0.655 2.25 0.791592653589793 0.58 1.7 1.0 0.68 1.7 1.0 0.68 1.5 0 0.65 1.7 0.875 0.68 1.7 0.875 0.68
pair_coeff * * oxdna_coaxstk 46.0 0.4 0.6 0.22 0.58 2.0 2.541592653589793 0.65 1.3 0 0.8 0.9 0 0.95 0.9 0 0.95 2.0 -0.65 2.0 -0.65
# NVE ensemble
fix 1 all nve/dotc/langevin 0.1 0.1 0.03 457145 angmom 10
#fix 1 all nve/dot
timestep 1e-5
#comm_style tiled
#fix 3 all balance 10000 1.1 rcb
#compute mol all chunk/atom molecule
#compute mychunk all vcm/chunk mol
#fix 4 all ave/time 10000 1 10000 c_mychunk[1] c_mychunk[2] c_mychunk[3] file vcm.txt mode vector
dump pos all xyz ${ofreq} traj.${number}.xyz
compute quat all property/atom quatw quati quatj quatk
dump quat all custom ${ofreq} quat.${number}.txt id c_quat[1] c_quat[2] c_quat[3] c_quat[4]
dump_modify quat sort id
dump_modify quat format line "%d %13.6le %13.6le %13.6le %13.6le"
compute erot all erotate/asphere
compute ekin all ke
compute epot all pe
variable erot equal c_erot
variable ekin equal c_ekin
variable epot equal c_epot
variable etot equal c_erot+c_ekin+c_epot
fix 5 all print ${efreq} "$(step) ekin = ${ekin} | erot = ${erot} | epot = ${epot} | etot = ${etot}" screen yes
dump out all custom ${ofreq} out.${number}.txt id x y z vx vy vz fx fy fz tqx tqy tqz
dump_modify out sort id
dump_modify out format line "%d %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le"
run 1000000
#write_restart config.${number}.*

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,388 @@
# Setup tool for oxDNA input in LAMMPS format.
import math,numpy as np,sys,os
# system size
lxmin = -115.0
lxmax = +115.0
lymin = -115.0
lymax = +115.0
lzmin = -115.0
lzmax = +115.0
# rise in z-direction
r0 = 0.7
# definition of single untwisted strand
def single():
strand = inp[1].split(':')
com_start=strand[0].split(',')
posx=float(com_start[0])
posy=float(com_start[1])
posz=float(com_start[2])
risex=0
risey=0
risez=r0
strandstart=len(nucleotide)+1
for letter in strand[2]:
temp=[]
temp.append(nt2num[letter])
temp.append([posx,posy,posz])
vel=[0,0,0,0,0,0]
temp.append(vel)
temp.append(shape)
quat=[1,0,0,0]
temp.append(quat)
posx=posx+risex
posy=posy+risey
posz=posz+risez
if (len(nucleotide)+1 > strandstart):
topology.append([1,len(nucleotide),len(nucleotide)+1])
nucleotide.append(temp)
return
# definition of single twisted strand
def single_helix():
strand = inp[1].split(':')
com_start=strand[0].split(',')
twist=float(strand[1])
posx = float(com_start[0])
posy = float(com_start[1])
posz = float(com_start[2])
risex=0
risey=0
risez=math.sqrt(r0**2-4.0*math.sin(0.5*twist)**2)
dcomh=0.76
axisx=dcomh + posx
axisy=posy
strandstart=len(nucleotide)+1
quat=[1,0,0,0]
qrot0=math.cos(0.5*twist)
qrot1=0
qrot2=0
qrot3=math.sin(0.5*twist)
for letter in strand[2]:
temp=[]
temp.append(nt2num[letter])
temp.append([posx,posy,posz])
vel=[0,0,0,0,0,0]
temp.append(vel)
temp.append(shape)
temp.append(quat)
quat0 = quat[0]*qrot0 - quat[1]*qrot1 - quat[2]*qrot2 - quat[3]*qrot3
quat1 = quat[0]*qrot1 + quat[1]*qrot0 + quat[2]*qrot3 - quat[3]*qrot2
quat2 = quat[0]*qrot2 + quat[2]*qrot0 + quat[3]*qrot1 - quat[1]*qrot3
quat3 = quat[0]*qrot3 + quat[3]*qrot0 + quat[1]*qrot2 + quat[2]*qrot1
quat = [quat0,quat1,quat2,quat3]
posx=axisx - dcomh*(quat[0]**2+quat[1]**2-quat[2]**2-quat[3]**2)
posy=axisy - dcomh*(2*(quat[1]*quat[2]+quat[0]*quat[3]))
posz=posz+risez
if (len(nucleotide)+1 > strandstart):
topology.append([1,len(nucleotide),len(nucleotide)+1])
nucleotide.append(temp)
return
# definition of twisted duplex
def duplex():
strand = inp[1].split(':')
com_start=strand[0].split(',')
twist=float(strand[1])
compstrand=[]
comptopo=[]
posx1 = float(com_start[0])
posy1 = float(com_start[1])
posz1 = float(com_start[2])
risex=0
risey=0
risez=math.sqrt(r0**2-4.0*math.sin(0.5*twist)**2)
dcomh=0.76
axisx=dcomh + posx1
axisy=posy1
posx2 = axisx + dcomh
posy2 = posy1
posz2 = posz1
strandstart=len(nucleotide)+1
quat1=[1,0,0,0]
quat2=[0,0,-1,0]
qrot0=math.cos(0.5*twist)
qrot1=0
qrot2=0
qrot3=math.sin(0.5*twist)
for letter in strand[2]:
temp1=[]
temp2=[]
temp1.append(nt2num[letter])
temp2.append(compnt2num[letter])
temp1.append([posx1,posy1,posz1])
temp2.append([posx2,posy2,posz2])
vel=[0,0,0,0,0,0]
temp1.append(vel)
temp2.append(vel)
temp1.append(shape)
temp2.append(shape)
temp1.append(quat1)
temp2.append(quat2)
quat1_0 = quat1[0]*qrot0 - quat1[1]*qrot1 - quat1[2]*qrot2 - quat1[3]*qrot3
quat1_1 = quat1[0]*qrot1 + quat1[1]*qrot0 + quat1[2]*qrot3 - quat1[3]*qrot2
quat1_2 = quat1[0]*qrot2 + quat1[2]*qrot0 + quat1[3]*qrot1 - quat1[1]*qrot3
quat1_3 = quat1[0]*qrot3 + quat1[3]*qrot0 + quat1[1]*qrot2 + quat1[2]*qrot1
quat1 = [quat1_0,quat1_1,quat1_2,quat1_3]
posx1=axisx - dcomh*(quat1[0]**2+quat1[1]**2-quat1[2]**2-quat1[3]**2)
posy1=axisy - dcomh*(2*(quat1[1]*quat1[2]+quat1[0]*quat1[3]))
posz1=posz1+risez
quat2_0 = quat2[0]*qrot0 - quat2[1]*qrot1 - quat2[2]*qrot2 + quat2[3]*qrot3
quat2_1 = quat2[0]*qrot1 + quat2[1]*qrot0 - quat2[2]*qrot3 - quat2[3]*qrot2
quat2_2 = quat2[0]*qrot2 + quat2[2]*qrot0 + quat2[3]*qrot1 + quat2[1]*qrot3
quat2_3 =-quat2[0]*qrot3 + quat2[3]*qrot0 + quat2[1]*qrot2 + quat2[2]*qrot1
quat2 = [quat2_0,quat2_1,quat2_2,quat2_3]
posx2=axisx + dcomh*(quat1[0]**2+quat1[1]**2-quat1[2]**2-quat1[3]**2)
posy2=axisy + dcomh*(2*(quat1[1]*quat1[2]+quat1[0]*quat1[3]))
posz2=posz1
if (len(nucleotide)+1 > strandstart):
topology.append([1,len(nucleotide),len(nucleotide)+1])
comptopo.append([1,len(nucleotide)+len(strand[2]),len(nucleotide)+len(strand[2])+1])
nucleotide.append(temp1)
compstrand.append(temp2)
for ib in range(len(compstrand)):
nucleotide.append(compstrand[len(compstrand)-1-ib])
for ib in range(len(comptopo)):
topology.append(comptopo[ib])
return
# definition of array of duplexes
def duplex_array():
strand = inp[1].split(':')
number=strand[0].split(',')
posz1_0 = float(strand[1])
twist=float(strand[2])
nx = int(number[0])
ny = int(number[1])
dx = (lxmax-lxmin)/nx
dy = (lymax-lymin)/ny
risex=0
risey=0
risez=math.sqrt(r0**2-4.0*math.sin(0.5*twist)**2)
dcomh=0.76
for ix in range(nx):
axisx=lxmin + dx/2 + ix * dx
for iy in range(ny):
axisy=lymin + dy/2 + iy * dy
compstrand=[]
comptopo=[]
posx1 = axisx - dcomh
posy1 = axisy
posz1 = posz1_0
posx2 = axisx + dcomh
posy2 = posy1
posz2 = posz1
strandstart=len(nucleotide)+1
quat1=[1,0,0,0]
quat2=[0,0,-1,0]
qrot0=math.cos(0.5*twist)
qrot1=0
qrot2=0
qrot3=math.sin(0.5*twist)
for letter in strand[3]:
temp1=[]
temp2=[]
temp1.append(nt2num[letter])
temp2.append(compnt2num[letter])
temp1.append([posx1,posy1,posz1])
temp2.append([posx2,posy2,posz2])
vel=[0,0,0,0,0,0]
temp1.append(vel)
temp2.append(vel)
temp1.append(shape)
temp2.append(shape)
temp1.append(quat1)
temp2.append(quat2)
quat1_0 = quat1[0]*qrot0 - quat1[1]*qrot1 - quat1[2]*qrot2 - quat1[3]*qrot3
quat1_1 = quat1[0]*qrot1 + quat1[1]*qrot0 + quat1[2]*qrot3 - quat1[3]*qrot2
quat1_2 = quat1[0]*qrot2 + quat1[2]*qrot0 + quat1[3]*qrot1 - quat1[1]*qrot3
quat1_3 = quat1[0]*qrot3 + quat1[3]*qrot0 + quat1[1]*qrot2 + quat1[2]*qrot1
quat1 = [quat1_0,quat1_1,quat1_2,quat1_3]
posx1=axisx - dcomh*(quat1[0]**2+quat1[1]**2-quat1[2]**2-quat1[3]**2)
posy1=axisy - dcomh*(2*(quat1[1]*quat1[2]+quat1[0]*quat1[3]))
posz1=posz1+risez
quat2_0 = quat2[0]*qrot0 - quat2[1]*qrot1 - quat2[2]*qrot2 + quat2[3]*qrot3
quat2_1 = quat2[0]*qrot1 + quat2[1]*qrot0 - quat2[2]*qrot3 - quat2[3]*qrot2
quat2_2 = quat2[0]*qrot2 + quat2[2]*qrot0 + quat2[3]*qrot1 + quat2[1]*qrot3
quat2_3 =-quat2[0]*qrot3 + quat2[3]*qrot0 + quat2[1]*qrot2 + quat2[2]*qrot1
quat2 = [quat2_0,quat2_1,quat2_2,quat2_3]
posx2=axisx + dcomh*(quat1[0]**2+quat1[1]**2-quat1[2]**2-quat1[3]**2)
posy2=axisy + dcomh*(2*(quat1[1]*quat1[2]+quat1[0]*quat1[3]))
posz2=posz1
if (len(nucleotide)+1 > strandstart):
topology.append([1,len(nucleotide),len(nucleotide)+1])
comptopo.append([1,len(nucleotide)+len(strand[3]),len(nucleotide)+len(strand[3])+1])
nucleotide.append(temp1)
compstrand.append(temp2)
for ib in range(len(compstrand)):
nucleotide.append(compstrand[len(compstrand)-1-ib])
for ib in range(len(comptopo)):
topology.append(comptopo[ib])
return
# main part
nt2num = {'A':1, 'C':2, 'G':3, 'T':4}
compnt2num = {'T':1, 'G':2, 'C':3, 'A':4}
shape = [1.1739845031423408,1.1739845031423408,1.1739845031423408]
nucleotide=[]
topology=[]
seqfile = open(sys.argv[1],'r')
# process sequence file line by line
for line in seqfile:
inp = line.split()
if inp[0] == 'single':
single()
if inp[0] == 'single_helix':
single_helix()
if inp[0] == 'duplex':
duplex()
if inp[0] == 'duplex_array':
duplex_array()
# output atom data in LAMMPS format
out = open(sys.argv[2],'w')
out.write('# LAMMPS data file\n')
out.write('%d atoms\n' % len(nucleotide))
out.write('%d ellipsoids\n' % len(nucleotide))
out.write('%d bonds\n' % len(topology))
out.write('\n')
out.write('4 atom types\n')
out.write('1 bond types\n')
out.write('\n')
out.write('# System size\n')
out.write('%f %f xlo xhi\n' % (lxmin,lxmax))
out.write('%f %f ylo yhi\n' % (lymin,lymax))
out.write('%f %f zlo zhi\n' % (lzmin,lzmax))
out.write('\n')
out.write('Masses\n')
out.write('\n')
out.write('1 3.1575\n')
out.write('2 3.1575\n')
out.write('3 3.1575\n')
out.write('4 3.1575\n')
out.write('\n')
out.write('# Atom-ID, type, position, molecule-ID, ellipsoid flag, density\n')
out.write('Atoms\n')
out.write('\n')
for ib in range(len(nucleotide)):
out.write("%d %d %22.16le %22.16le %22.16le 1 1 1\n" % (ib+1,nucleotide[ib][0],nucleotide[ib][1][0],nucleotide[ib][1][1],nucleotide[ib][1][2]))
out.write('\n')
out.write('# Atom-ID, translational, rotational velocity\n')
out.write('Velocities\n')
out.write('\n')
for ib in range(len(nucleotide)):
out.write("%d %22.16le %22.16le %22.16le %22.16le %22.16le %22.16le\n" % (ib+1,nucleotide[ib][2][0],nucleotide[ib][2][1],nucleotide[ib][2][2],nucleotide[ib][2][3],nucleotide[ib][2][4],nucleotide[ib][2][5]))
out.write('\n')
out.write('# Atom-ID, shape, quaternion\n')
out.write('Ellipsoids\n')
out.write('\n')
for ib in range(len(nucleotide)):
out.write("%d %22.16le %22.16le %22.16le %22.16le %22.16le %22.16le %22.16le\n" % (ib+1,nucleotide[ib][3][0],nucleotide[ib][3][1],nucleotide[ib][3][2],nucleotide[ib][4][0],nucleotide[ib][4][1],nucleotide[ib][4][2],nucleotide[ib][4][3]))
out.write('\n')
out.write('# Bond topology\n')
out.write('Bonds\n')
out.write('\n')
for ib in range(len(topology)):
out.write("%d %d %d %d\n" % (ib+1,topology[ib][0],topology[ib][1],topology[ib][2]))
out.close()
seqfile.close()
sys.exit(0)

View File

@ -0,0 +1,77 @@
variable number equal 8
variable ofreq equal 1000
variable efreq equal 1000
units lj
dimension 3
newton off
processors 1 1 1
boundary p p p
atom_style hybrid bond ellipsoid
atom_modify sort 0 1.0
# Pair interactions require lists of neighbours to be calculated
neighbor 1.0 bin
neigh_modify every 1 delay 0 check yes
read_data data.duplex2
set atom * mass 3.1575
group all type 1 4
# oxDNA bond interactions - FENE backbone
bond_style oxdna_fene
bond_coeff * 2.0 0.25 0.7525
# oxDNA pair interactions
pair_style hybrid/overlay oxdna_excv oxdna_stk oxdna_hbond oxdna_xstk oxdna_coaxstk
pair_coeff * * oxdna_excv 2.0 0.7 0.675 2.0 0.515 0.5 2.0 0.33 0.32
pair_coeff * * oxdna_stk 1.61048 6.0 0.4 0.9 0.32 0.6 1.3 0 0.8 0.9 0 0.95 0.9 0 0.95 2.0 0.65 2.0 0.65
pair_coeff * * oxdna_hbond 0.0 8.0 0.4 0.75 0.34 0.7 1.5 0 0.7 1.5 0 0.7 1.5 0 0.7 0.46 3.141592653589793 0.7 4.0 1.5707963267948966 0.45 4.0 1.5707963267948966 0.45
pair_coeff 1 4 oxdna_hbond 1.077 8.0 0.4 0.75 0.34 0.7 1.5 0 0.7 1.5 0 0.7 1.5 0 0.7 0.46 3.141592653589793 0.7 4.0 1.5707963267948966 0.45 4.0 1.5707963267948966 0.45
pair_coeff 2 3 oxdna_hbond 1.077 8.0 0.4 0.75 0.34 0.7 1.5 0 0.7 1.5 0 0.7 1.5 0 0.7 0.46 3.141592653589793 0.7 4.0 1.5707963267948966 0.45 4.0 1.5707963267948966 0.45
pair_coeff * * oxdna_xstk 47.5 0.575 0.675 0.495 0.655 2.25 0.791592653589793 0.58 1.7 1.0 0.68 1.7 1.0 0.68 1.5 0 0.65 1.7 0.875 0.68 1.7 0.875 0.68
pair_coeff * * oxdna_coaxstk 46.0 0.4 0.6 0.22 0.58 2.0 2.541592653589793 0.65 1.3 0 0.8 0.9 0 0.95 0.9 0 0.95 2.0 -0.65 2.0 -0.65
# NVE ensemble
#fix 1 all nve/dotc/langevin 0.1 0.1 0.03 457145 angmom 10
fix 1 all nve/dot
timestep 1e-5
#comm_style tiled
#fix 3 all balance 10000 1.1 rcb
#compute mol all chunk/atom molecule
#compute mychunk all vcm/chunk mol
#fix 4 all ave/time 10000 1 10000 c_mychunk[1] c_mychunk[2] c_mychunk[3] file vcm.txt mode vector
#dump pos all xyz ${ofreq} traj.${number}.xyz
#compute quat all property/atom quatw quati quatj quatk
#dump quat all custom ${ofreq} quat.${number}.txt id c_quat[1] c_quat[2] c_quat[3] c_quat[4]
#dump_modify quat sort id
#dump_modify quat format line "%d %13.6le %13.6le %13.6le %13.6le"
compute erot all erotate/asphere
compute ekin all ke
compute epot all pe
variable erot equal c_erot
variable ekin equal c_ekin
variable epot equal c_epot
variable etot equal c_erot+c_ekin+c_epot
fix 5 all print ${efreq} "$(step) ekin = ${ekin} | erot = ${erot} | epot = ${epot} | etot = ${etot}" screen yes
dump out all custom ${ofreq} out.${number}.txt id x y z vx vy vz fx fy fz tqx tqy tqz
dump_modify out sort id
dump_modify out format line "%d %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le %13.6le"
run 1000000
#write_restart config.${number}.*

