Compare commits

...

123 Commits

Author SHA1 Message Date
9806da69f3 Stan bug fixes for fix reaxc/bonds/kk 2016-11-09 15:47:50 -07:00
bfea3dce7d Merge pull request #268 from arielzn/born_dsf
pair styles born/coul/dsf and born/coul/dsf/cs added
2016-11-09 11:57:09 -07:00
eef862ee1c Merge pull request #267 from akohlmey/pager-help
use pager for help message, if connected to stdout
2016-11-09 11:53:43 -07:00
0cc2fbf1d6 Merge pull request #266 from andeplane/IP_USER_OMP
Initializing pointers in USER-OMP
2016-11-09 11:52:05 -07:00
ae00666994 Merge pull request #265 from andeplane/IP_DIFF_DPD
Initializing pointers in USER-DIFFRACTION and USER-DPD
2016-11-09 11:51:53 -07:00
51b3b5fb35 Merge pull request #264 from andeplane/IP_SNAP_SRD
Initialize pointers in SNAP and SRD
2016-11-09 11:51:44 -07:00
176f2c3aa1 Merge pull request #263 from andeplane/IP_RIGID_SHOCK
Initialize pointers in RIGID and SHOCK
2016-11-09 11:51:36 -07:00
3f71bfb185 Merge pull request #262 from andeplane/IP_PERI_QEQ_REPLICA
Initializing pointers in PERI, QEQ and REPLICA
2016-11-09 11:51:25 -07:00
cf3ab51679 Merge pull request #261 from andeplane/IP_MISC_MOLECULE
Initialized pointers in MISC and MOLECULE
2016-11-09 11:51:09 -07:00
59922f894b Merge pull request #260 from andeplane/IP_MANYBODY_MC
Initialize pointers in MANYBODY and MC
2016-11-09 11:51:01 -07:00
5e2b9d8bf3 Merge pull request #259 from andeplane/IP_KSPACE
Initialize pointers in KSPACE
2016-11-09 11:50:50 -07:00
2d132cad6b Merge pull request #258 from andeplane/IP_GRANULAR
Initialize pointers in GRANULAR
2016-11-09 11:50:41 -07:00
ef6801f8bf Merge pull request #257 from andeplane/IP_CORESHELL
Initialize pointers in CORESHELL
2016-11-09 11:50:31 -07:00
c81a723642 Merge pull request #256 from andeplane/IP_BODY
Initialized pointers in BODY
2016-11-09 11:50:23 -07:00
f9eb2a99ce Merge pull request #255 from andeplane/IP_ASPHERE
Initialize pointers in ASPHERE
2016-11-09 11:50:11 -07:00
16a02ef27d Merge pull request #254 from andeplane/IP_root
Initialized pointers in src folder
2016-11-09 11:47:21 -07:00
2c801320c2 fixed links in Section_intro.txt 2016-11-09 11:46:10 -07:00
9de1a2a08f added input using born/coul/dsf/cs to examples/coreshell 2016-11-08 18:27:44 +01:00
cdb5d47e9f add FLERR argument to force->bounds() in born/coul/dsf 2016-11-08 18:24:54 +01:00
a23b287a7a sync with SVN for creation of stable release 2016-11-08 09:05:50 -07:00
31204aab6a sync with SVN 2016-11-08 08:57:51 -07:00
25e7d074cf documentation added for born/coul/dsf and born/coul/dsf/cs styles 2016-11-08 16:51:54 +01:00
667f4dfe28 pair style born/coul/dsf added with its coreshell version 2016-11-08 11:32:38 +01:00
21694ca3a8 improve help and it through a pager, when screen == stdout 2016-11-07 17:10:12 -05:00
9b910d5511 make name of the actual executable (i.e. arg[0]) accessible 2016-11-07 17:07:40 -05:00
054ab6bff3 Initializing pointers in USER-OMP 2016-11-07 21:07:10 +01:00
616420cda8 Initializing pointers in USER-DIFFRACTION and USER-DPD 2016-11-07 20:51:36 +01:00
fb3ac9afba Initialize pointers in SNAP and SRD 2016-11-07 20:30:38 +01:00
7cd7cda2d4 Initialize pointers in RIGID and SHOCK 2016-11-07 20:22:04 +01:00
db0524278a Initializing pointers in PERI, QEQ and REPLICA 2016-11-07 19:58:27 +01:00
1ff75eaba2 Initialized pointers in MISC and MOLECULE 2016-11-07 17:15:48 +01:00
30dede867a Initialize pointers in MANYBODY and MC 2016-11-07 17:02:32 +01:00
a5c6104d64 Initialize pointers in KSPACE 2016-11-07 16:54:59 +01:00
c5869bdee2 Initialize pointers in GRANULAR 2016-11-07 16:33:50 +01:00
e7a2c6b5d1 Initialize pointers in CORESHELL 2016-11-07 16:26:16 +01:00
06959a9c59 Initialized pointers in BODY 2016-11-07 16:21:08 +01:00
cd65d44d95 Initialize pointers in ASPHERE 2016-11-07 16:15:39 +01:00
45f2e86dd6 NULLed ptrs in files 2016-11-07 16:07:37 +01:00
f8226e8ae5 NULL ptrs in dump_custom and dump_image 2016-11-07 15:56:47 +01:00
b221b15d24 NULLing ptrs in comm_brick and dump*.cpp 2016-11-07 15:50:18 +01:00
77bbf03f0f Merge pull request #252 from akohlmey/preinstalled-vs-scm
remove the misleading "(which it is by default)" from several doc files
2016-11-04 10:59:06 -06:00
7cff08ca0a Merge pull request #249 from lammps/unstable
Incorporate merge commits from "unstable" into "master"
2016-11-04 10:58:55 -06:00
f0131393e0 Merge pull request #248 from akohlmey/collected-small-fixes
collected small bugfixes and updates
2016-11-04 10:58:42 -06:00
32e0a58343 Merge pull request #247 from akohlmey/bounds-error-with-code-line
Propagate error error locations for a few more utility functions
2016-11-04 10:58:14 -06:00
60908eeab4 Merge pull request #246 from akohlmey/manybody-short-neighbor-list
Manybody short neighbor list
2016-11-04 10:57:43 -06:00
8214555b29 Merge pull request #244 from ketankhare/patch-2
Enable write_data for dihedral style fourier
2016-11-04 10:57:20 -06:00
f48b71f46b added examples/threebody, fix reaxc/speceies/kk 2016-11-04 10:56:04 -06:00
6cc4eb19af remove the misleading "(which it is by default)" from several doc files 2016-11-04 12:20:17 -04:00
7d23a0737e add thorough checking for valid arguments to -partition or -p 2016-11-04 00:42:23 -04:00
02510ec321 add temporary force accumulation to local variables for vashishta styles 2016-11-02 22:32:30 -04:00
33140e5004 accumulate forces in temporary local variables for tersoff 2016-11-02 22:16:53 -04:00
639fb6f444 use local variables for more efficient force accumulation 2016-11-02 17:20:56 -04:00
b156771721 build short neighbor list for sw on based on ij parameters only 2016-11-02 17:09:32 -04:00
5d787f7f16 avoid tiny memory leak, when the restart command is specified multiple times 2016-11-01 21:39:12 -04:00
c8f4b55588 avoid uninitialized data for using ewald/disp with lj only 2016-11-01 16:48:30 -04:00
e13e4031cf avoid memory leak in pppm/disp/omp 2016-11-01 16:48:00 -04:00
782a328080 avoid memory leaks when using kspace solvers for lennard-jones 2016-11-01 14:55:13 -04:00