View File

@ -0,0 +1,4 @@
single 0,0,0:0.6:AAAAA
single_helix 0,0,0:0.6:AAAAA
duplex 0,0,0:0.6:AAAAA
duplex_array 10,10:-112.0:0.6:AAAAA

View File

@ -35,129 +35,133 @@ thermo_modify format float %24.16f
run 1000
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 0 steps, check no
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 10.6
ghost atom cutoff = 10.6
binsize = 5.3 -> bins = 25 25 25
Memory usage per processor = 3.36353 Mbytes
binsize = 5.3, bins = 25 25 25
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair dpd/fdt/energy, perpetual
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
Memory usage per processor = 4.28221 Mbytes
Step Temp Press PotEng KinEng c_dpdU[1] c_dpdU[2] v_totEnergy c_dpdU[4]
0 301.4391322267262012 1636.1776395935085020 1188.6488072196075336 394.4722035796053206 7852.5601874986105031 7852.5601874986105031 17288.2413857964347699 299.9999999999841407
10 301.4791572483523510 1486.4422375141198245 1188.7147620806101713 394.5245815119678241 7852.5601874999802021 7852.3731942333779443 17288.1727253259377903 299.9960221120699089
20 301.4275643919337426 1677.9356110821624952 1188.7839634625399867 394.4570655673388728 7852.5601874999938445 7852.3711851933012440 17288.1724017231754260 299.9955485734552099
30 301.2240988054542186 1452.7304951528931269 1188.8550809767796181 394.1908044563202225 7852.5601875000002110 7852.5679666239848302 17288.1740395570850524 299.9988968405210130
40 301.1023506886409677 1527.9758363521380033 1188.9264527568634549 394.0314812537677653 7852.5601874999947540 7852.6574764573806533 17288.1755979680056043 300.0001694462812338
50 301.0409654880461972 1597.1737251233498682 1188.9944523606982330 393.9511507566391515 7852.5601875000029395 7852.6700547249911324 17288.1758453423317405 299.9999653064982681
60 301.2904978886139133 1610.8630327676828529 1189.0651026961211301 394.2776962691256131 7852.5601874999829306 7852.2734988976435488 17288.1764853628737910 299.9919857290491905
70 300.8575037843163500 1489.3259312130880971 1189.1295686642290548 393.7110673208616731 7852.5601874999856591 7852.7707182199101226 17288.1715417049854295 300.0010992278233175
80 300.5955830326474825 1449.3896097889587509 1189.1880764967559116 393.3683100440913449 7852.5601875000411383 7853.0484238882281716 17288.1649979291178170 300.0059513551503301
90 301.0092332775843147 1553.9266324350364812 1189.2470037925052111 393.9096250433288446 7852.5601875000420478 7852.4452067113825251 17288.1620230472581170 299.9940347326859182
100 301.0478004479094238 1539.2270336322194453 1189.3010269201699884 393.9600951881690207 7852.5601875000074870 7852.3416236045995902 17288.1629332129450631 299.9916385566916119
110 300.9609384905550087 1500.0429484565006533 1189.3524514939088021 393.8464250502817663 7852.5601874999983920 7852.4114980357189779 17288.1705620799075405 299.9925626482005327
120 300.9625536631411933 1630.5065919443034090 1189.4006029528841282 393.8485387131115658 7852.5601875000575092 7852.3600810123671181 17288.1694101784196391 299.9911580775880680
130 301.0373750247310340 1539.2267307640183844 1189.4426173625224692 393.9464521696795032 7852.5601874999993015 7852.2178388309775983 17288.1670958631802932 299.9879581026651749
140 300.7465104415114752 1550.8353679735087098 1189.4887352231000932 393.5658181350791551 7852.5601874999920256 7852.5559582333216895 17288.1706990914935886 299.9939749909034958
150 300.6667173911141617 1634.8987162883277051 1189.5368575067818711 393.4613985788388959 7852.5601874999920256 7852.6079668015609059 17288.1664103871735279 299.9946423938895350
160 300.4684731724562425 1462.9400882126803936 1189.5825022927965620 393.2019703048678707 7852.5601874999847496 7852.8265187980177870 17288.1711788956672535 299.9983600613423960
170 300.1439323338466920 1510.2352578813552100 1189.6305700279478970 392.7772665220106774 7852.5601874999802021 7853.2009671047335360 17288.1689911546709482 300.0051118582463232
180 300.1074244553407198 1529.6307083879951279 1189.6764977580119194 392.7294912276224181 7852.5601874999729262 7853.2047509722533505 17288.1709274578606710 300.0047089238623812
190 300.4193298066089142 1546.3205495807171701 1189.7172820166240399 393.1376598363699486 7852.5601874999847496 7852.7461854379371289 17288.1613147909156396 299.9954451643528728
200 300.3353919251508728 1532.5496449337254035 1189.7600175880224924 393.0278162310690391 7852.5601874999683787 7852.8107089913455638 17288.1587303104060993 299.9962707550171785
210 300.3276568499739483 1504.8178651700843602 1189.7998299597820733 393.0176938818990493 7852.5601875000156724 7852.7810130200659842 17288.1587243617614149 299.9953436245502871
220 300.5768315696971626 1592.5896084568344122 1189.8391466344742184 393.3437713226064716 7852.5601875000329528 7852.4205574703573802 17288.1636629274726147 299.9880321846658831
230 300.6587445618569063 1672.3049358942289473 1189.8766340798690635 393.4509650976162334 7852.5601874999847496 7852.2733199687863817 17288.1611066462573945 299.9848228571166828
240 300.7517707836825025 1527.1722267937811921 1189.9126240081129708 393.5727019751183207 7852.5601875000065775 7852.1160682173085661 17288.1615817005440476 299.9814952182625802
250 300.8473715548367409 1589.1847713095248764 1189.9441342461948352 393.6978079843565865 7852.5601875000047585 7851.9625847797888127 17288.1647145103452203 299.9782210858571148
260 300.8450266408960942 1623.1896863377055524 1189.9636161513917614 393.6947393603111891 7852.5601874999820211 7851.9471828473988353 17288.1657258590821584 299.9775302202895659
270 300.6663619570709898 1564.5160171187899323 1189.9764081239700317 393.4609334472908131 7852.5601875000193104 7852.1708276117251444 17288.1683566830033669 299.9812899253168439
280 300.7668534205726019 1618.5400526904263643 1189.9872008155405183 393.5924395618274048 7852.5601875000184009 7852.0271568534708422 17288.1669847308585304 299.9781169783826158
290 300.8462727198648849 1562.6765776748122789 1189.9918265985252219 393.6963700162682471 7852.5601875000211294 7851.9189772084127981 17288.1673613232269417 299.9756806168044250
300 300.8095414073812890 1525.1785808192844343 1189.9873922767767453 393.6483023295390922 7852.5601875000020300 7851.9657301693578120 17288.1616122756749974 299.9761279889730758
310 300.9496330741350221 1566.5597234051326723 1189.9752299662607129 393.8316304464934774 7852.5601875000056680 7851.7898117189633922 17288.1568596317229094 299.9723726900590464
320 301.2370566356515837 1513.6869483705047514 1189.9626455872523820 394.2077614578674343 7852.5601874999929350 7851.4248466706330873 17288.1554412157456682 299.9650543775110236
330 301.3279721508968692 1549.0667862452519330 1189.9513389477854162 394.3267362020337146 7852.5601874999929350 7851.3129955581916875 17288.1512582080031279 299.9625537201162615
340 301.1145736537583844 1414.7930515101759283 1189.9408691169965095 394.0474765890400590 7852.5601874999993015 7851.6028846074832472 17288.1514178135184920 299.9677356565828745
350 301.1651600907370039 1529.8016115175887535 1189.9314470205476937 394.1136755032911196 7852.5601874999929350 7851.5441417268757505 17288.1494517507089768 299.9662576716461331
360 301.0550563185083206 1536.7721716375504002 1189.9200519814730796 393.9695904359920178 7852.5601875000074870 7851.7101209691463737 17288.1599508866202086 299.9690811750865009
370 301.1008976932964742 1522.3385843459479929 1189.9109162496640693 394.0295798208944120 7852.5601875000211294 7851.6603423306560217 17288.1610259012340975 299.9677565060027860
380 301.1656898730700505 1505.0548721701993600 1189.9005648244351505 394.1143687921909304 7852.5601875000056680 7851.5816827598300733 17288.1568038764598896 299.9659906785156522
390 300.8379322662876802 1740.9151205755624687 1189.8851457594087151 393.6854554509390596 7852.5601875000238579 7852.0268864110385039 17288.1576751214088290 299.9741278188615752
400 300.8663790447546376 1564.9461156870302148 1189.8690133470408909 393.7226817503372445 7852.5601875000411383 7852.0043792319993372 17288.1562618294192362 299.9732593416579789
410 300.6263441860635908 1564.2840871092373618 1189.8566574093877080 393.4085650033033517 7852.5601874999892971 7852.3284491703725507 17288.1538590830532485 299.9792095875052951
420 300.5302259436974168 1438.1569922368764765 1189.8406936554465574 393.2827818158641549 7852.5601875000302243 7852.4696075433648730 17288.1532705147074012 299.9815165752025337
430 300.5877786105220935 1503.3641639033023694 1189.8251514530138593 393.3580969454444016 7852.5601874999802021 7852.4023373559457468 17288.1457732543858583 299.9798346272511935
440 300.7289160804472772 1689.2527029957295781 1189.8035410609209066 393.5427936314976591 7852.5601875000029395 7852.2436462415198548 17288.1501684339418716 299.9764596782897570
450 300.9487198282456575 1497.3668092174791582 1189.7808137689632986 393.8304353457919547 7852.5601874999938445 7851.9788323927432430 17288.1502690074921702 299.9710227473042323
460 300.9359942496024587 1625.1573864018491804 1189.7615359247627111 393.8137822755282400 7852.5601875000147629 7852.0165192783370003 17288.1520249786408385 299.9713565393226986
470 301.0000133856357252 1486.1561922844011860 1189.7439269526955741 393.8975596188205941 7852.5601874999656502 7851.9561324572268859 17288.1578065287103527 299.9697143418395626
480 300.8568627175957886 1535.6080526199095857 1189.7237810071801505 393.7102284019063063 7852.5601874999601932 7852.1697010727630186 17288.1638979818089865 299.9732503057674080
490 301.0608040775520067 1497.3221544489886128 1189.7062242497636362 393.9771121242308709 7852.5601874999974825 7851.9258988739011329 17288.1694227478947141 299.9682362511933320
500 301.0232592587148019 1517.5854528541199215 1189.6911287485861521 393.9279798589197981 7852.5601875000247674 7851.9823225510326665 17288.1616186585633841 299.9690333355835037
510 300.7038579923685120 1420.2615974401142012 1189.6747661513456933 393.5100018730125839 7852.5601874999674692 7852.4114869568047652 17288.1564424811294884 299.9768186576545759
520 300.5917863355052759 1537.4862082427132464 1189.6604754398756540 393.3633415734188361 7852.5601875000029395 7852.5789017095057716 17288.1629062228021212 299.9795694302102333
530 300.4751352158502868 1481.1071694751799441 1189.6453243069925065 393.2106884527691477 7852.5601874999811116 7852.7451655714066874 17288.1613658311471227 299.9823181268525900
540 300.5380123640739498 1547.3461372766389559 1189.6261485232855648 393.2929713568877332 7852.5601875000375003 7852.6850583598352387 17288.1643657400454686 299.9808112190538623
550 300.4253885005187499 1544.3485889749692888 1189.6033595464525661 393.1455884232119047 7852.5601874999756546 7852.8598718466746504 17288.1690073163154011 299.9835860164698147
560 300.3263552442093101 1556.5150300058251105 1189.5759163336824713 393.0159905619273673 7852.5601875000111249 7853.0148613782675966 17288.1669557738860021 299.9861837797674866
570 300.1977324643196425 1511.2320626303917379 1189.5441090918316149 392.8476709710407704 7852.5601875000102154 7853.2098259401755058 17288.1617935030590161 299.9896761688499964
580 300.3543631005173893 1588.9566243200433746 1189.5094471319721379 393.0526424747489500 7852.5601875000156724 7853.0374555421631158 17288.1597326488990802 299.9859298211933378
590 300.5019108864805730 1504.4406939723214691 1189.4809412920112663 393.2457278908070748 7852.5601874999874781 7852.8704277855340479 17288.1572844683396397 299.9823573257917815
600 300.4791158523048011 1540.4690749004150803 1189.4551948503105905 393.2158976318902432 7852.5601875000220389 7852.9312239063838206 17288.1625038886049879 299.9832002920041987
610 300.5939139841889869 1368.0565839211087678 1189.4252547652590692 393.3661258776944578 7852.5601874999574648 7852.8130977336286378 17288.1646658765384927 299.9807742697515778
620 300.7674247480806002 1483.2566452708945235 1189.3941250938435132 393.5931872179773450 7852.5601875000193104 7852.6187967208716145 17288.1662965327122947 299.9766963671718258
630 300.7920034341021278 1543.0699124130637756 1189.3598279316649950 393.6253516166882491 7852.5601875000302243 7852.6219971866230480 17288.1673642350069713 299.9762538437230432
640 300.8032734267029014 1423.2549819291616586 1189.3293074476885067 393.6400998638143278 7852.5601874999847496 7852.6384826097782934 17288.1680774212654796 299.9762118202994543
650 300.7516995878241346 1542.6559695158523482 1189.3021161045705867 393.5726088061030055 7852.5601874999720167 7852.7361949473242930 17288.1711073579681397 299.9775656396505497
660 300.8699697098109596 1675.5121937767839881 1189.2687179804190691 393.7273806013013768 7852.5601874999802021 7852.6179739687149777 17288.1742600504148868 299.9750492262036801
670 301.0255004186900578 1520.7397686587873977 1189.2284265783687260 393.9309127074437242 7852.5601874999847496 7852.4592279727157802 17288.1787547585117863 299.9715123049731460
680 301.1071983488760679 1651.9751417063259851 1189.1858967311386550 394.0378250459656329 7852.5601875000002110 7852.3982826328638112 17288.1821919099675142 299.9699481289110850
690 301.0027086454253435 1496.1607274163641250 1189.1436949551202815 393.9010867158519886 7852.5601875000293148 7852.5788938360938118 17288.1838630070960789 299.9731939774295597
700 300.9009090279179759 1551.8182127127668082 1189.0993919251338866 393.7678687121208441 7852.5601875000102154 7852.7513665452252098 17288.1788146824910655 299.9761043445071209
710 301.2325536720837817 1678.1546953970853338 1189.0528341066981284 394.2018687459686817 7852.5601874999956635 7852.3633298995819132 17288.1782202522445004 299.9683013583347133
720 301.2122298224125529 1524.1415452491430642 1189.0046957644285612 394.1752723525083866 7852.5601875000093059 7852.4351629896145823 17288.1753186065616319 299.9693315350040734
730 301.0763282392692304 1547.1987029633166912 1188.9602551214045434 393.9974275034455218 7852.5601874999883876 7852.6518053705112834 17288.1696754953518393 299.9732715774841267
740 301.3262401480515109 1544.7045314021493141 1188.9131307177485724 394.3244696516559884 7852.5601874999965730 7852.3694201272974169 17288.1672079966992897 299.9674666811455950
750 301.5740779122830304 1591.1785078054851965 1188.8637580645938669 394.6487975126887022 7852.5601875000029395 7852.0919529470393172 17288.1646960243233480 299.9616008527094095
760 301.4385361878654521 1547.3218422039201414 1188.8113669183098864 394.4714235854450521 7852.5601874999838401 7852.3161911124070684 17288.1591691161447670 299.9656339783694534
770 301.6110125684814420 1494.5039561806622714 1188.7581685915934031 394.6971313010439530 7852.5601875000083965 7852.1351720579104949 17288.1506594505553949 299.9619855799395509
780 301.8360352039435384 1588.1458619705292676 1188.7039178696472845 394.9916026067776329 7852.5601874999956635 7851.9015195838428554 17288.1572275602629816 299.9572350302977952
790 302.1008324754310479 1545.4409171812178556 1188.6491103416560691 395.3381241828382144 7852.5601875000138534 7851.6150048936624444 17288.1624269181702402 299.9513959104631340
800 301.9660372380565718 1563.9565804790736365 1188.5964649891604950 395.1617271307158035 7852.5601874999874781 7851.8461249560614306 17288.1645045759250934 299.9555810527747326
810 302.0507207347627627 1511.4560763489957935 1188.5468477146612258 395.2725464702810996 7852.5601875000120344 7851.7904104899025697 17288.1699921748586348 299.9541551776504775
820 302.4700213214911741 1458.5135514273570152 1188.4981381693974072 395.8212556746473751 7852.5601875000202199 7851.2935886962204677 17288.1731700402851857 299.9441803241180651
830 302.2853997979337350 1496.2544527963129894 1188.4496917372191547 395.5796544641875698 7852.5601875000447762 7851.5862641793482908 17288.1757978808018379 299.9494768794835977
840 302.0840465730901201 1518.8301331998704882 1188.3994383226176978 395.3161576523596636 7852.5601875000038490 7851.8962146812327774 17288.1719981562127941 299.9550476592922337
850 301.8910942560261788 1469.8827850510901953 1188.3489956121345585 395.0636545180261692 7852.5601874999829306 7852.2025804631493884 17288.1754180932912277 299.9606927700139067
860 301.7284384160519153 1657.6802015862324424 1188.3052233777652873 394.8507982536594341 7852.5601875000093059 7852.4644669022691232 17288.1806760337058222 299.9652835238809985
870 301.6331619894115192 1501.5829953208524330 1188.2628815714097072 394.7261166912876433 7852.5601875000202199 7852.6378180648598573 17288.1870038275774277 299.9682811831179379
880 301.3703918424367316 1499.1595903074553462 1188.2195190931643083 394.3822478705861272 7852.5601874999956635 7853.0266423250832304 17288.1885967888301820 299.9755099056966401
890 301.4157954313303662 1598.8758859042511631 1188.1845892608291706 394.4416643558612918 7852.5601875000065775 7853.0036606192506952 17288.1901017359487014 299.9745322513492738
900 301.4752150615485675 1621.2148728756822038 1188.1517520946135846 394.5194226492019993 7852.5601874999711072 7852.9579580608560718 17288.1893203046420240 299.9733125337182287
910 301.4308816315938770 1538.4823217911632582 1188.1159856659232901 394.4614066057066566 7852.5601875000002110 7853.0558695713261841 17288.1934493429580471 299.9748317405193916
920 301.4323110133492492 1594.7193046491217956 1188.0835779842032025 394.4632771371357762 7852.5601875000202199 7853.0942701464364291 17288.2013127677964803 299.9751127806911200
930 301.4801256941950101 1387.6885377097617038 1188.0464206196895702 394.5258488489681099 7852.5601875000229484 7853.0656502842994087 17288.1981072529815719 299.9740698440909910
940 301.8075611840245074 1534.2487040663793323 1188.0124217312886685 394.9543406584059539 7852.5601874999701977 7852.6729444202819650 17288.1998943099461030 299.9660570413493588
950 301.6915970126173647 1567.7725992489238251 1187.9790455470049437 394.8025864986412898 7852.5601875000274958 7852.8619557087595240 17288.2037752544347313 299.9694678653150959
960 301.6392594677008105 1504.8502165144939227 1187.9439133338105421 394.7340960325207675 7852.5601874999711072 7852.9728807988849439 17288.2110776651898050 299.9711546356286362
970 301.6049535791644303 1514.0198965433548892 1187.9094123369413865 394.6892023276233772 7852.5601874999765641 7853.0497909819878259 17288.2085931465298927 299.9722547114341751
980 301.2982841679705643 1634.1208149125807267 1187.8768454876480973 394.2878856256063500 7852.5601874999856591 7853.4862008383515786 17288.2111194515891839 299.9802110109069986
990 301.2573007350166563 1489.7316698898257528 1187.8432331161868660 394.2342534877078606 7852.5601875000047585 7853.5840096862748396 17288.2216837901723920 299.9819468620868292
1000 301.3195135766228532 1562.6587211933920116 1187.8034267774903583 394.3156670604516307 7852.5601874999356369 7853.5372636956635688 17288.2165450335414789 299.9807651637231629
Loop time of 21.3308 on 1 procs for 1000 steps with 10125 atoms