e81ae21dbd do not access uninitialized data for ewald/disp and pppm/disp 2016-11-01 14:54:16 -04:00
7fdd6e2807 remove work repetitions for 'the' 2016-11-01 11:40:07 -04:00
2e0d304c7e remove word repetitions for 'a' 2016-11-01 11:36:11 -04:00
c4b86a25a7 Merge branch 'master' into manybody-short-neighbor-list 2016-10-28 11:12:21 -04:00
218e121b41 Merge branch 'master' into bounds-error-with-code-line 2016-10-28 11:11:28 -04:00
93d393aa69 permission cleanup in tools folder 2016-10-28 10:48:35 -04:00
4216be49f3 Merge branch 'master' into collected-small-fixes 2016-10-28 10:46:33 -04:00
c3a1e72183 Version 27 Oct 2016 2016-10-27 11:40:36 -04:00
d9891abdf4 new library functions 2016-10-27 09:34:04 -06:00
f9a9e27f5a add error location propagation to atom->set_mass() and atom->check_mass() 2016-10-26 16:01:40 -04:00
35753b8f08 add error location propagation to force->bounds() and force->boundsbig() 2016-10-26 15:53:02 -04:00
f028a9a967 region cylinder is compatible with open_faces[2], so do not disallow it. 2016-10-26 15:04:18 -04:00
ef9f7c818e fix off-by-one bug in buffer re-allocator 2016-10-26 10:14:08 -04:00
8e61bed2d8 add USER-OMP variant of manybody short neighbor list 2016-10-26 09:51:52 -04:00
3267b34590 simplify short neighbor list implementation. remove unneeded class member 2016-10-26 09:29:27 -04:00
0a417b4016 add short neighbor list support to pair style tersoff 2016-10-26 07:06:38 -04:00
399c0af150 consistent short neighbor list for vashishta and vashishta/table 2016-10-25 23:46:25 -04:00
e8b3f79690 fully tested multi-element compatible short neighbor list for Stillinger-Weber 2016-10-25 23:18:14 -04:00
7f3f5e8c38 Clean whitespace 2016-10-25 14:46:44 -04:00
f350500e69 Enable write_data 2016-10-25 14:43:12 -04:00
d7c77a419d Enable write_data for dihedral_fourier 2016-10-25 14:36:18 -04:00
efaa8feab5 Merge pull request #239 from akohlmey/static-analysis-fixes
Static analysis fixes
2016-10-25 10:32:55 -06:00
ad5f7c4581 Merge pull request #238 from giacomofiorin/colvars-2016-10-24
Colvars fixes and small changes
2016-10-25 10:32:41 -06:00
6b33499135 Merge pull request #231 from akohlmey/collected-doc-fixes
Collected doc fixes
2016-10-25 10:30:34 -06:00
63eada2425 fix issue with docs for orientorder/atom compute reported by @andeplane
this closes #243
2016-10-25 12:12:48 -04:00
1a436bd7a9 Merge branch 'collected-doc-fixes' of github.com:akohlmey/lammps into collected-doc-fixes 2016-10-25 11:58:42 -04:00
52dd9aee5f Merge branch 'master' into collected-doc-fixes 2016-10-25 11:55:09 -04:00
eca96e21ef Merge branch 'doc' 2016-10-25 09:46:07 -06:00
9c81ad1ab6 doc page changes 2016-10-25 09:45:55 -06:00
f8367e3d0f update documentation pdf for updated colvars lib 2016-10-24 17:49:53 -04:00
ba6d1528bb Merge branch 'colvars-2016-10-24' of https://github.com/giacomofiorin/lammps into colvars-update 2016-10-24 17:34:28 -04:00
182141b850 Make SMP parallelism for Colvars optional 2016-10-24 17:13:34 -04:00
512c413b7e whitespace cleanup 2016-10-24 17:13:21 -04:00
7b89e47a38 apply corrections to issues reported by static code analysis 2016-10-24 17:12:28 -04:00
e02505c8cc Add ensemble-biased metadynamics (Fabrizio Marinelli, NIH) 2016-10-24 17:11:09 -04:00
be2d155cef Minor changes and fixes not relevant to LAMMPS 2016-10-24 17:10:52 -04:00
c243093980 Fix wall forces and subtractAppliedForce for extended-Lagrangian ABF 2016-10-24 17:05:47 -04:00
ad57a17f48 Add C-linkage wrapper for colvarscript (useful with ctypes) 2016-10-24 16:48:20 -04:00
477ddaf112 Merge pull request #232 from akohlmey/small-bugfixes
Small bugfixes
2016-10-24 08:15:08 -06:00
4f69d91a99 Merge pull request #230 from akohlmey/manual-in-ebook-format
generate LAMMPS manual in ebook format
2016-10-24 08:12:08 -06:00
bc44988003 correct typo in write_dump docs
this closes #233
2016-10-23 15:18:25 -04:00
db36c8bcc3 stop with error, if molecule command requires special bond auto-generation before box is defined 2016-10-21 14:51:09 -04:00
991034b632 have bond style table exit when bond length is outside table range 2016-10-21 14:01:06 -04:00
607246f923 ignore mobi file as well 2016-10-21 13:25:53 -04:00
6742fb634a remove mobi file format creation from makefile and explain it in README instead 2016-10-21 12:05:21 -04:00
ed3f02f249 ignore generated PDF and ePUB files 2016-10-21 12:04:48 -04:00
a2e34aab0a make certain, that atom->maxspecial is incremented with extra special space 2016-10-21 11:55:36 -04:00
6cd6c106ef Merge branch 'collected-small-changes' into collected-doc-fixes 2016-10-20 19:27:18 -04:00
a9572275ee Revert "support generation of manual in ePUB format"
This reverts commit 8c3f5cb307.
2016-10-20 16:27:00 -04:00
2cf77ff778 Add support for ebook generation in ePUB and mobi format 2016-10-20 16:16:17 -04:00
f022f6d88a fix various formatting and broken link issues identified by ebook-convert 2016-10-20 14:40:18 -04:00
8c3f5cb307 support generation of manual in ePUB format 2016-10-20 09:27:26 -04:00
e8359923f1 update packages section in manual with information about USER-NC-DUMP 2016-10-19 15:58:50 -04:00
d2da0fabb4 Version 20 Oct 2016 2016-10-19 15:29:13 -04:00
9954d5d346 forgot pair table change 2016-10-19 10:47:07 -06:00
13ce1037f2 Version 18 Oct 2016 2016-10-18 15:46:56 -04:00
fa984b2c3b Version 13 Oct 2016 2016-10-13 19:56:33 -04:00
8540a9f038 Version 11 Oct 2016 2016-10-11 17:10:24 -04:00
13b6eb1bae Version 6 Oct 2016 2016-10-06 19:12:58 -04:00
d80a9def17 Version 5 Oct 2016 2016-10-05 18:49:08 -04:00
be4734bdce Version 30 Sep 2016 2016-09-30 11:57:15 -04:00
2551619b07 Version 29 Sep 2016 2016-09-29 10:55:26 -04:00
d8bf149edc Version 28 Sep 2016 2016-09-29 10:55:18 -04:00
473b12ded4 Version 26 Sep 2016 2016-09-29 10:55:10 -04:00
27c3149590 Version 21 Sep 2016 2016-09-29 10:54:59 -04:00
3b408d71fe Version 20 Sep 2016 2016-09-29 10:53:40 -04:00
512 changed files with 5384 additions and 1692 deletions