0 301.4391322267262012 1636.1776395935080473 1188.6488072196075336 394.4722035796053206 0.0000000000000000 15705.1203749972210062 17288.2413857964347699 299.9999999999841407
10 301.4791572483523510 1486.4422375141214161 1188.7147620806101713 394.5245815119678241 0.0000000000000000 15704.9333817333845218 17288.1727253259632562 299.9960221120699089
20 301.4275643919337995 1677.9356110821622678 1188.7839634625399867 394.4570655673389865 -0.0000000000000000 15704.9313726932996360 17288.1724017231790640 299.9955485734552667
30 301.2240988054542186 1452.7304951528922174 1188.8550809767796181 394.1908044563202225 -0.0000000000000000 15705.1281541239713988 17288.1740395570705005 299.9988968405209562
40 301.1023506886409109 1527.9758363521384581 1188.9264527568634549 394.0314812537677085 -0.0000000000000000 15705.2176639573335706 17288.1755979679655866 300.0001694462812907
50 301.0409654880461972 1597.1737251233505503 1188.9944523606984603 393.9511507566391515 -0.0000000000000000 15705.2302422249904339 17288.1758453423281026 299.9999653064982112
60 301.2904978886138565 1610.8630327676828529 1189.0651026961211301 394.2776962691255562 -0.0000000000000000 15704.8336863976528548 17288.1764853628992569 299.9919857290491905
70 300.8575037843164068 1489.3259312130892340 1189.1295686642290548 393.7110673208617300 0.0000000000000000 15705.3309057198275696 17288.1715417049199459 300.0010992278232607
80 300.5955830326474825 1449.3896097889576140 1189.1880764967559116 393.3683100440913449 -0.0000000000000000 15705.6086113882302016 17288.1649979290777992 300.0059513551502164
90 301.0092332775843147 1553.9266324350371633 1189.2470037925056658 393.9096250433288446 -0.0000000000000000 15705.0053942113881931 17288.1620230472217372 299.9940347326859182
100 301.0478004479094238 1539.2270336322201274 1189.3010269201699884 393.9600951881690207 -0.0000000000000000 15704.9018111045588739 17288.1629332128977694 299.9916385566916119
110 300.9609384905550655 1500.0429484565015628 1189.3524514939088021 393.8464250502818231 -0.0000000000000000 15704.9716855356964516 17288.1705620798857126 299.9925626482006464
120 300.9625536631413070 1630.5065919443020448 1189.4006029528841282 393.8485387131116795 0.0000000000000000 15704.9202685123345873 17288.1694101783286897 299.9911580775880680
130 301.0373750247309772 1539.2267307640188392 1189.4426173625224692 393.9464521696794463 -0.0000000000000000 15704.7780263310032751 17288.1670958632057591 299.9879581026650044
140 300.7465104415114183 1550.8353679735089372 1189.4887352231000932 393.5658181350790983 0.0000000000000000 15705.1161457332873397 17288.1706990914681228 299.9939749909034958
150 300.6667173911142186 1634.8987162883267956 1189.5368575067818711 393.4613985788390096 0.0000000000000000 15705.1681543015274656 17288.1664103871480620 299.9946423938894213
160 300.4684731724561857 1462.9400882126797114 1189.5825022927965620 393.2019703048678139 0.0000000000000000 15705.3867062980680203 17288.1711788957327371 299.9983600613422254
170 300.1439323338466920 1510.2352578813547552 1189.6305700279476696 392.7772665220106774 -0.0000000000000000 15705.7611546046609874 17288.1689911546200165 300.0051118582463232
180 300.1074244553407766 1529.6307083879964921 1189.6764977580119194 392.7294912276225318 -0.0000000000000000 15705.7649384723172261 17288.1709274579516205 300.0047089238623812
190 300.4193298066088573 1546.3205495807169427 1189.7172820166242673 393.1376598363698349 0.0000000000000000 15705.3063729379555298 17288.1613147909483814 299.9954451643527022
200 300.3353919251508728 1532.5496449337249487 1189.7600175880224924 393.0278162310690391 -0.0000000000000000 15705.3708964914076205 17288.1587303105006868 299.9962707550172922
210 300.3276568499739483 1504.8178651700850423 1189.7998299597820733 393.0176938818990493 0.0000000000000000 15705.3412005200552812 17288.1587243617359491 299.9953436245502871
220 300.5768315696972195 1592.5896084568353217 1189.8391466344739911 393.3437713226065284 -0.0000000000000000 15704.9807449702821032 17288.1636629273634753 299.9880321846658262
230 300.6587445618569063 1672.3049358942282652 1189.8766340798690635 393.4509650976162334 0.0000000000000000 15704.8335074687693123 17288.1611066462537565 299.9848228571169102
240 300.7517707836825025 1527.1722267937814195 1189.9126240081131982 393.5727019751183207 -0.0000000000000000 15704.6762557172896777 17288.1615817005222198 299.9814952182625802
250 300.8473715548367409 1589.1847713095232848 1189.9441342461948352 393.6978079843565865 0.0000000000000000 15704.5227722798481409 17288.1647145103997900 299.9782210858571148
260 300.8450266408959806 1623.1896863377055524 1189.9636161513917614 393.6947393603110186 0.0000000000000000 15704.5073703474117792 17288.1657258591149002 299.9775302202894522
270 300.6663619570710466 1564.5160171187892502 1189.9764081239700317 393.4609334472908699 0.0000000000000000 15704.7310151116998895 17288.1683566829597112 299.9812899253167302
280 300.7668534205727155 1618.5400526904256822 1189.9872008155405183 393.5924395618275184 0.0000000000000000 15704.5873443533891987 17288.1669847307566670 299.9781169783825590
290 300.8462727198648281 1562.6765776748138705 1189.9918265985252219 393.6963700162681334 0.0000000000000000 15704.4791647084566648 17288.1673613232487696 299.9756806168042544
300 300.8095414073812890 1525.1785808192844343 1189.9873922767767453 393.6483023295390922 0.0000000000000000 15704.5259176693853078 17288.1616122757004632 299.9761279889731327
310 300.9496330741349652 1566.5597234051326723 1189.9752299662607129 393.8316304464933637 0.0000000000000000 15704.3499992189717887 17288.1568596317265474 299.9723726900589327
320 301.2370566356514132 1513.6869483705036146 1189.9626455872523820 394.2077614578672069 0.0000000000000000 15703.9850341706151085 17288.1554412157347542 299.9650543775107394
330 301.3279721508969260 1549.0667862452526151 1189.9513389477854162 394.3267362020338282 0.0000000000000000 15703.8731830581982649 17288.1512582080176799 299.9625537201162615
340 301.1145736537582707 1414.7930515101757010 1189.9408691169962822 394.0474765890398885 0.0000000000000000 15704.1630721074998291 17288.1514178135366819 299.9677356565827040
350 301.1651600907369470 1529.8016115175894356 1189.9314470205474663 394.1136755032910628 0.0000000000000000 15704.1043292268568621 17288.1494517506944248 299.9662576716459625
360 301.0550563185083206 1536.7721716375513097 1189.9200519814730796 393.9695904359920178 0.0000000000000000 15704.2703084691693221 17288.1599508866347605 299.9690811750866146
370 301.1008976932965311 1522.3385843459491298 1189.9109162496640693 394.0295798208944689 0.0000000000000000 15704.2205298306434997 17288.1610259012013557 299.9677565060027860
380 301.1656898730701073 1505.0548721701995873 1189.9005648244356053 394.1143687921909873 -0.0000000000000000 15704.1418702597857191 17288.1568038764125959 299.9659906785157091
390 300.8379322662877371 1740.9151205755633782 1189.8851457594089425 393.6854554509391164 -0.0000000000000000 15704.5870739109432179 17288.1576751212924137 299.9741278188614046
400 300.8663790447545239 1564.9461156870302148 1189.8690133470406636 393.7226817503371308 0.0000000000000000 15704.5645667319495260 17288.1562618293282867 299.9732593416576947
410 300.6263441860637045 1564.2840871092375892 1189.8566574093874806 393.4085650033035222 -0.0000000000000000 15704.8886366703736712 17288.1538590830641624 299.9792095875053519
420 300.5302259436973031 1438.1569922368769312 1189.8406936554461026 393.2827818158640412 0.0000000000000000 15705.0297950433650840 17288.1532705146746594 299.9815165752024768
430 300.5877786105221503 1503.3641639033021420 1189.8251514530136319 393.3580969454445153 -0.0000000000000000 15704.9625248558968451 17288.1457732543567545 299.9798346272512504
440 300.7289160804472772 1689.2527029957295781 1189.8035410609209066 393.5427936314976591 -0.0000000000000000 15704.8038337415237038 17288.1501684339418716 299.9764596782894728
450 300.9487198282456006 1497.3668092174784761 1189.7808137689632986 393.8304353457918978 -0.0000000000000000 15704.5390198927143501 17288.1502690074703423 299.9710227473042323
460 300.9359942496024019 1625.1573864018473614 1189.7615359247631659 393.8137822755281263 0.0000000000000000 15704.5767067783035600 17288.1520249785935448 299.9713565393225849
470 301.0000133856357252 1486.1561922844020955 1189.7439269526958014 393.8975596188205941 0.0000000000000000 15704.5163199572089070 17288.1578065287249046 299.9697143418395058
480 300.8568627175958454 1535.6080526199100404 1189.7237810071803779 393.7102284019064200 -0.0000000000000000 15704.7298885727686866 17288.1638979818562802 299.9732503057675785
490 301.0608040775520067 1497.3221544489890675 1189.7062242497640909 393.9771121242308709 -0.0000000000000000 15704.4860863739140768 17288.1694227479092660 299.9682362511933889
500 301.0232592587148019 1517.5854528541185573 1189.6911287485863795 393.9279798589197981 -0.0000000000000000 15704.5425100510510674 17288.1616186585561081 299.9690333355832195
510 300.7038579923685120 1420.2615974401142012 1189.6747661513456933 393.5100018730125839 -0.0000000000000000 15704.9716744568013382 17288.1564424811585923 299.9768186576548032
520 300.5917863355052759 1537.4862082427125642 1189.6604754398761088 393.3633415734188361 -0.0000000000000000 15705.1390892093895673 17288.1629062226857059 299.9795694302102902
530 300.4751352158504574 1481.1071694751785799 1189.6453243069920518 393.2106884527693751 -0.0000000000000000 15705.3053530714041699 17288.1613658311653126 299.9823181268525900
540 300.5380123640739498 1547.3461372766387285 1189.6261485232855648 393.2929713568877332 0.0000000000000000 15705.2452458598490921 17288.1643657400236407 299.9808112190538623
550 300.4253885005187499 1544.3485889749688340 1189.6033595464525661 393.1455884232119047 0.0000000000000000 15705.4200593467012368 17288.1690073163663328 299.9835860164698147
560 300.3263552442091395 1556.5150300058239736 1189.5759163336820166 393.0159905619271399 0.0000000000000000 15705.5750488783432957 17288.1669557739514858 299.9861837797674298
570 300.1977324643196994 1511.2320626303924200 1189.5441090918316149 392.8476709710408272 0.0000000000000000 15705.7700134401693504 17288.1617935030408262 299.9896761688500533
580 300.3543631005173893 1588.9566243200420104 1189.5094471319723652 393.0526424747489500 -0.0000000000000000 15705.5976430422142585 17288.1597326489354600 299.9859298211932810
590 300.5019108864805730 1504.4406939723210144 1189.4809412920112663 393.2457278908070748 -0.0000000000000000 15705.4306152855297114 17288.1572844683469157 299.9823573257918952
600 300.4791158523048011 1540.4690749004137160 1189.4551948503108179 393.2158976318902432 0.0000000000000000 15705.4914114063831221 17288.1625038885831600 299.9832002920041418
610 300.5939139841890437 1368.0565839211083130 1189.4252547652597514 393.3661258776945715 0.0000000000000000 15705.3732852337052464 17288.1646658766585460 299.9807742697515209
620 300.7674247480806002 1483.2566452708929319 1189.3941250938437406 393.5931872179773450 0.0000000000000000 15705.1789842209145718 17288.1662965327341226 299.9766963671719395
630 300.7920034341022415 1543.0699124130630935 1189.3598279316649950 393.6253516166883628 -0.0000000000000000 15705.1821846865786938 17288.1673642349305737 299.9762538437231001
640 300.8032734267029014 1423.2549819291609765 1189.3293074476887341 393.6400998638143278 -0.0000000000000000 15705.1986701098048798 17288.1680774213091354 299.9762118202993975
650 300.7516995878240209 1542.6559695158514387 1189.3021161045703593 393.5726088061028349 0.0000000000000000 15705.2963824473390559 17288.1711073580117954 299.9775656396504360
660 300.8699697098108459 1675.5121937767842155 1189.2687179804192965 393.7273806013012063 0.0000000000000000 15705.1781614686860848 17288.1742600504076108 299.9750492262035095
670 301.0255004186899441 1520.7397686587889893 1189.2284265783694082 393.9309127074436105 0.0000000000000000 15705.0194154727287241 17288.1787547585408902 299.9715123049731460
680 301.1071983488761248 1651.9751417063253029 1189.1858967311388824 394.0378250459656897 0.0000000000000000 15704.9584701329349627 17288.1821919100402738 299.9699481289110281
690 301.0027086454255141 1496.1607274163641250 1189.1436949551202815 393.9010867158522160 0.0000000000000000 15705.1390813360922039 17288.1838630070633371 299.9731939774292755
700 300.9009090279178622 1551.8182127127668082 1189.0993919251338866 393.7678687121206735 -0.0000000000000000 15705.3115540452217829 17288.1788146824765136 299.9761043445070641
710 301.2325536720837817 1678.1546953970841969 1189.0528341066981284 394.2018687459686817 0.0000000000000000 15704.9235173995584773 17288.1782202522263105 299.9683013583346565
720 301.2122298224125529 1524.1415452491437463 1189.0046957644283339 394.1752723525083866 0.0000000000000000 15704.9953504895402148 17288.1753186064779584 299.9693315350040734
730 301.0763282392692304 1547.1987029633176007 1188.9602551214045434 393.9974275034455218 0.0000000000000000 15705.2119928705469647 17288.1696754953954951 299.9732715774840699
740 301.3262401480515109 1544.7045314021493141 1188.9131307177485724 394.3244696516559884 0.0000000000000000 15704.9296076272603386 17288.1672079966665478 299.9674666811455950
750 301.5740779122830872 1591.1785078054849691 1188.8637580645940943 394.6487975126887591 0.0000000000000000 15704.6521404470349808 17288.1646960243160720 299.9616008527092959
760 301.4385361878655658 1547.3218422039212783 1188.8113669183098864 394.4714235854451658 0.0000000000000000 15704.8763786124927719 17288.1591691162466304 299.9656339783693966
770 301.6110125684815557 1494.5039561806624988 1188.7581685915934031 394.6971313010441236 0.0000000000000000 15704.6953595579507237 17288.1506594505881367 299.9619855799396646
780 301.8360352039435384 1588.1458619705304045 1188.7039178696477393 394.9916026067776329 0.0000000000000000 15704.4617070838321524 17288.1572275602593436 299.9572350302976247
790 302.1008324754310479 1545.4409171812180830 1188.6491103416560691 395.3381241828382144 0.0000000000000000 15704.1751923936917592 17288.1624269181847922 299.9513959104630771
800 301.9660372380565718 1563.9565804790738639 1188.5964649891604950 395.1617271307158035 0.0000000000000000 15704.4063124560707365 17288.1645045759469212 299.9555810527747326
810 302.0507207347627059 1511.4560763489960209 1188.5468477146607711 395.2725464702810427 0.0000000000000000 15704.3505979898400255 17288.1699921747822373 299.9541551776507617
820 302.4700213214913447 1458.5135514273563331 1188.4981381693974072 395.8212556746476025 0.0000000000000000 15703.8537761962070363 17288.1731700402524439 299.9441803241177809
830 302.2853997979336214 1496.2544527963145811 1188.4496917372191547 395.5796544641873993 0.0000000000000000 15704.1464516793694202 17288.1757978807763720 299.9494768794834840
840 302.0840465730901201 1518.8301331998702608 1188.3994383226179252 395.3161576523596636 0.0000000000000000 15704.4564021812439023 17288.1719981562200701 299.9550476592922337
850 301.8910942560260082 1469.8827850510904227 1188.3489956121347859 395.0636545180259986 0.0000000000000000 15704.7627679631386854 17288.1754180932985037 299.9606927700136794
860 301.7284384160518016 1657.6802015862315329 1188.3052233777652873 394.8507982536592635 0.0000000000000000 15705.0246544022065791 17288.1806760336330626 299.9652835238807711
870 301.6331619894114624 1501.5829953208508414 1188.2628815714099346 394.7261166912875865 0.0000000000000000 15705.1980055648327834 17288.1870038275301340 299.9682811831179947
880 301.3703918424367316 1499.1595903074555736 1188.2195190931643083 394.3822478705861272 0.0000000000000000 15705.5868298250898079 17288.1885967888410960 299.9755099056964127
890 301.4157954313303662 1598.8758859042509357 1188.1845892608291706 394.4416643558612918 0.0000000000000000 15705.5638481192290783 17288.1901017359195976 299.9745322513492738
900 301.4752150615486812 1621.2148728756842502 1188.1517520946144941 394.5194226492021699 0.0000000000000000 15705.5181455608308170 17288.1893203046492999 299.9733125337182287
910 301.4308816315937634 1538.4823217911621214 1188.1159856659228353 394.4614066057064861 0.0000000000000000 15705.6160570713091147 17288.1934493429398572 299.9748317405192779
920 301.4323110133492492 1594.7193046491240693 1188.0835779842032025 394.4632771371357762 0.0000000000000000 15705.6544576464475540 17288.2013127677855664 299.9751127806913473
930 301.4801256941949532 1387.6885377097596574 1188.0464206196900250 394.5258488489680531 0.0000000000000000 15705.6258377843460039 17288.1981072530033998 299.9740698440912183
940 301.8075611840245074 1534.2487040663797870 1188.0124217312888959 394.9543406584059539 0.0000000000000000 15705.2331319202457962 17288.1998943099388271 299.9660570413491882
950 301.6915970126175353 1567.7725992489226883 1187.9790455470049437 394.8025864986415172 0.0000000000000000 15705.4221432087451831 17288.2037752543910756 299.9694678653152096
960 301.6392594677008105 1504.8502165144939227 1187.9439133338107695 394.7340960325207675 0.0000000000000000 15705.5330682989206252 17288.2110776652516506 299.9711546356285226
970 301.6049535791644871 1514.0198965433535250 1187.9094123369409317 394.6892023276234909 0.0000000000000000 15705.6099784820144123 17288.2085931465771864 299.9722547114341751
980 301.2982841679706780 1634.1208149125800446 1187.8768454876478700 394.2878856256065205 0.0000000000000000 15706.0463883383199573 17288.2111194515746320 299.9802110109068849
990 301.2573007350166563 1489.7316698898262075 1187.8432331161866387 394.2342534877078606 0.0000000000000000 15706.1441971863041545 17288.2216837901978579 299.9819468620868292
1000 301.3195135766228532 1562.6587211933931485 1187.8034267774903583 394.3156670604516307 0.0000000000000000 15706.0974511956701463 17288.2165450336106005 299.9807651637235040
Loop time of 17.0881 on 1 procs for 1000 steps with 10125 atoms
Performance: 4.050 ns/day, 5.925 hours/ns, 46.880 timesteps/s
99.8% CPU use with 1 MPI tasks x no OpenMP threads
Performance: 5.056 ns/day, 4.747 hours/ns, 58.520 timesteps/s
100.0% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 10.099 | 10.099 | 10.099 | 0.0 | 47.34
Neigh | 10.145 | 10.145 | 10.145 | 0.0 | 47.56
Comm | 0.49807 | 0.49807 | 0.49807 | 0.0 | 2.33
Output | 0.011203 | 0.011203 | 0.011203 | 0.0 | 0.05
Modify | 0.28296 | 0.28296 | 0.28296 | 0.0 | 1.33
Other | | 0.295 | | | 1.38
Pair | 8.0541 | 8.0541 | 8.0541 | 0.0 | 47.13
Neigh | 8.1306 | 8.1306 | 8.1306 | 0.0 | 47.58
Comm | 0.39415 | 0.39415 | 0.39415 | 0.0 | 2.31
Output | 0.01103 | 0.01103 | 0.01103 | 0.0 | 0.06
Modify | 0.24061 | 0.24061 | 0.24061 | 0.0 | 1.41
Other | | 0.2576 | | | 1.51
Nlocal: 10125 ave 10125 max 10125 min
Histogram: 1 0 0 0 0 0 0 0 0 0
@ -170,4 +174,4 @@ Total # of neighbors = 114682
Ave neighs/atom = 11.3266
Neighbor list builds = 1000
Dangerous builds not checked
Total wall time: 0:00:21
Total wall time: 0:00:17

View File

@ -18,7 +18,7 @@ neigh_modify every 1 delay 0 check no once no
timestep 0.001
compute dpdU all dpd
variable totEnergy equal pe+ke+c_dpdU[1]+c_dpdU[1]+press*vol
variable totEnergy equal pe+ke+c_dpdU[1]+c_dpdU[2]+press*vol
thermo 1
thermo_style custom step temp press vol pe ke v_totEnergy cella cellb cellc

View File

@ -22,7 +22,7 @@ neigh_modify every 1 delay 0 check no once no
timestep 0.001
compute dpdU all dpd
variable totEnergy equal pe+ke+c_dpdU[1]+c_dpdU[1]+press*vol
variable totEnergy equal pe+ke+c_dpdU[1]+c_dpdU[2]+press*vol
thermo 1
thermo_style custom step temp press vol pe ke v_totEnergy cella cellb cellc
@ -34,129 +34,137 @@ fix 2 all eos/cv 0.0005
run 100
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 0 steps, check no
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 12
ghost atom cutoff = 12
binsize = 6 -> bins = 22 22 22
Memory usage per processor = 6.48143 Mbytes
binsize = 6, bins = 22 22 22
2 neighbor lists, perpetual/occasional/extra = 2 0 0
(1) pair dpd/fdt/energy, perpetual
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
(2) fix shardlow, perpetual, ssa
pair build: half/bin/newton/ssa
stencil: half/bin/3d/newton/ssa
bin: ssa
Memory usage per processor = 8.55503 Mbytes
Step Temp Press Volume PotEng KinEng v_totEnergy Cella Cellb Cellc
0 239.4274282976 2817.4421750949 2146689.0000000000 2639.8225470740 313.3218455755 6048176597.3066043854 129.0000000000 129.0000000000 129.0000000000
1 239.4771405316 2817.4798146419 2146689.0000581890 2639.8304543632 313.3869004818 6048257397.9450111389 129.0000000012 129.0000000012 129.0000000012
2 239.5643955010 2817.5423194969 2146689.0002327557 2639.8379071907 313.5010849268 6048391577.0431985855 129.0000000047 129.0000000047 129.0000000047
3 239.6633839196 2817.6123662396 2146689.0005237064 2639.8445238058 313.6306241122 6048541946.5712032318 129.0000000105 129.0000000105 129.0000000105
4 239.5371222027 2817.5355424336 2146689.0009310376 2639.8505035043 313.4653942786 6048377030.7404460907 129.0000000186 129.0000000186 129.0000000186
5 239.6512678169 2817.6153097076 2146689.0014547524 2639.8561498340 313.6147686202 6048548267.9007377625 129.0000000291 129.0000000291 129.0000000291
6 239.5617886781 2817.5624195435 2146689.0020948485 2639.8617493725 313.4976735610 6048434730.8592004776 129.0000000420 129.0000000420 129.0000000420
7 239.5228587856 2817.5420009502 2146689.0028513218 2639.8666590407 313.4467287471 6048390900.5748577118 129.0000000571 129.0000000571 129.0000000571
8 239.6066877934 2817.6008649264 2146689.0037241788 2639.8710757645 313.5564298772 6048517265.7987136841 129.0000000746 129.0000000746 129.0000000746
9 239.5719861485 2817.5823530300 2146689.0047134170 2639.8752557893 313.5110182737 6048477529.2603597641 129.0000000944 129.0000000944 129.0000000944
10 239.5800176776 2817.5915671176 2146689.0058190385 2639.8793778438 313.5215285712 6048497312.1706552505 129.0000001166 129.0000001166 129.0000001166
11 239.6299830954 2817.6281223139 2146689.0070410441 2639.8829762049 313.5869148014 6048575788.3208351135 129.0000001410 129.0000001410 129.0000001410
12 239.6011995911 2817.6132377273 2146689.0083794324 2639.8860704236 313.5492478526 6048543839.4788360596 129.0000001678 129.0000001678 129.0000001678
13 239.6407681166 2817.6427924824 2146689.0098342048 2639.8889816934 313.6010284005 6048607288.5005025864 129.0000001970 129.0000001970 129.0000001970
14 239.6981172055 2817.6844100046 2146689.0114053637 2639.8913405110 313.6760771219 6048696632.8825626373 129.0000002285 129.0000002285 129.0000002285
15 239.8563971968 2817.7922519039 2146689.0130929090 2639.8934358481 313.8832070208 6048928140.8671455383 129.0000002623 129.0000002623 129.0000002623
16 239.8561894618 2817.7971208197 2146689.0148968464 2639.8950496967 313.8829351726 6048938597.9994916916 129.0000002984 129.0000002984 129.0000002984
17 239.8816520361 2817.8185621543 2146689.0168171758 2639.8961257823 313.9162562538 6048984631.3226108551 129.0000003369 129.0000003369 129.0000003369
18 239.9099966096 2817.8417368960 2146689.0188538977 2639.8965743204 313.9533488047 6049034386.0627622604 129.0000003777 129.0000003777 129.0000003777
19 240.0514024347 2817.9389205774 2146689.0210070144 2639.8966103811 314.1383966683 6049243015.4568052292 129.0000004208 129.0000004208 129.0000004208
20 239.8802541140 2817.8327386176 2146689.0232765260 2639.8962085210 313.9144268914 6049015081.9802341461 129.0000004662 129.0000004662 129.0000004662
21 239.8462621903 2817.8160306167 2146689.0256624296 2639.8953174755 313.8699440502 6048979221.7758703232 129.0000005140 129.0000005140 129.0000005140
22 240.0487944678 2817.9533849157 2146689.0281647225 2639.8938590354 314.1349838054 6049274086.0571212769 129.0000005642 129.0000005642 129.0000005642
23 240.0966314441 2817.9897873787 2146689.0307834130 2639.8918104774 314.1975846937 6049352238.2649183273 129.0000006166 129.0000006166 129.0000006166
24 240.1765312516 2818.0463843765 2146689.0335185044 2639.8891292321 314.3021439554 6049473742.2287187576 129.0000006714 129.0000006714 129.0000006714
25 240.1500705973 2818.0336048048 2146689.0363699966 2639.8858785483 314.2675167572 6049446316.4600162506 129.0000007285 129.0000007285 129.0000007285
26 240.2681423500 2818.1151708195 2146689.0393378921 2639.8825176506 314.4220289603 6049621421.8445177078 129.0000007880 129.0000007880 129.0000007880
27 240.4728815247 2818.2527327079 2146689.0424221945 2639.8784158747 314.6899567267 6049916733.3989181519 129.0000008498 129.0000008498 129.0000008498
28 240.4793027032 2818.2613348477 2146689.0456229053 2639.8736089473 314.6983596717 6049935208.5421981812 129.0000009139 129.0000009139 129.0000009139
29 240.5020619198 2818.2805472685 2146689.0489400285 2639.8681043704 314.7281430587 6049976461.0082206726 129.0000009803 129.0000009803 129.0000009803
30 240.5513721776 2818.3167157263 2146689.0523735629 2639.8623484053 314.7926719270 6050054113.1760177612 129.0000010491 129.0000010491 129.0000010491
31 240.7340393104 2818.4391703712 2146689.0559235099 2639.8563442170 315.0317155636 6050316995.4599781036 129.0000011202 129.0000011202 129.0000011202
32 240.8254719483 2818.5014640740 2146689.0595898777 2639.8498122053 315.1513670299 6050450731.1168394089 129.0000011936 129.0000011936 129.0000011936
33 240.9681573541 2818.5965480750 2146689.0633726656 2639.8425779528 315.3380893908 6050654857.7432861328 129.0000012694 129.0000012694 129.0000012694
34 241.0039494187 2818.6217008564 2146689.0672718794 2639.8347174393 315.3849279499 6050708863.9733209610 129.0000013475 129.0000013475 129.0000013475
35 241.0314566197 2818.6411150538 2146689.0712875174 2639.8262983643 315.4209246902 6050750551.5649127960 129.0000014279 129.0000014279 129.0000014279
36 241.0829173424 2818.6763455617 2146689.0754195810 2639.8174397481 315.4882677207 6050826192.2165899277 129.0000015107 129.0000015107 129.0000015107
37 241.2845682012 2818.8087982181 2146689.0796680767 2639.8080129872 315.7521540252 6051110539.1171846390 129.0000015958 129.0000015958 129.0000015958
38 241.3214712920 2818.8336260248 2146689.0840330068 2639.7981963574 315.8004465062 6051163849.0412235260 129.0000016833 129.0000016833 129.0000016833
39 241.3392127125 2818.8456991528 2146689.0885143690 2639.7879618658 315.8236634561 6051189778.9386901855 129.0000017730 129.0000017730 129.0000017730
40 241.5383770555 2818.9753950055 2146689.0931121684 2639.7769824244 316.0842958321 6051468208.8210506439 129.0000018651 129.0000018651 129.0000018651
41 241.5059730674 2818.9543817992 2146689.0978264087 2639.7656512498 316.0418910106 6051423113.2358427048 129.0000019595 129.0000019595 129.0000019595
42 241.3907605672 2818.8793800508 2146689.1026570834 2639.7541331920 315.8911205101 6051262121.2551422119 129.0000020563 129.0000020563 129.0000020563
43 241.5095917610 2818.9559595711 2146689.1076041958 2639.7424355740 316.0466265406 6051426527.7663059235 129.0000021554 129.0000021554 129.0000021554
44 241.6271631762 2819.0312325531 2146689.1126677482 2639.7297705654 316.2004839873 6051588129.8722610474 129.0000022568 129.0000022568 129.0000022568
45 241.5702411838 2818.9923790176 2146689.1178477411 2639.7163554760 316.1259941770 6051504737.9250564575 129.0000023606 129.0000023606 129.0000023606
46 241.7029985068 2819.0771124986 2146689.1231441777 2639.7024246704 316.2997243538 6051686649.4576120377 129.0000024667 129.0000024667 129.0000024667
47 241.7966144965 2819.1357830868 2146689.1285570571 2639.6882106593 316.4222330191 6051812612.3391046524 129.0000025751 129.0000025751 129.0000025751
48 241.8573480255 2819.1726205120 2146689.1340863821 2639.6735287925 316.5017107195 6051891706.4921989441 129.0000026859 129.0000026859 129.0000026859
49 241.9611147338 2819.2374095379 2146689.1397321564 2639.6583357477 316.6375029166 6052030804.4275226593 129.0000027990 129.0000027990 129.0000027990
50 242.1023518806 2819.3259059811 2146689.1454943856 2639.6424863169 316.8223300428 6052220795.1955394745 129.0000029144 129.0000029144 129.0000029144
51 242.1174105473 2819.3319633044 2146689.1513730693 2639.6264141131 316.8420362613 6052233814.9634265900 129.0000030321 129.0000030321 129.0000030321
52 242.2534914901 2819.4164594322 2146689.1573682069 2639.6098392670 317.0201158259 6052415218.9485445023 129.0000031522 129.0000031522 129.0000031522
53 242.3504633236 2819.4754119996 2146689.1634798055 2639.5930076506 317.1470160479 6052541789.1274013519 129.0000032746 129.0000032746 129.0000032746
54 242.2982323323 2819.4368568264 2146689.1697078613 2639.5756353782 317.0786650211 6052459040.6286897659 129.0000033994 129.0000033994 129.0000033994
55 242.3452896272 2819.4623310219 2146689.1760523771 2639.5575918586 317.1402455951 6052513743.7400159836 129.0000035265 129.0000035265 129.0000035265
56 242.4181903333 2819.5048897011 2146689.1825133534 2639.5390347547 317.2356456249 6052605122.2894439697 129.0000036559 129.0000036559 129.0000036559
57 242.5317091656 2819.5739975787 2146689.1890907930 2639.5199828249 317.3841997413 6052753494.0979280472 129.0000037876 129.0000037876 129.0000037876
58 242.5478978740 2819.5796954935 2146689.1957846982 2639.5006137388 317.4053847660 6052765744.6257629395 129.0000039217 129.0000039217 129.0000039217
59 242.6655316466 2819.6519225743 2146689.2025950695 2639.4808234811 317.5593238156 6052920813.0568208694 129.0000040582 129.0000040582 129.0000040582
60 242.8126131177 2819.7431588157 2146689.2095219092 2639.4607996998 317.7517989980 6053116688.6155729294 129.0000041969 129.0000041969 129.0000041969
61 242.7957124913 2819.7275989047 2146689.2165652174 2639.4406312730 317.7296823362 6053083306.1403274536 129.0000043380 129.0000043380 129.0000043380
62 242.9276177041 2819.8088790098 2146689.2237249981 2639.4201279058 317.9022974164 6053257809.6067762375 129.0000044814 129.0000044814 129.0000044814
63 243.0465445938 2819.8814758895 2146689.2310012528 2639.3991657500 318.0579286774 6053413673.1989650726 129.0000046272 129.0000046272 129.0000046272
64 242.9890585501 2819.8387587817 2146689.2383939880 2639.3781767844 317.9827007328 6053321993.5937871933 129.0000047752 129.0000047752 129.0000047752
65 242.9653746583 2819.8180104181 2146689.2459031967 2639.3568184374 317.9517072884 6053277474.4272727966 129.0000049256 129.0000049256 129.0000049256
66 243.0259297024 2819.8514334947 2146689.2535288804 2639.3352568621 318.0309514181 6053349244.9473772049 129.0000050784 129.0000050784 129.0000050784
67 242.9638979697 2819.8046112742 2146689.2612710390 2639.3134547096 317.9497748498 6053248753.9180717468 129.0000052335 129.0000052335 129.0000052335
68 243.0283540775 2819.8395632725 2146689.2691296688 2639.2912303374 318.0341240273 6053323807.2197017670 129.0000053909 129.0000053909 129.0000053909
69 243.2256418664 2819.9609646019 2146689.2771047787 2639.2684509205 318.2923006889 6053584440.8757400513 129.0000055506 129.0000055506 129.0000055506
70 243.2507495334 2819.9706145524 2146689.2851963686 2639.2450126010 318.3251573278 6053605179.1483964920 129.0000057127 129.0000057127 129.0000057127
71 243.4287155518 2820.0794853386 2146689.2934044413 2639.2213699915 318.5580489464 6053838914.2552747726 129.0000058771 129.0000058771 129.0000058771
72 243.5097518574 2820.1249498194 2146689.3017290002 2639.1971212009 318.6640954635 6053936535.9274711609 129.0000060439 129.0000060439 129.0000060439
73 243.5356790969 2820.1337977544 2146689.3101700447 2639.1723394661 318.6980246193 6053955553.5090074539 129.0000062130 129.0000062130 129.0000062130
74 243.5479180498 2820.1331964183 2146689.3187275808 2639.1473868749 318.7140408766 6053954286.7515821457 129.0000063844 129.0000063844 129.0000063844
75 243.7115573025 2820.2314361523 2146689.3274016059 2639.1220411207 318.9281840641 6054165201.5909118652 129.0000065581 129.0000065581 129.0000065581
76 243.7457279618 2820.2454531429 2146689.3361921217 2639.0963868224 318.9729008040 6054195316.5254154205 129.0000067342 129.0000067342 129.0000067342
77 243.8345031069 2820.2948644965 2146689.3450991292 2639.0700900389 319.0890745962 6054301412.5615310669 129.0000069126 129.0000069126 129.0000069126
78 244.0193931195 2820.4067881628 2146689.3541226317 2639.0435094409 319.3310271594 6054541703.5689058304 129.0000070934 129.0000070934 129.0000070934
79 243.9919100078 2820.3799166166 2146689.3632626338 2639.0164249037 319.2950619430 6054484044.4218587875 129.0000072765 129.0000072765 129.0000072765
80 244.0965612207 2820.4387335935 2146689.3725191355 2638.9888176882 319.4320116291 6054610332.4174261093 129.0000074619 129.0000074619 129.0000074619
81 244.1334315951 2820.4535208568 2146689.3818921377 2638.9608330195 319.4802612965 6054642102.5347270966 129.0000076496 129.0000076496 129.0000076496
82 244.3029520408 2820.5543485196 2146689.3913816395 2638.9318525796 319.7021007878 6054858575.1664342880 129.0000078397 129.0000078397 129.0000078397
83 244.3445761189 2820.5713690935 2146689.4009876498 2638.9021684795 319.7565712929 6054895140.1710596085 129.0000080321 129.0000080321 129.0000080321
84 244.2696671559 2820.5125763350 2146689.4107101629 2638.8720941742 319.6585431986 6054768957.6739044189 129.0000082269 129.0000082269 129.0000082269
85 244.5161919319 2820.6629431352 2146689.4205491822 2638.8415194387 319.9811528443 6055091776.5361995697 129.0000084240 129.0000084240 129.0000084240
86 244.5641090282 2820.6838080201 2146689.4305047127 2638.8103612394 320.0438585800 6055136595.0767974854 129.0000086234 129.0000086234 129.0000086234
87 244.5348240638 2820.6541129118 2146689.4405767513 2638.7789728309 320.0055354056 6055072877.2416200638 129.0000088251 129.0000088251 129.0000088251
88 244.6939431427 2820.7468233396 2146689.4507653015 2638.7470269267 320.2137633592 6055271926.6536149979 129.0000090292 129.0000090292 129.0000090292
89 244.8800201091 2820.8567117003 2146689.4610703662 2638.7147520097 320.4572692055 6055507852.1186332703 129.0000092356 129.0000092356 129.0000092356
90 244.8804280382 2820.8451141876 2146689.4714919478 2638.6820441173 320.4578030336 6055482985.2258749008 129.0000094444 129.0000094444 129.0000094444
91 244.9558851986 2820.8815975090 2146689.4820300462 2638.6491836104 320.5565485155 6055561333.3803453445 129.0000096555 129.0000096555 129.0000096555
92 244.9965893140 2820.8949614294 2146689.4926846647 2638.6159817170 320.6098151301 6055590051.6433181763 129.0000098689 129.0000098689 129.0000098689
93 245.1381056687 2820.9732811388 2146689.5034558061 2638.5824451870 320.7950076360 6055758210.2774200439 129.0000100846 129.0000100846 129.0000100846
94 245.2954807041 2821.0619342131 2146689.5143434699 2638.5485198222 321.0009532826 6055948551.7882709503 129.0000103027 129.0000103027 129.0000103027
95 245.3535822199 2821.0860553731 2146689.5253476589 2638.5144817512 321.0769866522 6056000363.5151576996 129.0000105232 129.0000105232 129.0000105232
96 245.5013476026 2821.1682908185 2146689.5364683764 2638.4801107361 321.2703568219 6056176929.0169925690 129.0000107459 129.0000107459 129.0000107459
97 245.4166531417 2821.0989038023 2146689.5477056229 2638.4453663061 321.1595231342 6056028008.1910057068 129.0000109710 129.0000109710 129.0000109710
98 245.4121937790 2821.0817490953 2146689.5590593945 2638.4097762390 321.1536874797 6055991214.3494396210 129.0000111984 129.0000111984 129.0000111984
99 245.4532592994 2821.0946353191 2146689.5705296928 2638.3738037546 321.2074270397 6056018909.4480972290 129.0000114282 129.0000114282 129.0000114282