4
doc/.gitignore vendored
View File

@ -1 +1,5 @@
/html
/LAMMPS.epub
/LAMMPS.mobi
/Manual.pdf
/Developer.pdf

View File

@ -22,7 +22,7 @@ endif
SOURCES=$(wildcard src/*.txt)
OBJECTS=$(SOURCES:src/%.txt=$(RSTDIR)/%.rst)
.PHONY: help clean-all clean html pdf old venv
.PHONY: help clean-all clean epub html pdf old venv
# ------------------------------------------
@ -32,6 +32,7 @@ help:
@echo " pdf create Manual.pdf and Developer.pdf in this dir"
@echo " old create old-style HTML doc pages in old dir"
@echo " fetch fetch HTML and PDF files from LAMMPS web site"
@echo " epub create ePUB format manual for e-book readers"
@echo " clean remove all intermediate RST files"
@echo " clean-all reset the entire build environment"
@echo " txt2html build txt2html tool"
@ -63,6 +64,20 @@ html: $(OBJECTS)
@rm -rf html/USER/*/*.[sg]*
@echo "Build finished. The HTML pages are in doc/html."
epub: $(OBJECTS)
@mkdir -p epub
@rm -f LAMMPS.epub
@cp src/JPG/lammps-logo.png epub/
@(\
. $(VENV)/bin/activate ;\
cp -r src/* $(RSTDIR)/ ;\
sphinx-build -j 8 -b epub -c utils/sphinx-config -d $(BUILDDIR)/doctrees $(RSTDIR) epub ;\
deactivate ;\
)
@mv epub/LAMMPS.epub .
@rm -rf epub
@echo "Build finished. The ePUB manual file is created."
pdf: utils/txt2html/txt2html.exe
@(\
cd src; \

View File

@ -1,13 +1,14 @@
LAMMPS Documentation
Depending on how you obtained LAMMPS, this directory has 2 or 3
sub-directories and optionally 2 PDF files:
sub-directories and optionally 2 PDF files and an ePUB file:
src content files for LAMMPS documentation
html HTML version of the LAMMPS manual (see html/Manual.html)
tools tools and settings for building the documentation
Manual.pdf large PDF version of entire manual
Developer.pdf small PDF with info about how LAMMPS is structured
LAMMPS.epub Manual in ePUB format
If you downloaded LAMMPS as a tarball from the web site, all these
directories and files should be included.
@ -49,6 +50,7 @@ make pdf # generate 2 PDF files (Manual.pdf,Developer.pdf)
make old # generate old-style HTML pages in old dir via txt2html
make fetch # fetch HTML doc pages and 2 PDF files from web site
# as a tarball and unpack into html dir and 2 PDFs
make epub # generate LAMMPS.epub in ePUB format using Sphinx
make clean # remove intermediate RST files created by HTML build
make clean-all # remove entire build folder and any cached data
@ -91,3 +93,23 @@ This will install virtualenv from the Python Package Index.
----------------
Installing prerequisites for PDF build
[TBA]
----------------
Installing prerequisites for epub build
## ePUB
Same as for HTML. This uses the same tools and configuration
files as the HTML tree.
For converting the generated ePUB file to a mobi format file
(for e-book readers like Kindle, that cannot read ePUB), you
also need to have the 'ebook-convert' tool from the "calibre"
software installed. http://calibre-ebook.com/
You first create the ePUB file with 'make epub' and then do:
ebook-convert LAMMPS.epub LAMMPS.mobi

BIN
doc/src/JPG/lammps-logo.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.8 KiB

View File

@ -1,7 +1,7 @@
<!-- HTML_ONLY -->
<HEAD>
<TITLE>LAMMPS Users Manual</TITLE>
<META NAME="docnumber" CONTENT="18 Oct 2016 version">
<META NAME="docnumber" CONTENT="9 Nov 2016 version">
<META NAME="author" CONTENT="http://lammps.sandia.gov - Sandia National Laboratories">
<META NAME="copyright" CONTENT="Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.">
</HEAD>
@ -21,7 +21,7 @@
<H1></H1>
LAMMPS Documentation :c,h3
18 Oct 2016 version :c,h4
9 Nov 2016 version :c,h4
Version info: :h4

View File

@ -106,7 +106,7 @@ the $. Thus $\{myTemp\} and $x refer to variable names "myTemp" and
"x".
How the variable is converted to a text string depends on what style
of variable it is; see the "variable"_variable doc page for details.
of variable it is; see the "variable"_variable.html doc page for details.
It can be a variable that stores multiple text strings, and return one
of them. The returned text string can be multiple "words" (space
separated) which will then be interpreted as multiple arguments in the
@ -528,6 +528,8 @@ These are additional commands in USER packages, which can be used if
package"_Section_start.html#start_3.
"dump custom/vtk"_dump_custom_vtk.html,
"dump nc"_dump_nc.html,
"dump nc/mpiio"_dump_nc.html,
"group2ndx"_group2ndx.html,
"ndx2group"_group2ndx.html :tb(c=3,ea=c)
@ -884,6 +886,8 @@ KOKKOS, o = USER-OMP, t = OPT.
"body"_pair_body.html,
"bop"_pair_bop.html,
"born (go)"_pair_born.html,
"born/coul/dsf"_pair_born.html,
"born/coul/dsf/cs"_pair_born.html,
"born/coul/long (go)"_pair_born.html,
"born/coul/long/cs"_pair_born.html,
"born/coul/msm (o)"_pair_born.html,