100 245.7500657390 2821.2735939427 2146689.5821165247 2638.3375549051 321.5958367642 6056403111.1006488800 129.0000116603 129.0000116603 129.0000116603
Loop time of 4.05006 on 1 procs for 100 steps with 10125 atoms
0 239.4274282976 2817.4421750949 2146689.0000000000 2639.8225470740 313.3218455755 6048176597.3066034317 129.0000000000 129.0000000000 129.0000000000
1 239.4771405316 2817.4798146419 2146689.0000581890 2639.8304543632 313.3869004818 6048257397.8720483780 129.0000000012 129.0000000012 129.0000000012
2 239.5643955010 2817.5423194969 2146689.0002327557 2639.8379071907 313.5010849268 6048391576.8485937119 129.0000000047 129.0000000047 129.0000000047
3 239.6633839196 2817.6123662396 2146689.0005237064 2639.8445238058 313.6306241122 6048541946.2404479980 129.0000000105 129.0000000105 129.0000000105
4 239.5371222027 2817.5355424336 2146689.0009310376 2639.8505035043 313.4653942786 6048377030.5689325333 129.0000000186 129.0000000186 129.0000000186
5 239.6512678169 2817.6153097076 2146689.0014547524 2639.8561498340 313.6147686202 6048548267.5742130280 129.0000000291 129.0000000291 129.0000000291
6 239.5617886781 2817.5624195435 2146689.0020948485 2639.8617493725 313.4976735610 6048434730.6441593170 129.0000000420 129.0000000420 129.0000000420
7 239.5228587856 2817.5420009502 2146689.0028513218 2639.8666590407 313.4467287471 6048390900.4058599472 129.0000000571 129.0000000571 129.0000000571
8 239.6066877934 2817.6008649264 2146689.0037241788 2639.8710757645 313.5564298772 6048517265.5155982971 129.0000000746 129.0000000746 129.0000000746
9 239.5719861485 2817.5823530300 2146689.0047134170 2639.8752557893 313.5110182737 6048477529.0184717178 129.0000000944 129.0000000944 129.0000000944
10 239.5800176776 2817.5915671176 2146689.0058190385 2639.8793778438 313.5215285712 6048497311.9141387939 129.0000001166 129.0000001166 129.0000001166
11 239.6299830954 2817.6281223139 2146689.0070410441 2639.8829762049 313.5869148014 6048575787.9953098297 129.0000001410 129.0000001410 129.0000001410
12 239.6011995911 2817.6132377273 2146689.0083794324 2639.8860704236 313.5492478526 6048543839.1878814697 129.0000001678 129.0000001678 129.0000001678
13 239.6407681166 2817.6427924824 2146689.0098342048 2639.8889816934 313.6010284005 6048607288.1548709869 129.0000001970 129.0000001970 129.0000001970
14 239.6981172055 2817.6844100046 2146689.0114053637 2639.8913405110 313.6760771219 6048696632.4595127106 129.0000002285 129.0000002285 129.0000002285
15 239.8563971968 2817.7922519039 2146689.0130929090 2639.8934358481 313.8832070208 6048928140.2348766327 129.0000002623 129.0000002623 129.0000002623
16 239.8561894618 2817.7971208196 2146689.0148968464 2639.8950496967 313.8829351726 6048938597.3658657074 129.0000002984 129.0000002984 129.0000002984
17 239.8816520361 2817.8185621543 2146689.0168171758 2639.8961257823 313.9162562538 6048984630.6545839310 129.0000003369 129.0000003369 129.0000003369
18 239.9099966096 2817.8417368960 2146689.0188538977 2639.8965743204 313.9533488047 6049034385.3571958542 129.0000003777 129.0000003777 129.0000003777
19 240.0514024347 2817.9389205774 2146689.0210070144 2639.8966103811 314.1383966683 6049243014.5661621094 129.0000004208 129.0000004208 129.0000004208
20 239.8802541140 2817.8327386176 2146689.0232765260 2639.8962085210 313.9144268914 6049015081.3139505386 129.0000004662 129.0000004662 129.0000004662
21 239.8462621903 2817.8160306167 2146689.0256624296 2639.8953174755 313.8699440502 6048979221.1549577713 129.0000005140 129.0000005140 129.0000005140
22 240.0487944678 2817.9533849157 2146689.0281647225 2639.8938590354 314.1349838054 6049274085.1726217270 129.0000005642 129.0000005642 129.0000005642
23 240.0966314441 2817.9897873787 2146689.0307834130 2639.8918104774 314.1975846937 6049352237.3198652267 129.0000006166 129.0000006166 129.0000006166
24 240.1765312516 2818.0463843765 2146689.0335185044 2639.8891292321 314.3021439554 6049473741.1817827225 129.0000006714 129.0000006714 129.0000006714
25 240.1500705973 2818.0336048048 2146689.0363699966 2639.8858785483 314.2675167572 6049446315.4509468079 129.0000007285 129.0000007285 129.0000007285
26 240.2681423500 2818.1151708195 2146689.0393378921 2639.8825176506 314.4220289603 6049621420.6842966080 129.0000007880 129.0000007880 129.0000007880
27 240.4728815247 2818.2527327079 2146689.0424221945 2639.8784158747 314.6899567267 6049916731.9748563766 129.0000008498 129.0000008498 129.0000008498
28 240.4793027032 2818.2613348477 2146689.0456229053 2639.8736089473 314.6983596717 6049935207.1145420074 129.0000009139 129.0000009139 129.0000009139
29 240.5020619198 2818.2805472685 2146689.0489400285 2639.8681043704 314.7281430587 6049976459.5562763214 129.0000009803 129.0000009803 129.0000009803
30 240.5513721776 2818.3167157263 2146689.0523735629 2639.8623484053 314.7926719270 6050054111.6652946472 129.0000010491 129.0000010491 129.0000010491
31 240.7340393104 2818.4391703712 2146689.0559235099 2639.8563442170 315.0317155636 6050316993.7162160873 129.0000011202 129.0000011202 129.0000011202
32 240.8254719483 2818.5014640740 2146689.0595898777 2639.8498122053 315.1513670299 6050450729.2599506378 129.0000011936 129.0000011936 129.0000011936
33 240.9681573541 2818.5965480750 2146689.0633726656 2639.8425779528 315.3380893908 6050654855.7068986893 129.0000012694 129.0000012694 129.0000012694
34 241.0039494187 2818.6217008564 2146689.0672718794 2639.8347174393 315.3849279499 6050708861.8979463577 129.0000013475 129.0000013475 129.0000013475
35 241.0314566197 2818.6411150538 2146689.0712875174 2639.8262983643 315.4209246902 6050750549.4619541168 129.0000014279 129.0000014279 129.0000014279
36 241.0829173424 2818.6763455617 2146689.0754195810 2639.8174397481 315.4882677207 6050826190.0551443100 129.0000015107 129.0000015107 129.0000015107
37 241.2845682012 2818.8087982181 2146689.0796680767 2639.8080129872 315.7521540252 6051110536.7012710571 129.0000015958 129.0000015958 129.0000015958
38 241.3214712920 2818.8336260248 2146689.0840330068 2639.7981963574 315.8004465062 6051163846.5868301392 129.0000016833 129.0000016833 129.0000016833
39 241.3392127125 2818.8456991528 2146689.0885143690 2639.7879618658 315.8236634561 6051189776.4712991714 129.0000017730 129.0000017730 129.0000017730
40 241.5383770555 2818.9753950055 2146689.0931121684 2639.7769824244 316.0842958321 6051468206.1039972305 129.0000018651 129.0000018651 129.0000018651
41 241.5059730674 2818.9543817992 2146689.0978264087 2639.7656512498 316.0418910106 6051423110.5725250244 129.0000019595 129.0000019595 129.0000019595
42 241.3907605672 2818.8793800508 2146689.1026570834 2639.7541331920 315.8911205101 6051262118.7541017532 129.0000020563 129.0000020563 129.0000020563
43 241.5095917610 2818.9559595711 2146689.1076041958 2639.7424355740 316.0466265406 6051426525.1214485168 129.0000021554 129.0000021554 129.0000021554
44 241.6271631762 2819.0312325531 2146689.1126677482 2639.7297705654 316.2004839873 6051588127.0861988068 129.0000022568 129.0000022568 129.0000022568
45 241.5702411838 2818.9923790176 2146689.1178477411 2639.7163554760 316.1259941770 6051504735.2269029617 129.0000023606 129.0000023606 129.0000023606
46 241.7029985068 2819.0771124986 2146689.1231441777 2639.7024246704 316.2997243538 6051686646.5996389389 129.0000024667 129.0000024667 129.0000024667
47 241.7966144965 2819.1357830868 2146689.1285570571 2639.6882106593 316.4222330191 6051812609.3728218079 129.0000025751 129.0000025751 129.0000025751
48 241.8573480255 2819.1726205120 2146689.1340863821 2639.6735287925 316.5017107195 6051891703.4611186981 129.0000026859 129.0000026859 129.0000026859
49 241.9611147338 2819.2374095379 2146689.1397321564 2639.6583357477 316.6375029166 6052030801.2758235931 129.0000027990 129.0000027990 129.0000027990
50 242.1023518806 2819.3259059811 2146689.1454943856 2639.6424863169 316.8223300428 6052220791.8748512268 129.0000029144 129.0000029144 129.0000029144
51 242.1174105473 2819.3319633044 2146689.1513730693 2639.6264141131 316.8420362613 6052233811.6391019821 129.0000030321 129.0000030321 129.0000030321
52 242.2534914901 2819.4164594322 2146689.1573682069 2639.6098392671 317.0201158259 6052415215.4627037048 129.0000031522 129.0000031522 129.0000031522
53 242.3504633236 2819.4754119996 2146689.1634798055 2639.5930076506 317.1470160479 6052541785.5314817429 129.0000032746 129.0000032746 129.0000032746
54 242.2982323323 2819.4368568264 2146689.1697078613 2639.5756353782 317.0786650211 6052459037.1184797287 129.0000033994 129.0000033994 129.0000033994
55 242.3452896272 2819.4623310219 2146689.1760523771 2639.5575918586 317.1402455951 6052513740.1862611771 129.0000035265 129.0000035265 129.0000035265
56 242.4181903333 2819.5048897011 2146689.1825133534 2639.5390347547 317.2356456249 6052605118.6588287354 129.0000036559 129.0000036559 129.0000036559
57 242.5317091656 2819.5739975787 2146689.1890907930 2639.5199828249 317.3841997413 6052753490.3378009796 129.0000037876 129.0000037876 129.0000037876
58 242.5478978740 2819.5796954935 2146689.1957846982 2639.5006137388 317.4053847660 6052765740.8638200760 129.0000039217 129.0000039217 129.0000039217
59 242.6655316466 2819.6519225743 2146689.2025950695 2639.4808234811 317.5593238156 6052920809.1607065201 129.0000040582 129.0000040582 129.0000040582
60 242.8126131177 2819.7431588157 2146689.2095219092 2639.4607996998 317.7517989980 6053116684.5470046997 129.0000041969 129.0000041969 129.0000041969
61 242.7957124913 2819.7275989047 2146689.2165652174 2639.4406312730 317.7296823362 6053083302.1140241623 129.0000043380 129.0000043380 129.0000043380
62 242.9276177041 2819.8088790098 2146689.2237249981 2639.4201279058 317.9022974164 6053257805.4283437729 129.0000044814 129.0000044814 129.0000044814
63 243.0465445938 2819.8814758895 2146689.2310012528 2639.3991657500 318.0579286774 6053413668.8858547211 129.0000046272 129.0000046272 129.0000046272
64 242.9890585501 2819.8387587817 2146689.2383939880 2639.3781767844 317.9827007328 6053321989.3768787384 129.0000047752 129.0000047752 129.0000047752
65 242.9653746583 2819.8180104181 2146689.2459031967 2639.3568184374 317.9517072884 6053277470.2627182007 129.0000049256 129.0000049256 129.0000049256
66 243.0259297024 2819.8514334947 2146689.2535288804 2639.3352568621 318.0309514181 6053349240.7251205444 129.0000050784 129.0000050784 129.0000050784
67 242.9638979697 2819.8046112742 2146689.2612710390 2639.3134547096 317.9497748498 6053248749.7987766266 129.0000052335 129.0000052335 129.0000052335
68 243.0283540775 2819.8395632725 2146689.2691296688 2639.2912303374 318.0341240273 6053323803.0382738113 129.0000053909 129.0000053909 129.0000053909
69 243.2256418664 2819.9609646019 2146689.2771047787 2639.2684509205 318.2923006889 6053584436.4588871002 129.0000055506 129.0000055506 129.0000055506
70 243.2507495334 2819.9706145524 2146689.2851963686 2639.2450126010 318.3251573278 6053605174.7221174240 129.0000057127 129.0000057127 129.0000057127
71 243.4287155518 2820.0794853386 2146689.2934044413 2639.2213699915 318.5580489464 6053838909.6197280884 129.0000058771 129.0000058771 129.0000058771
72 243.5097518574 2820.1249498194 2146689.3017290002 2639.1971212009 318.6640954635 6053936531.2101163864 129.0000060439 129.0000060439 129.0000060439
73 243.5356790969 2820.1337977544 2146689.3101700447 2639.1723394661 318.6980246193 6053955548.7824945450 129.0000062130 129.0000062130 129.0000062130
74 243.5479180498 2820.1331964183 2146689.3187275808 2639.1473868749 318.7140408766 6053954282.0339813232 129.0000063844 129.0000063844 129.0000063844
75 243.7115573025 2820.2314361523 2146689.3274016059 2639.1220411207 318.9281840641 6054165196.6845111847 129.0000065581 129.0000065581 129.0000065581
76 243.7457279618 2820.2454531429 2146689.3361921217 2639.0963868224 318.9729008040 6054195311.5999307632 129.0000067342 129.0000067342 129.0000067342
77 243.8345031069 2820.2948644965 2146689.3450991292 2639.0700900389 319.0890745962 6054301407.5461502075 129.0000069126 129.0000069126 129.0000069126
78 244.0193931195 2820.4067881628 2146689.3541226317 2639.0435094409 319.3310271594 6054541698.3381366730 129.0000070934 129.0000070934 129.0000070934
79 243.9919100078 2820.3799166166 2146689.3632626338 2639.0164249037 319.2950619430 6054484039.2541246414 129.0000072765 129.0000072765 129.0000072765
80 244.0965612207 2820.4387335935 2146689.3725191355 2638.9888176882 319.4320116291 6054610327.1403293610 129.0000074619 129.0000074619 129.0000074619
81 244.1334315951 2820.4535208568 2146689.3818921377 2638.9608330195 319.4802612965 6054642097.2373485565 129.0000076496 129.0000076496 129.0000076496
82 244.3029520408 2820.5543485196 2146689.3913816395 2638.9318525796 319.7021007878 6054858569.6761827469 129.0000078397 129.0000078397 129.0000078397
83 244.3445761189 2820.5713690935 2146689.4009876498 2638.9021684795 319.7565712929 6054895134.6560049057 129.0000080321 129.0000080321 129.0000080321
84 244.2696671559 2820.5125763350 2146689.4107101629 2638.8720941742 319.6585431986 6054768952.2869329453 129.0000082269 129.0000082269 129.0000082269
85 244.5161919319 2820.6629431352 2146689.4205491822 2638.8415194387 319.9811528443 6055091770.8571672440 129.0000084240 129.0000084240 129.0000084240
86 244.5641090282 2820.6838080201 2146689.4305047127 2638.8103612394 320.0438585800 6055136589.3662166595 129.0000086234 129.0000086234 129.0000086234
87 244.5348240638 2820.6541129118 2146689.4405767513 2638.7789728309 320.0055354056 6055072871.6007261276 129.0000088251 129.0000088251 129.0000088251
88 244.6939431427 2820.7468233396 2146689.4507653015 2638.7470269267 320.2137633592 6055271920.8364210129 129.0000090292 129.0000090292 129.0000090292
89 244.8800201091 2820.8567117003 2146689.4610703662 2638.7147520097 320.4572692055 6055507846.0901927948 129.0000092356 129.0000092356 129.0000092356
90 244.8804280382 2820.8451141876 2146689.4714919478 2638.6820441173 320.4578030336 6055482979.2295818329 129.0000094444 129.0000094444 129.0000094444
91 244.9558851986 2820.8815975090 2146689.4820300462 2638.6491836104 320.5565485155 6055561327.3181543350 129.0000096555 129.0000096555 129.0000096555
92 244.9965893140 2820.8949614294 2146689.4926846647 2638.6159817170 320.6098151301 6055590045.5610351562 129.0000098689 129.0000098689 129.0000098689
93 245.1381056687 2820.9732811388 2146689.5034558061 2638.5824451870 320.7950076360 6055758204.0434722900 129.0000100846 129.0000100846 129.0000100846
94 245.2954807041 2821.0619342131 2146689.5143434699 2638.5485198222 321.0009532826 6055948545.3822879791 129.0000103027 129.0000103027 129.0000103027
95 245.3535822199 2821.0860553731 2146689.5253476589 2638.5144817512 321.0769866522 6056000357.0671482086 129.0000105232 129.0000105232 129.0000105232
96 245.5013476026 2821.1682908185 2146689.5364683764 2638.4801107361 321.2703568219 6056176922.4099712372 129.0000107459 129.0000107459 129.0000107459
97 245.4166531417 2821.0989038023 2146689.5477056229 2638.4453663061 321.1595231342 6056028001.7295455933 129.0000109710 129.0000109710 129.0000109710
98 245.4121937790 2821.0817490953 2146689.5590593945 2638.4097762390 321.1536874797 6055991207.9293851852 129.0000111984 129.0000111984 129.0000111984
99 245.4532592994 2821.0946353191 2146689.5705296928 2638.3738037546 321.2074270397 6056018903.0102539062 129.0000114282 129.0000114282 129.0000114282
100 245.7500657390 2821.2735939427 2146689.5821165247 2638.3375549051 321.5958367642 6056403104.3106222153 129.0000116603 129.0000116603 129.0000116603
Loop time of 5.22601 on 1 procs for 100 steps with 10125 atoms
Performance: 2.133 ns/day, 11.250 hours/ns, 24.691 timesteps/s
99.8% CPU use with 1 MPI tasks x no OpenMP threads
Performance: 1.653 ns/day, 14.517 hours/ns, 19.135 timesteps/s
99.7% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.46587 | 0.46587 | 0.46587 | 0.0 | 11.50
Neigh | 1.4713 | 1.4713 | 1.4713 | 0.0 | 36.33
Comm | 0.05567 | 0.05567 | 0.05567 | 0.0 | 1.37
Output | 0.011364 | 0.011364 | 0.011364 | 0.0 | 0.28
Modify | 2.0158 | 2.0158 | 2.0158 | 0.0 | 49.77
Other | | 0.03004 | | | 0.74
Pair | 0.44045 | 0.44045 | 0.44045 | 0.0 | 8.43
Neigh | 2.669 | 2.669 | 2.669 | 0.0 | 51.07
Comm | 0.056143 | 0.056143 | 0.056143 | 0.0 | 1.07
Output | 0.012469 | 0.012469 | 0.012469 | 0.0 | 0.24
Modify | 2.0163 | 2.0163 | 2.0163 | 0.0 | 38.58
Other | | 0.03168 | | | 0.61
Nlocal: 10125 ave 10125 max 10125 min
Histogram: 1 0 0 0 0 0 0 0 0 0
@ -172,4 +180,4 @@ Dangerous builds not checked
Please see the log.cite file for references relevant to this simulation
Total wall time: 0:00:04
Total wall time: 0:00:05