View File

@ -8116,11 +8116,11 @@ boundary of a processor's sub-domain has moved more than 1/2 the
rebuilt and atoms being migrated to new processors. This also means
you may be missing pairwise interactions that need to be computed.
The solution is to change the re-neighboring criteria via the
"neigh_modify"_neigh_modify command. The safest settings are "delay 0
every 1 check yes". Second, it may mean that an atom has moved far
outside a processor's sub-domain or even the entire simulation box.
This indicates bad physics, e.g. due to highly overlapping atoms, too
large a timestep, etc. :dd
"neigh_modify"_neigh_modify.html command. The safest settings are
"delay 0 every 1 check yes". Second, it may mean that an atom has
moved far outside a processor's sub-domain or even the entire
simulation box. This indicates bad physics, e.g. due to highly
overlapping atoms, too large a timestep, etc. :dd
{Out of range atoms - cannot compute PPPM} :dt
@ -8132,11 +8132,11 @@ boundary of a processor's sub-domain has moved more than 1/2 the
rebuilt and atoms being migrated to new processors. This also means
you may be missing pairwise interactions that need to be computed.
The solution is to change the re-neighboring criteria via the
"neigh_modify"_neigh_modify command. The safest settings are "delay 0
every 1 check yes". Second, it may mean that an atom has moved far
outside a processor's sub-domain or even the entire simulation box.
This indicates bad physics, e.g. due to highly overlapping atoms, too
large a timestep, etc. :dd
"neigh_modify"_neigh_modify.html command. The safest settings are
"delay 0 every 1 check yes". Second, it may mean that an atom has
moved far outside a processor's sub-domain or even the entire
simulation box. This indicates bad physics, e.g. due to highly
overlapping atoms, too large a timestep, etc. :dd
{Out of range atoms - cannot compute PPPMDisp} :dt
@ -8148,11 +8148,11 @@ boundary of a processor's sub-domain has moved more than 1/2 the
rebuilt and atoms being migrated to new processors. This also means
you may be missing pairwise interactions that need to be computed.
The solution is to change the re-neighboring criteria via the
"neigh_modify"_neigh_modify command. The safest settings are "delay 0
every 1 check yes". Second, it may mean that an atom has moved far
outside a processor's sub-domain or even the entire simulation box.
This indicates bad physics, e.g. due to highly overlapping atoms, too
large a timestep, etc. :dd
"neigh_modify"_neigh_modify.html command. The safest settings are
"delay 0 every 1 check yes". Second, it may mean that an atom has
moved far outside a processor's sub-domain or even the entire
simulation box. This indicates bad physics, e.g. due to highly
overlapping atoms, too large a timestep, etc. :dd
{Overflow of allocated fix vector storage} :dt

View File

@ -1854,13 +1854,19 @@ internal LAMMPS operations. Note that LAMMPS classes are defined
within a LAMMPS namespace (LAMMPS_NS) if you use them from another C++
application.
Library.cpp contains these 5 basic functions:
Library.cpp contains these functions for creating and destroying an
instance of LAMMPS and sending it commands to execute. See the
documentation in the src/library.cpp file for details:
void lammps_open(int, char **, MPI_Comm, void **)
void lammps_open_no_mpi(int, char **, void **)
void lammps_close(void *)
int lammps_version(void *)
void lammps_file(void *, char *)
char *lammps_command(void *, char *) :pre
char *lammps_command(void *, char *)
void lammps_commands_list(void *, int, char **)
void lammps_commands_string(void *, char *)
void lammps_free(void *) :pre
The lammps_open() function is used to initialize LAMMPS, passing in a
list of strings as if they were "command-line
@ -1880,6 +1886,10 @@ half to the other code and run both codes simultaneously before
syncing them up periodically. Or it might instantiate multiple
instances of LAMMPS to perform different calculations.
The lammps_open_no_mpi() function is similar except that no MPI
communicator is passed from the caller. Instead, MPI_COMM_WORLD is
used to instantiate LAMMPS, and MPI is initialzed if necessary.
The lammps_close() function is used to shut down an instance of LAMMPS
and free all its memory.
@ -1891,44 +1901,93 @@ changes to the LAMMPS command syntax between versions. The returned
LAMMPS version code is an integer (e.g. 2 Sep 2015 results in
20150902) that grows with every new LAMMPS version.
The lammps_file() and lammps_command() functions are used to pass a
file or string to LAMMPS as if it were an input script or single
command in an input script. Thus the calling code can read or
generate a series of LAMMPS commands one line at a time and pass it
thru the library interface to setup a problem and then run it,
interleaving the lammps_command() calls with other calls to extract
information from LAMMPS, perform its own operations, or call another
code's library.
The lammps_file(), lammps_command(), lammps_commands_list(), and
lammps_commands_string() functions are used to pass one or more
commands to LAMMPS to execute, the same as if they were coming from an
input script.
Other useful functions are also included in library.cpp. For example:
Via these functions, the calling code can read or generate a series of
LAMMPS commands one or multiple at a time and pass it thru the library
interface to setup a problem and then run it in stages. The caller
can interleave the command function calls with operations it performs,
calls to extract information from or set information within LAMMPS, or
calls to another code's library.
The lammps_file() function passes the filename of an input script.
The lammps_command() function passes a single command as a string.
The lammps_commands_list() function passes multiple commands in a
char** list. In both lammps_command() and lammps_commands_list(),
individual commands may or may not have a trailing newline. The
lammps_commands_string() function passes multiple commands
concatenated into one long string, separated by newline characters.
In both lammps_commands_list() and lammps_commands_string(), a single
command can be spread across multiple lines, if the last printable
character of all but the last line is "&", the same as if the lines
appeared in an input script.
The lammps_free() function is a clean-up function to free memory that
the library allocated previously via other function calls. See
comments in src/library.cpp file for which other functions need this
clean-up.
Library.cpp also contains these functions for extracting information
from LAMMPS and setting value within LAMMPS. Again, see the
documentation in the src/library.cpp file for details, including
which quantities can be queried by name:
void *lammps_extract_global(void *, char *)
void *lammps_extract_atom(void *, char *)
void *lammps_extract_compute(void *, char *, int, int)
void *lammps_extract_fix(void *, char *, int, int, int, int)
void *lammps_extract_variable(void *, char *, char *)
void *lammps_extract_variable(void *, char *, char *) :pre
int lammps_set_variable(void *, char *, char *)
double lammps_get_thermo(void *, char *) :pre
int lammps_get_natoms(void *)
void lammps_get_coords(void *, double *)
void lammps_put_coords(void *, double *) :pre
void lammps_gather_atoms(void *, double *)
void lammps_scatter_atoms(void *, double *) :pre
void lammps_create_atoms(void *, int, tagint *, int *, double *, double *) :pre
These can extract various global or per-atom quantities from LAMMPS as
well as values calculated by a compute, fix, or variable. The
"set_variable" function can set an existing string-style variable to a
new value, so that subsequent LAMMPS commands can access the variable.
The "get" and "put" operations can retrieve and reset atom
coordinates. See the library.cpp file and its associated header file
library.h for details.
The extract functions return a pointer to various global or per-atom
quantities stored in LAMMPS or to values calculated by a compute, fix,
or variable. The pointer returned by the extract_global() function
can be used as a permanent reference to a value which may change. For
the other extract functions, the underlying storage may be reallocated
as LAMMPS runs, so you need to re-call the function to assure a
current pointer or returned value(s).
The key idea of the library interface is that you can write any
functions you wish to define how your code talks to LAMMPS and add
them to src/library.cpp and src/library.h, as well as to the "Python
interface"_Section_python.html. The routines you add can access or
change any LAMMPS data you wish. The examples/COUPLE and python
directories have example C++ and C and Python codes which show how a
driver code can link to LAMMPS as a library, run LAMMPS on a subset of
processors, grab data from LAMMPS, change it, and put it back into
LAMMPS.
The lammps_set_variable() function can set an existing string-style
variable to a new string value, so that subsequent LAMMPS commands can
access the variable. The lammps_get_thermo() function returns the
current value of a thermo keyword as a double.
The lammps_get_natoms() function returns the total number of atoms in
the system and can be used by the caller to allocate space for the
lammps_gather_atoms() and lammps_scatter_atoms() functions. The
gather function collects atom info of the requested type (atom coords,
types, forces, etc) from all procsesors, orders them by atom ID, and
returns a full list to each calling processor. The scatter function
does the inverse. It distributes the same kinds of values,
passed by the caller, to each atom owned by individual processors.
The lammps_create_atoms() function takes a list of N atoms as input
with atom types and coords (required), an optionally atom IDs and
velocities. It uses the coords of each atom to assign it as a new
atom to the processor that owns it. Additional properties for the new
atoms can be assigned via the lammps_scatter_atoms() or
lammps_extract_atom() functions.
The examples/COUPLE and python directories have example C++ and C and
Python codes which show how a driver code can link to LAMMPS as a
library, run LAMMPS on a subset of processors, grab data from LAMMPS,
change it, and put it back into LAMMPS.
NOTE: You can write code for additional functions as needed to define
how your code talks to LAMMPS and add them to src/library.cpp and
src/library.h, as well as to the "Python
interface"_Section_python.html. The added functions can access or
change any LAMMPS data you wish.
:line
@ -2670,7 +2729,7 @@ production runs and is only required during equilibration. This way one
is consistent with literature (based on the code packages DL_POLY or
GULP for instance).
The mentioned energy transfer will typically lead to a a small drift
The mentioned energy transfer will typically lead to a small drift
in total energy over time. This internal energy can be monitored
using the "compute chunk/atom"_compute_chunk_atom.html and "compute
temp/chunk"_compute_temp_chunk.html commands. The internal kinetic
@ -2771,7 +2830,7 @@ temp/drude"_compute_temp_drude.html. This requires also to use the
command {comm_modify vel yes}.
Short-range damping of the induced dipole interactions can be achieved
using Thole functions through the the "pair style
using Thole functions through the "pair style
thole"_pair_thole.html in "pair_style hybrid/overlay"_pair_hybrid.html
with a Coulomb pair style. It may be useful to use {coul/long/cs} or
similar from the CORESHELL package if the core and Drude particle come

View File

@ -366,11 +366,11 @@ complementary modeling tasks.
"DL_POLY"_dlpoly
"Tinker"_tinker :ul
:link(charmm,http://www.scripps.edu/brooks)
:link(amber,http://amber.scripps.edu)
:link(charmm,http://www.charmm.org)
:link(amber,http://ambermd.org)
:link(namd,http://www.ks.uiuc.edu/Research/namd/)
:link(nwchem,http://www.emsl.pnl.gov/docs/nwchem/nwchem.html)
:link(dlpoly,http://www.cse.clrc.ac.uk/msi/software/DL_POLY)
:link(dlpoly,http://www.ccp5.ac.uk/DL_POLY_CLASSIC)
:link(tinker,http://dasher.wustl.edu/tinker)
CHARMM, AMBER, NAMD, NWCHEM, and Tinker are designed primarily for