View File

@ -37,7 +37,7 @@ timestep 0.001
pair_style hybrid/overlay dpd/fdt/energy 16.00 234324 exp6/rx 16.00
pair_coeff * * dpd/fdt/energy 0.0 0.05 10.0 16.00
pair_coeff * * exp6/rx params.exp6 1fluid 1fluid 1.0 1.0 16.00
pair_coeff * * exp6/rx params.exp6 1fluid 1fluid exponent 1.0 1.0 16.00
fix 1 all shardlow
fix 2 all nve

View File

@ -48,7 +48,7 @@ timestep 0.001
pair_style hybrid/overlay dpd/fdt/energy 16.00 234324 exp6/rx 16.00
pair_coeff * * dpd/fdt/energy 0.0 0.05 10.0 16.00
pair_coeff * * exp6/rx params.exp6 1fluid 1fluid 1.0 1.0 16.00
pair_coeff * * exp6/rx params.exp6 1fluid 1fluid exponent 1.0 1.0 16.00
fix 1 all shardlow
fix 2 all nve
@ -69,39 +69,51 @@ dump_modify 2 sort id
run 10
Neighbor list info ...
2 neighbor list requests
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 18
ghost atom cutoff = 18
binsize = 9 -> bins = 8 8 5
Memory usage per processor = 6.52436 Mbytes
binsize = 9, bins = 8 8 5
3 neighbor lists, perpetual/occasional/extra = 3 0 0
(1) pair dpd/fdt/energy, perpetual
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
(2) pair exp6/rx, perpetual, copy from (1)
pair build: copy
stencil: none
bin: none
(3) fix shardlow, perpetual, ssa
pair build: half/bin/newton/ssa
stencil: half/bin/3d/newton/ssa
bin: ssa
Memory usage per processor = 8.39564 Mbytes
Step Temp Press Volume PotEng KinEng c_dpdU[1] c_dpdU[2] c_dpdU[3] v_totEnergy c_dpdU[4]
0 2065.00000000 1368.17463335 179834.51777865 0.00000000 230.35385810 3841.42393279 3841.42393279 0.00000000 7682.84786557 2065.00000000
1 2064.93210437 1368.12964881 179834.51777865 0.00000000 230.34628424 3841.42393279 3841.43150665 0.00000000 7682.85543943 2065.20275230
2 2067.82089565 1370.04362990 179834.51777865 -0.00000000 230.66853326 3841.42393279 3841.10925763 0.00000000 7682.53319042 2065.32453473
3 2070.45225169 1371.78704616 179834.51777865 -0.00000000 230.96206499 3841.42393279 3840.81572590 0.00000000 7682.23965869 2065.45336917
4 2075.00241157 1374.80177416 179834.51777865 -0.00000000 231.46964217 3841.42393279 3840.30814872 0.00000000 7681.73208151 2065.52973333
5 2073.96509212 1374.11449370 179834.51777865 -0.00000000 231.35392762 3841.42393279 3840.42386327 0.00000000 7681.84779605 2065.76011517
6 2074.26516936 1374.31331117 179834.51777865 -0.00000000 231.38740169 3841.42393279 3840.39038920 0.00000000 7681.81432198 2065.95399323
7 2071.41069700 1372.42206822 179834.51777865 -0.00000000 231.06898100 3841.42393279 3840.70880989 0.00000000 7682.13274267 2066.23407076
8 2071.35844957 1372.38745146 179834.51777865 -0.00000000 231.06315272 3841.42393279 3840.71463817 0.00000000 7682.13857095 2066.43766287
9 2071.35676496 1372.38633532 179834.51777865 -0.00000000 231.06296480 3841.42393279 3840.71482609 0.00000000 7682.13875887 2066.64001166
10 2066.53172340 1369.18948328 179834.51777865 -0.00000000 230.52472415 3841.42393279 3841.25306673 0.00000000 7682.67699952 2066.97516855
Loop time of 0.289778 on 1 procs for 10 steps with 864 atoms
0 2065.00000000 1368.17463335 179834.51777865 0.00000000 230.35385810 0.00000000 7682.84786557 0.00000000 7682.84786557 2065.00000000
1 2064.93210437 1368.12964881 179834.51777865 0.00000000 230.34628424 0.00000000 7682.85543943 0.00000000 7682.85543943 2065.20275230
2 2067.82089565 1370.04362990 179834.51777865 -0.00000000 230.66853326 0.00000000 7682.53319042 0.00000000 7682.53319042 2065.32453473
3 2070.45225169 1371.78704616 179834.51777865 -0.00000000 230.96206499 0.00000000 7682.23965869 0.00000000 7682.23965869 2065.45336917
4 2075.00241157 1374.80177416 179834.51777865 -0.00000000 231.46964217 0.00000000 7681.73208151 0.00000000 7681.73208151 2065.52973333
5 2073.96509212 1374.11449370 179834.51777865 -0.00000000 231.35392762 -0.00000000 7681.84779605 0.00000000 7681.84779605 2065.76011517
6 2074.26516936 1374.31331117 179834.51777865 -0.00000000 231.38740169 -0.00000000 7681.81432198 0.00000000 7681.81432198 2065.95399323
7 2071.41069700 1372.42206822 179834.51777865 -0.00000000 231.06898100 -0.00000000 7682.13274267 0.00000000 7682.13274267 2066.23407076
8 2071.35844957 1372.38745146 179834.51777865 -0.00000000 231.06315272 0.00000000 7682.13857095 0.00000000 7682.13857095 2066.43766287
9 2071.35676496 1372.38633532 179834.51777865 -0.00000000 231.06296480 0.00000000 7682.13875887 0.00000000 7682.13875887 2066.64001166
10 2066.53172340 1369.18948328 179834.51777865 -0.00000000 230.52472415 0.00000000 7682.67699952 0.00000000 7682.67699952 2066.97516855
Loop time of 0.611304 on 1 procs for 10 steps with 864 atoms
Performance: 2.982 ns/day, 8.049 hours/ns, 34.509 timesteps/s
99.4% CPU use with 1 MPI tasks x no OpenMP threads
Performance: 1.413 ns/day, 16.981 hours/ns, 16.358 timesteps/s
98.2% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.16405 | 0.16405 | 0.16405 | 0.0 | 56.61
Pair | 0.34177 | 0.34177 | 0.34177 | 0.0 | 55.91
Neigh | 0 | 0 | 0 | 0.0 | 0.00
Comm | 0.00066328 | 0.00066328 | 0.00066328 | 0.0 | 0.23
Output | 0.037718 | 0.037718 | 0.037718 | 0.0 | 13.02
Modify | 0.087281 | 0.087281 | 0.087281 | 0.0 | 30.12
Other | | 7.057e-05 | | | 0.02
Comm | 0.0013342 | 0.0013342 | 0.0013342 | 0.0 | 0.22
Output | 0.083583 | 0.083583 | 0.083583 | 0.0 | 13.67
Modify | 0.18451 | 0.18451 | 0.18451 | 0.0 | 30.18
Other | | 0.0001087 | | | 0.02
Nlocal: 864 ave 864 max 864 min
Histogram: 1 0 0 0 0 0 0 0 0 0