View File

@ -1153,6 +1153,7 @@ Package, Description, Author(s), Doc page, Example, Pic/movie, Library
"USER-MISC"_#USER-MISC, single-file contributions, USER-MISC/README, USER-MISC/README, -, -, -
"USER-MANIFOLD"_#USER-MANIFOLD, motion on 2d surface, Stefan Paquay (Eindhoven U of Technology), "fix manifoldforce"_fix_manifoldforce.html, USER/manifold, "manifold"_manifold, -
"USER-MOLFILE"_#USER-MOLFILE, "VMD"_VMD molfile plug-ins, Axel Kohlmeyer (Temple U), "dump molfile"_dump_molfile.html, -, -, VMD-MOLFILE
"USER-NC-DUMP"_#USER-NC-DUMP, dump output via NetCDF, Lars Pastewka (Karlsruhe Institute of Technology, KIT), "dump nc, dump nc/mpiio"_dump_nc.html, -, -, lib/netcdf
"USER-OMP"_#USER-OMP, OpenMP threaded styles, Axel Kohlmeyer (Temple U), "Section 5.3.4"_accelerate_omp.html, -, -, -
"USER-PHONON"_#USER-PHONON, phonon dynamical matrix, Ling-Ti Kong (Shanghai Jiao Tong U), "fix phonon"_fix_phonon.html, USER/phonon, -, -
"USER-QMMM"_#USER-QMMM, QM/MM coupling, Axel Kohlmeyer (Temple U), "fix qmmm"_fix_qmmm.html, USER/qmmm, -, lib/qmmm
@ -1598,6 +1599,29 @@ The person who created this package is Axel Kohlmeyer at Temple U
:line
USER-NC-DUMP package :link(USER-NC-DUMP),h5
Contents: Dump styles for writing NetCDF format files. NetCDF is a binary,
portable, self-describing file format on top of HDF5. The file format
contents follow the AMBER NetCDF trajectory conventions
(http://ambermd.org/netcdf/nctraj.xhtml), but include extensions to this
convention. This package implements a "dump nc"_dump_nc.html command
and a "dump nc/mpiio"_dump_nc.html command to output LAMMPS snapshots
in this format. See src/USER-NC-DUMP/README for more details.
NetCDF files can be directly visualized with the following tools:
Ovito (http://www.ovito.org/). Ovito supports the AMBER convention
and all of the above extensions. :ulb,l
VMD (http://www.ks.uiuc.edu/Research/vmd/) :l
AtomEye (http://www.libatoms.org/). The libAtoms version of AtomEye contains
a NetCDF reader that is not present in the standard distribution of AtomEye :l,ule
The person who created these files is Lars Pastewka at
Karlsruhe Institute of Technology (lars.pastewka at kit.edu).
Contact him directly if you have questions.
:line
USER-OMP package :link(USER-OMP),h5
Supporting info:

View File

@ -534,10 +534,11 @@ from lammps import lammps :pre
These are the methods defined by the lammps module. If you look at
the files src/library.cpp and src/library.h you will see that they
correspond one-to-one with calls you can make to the LAMMPS library
from a C++ or C or Fortran program.
from a C++ or C or Fortran program, and which are described in
"Section 6.19"_Section_howto.html#howto_19 of the manual.
lmp = lammps() # create a LAMMPS object using the default liblammps.so library
4 optional args are allowed: name, cmdargs, ptr, comm
# 4 optional args are allowed: name, cmdargs, ptr, comm
lmp = lammps(ptr=lmpptr) # use lmpptr as previously created LAMMPS object
lmp = lammps(comm=split) # create a LAMMPS object with a custom communicator, requires mpi4py 2.0.0 or later
lmp = lammps(name="g++") # create a LAMMPS object using the liblammps_g++.so library
@ -549,6 +550,8 @@ version = lmp.version() # return the numerical version id, e.g. LAMMPS 2 Sep 20
lmp.file(file) # run an entire input script, file = "in.lj"
lmp.command(cmd) # invoke a single LAMMPS command, cmd = "run 100" :pre
lmp.commands_list(cmdlist) # invoke commands in cmdlist = ["run 10", "run 20"]
lmp.commands_string(multicmd) # invoke commands in multicmd = "run 10\nrun 20"
xlo = lmp.extract_global(name,type) # extract a global quantity
# name = "boxxlo", "nlocal", etc
@ -580,6 +583,8 @@ var = lmp.extract_variable(name,group,flag) # extract value(s) from a variable
# 1 = atom-style variable :pre
flag = lmp.set_variable(name,value) # set existing named string-style variable to value, flag = 0 if successful
value = lmp.get_thermo(name) # return current value of a thermo keyword
natoms = lmp.get_natoms() # total # of atoms as int
data = lmp.gather_atoms(name,type,count) # return atom attribute of all atoms gathered into data, ordered by atom ID
# name = "x", "charge", "type", etc
@ -599,9 +604,10 @@ create an instance of LAMMPS, wrapped in a Python class by the lammps
Python module, and return an instance of the Python class as lmp. It
is used to make all subequent calls to the LAMMPS library.
Additional arguments can be used to tell Python the name of the shared
library to load or to pass arguments to the LAMMPS instance, the same
as if LAMMPS were launched from a command-line prompt.
Additional arguments to lammps() can be used to tell Python the name
of the shared library to load or to pass arguments to the LAMMPS
instance, the same as if LAMMPS were launched from a command-line
prompt.
If the ptr argument is set like this:
@ -626,8 +632,9 @@ lmp2 = lammps()
lmp1.file("in.file1")
lmp2.file("in.file2") :pre
The file() and command() methods allow an input script or single
commands to be invoked.
The file(), command(), commands_list(), commands_string() methods
allow an input script, a single command, or multiple commands to be
invoked.
The extract_global(), extract_atom(), extract_compute(),
extract_fix(), and extract_variable() methods return values or