View File

@ -1,163 +1,163 @@
############################################################################
# Input file for investigating twinning nucleation under uniaxial loading with basal plane vector analysis
# Christopher Barrett, March 2013
# This script requires a Mg pair potential file to be in the same directory.
# fname is the file name. It is necessary for loops to work correctly. (See jump command)
variable fname index in.basal
######################################
# POTENTIAL VARIABLES
# lattice parameters and the minimum energy per atom which should be obtained with the current pair potential and homogeneous lattice
variable lx equal 3.181269601
variable b equal sqrt(3)
variable c equal sqrt(8/3)
variable ly equal ${b}*${lx}
variable lz equal ${c}*${lx}
variable pairlocation index almg.liu
variable pairstyle index eam/alloy/opt
######################################
# EQUILIBRATION/DEFORMATION VARIABLES
# eqpress = 10 bar = 1 MPa
# tstep (the timestep) is set to a default value of 0.001 (1 fs)
# seed randomizes the velocity
# srate is the rate of strain in 1/s
# Ndump is the number of timesteps in between each dump of the atom coordinates
variable tstep equal 0.001
variable seed equal 95812384
variable srate equal 1e9
######################################
# INITIALIZATION
units metal
dimension 3
boundary s s s
atom_style atomic
######################################
# ATOM BUILD
atom_modify map array
# lattice custom scale a1 "coordinates of a1" a2 "coordinates of a2" a3 "coordinates of a3" basis "atom1 coordinates" basis "atom2 coordinates" basis "atom3 coordinates" basis "atom4 coordinates" orient x "crystallagraphic orientation of x axis" orient y "crystallagraphic orientation of y axis" z "crystallagraphic orientation of z axis"
lattice custom 3.181269601 a1 1 0 0 a2 0 1.732050808 0 a3 0 0 1.632993162 basis 0.0 0.0 0.0 basis 0.5 0.5 0 basis 0 0.3333333 0.5 basis 0.5 0.833333 0.5 orient x 0 1 1 orient y 1 0 0 orient z 0 1 -1
variable multiple equal 20
variable mx equal "v_lx*v_multiple"
variable my equal "v_ly*v_multiple"
variable mz equal "v_lz*v_multiple"
# the simulation region should be from 0 to a multiple of the periodic boundary in x, y and z.
region whole block 0 ${mz} 0 ${mx} 0 ${my} units box
create_box 2 whole
create_atoms 1 box basis 1 1 basis 2 1 basis 3 1 basis 4 1
region fixed1 block INF INF INF INF INF 10 units box
region fixed2 block INF INF INF INF 100 INF units box
group lower region fixed1
group upper region fixed2
group boundary union upper lower
group mobile subtract all boundary
variable natoms equal "count(all)"
print "# of atoms are: ${natoms}"
######################################
# INTERATOMIC POTENTIAL
pair_style ${pairstyle}
pair_coeff * * ${pairlocation} Mg Mg
######################################
# COMPUTES REQUIRED
compute csym all centro/atom 12
compute eng all pe/atom
compute eatoms all reduce sum c_eng
compute basal all basal/atom
######################################
# MINIMIZATION
# Primarily adjusts the c/a ratio to value predicted by EAM potential
reset_timestep 0
thermo 1
thermo_style custom step pe c_eatoms
min_style cg
minimize 1e-15 1e-15 1000 2000
variable eminimum equal "c_eatoms / count(all)"
print "%%e(it,1)=${eminimum}"
######################################
# EQUILIBRATION
reset_timestep 0
timestep ${tstep}
# atoms are given a random velocity based on a temperature of 100K.
velocity all create 100 ${seed} mom yes rot no
# temperature and pressure are set to 100 and 0
fix 1 all nve
# Set thermo output
thermo 100
thermo_style custom step lx ly lz press pxx pyy pzz pe temp
# Run for at least 2 picosecond (assuming 1 fs timestep)
run 2000
# Loop to run until pressure is below the variable eqpress (defined at beginning of file)
label loopeq
variable eq loop 100
run 250
variable converge equal press
if "${converge} <= 0" then "variable converge equal -press" else "variable converge equal press"
if "${converge} <= 50" then "jump ${fname} breakeq"
next eq
jump ${fname} loopeq
label breakeq
# Store length for strain rate calculations
variable tmp equal "lx"
variable L0 equal ${tmp}
print "Initial Length, L0: ${L0}"
unfix 1
######################################
# DEFORMATION
reset_timestep 0
timestep ${tstep}
# Impose constant strain rate
variable srate1 equal "v_srate / 1.0e10"
velocity upper set 0.0 NULL 0.0 units box
velocity lower set 0.0 NULL 0.0 units box
fix 2 upper setforce 0.0 NULL 0.0
fix 3 lower setforce 0.0 NULL 0.0
fix 1 all nve
# Output strain and stress info to file
# for units metal, pressure is in [bars] = 100 [kPa] = 1/10000 [GPa]
# p2 is in GPa
variable strain equal "(lx - v_L0)/v_L0"
variable p1 equal "v_strain"
variable p2 equal "-pxz/10000"
variable p3 equal "lx"
variable p4 equal "temp"
variable p5 equal "pe"
variable p6 equal "ke"
fix def1 all print 100 "${p1} ${p2} ${p3} ${p4} ${p5} ${p6}" file output.def1.txt screen no
# Dump coordinates to file (for void size calculations)
dump 1 all custom 1000 output.dump.* id x y z c_basal[1] c_basal[2] c_basal[3]
# Display thermo
thermo_style custom step v_strain pxz lx temp pe ke
restart 50000 output.restart
# run deformation for 100000 timesteps (10% strain assuming 1 fs timestep and 1e9/s strainrate)
variable runtime equal 0
label loop
displace_atoms all ramp x 0.0 ${srate1} z 10 100 units box
run 100
variable runtime equal ${runtime}+100
if "${runtime} < 100000" then "jump ${fname} loop"
######################################
# SIMULATION DONE
print "All done"
############################################################################
# Input file for investigating twinning nucleation under uniaxial loading with basal plane vector analysis
# Christopher Barrett, March 2013
# This script requires a Mg pair potential file to be in the same directory.
# fname is the file name. It is necessary for loops to work correctly. (See jump command)
variable fname index in.basal
######################################
# POTENTIAL VARIABLES
# lattice parameters and the minimum energy per atom which should be obtained with the current pair potential and homogeneous lattice
variable lx equal 3.181269601
variable b equal sqrt(3)
variable c equal sqrt(8/3)
variable ly equal ${b}*${lx}
variable lz equal ${c}*${lx}
variable pairlocation index almg.liu
variable pairstyle index eam/alloy/opt
######################################
# EQUILIBRATION/DEFORMATION VARIABLES
# eqpress = 10 bar = 1 MPa
# tstep (the timestep) is set to a default value of 0.001 (1 fs)
# seed randomizes the velocity
# srate is the rate of strain in 1/s
# Ndump is the number of timesteps in between each dump of the atom coordinates
variable tstep equal 0.001
variable seed equal 95812384
variable srate equal 1e9
######################################
# INITIALIZATION
units metal
dimension 3
boundary s s s
atom_style atomic
######################################
# ATOM BUILD
atom_modify map array
# lattice custom scale a1 "coordinates of a1" a2 "coordinates of a2" a3 "coordinates of a3" basis "atom1 coordinates" basis "atom2 coordinates" basis "atom3 coordinates" basis "atom4 coordinates" orient x "crystallagraphic orientation of x axis" orient y "crystallagraphic orientation of y axis" z "crystallagraphic orientation of z axis"
lattice custom 3.181269601 a1 1 0 0 a2 0 1.732050808 0 a3 0 0 1.632993162 basis 0.0 0.0 0.0 basis 0.5 0.5 0 basis 0 0.3333333 0.5 basis 0.5 0.833333 0.5 orient x 0 1 1 orient y 1 0 0 orient z 0 1 -1
variable multiple equal 20
variable mx equal "v_lx*v_multiple"
variable my equal "v_ly*v_multiple"
variable mz equal "v_lz*v_multiple"
# the simulation region should be from 0 to a multiple of the periodic boundary in x, y and z.
region whole block 0 ${mz} 0 ${mx} 0 ${my} units box
create_box 2 whole
create_atoms 1 box basis 1 1 basis 2 1 basis 3 1 basis 4 1
region fixed1 block INF INF INF INF INF 10 units box
region fixed2 block INF INF INF INF 100 INF units box
group lower region fixed1
group upper region fixed2
group boundary union upper lower
group mobile subtract all boundary
variable natoms equal "count(all)"
print "# of atoms are: ${natoms}"
######################################
# INTERATOMIC POTENTIAL
pair_style ${pairstyle}
pair_coeff * * ${pairlocation} Mg Mg
######################################
# COMPUTES REQUIRED
compute csym all centro/atom 12
compute eng all pe/atom
compute eatoms all reduce sum c_eng
compute basal all basal/atom
######################################
# MINIMIZATION
# Primarily adjusts the c/a ratio to value predicted by EAM potential
reset_timestep 0
thermo 1
thermo_style custom step pe c_eatoms
min_style cg
minimize 1e-15 1e-15 1000 2000
variable eminimum equal "c_eatoms / count(all)"
print "%%e(it,1)=${eminimum}"
######################################
# EQUILIBRATION
reset_timestep 0
timestep ${tstep}
# atoms are given a random velocity based on a temperature of 100K.
velocity all create 100 ${seed} mom yes rot no
# temperature and pressure are set to 100 and 0
fix 1 all nve
# Set thermo output
thermo 100
thermo_style custom step lx ly lz press pxx pyy pzz pe temp
# Run for at least 2 picosecond (assuming 1 fs timestep)
run 2000
# Loop to run until pressure is below the variable eqpress (defined at beginning of file)
label loopeq
variable eq loop 100
run 250
variable converge equal press
if "${converge} <= 0" then "variable converge equal -press" else "variable converge equal press"
if "${converge} <= 50" then "jump ${fname} breakeq"
next eq
jump ${fname} loopeq
label breakeq
# Store length for strain rate calculations
variable tmp equal "lx"
variable L0 equal ${tmp}
print "Initial Length, L0: ${L0}"
unfix 1
######################################
# DEFORMATION
reset_timestep 0
timestep ${tstep}
# Impose constant strain rate
variable srate1 equal "v_srate / 1.0e10"
velocity upper set 0.0 NULL 0.0 units box
velocity lower set 0.0 NULL 0.0 units box
fix 2 upper setforce 0.0 NULL 0.0
fix 3 lower setforce 0.0 NULL 0.0
fix 1 all nve
# Output strain and stress info to file
# for units metal, pressure is in [bars] = 100 [kPa] = 1/10000 [GPa]
# p2 is in GPa
variable strain equal "(lx - v_L0)/v_L0"
variable p1 equal "v_strain"
variable p2 equal "-pxz/10000"
variable p3 equal "lx"
variable p4 equal "temp"
variable p5 equal "pe"
variable p6 equal "ke"
fix def1 all print 100 "${p1} ${p2} ${p3} ${p4} ${p5} ${p6}" file output.def1.txt screen no
# Dump coordinates to file (for void size calculations)
dump 1 all custom 1000 output.dump.* id x y z c_basal[1] c_basal[2] c_basal[3]
# Display thermo
thermo_style custom step v_strain pxz lx temp pe ke
restart 50000 output.restart
# run deformation for 100000 timesteps (10% strain assuming 1 fs timestep and 1e9/s strainrate)
variable runtime equal 0
label loop
displace_atoms all ramp x 0.0 ${srate1} z 10 100 units box
run 100
variable runtime equal ${runtime}+100
if "${runtime} < 100000" then "jump ${fname} loop"
######################################
# SIMULATION DONE
print "All done"

View File

@ -15,6 +15,7 @@ bond_style harmonic
bond_coeff * 225.0 0.85
comm_modify vel yes
comm_modify cutoff 3.6
# must use pair hybrid, since srp bond particles
# do not interact with other atoms types

View File

@ -54,7 +54,8 @@ reset_timestep 0
variable pxy equal pxy
variable pxx equal pxx-press
fix avstress all ave/time $s $p $d v_pxy v_pxx ave one file einstein.dat
fix avstress all ave/time $s $p $d v_pxy v_pxx ave one &
file profile.einstein.2d
# Diagonal components of SS are larger by factor 2-2/d,
# which is 4/3 for d=3, but 1 for d=2.

View File

@ -40,7 +40,8 @@ thermo 50
thermo_style custom step etotal pe ke temp press &
epair evdwl ecoul elong ebond fnorm fmax vol
compute CSequ all temp/cs cores shells
compute CStemp all temp/cs cores shells
compute thermo_press_lmp all pressure thermo_temp # press for correct kinetic scalar
# output via chunk method
@ -49,16 +50,18 @@ compute CSequ all temp/cs cores shells
#compute cstherm all temp/chunk cs_chunk temp internal com yes cdof 3.0
#fix ave_chunk all ave/time 100 1 100 c_cstherm file chunk.dump mode vector
thermo_modify temp CSequ
thermo_modify temp CStemp press thermo_press_lmp
# velocity bias option
velocity all create 1427 134 dist gaussian mom yes rot no bias yes temp CSequ
velocity all scale 1427 temp CSequ
velocity all create 1427 134 dist gaussian mom yes rot no bias yes temp CStemp
velocity all scale 1427 temp CStemp
# thermostating using the core/shell decoupling
fix thermoberendsen all temp/berendsen 1427 1427 0.4
fix nve all nve
fix_modify thermoberendsen temp CSequ
fix_modify thermoberendsen temp CStemp
# 2 fmsec timestep

View File

@ -0,0 +1,86 @@
# Testsystem for core-shell model compared to Mitchell and Fincham
# Hendrik Heenen, June 2014
# ------------------------ INITIALIZATION ----------------------------
units metal
dimension 3
boundary p p p
atom_style full
# ----------------------- ATOM DEFINITION ----------------------------
fix csinfo all property/atom i_CSID
read_data data.coreshell fix csinfo NULL CS-Info
group cores type 1 2
group shells type 3 4
neighbor 2.0 bin
comm_modify vel yes
# ------------------------ FORCE FIELDS ------------------------------
kspace_style ewald 1.0e-6
pair_style born/coul/long/cs 20.0 20.0 # A, rho, sigma=0, C, D
pair_coeff * * 0.0 1.000 0.00 0.00 0.00
pair_coeff 3 3 487.0 0.23768 0.00 1.05 0.50 #Na-Na
pair_coeff 3 4 145134.0 0.23768 0.00 6.99 8.70 #Na-Cl
pair_coeff 4 4 405774.0 0.23768 0.00 72.40 145.40 #Cl-Cl
bond_style harmonic
bond_coeff 1 63.014 0.0
bond_coeff 2 25.724 0.0
# ------------------------ Equilibration Run -------------------------------
reset_timestep 0
thermo 50
thermo_style custom step etotal pe ke temp press &
epair evdwl ecoul elong ebond fnorm fmax vol
compute CStemp all temp/cs cores shells
compute thermo_press_lmp all pressure thermo_temp # press for correct kinetic scalar
# output via chunk method
#compute prop all property/atom i_CSID
#compute cs_chunk all chunk/atom c_prop
#compute cstherm all temp/chunk cs_chunk temp internal com yes cdof 3.0
#fix ave_chunk all ave/time 100 1 100 c_cstherm file chunk.dump mode vector
thermo_modify temp CStemp press thermo_press_lmp
# 2 fmsec timestep
timestep 0.002
# velocity bias option
velocity all create 1427 134 dist gaussian mom yes rot no bias yes temp CStemp
velocity all scale 1427 temp CStemp
# thermostating using the core/shell decoupling
fix thermoberendsen all temp/berendsen 1427 1427 0.4
fix nve all nve
fix_modify thermoberendsen temp CStemp
run 500
unfix thermoberendsen
unfix nve
fix npt_equ all npt temp 1427 1427 0.04 iso 0 0 0.4
fix_modify npt_equ temp CStemp press thermo_press_lmp # pressure for correct kinetic scalar
run 500
unfix npt_equ
# ------------------------ Dynamic Run -------------------------------
fix npt_dyn all npt temp 1427 1427 0.04 iso 0 0 0.4
fix_modify npt_dyn temp CStemp press thermo_press_lmp # pressure for correct kinetic scalar
run 1000

View File

@ -0,0 +1,189 @@
LAMMPS (26 Jan 2017)
# Testsystem for core-shell model compared to Mitchel and Finchham
# Hendrik Heenen, June 2014
# ------------------------ INITIALIZATION ----------------------------
units metal
dimension 3
boundary p p p
atom_style full
# ----------------------- ATOM DEFINITION ----------------------------
fix csinfo all property/atom i_CSID
read_data data.coreshell fix csinfo NULL CS-Info
orthogonal box = (0 0 0) to (24.096 24.096 24.096)
1 by 2 by 2 MPI processor grid
reading atoms ...
432 atoms
scanning bonds ...
1 = max bonds/atom
reading bonds ...
216 bonds
1 = max # of 1-2 neighbors
0 = max # of 1-3 neighbors
0 = max # of 1-4 neighbors
1 = max # of special neighbors
group cores type 1 2
216 atoms in group cores
group shells type 3 4
216 atoms in group shells
neighbor 2.0 bin
comm_modify vel yes
# ------------------------ FORCE FIELDS ------------------------------
pair_style born/coul/dsf/cs 0.1 20.0 20.0 # A, rho, sigma=0, C, D
pair_coeff * * 0.0 1.000 0.00 0.00 0.00
pair_coeff 3 3 487.0 0.23768 0.00 1.05 0.50 #Na-Na
pair_coeff 3 4 145134.0 0.23768 0.00 6.99 8.70 #Na-Cl
pair_coeff 4 4 405774.0 0.23768 0.00 72.40 145.40 #Cl-Cl
bond_style harmonic
bond_coeff 1 63.014 0.0
bond_coeff 2 25.724 0.0
# ------------------------ Equilibration Run -------------------------------
reset_timestep 0
thermo 50
thermo_style custom step etotal pe ke temp press epair evdwl ecoul elong ebond fnorm fmax vol
compute CSequ all temp/cs cores shells
# output via chunk method
#compute prop all property/atom i_CSID
#compute cs_chunk all chunk/atom c_prop
#compute cstherm all temp/chunk cs_chunk temp internal com yes cdof 3.0
#fix ave_chunk all ave/time 100 1 100 c_cstherm file chunk.dump mode vector
thermo_modify temp CSequ
# velocity bias option
velocity all create 1427 134 dist gaussian mom yes rot no bias yes temp CSequ
Neighbor list info ...
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 22
ghost atom cutoff = 22
binsize = 11, bins = 3 3 3
1 neighbor lists, perpetual/occasional/extra = 1 0 0
(1) pair born/coul/dsf/cs, half, perpetual
pair build: half/bin/newton
stencil: half/bin/3d/newton
bin: standard
velocity all scale 1427 temp CSequ
fix thermoberendsen all temp/berendsen 1427 1427 0.4
fix nve all nve
fix_modify thermoberendsen temp CSequ
# 2 fmsec timestep
timestep 0.002
run 500
Memory usage per processor = 6.8559 Mbytes
Step TotEng PotEng KinEng Temp Press E_pair E_vdwl E_coul E_long E_bond Fnorm Fmax Volume
0 -635.80596 -675.46362 39.657659 1427 -21302.622 -675.46362 1.6320365 -677.09565 0 0 1.5814015e-14 3.2317898e-15 13990.5
50 -634.07021 -666.11867 32.048452 1153.1982 -4560.945 -668.28236 37.756542 -706.0389 0 2.163691 13.802484 3.022372 13990.5
100 -631.97128 -662.02544 30.054164 1081.4378 -3497.564 -664.61825 39.275003 -703.89325 0 2.5928078 13.956833 2.5417699 13990.5
150 -630.14953 -663.04215 32.892622 1183.5739 -88.43828 -665.63444 46.239965 -711.87441 0 2.5922927 14.667898 2.4964255 13990.5
200 -628.52878 -663.9795 35.45072 1275.6219 -1755.9004 -666.73564 41.758052 -708.49369 0 2.7561421 14.230743 3.0924004 13990.5
250 -627.27102 -662.025 34.753978 1250.5511 -1234.0918 -665.13519 43.170874 -708.30606 0 3.1101887 14.221086 1.941354 13990.5
300 -626.5495 -663.74287 37.193368 1338.3275 -2049.3444 -666.45574 40.476148 -706.93188 0 2.7128711 13.330425 1.7756755 13990.5
350 -625.87313 -665.21855 39.345421 1415.7647 -1543.1723 -667.90872 41.577366 -709.48609 0 2.6901682 13.541311 1.854662 13990.5
400 -625.09344 -661.26404 36.1706 1301.5253 -729.96729 -664.10334 43.468765 -707.57211 0 2.8392963 13.663555 1.9067551 13990.5
450 -624.46214 -660.01362 35.551477 1279.2474 -1617.7158 -663.06571 41.644856 -704.71057 0 3.0520921 14.527005 1.7280213 13990.5
500 -623.49246 -659.2527 35.76024 1286.7593 -935.99238 -662.32953 43.038808 -705.36834 0 3.0768302 14.099593 1.9831106 13990.5
Loop time of 4.09864 on 4 procs for 500 steps with 432 atoms
Performance: 21.080 ns/day, 1.139 hours/ns, 121.992 timesteps/s
99.7% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 3.3804 | 3.568 | 3.8354 | 8.9 | 87.05
Bond | 0.00074339 | 0.00079519 | 0.00087976 | 0.0 | 0.02
Neigh | 0.045851 | 0.046084 | 0.046361 | 0.1 | 1.12
Comm | 0.20413 | 0.47123 | 0.65875 | 24.3 | 11.50
Output | 0.00044298 | 0.00046057 | 0.00051165 | 0.0 | 0.01
Modify | 0.0064909 | 0.0067219 | 0.0069766 | 0.2 | 0.16
Other | | 0.005345 | | | 0.13
Nlocal: 108 ave 114 max 105 min
Histogram: 1 1 1 0 0 0 0 0 0 1
Nghost: 6527 ave 6599 max 6472 min
Histogram: 1 0 1 0 1 0 0 0 0 1
Neighs: 74388.2 ave 75855 max 73680 min
Histogram: 1 2 0 0 0 0 0 0 0 1
Total # of neighbors = 297553
Ave neighs/atom = 688.78
Ave special neighs/atom = 1
Neighbor list builds = 20
Dangerous builds = 0
unfix thermoberendsen
# ------------------------ Dynamic Run -------------------------------
run 1000
Memory usage per processor = 6.85787 Mbytes
Step TotEng PotEng KinEng Temp Press E_pair E_vdwl E_coul E_long E_bond Fnorm Fmax Volume
500 -623.49319 -659.2527 35.759511 1286.7331 -936.04802 -662.32953 43.038808 -705.36834 0 3.0768302 14.099593 1.9831106 13990.5
550 -623.44059 -663.57938 40.138795 1444.3127 -935.73484 -666.2789 42.563337 -708.84224 0 2.6995167 13.918509 2.3189805 13990.5
600 -623.4703 -660.01592 36.545618 1315.0196 1327.3492 -663.08845 47.985462 -711.07391 0 3.0725254 15.192713 2.4098428 13990.5
650 -623.46796 -661.56776 38.099807 1370.9439 457.82439 -664.81976 45.495622 -710.31538 0 3.2519966 15.026057 1.8500226 13990.5
700 -623.50158 -659.5131 36.011523 1295.8012 -460.03772 -663.1078 43.938203 -707.046 0 3.5946908 14.660979 2.4825518 13990.5
750 -623.44787 -661.93353 38.485658 1384.8279 97.429626 -664.9551 45.083146 -710.03825 0 3.0215753 15.10043 2.3433897 13990.5
800 -623.48215 -659.50655 36.024402 1296.2647 1097.3866 -662.61124 47.251998 -709.86324 0 3.1046914 14.556382 2.0543766 13990.5
850 -623.45868 -661.13782 37.679134 1355.8068 -1802.1624 -664.41257 40.70845 -705.12102 0 3.2747525 14.691444 2.2054332 13990.5
900 -623.43556 -663.59137 40.155815 1444.9251 534.99197 -666.71877 45.601619 -712.32039 0 3.127395 14.741411 2.5807895 13990.5
950 -623.51318 -661.57916 38.06598 1369.7267 -678.12625 -664.37535 43.207862 -707.58322 0 2.7961988 14.430307 2.3936105 13990.5
1000 -623.47287 -661.22274 37.749874 1358.3523 634.7979 -664.42973 46.373361 -710.80309 0 3.2069879 15.891192 2.4042765 13990.5
1050 -623.48133 -661.52868 38.047347 1369.0562 -583.15228 -664.6098 43.618772 -708.22857 0 3.081116 14.806856 2.3447613 13990.5
1100 -623.47867 -661.83761 38.358946 1380.2685 -868.9779 -664.8826 42.84846 -707.73106 0 3.044983 14.69567 2.399143 13990.5
1150 -623.44713 -661.21299 37.765857 1358.9274 405.14554 -664.09567 45.578739 -709.6744 0 2.8826753 15.437367 3.1381305 13990.5
1200 -623.46549 -660.91706 37.451568 1347.6183 699.78996 -664.0883 46.36297 -710.45127 0 3.1712473 15.109665 1.8891886 13990.5
1250 -623.49296 -658.2218 34.728838 1249.6464 1061.0154 -661.29052 47.668699 -708.95922 0 3.0687228 14.901367 2.3964137 13990.5
1300 -623.49837 -660.91022 37.411844 1346.1889 226.99512 -664.35989 45.352287 -709.71217 0 3.4496704 15.161542 2.2137993 13990.5
1350 -623.46718 -658.80365 35.336469 1271.5108 1039.6469 -662.16908 47.565671 -709.73475 0 3.3654314 15.892516 2.7888426 13990.5
1400 -623.47124 -661.45375 37.982513 1366.7233 -379.56023 -664.6321 43.788306 -708.42041 0 3.1783497 14.251126 1.7415409 13990.5
1450 -623.46671 -660.17518 36.708464 1320.8792 -374.37056 -662.92706 44.083648 -707.01071 0 2.7518803 15.210167 1.9984277 13990.5
1500 -623.50515 -659.06488 35.559725 1279.5442 260.37822 -662.39548 45.779764 -708.17524 0 3.3306005 14.682396 2.4201107 13990.5
Loop time of 8.26746 on 4 procs for 1000 steps with 432 atoms
Performance: 20.901 ns/day, 1.148 hours/ns, 120.956 timesteps/s
99.7% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 6.706 | 7.1568 | 7.6597 | 12.7 | 86.57
Bond | 0.0014617 | 0.0015531 | 0.0016506 | 0.2 | 0.02
Neigh | 0.10511 | 0.10522 | 0.10532 | 0.0 | 1.27
Comm | 0.48547 | 0.98841 | 1.4393 | 34.0 | 11.96
Output | 0.0012085 | 0.0012462 | 0.0013196 | 0.1 | 0.02
Modify | 0.0021446 | 0.0021989 | 0.0022545 | 0.1 | 0.03
Other | | 0.01204 | | | 0.15
Nlocal: 108 ave 114 max 94 min
Histogram: 1 0 0 0 0 0 0 0 1 2
Nghost: 6512.25 ave 6586 max 6456 min
Histogram: 1 0 0 2 0 0 0 0 0 1
Neighs: 74248.2 ave 77441 max 65858 min
Histogram: 1 0 0 0 0 0 0 0 0 3
Total # of neighbors = 296993
Ave neighs/atom = 687.484
Ave special neighs/atom = 1
Neighbor list builds = 46
Dangerous builds = 0
Total wall time: 0:00:12

10
examples/mscg/README Normal file
View File

@ -0,0 +1,10 @@
Running this example requires that LAMMPS be built with the MSCG
package and its fix mscg command. The fix uses the Multi-Scale
Coarse-Graining (MS-CG) library, freely available at
https://github.com/uchicago-voth/MSCG-release, to compute optimized
coarse-grained force field parameters. The MS-CG library was
developed by Jacob Wagner in Greg Voth's group at the University of
Chicago.
See the lib/mscg/README file for instructions on how to download and
install the MS-CG library for use with LAMMPS.

12
examples/mscg/control.in Normal file
View File

@ -0,0 +1,12 @@
block_size 1
start_frame 1
n_frames 19
nonbonded_cutoff 10.0
basis_type 0
primary_output_style 0
output_solution_flag 1
output_spline_coeffs_flag 1
pair_nonbonded_bspline_basis_order 6
pair_nonbonded_basis_set_resolution 0.7
pair_nonbonded_output_binwidth 0.1
matrix_type 0

1015
examples/mscg/data.meoh Normal file

File diff suppressed because it is too large Load Diff

20180
examples/mscg/dump.meoh Normal file

File diff suppressed because it is too large Load Diff

22
examples/mscg/in.mscg Normal file
View File

@ -0,0 +1,22 @@
units real
atom_style full
pair_style zero 10.0
read_data data.meoh
pair_coeff * *
thermo 1
thermo_style custom step
# Test 1a: range finder functionality
fix 1 all mscg 1 range on
rerun dump.meoh first 0 last 4500 every 250 dump x y z fx fy fz
print "TEST_1a mscg range finder"
unfix 1
# Test 1b: force matching functionality
fix 1 all mscg 1
rerun dump.meoh first 0 last 4500 every 250 dump x y z fx fy fz
print "TEST_1b mscg force matching"
print TEST_DONE

View File

@ -0,0 +1,77 @@
2.500000 5.670970817963099e+02
2.600000 2.404059283529051e+02
2.700000 9.157060823529977e+01
2.800000 3.428273061369140e+01
2.900000 1.619868149395266e+01
3.000000 1.039607214301755e+01
3.100000 6.830187514267188e+00
3.200000 3.861970842349535e+00
3.300000 1.645948643278161e+00
3.400000 2.395428971623918e-01
3.500000 -4.276763637833773e-01
3.600000 -5.132022977965877e-01
3.700000 -2.208024961234051e-01
3.800000 2.402697744243800e-01
3.900000 6.956064296165573e-01
4.000000 1.034070044257954e+00
4.100000 1.205997975111669e+00
4.200000 1.209501102128581e+00
4.300000 1.076304670380924e+00
4.400000 8.575891319958883e-01
4.500000 6.098309880892070e-01
4.600000 3.807992942746473e-01
4.700000 1.995994191469442e-01
4.800000 7.699059877424269e-02
4.900000 9.750744163981299e-03
5.000000 -1.480308769532222e-02
5.100000 -1.429422279228416e-02
5.200000 -6.765899050869768e-03
5.300000 -6.214398421078919e-03
5.400000 -1.951586041390797e-02
5.500000 -4.689090237947263e-02
5.600000 -8.376292122940529e-02
5.700000 -1.226699982917263e-01
5.800000 -1.551768041657136e-01
5.900000 -1.737865035767736e-01
6.000000 -1.738272491408507e-01
6.100000 -1.546779867768825e-01
6.200000 -1.193171291488982e-01
6.300000 -7.321054075616322e-02
6.400000 -2.317411193286228e-02
6.500000 2.376366715221714e-02
6.600000 6.149913249600215e-02
6.700000 8.597538938112201e-02
6.800000 9.590170060736655e-02
6.900000 9.245100462148878e-02
7.000000 7.855487875847664e-02
7.100000 5.818301960249692e-02
7.200000 3.562272334783877e-02
7.300000 1.475836615985744e-02
7.400000 -1.639617536128255e-03
7.500000 -1.237881063914745e-02
7.600000 -1.768202571195587e-02
7.700000 -1.877757119362295e-02
7.800000 -1.748001968416543e-02
7.900000 -1.577097622918088e-02
8.000000 -1.537984660448136e-02
8.100000 -1.737044400054951e-02
8.200000 -2.187939410237979e-02
8.300000 -2.823987455760605e-02
8.400000 -3.525715284001425e-02
8.500000 -4.148996251287761e-02
8.600000 -4.553187949229211e-02
8.700000 -4.629269831051163e-02
8.800000 -4.327548798226762e-02
8.900000 -3.674131754868225e-02
9.000000 -2.758883541814894e-02
9.100000 -1.712151838480657e-02
9.200000 -6.810600249997737e-03
9.300000 1.941999556272785e-03
9.400000 8.040747353879739e-03
9.500000 1.092691524686838e-02
9.600000 1.063606620723048e-02
9.700000 7.416550438142138e-03
9.800000 1.175066786686231e-03
9.900000 -9.084427187675534e-03
10.000000 -2.582180514463068e-02
10.100000 -5.352186189454393e-02

View File

@ -0,0 +1,82 @@
# Header information on force file
1_1
N 77 R 2.500000 10.100000
1 2.500000 69.428523 567.097082
2 2.600000 29.053372 240.405928
3 2.700000 12.454545 91.570608
4 2.800000 6.161878 34.282731
5 2.900000 3.637808 16.198681
6 3.000000 2.308070 10.396072
7 3.100000 1.446757 6.830188
8 3.200000 0.912149 3.861971
9 3.300000 0.636753 1.645949
10 3.400000 0.542478 0.239543
11 3.500000 0.551885 -0.427676
12 3.600000 0.598929 -0.513202
13 3.700000 0.635629 -0.220802
14 3.800000 0.634656 0.240270
15 3.900000 0.587862 0.695606
16 4.000000 0.501378 1.034070
17 4.100000 0.389375 1.205998
18 4.200000 0.268600 1.209501
19 4.300000 0.154310 1.076305
20 4.400000 0.057615 0.857589
21 4.500000 -0.015756 0.609831
22 4.600000 -0.065288 0.380799
23 4.700000 -0.094307 0.199599
24 4.800000 -0.108137 0.076991
25 4.900000 -0.112474 0.009751
26 5.000000 -0.112221 -0.014803
27 5.100000 -0.110767 -0.014294
28 5.200000 -0.109714 -0.006766
29 5.300000 -0.109065 -0.006214
30 5.400000 -0.107778 -0.019516
31 5.500000 -0.104458 -0.046891
32 5.600000 -0.097925 -0.083763
33 5.700000 -0.087603 -0.122670
34 5.800000 -0.073711 -0.155177
35 5.900000 -0.057263 -0.173787
36 6.000000 -0.039882 -0.173827
37 6.100000 -0.023457 -0.154678
38 6.200000 -0.009757 -0.119317
39 6.300000 -0.000131 -0.073211
40 6.400000 0.004688 -0.023174
41 6.500000 0.004659 0.023764
42 6.600000 0.000396 0.061499
43 6.700000 -0.006978 0.085975
44 6.800000 -0.016072 0.095902
45 6.900000 -0.025489 0.092451
46 7.000000 -0.034040 0.078555
47 7.100000 -0.040877 0.058183
48 7.200000 -0.045567 0.035623
49 7.300000 -0.048086 0.014758
50 7.400000 -0.048742 -0.001640
51 7.500000 -0.048041 -0.012379
52 7.600000 -0.046538 -0.017682
53 7.700000 -0.044715 -0.018778
54 7.800000 -0.042902 -0.017480
55 7.900000 -0.041239 -0.015771
56 8.000000 -0.039682 -0.015380
57 8.100000 -0.038044 -0.017370
58 8.200000 -0.036082 -0.021879
59 8.300000 -0.033576 -0.028240
60 8.400000 -0.030401 -0.035257
61 8.500000 -0.026564 -0.041490
62 8.600000 -0.022213 -0.045532
63 8.700000 -0.017621 -0.046293
64 8.800000 -0.013143 -0.043275
65 8.900000 -0.009142 -0.036741
66 9.000000 -0.005926 -0.027589
67 9.100000 -0.003690 -0.017122
68 9.200000 -0.002494 -0.006811
69 9.300000 -0.002250 0.001942
70 9.400000 -0.002749 0.008041
71 9.500000 -0.003698 0.010927
72 9.600000 -0.004776 0.010636
73 9.700000 -0.005678 0.007417
74 9.800000 -0.006108 0.001175
75 9.900000 -0.005712 -0.009084
76 10.000000 -0.003967 -0.025822
77 10.100000 0.000000 -0.053522

Some files were not shown because too many files have changed in this diff Show More