View File

@ -706,7 +706,7 @@ future changes to LAMMPS.
User packages, such as user-atc or user-omp, have been contributed by
users, and always begin with the user prefix. If they are a single
command (single file), they are typically in the user-misc package.
Otherwise, they are a a set of files grouped together which add a
Otherwise, they are a set of files grouped together which add a
specific functionality to the code.
User packages don't necessarily meet the requirements of the standard
@ -1601,9 +1601,9 @@ implementations, either by environment variables that specify how to
order physical processors, or by config files that specify what
physical processors to assign to each MPI rank. The -reorder switch
simply gives you a portable way to do this without relying on MPI
itself. See the "processors out"_processors command for how to output
info on the final assignment of physical processors to the LAMMPS
simulation domain.
itself. See the "processors out"_processors.html command for how
to output info on the final assignment of physical processors to
the LAMMPS simulation domain.
-screen file :pre

View File

@ -151,7 +151,7 @@ can start running so that the CPU pipeline is still being used
efficiently. Although benefits can be seen by launching a MPI task
for every hardware thread, for multinode simulations, we recommend
that OpenMP threads are used for SMT instead, either with the
USER-INTEL package, "USER-OMP package"_accelerate_omp.html", or
USER-INTEL package, "USER-OMP package"_accelerate_omp.html, or
"KOKKOS package"_accelerate_kokkos.html. In the example above, up
to 36X speedups can be observed by using all 36 physical cores with
LAMMPS. By using all 72 hardware threads, an additional 10-30%
@ -343,7 +343,7 @@ when using offload.
Not all styles are supported in the USER-INTEL package. You can mix
the USER-INTEL package with styles from the "OPT"_accelerate_opt.html
package or the "USER-OMP package"_accelerate_omp.html". Of course,
package or the "USER-OMP package"_accelerate_omp.html. Of course,
this requires that these packages were installed at build time. This
can performed automatically by using "-sf hybrid intel opt" or
"-sf hybrid intel omp" command-line options. Alternatively, the "opt"

View File

@ -74,7 +74,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -61,7 +61,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -66,7 +66,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -74,7 +74,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -66,7 +66,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -65,11 +65,11 @@ more instructions on how to use the accelerated styles effectively.
:line
[Restrictions:] none
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
MOLECULE package. See the "Making LAMMPS"_Section_start.html#start_3
section for more info on packages.
[Related commands:]

View File

@ -76,7 +76,7 @@ for specific angle types.
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
Unlike other angle styles, the hybrid angle style does not store angle

View File

@ -147,7 +147,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -166,7 +166,7 @@ stores a per-particle mass and size and orientation (i.e. the corner
points of the triangle).
The {template} style allows molecular topolgy (bonds,angles,etc) to be
defined via a molecule template using the "molecule"_molecule.txt
defined via a molecule template using the "molecule"_molecule.html
command. The template stores one or more molecules with a single copy
of the topology info (bonds,angles,etc) of each. Individual atoms
only store a template index and template atom to identify which

View File

@ -70,10 +70,10 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This bond style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
You typically should specify "special_bonds fene"_special_bonds.html"
You typically should specify "special_bonds fene"_special_bonds.html
or "special_bonds lj/coul 0 1 1"_special_bonds.html to use this bond
style. LAMMPS will issue a warning it that's not the case.

View File

@ -73,10 +73,10 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This bond style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
You typically should specify "special_bonds fene"_special_bonds.html"
You typically should specify "special_bonds fene"_special_bonds.html
or "special_bonds lj/coul 0 1 1"_special_bonds.html to use this bond
style. LAMMPS will issue a warning it that's not the case.

View File

@ -65,7 +65,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This bond style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -59,7 +59,7 @@ bond types.
[Restrictions:]
This bond style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
Unlike other bond styles, the hybrid bond style does not store bond

View File

@ -64,7 +64,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This bond style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -64,7 +64,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This bond style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -99,7 +99,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This bond style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
The {quartic} style requires that "special_bonds"_special_bonds.html

View File

@ -144,7 +144,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This bond style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -114,7 +114,7 @@ local defects surrounding the central atom, as described above. For
the {axes yes} case, the vector components are also unitless, since
they represent spatial directions.
Here are typical centro-symmetry values, from a a nanoindentation
Here are typical centro-symmetry values, from a nanoindentation
simulation into gold (FCC). These were provided by Jon Zimmerman
(Sandia):

View File

@ -536,7 +536,7 @@ For the {bin/cylinder} style the details are as follows. If {discard}
is set to {yes}, an out-of-domain atom will have its chunk ID set to
0. If {discard} is set to {no}, the atom will have its chunk ID set
to the first or last bin in both the radial and axis dimensions. If
{discard} is set to {mixed}, which is the default, the the radial
{discard} is set to {mixed}, which is the default, the radial
dimension is treated the same as for {discard} = no. But for the axis
dimensinon, it will only have its chunk ID set to the first or last
bin if bins extend to the simulation box boundary in the axis

View File

@ -236,7 +236,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
[Related commands:]
"fix adapt/fep"_fix_adapt_fep.html, "fix ave/time"_fix_ave_time.html,
"pair_lj_soft_coul_soft"_pair_lj_soft_coul_soft.txt
"pair_style lj/soft/coul/soft"_pair_lj_soft.html
[Default:]

View File

@ -15,7 +15,7 @@ compute ID group-ID orientorder/atom keyword values ... :pre
ID, group-ID are documented in "compute"_compute.html command :ulb,l
orientorder/atom = style name of this compute command :l
one or more keyword/value pairs may be appended :l
keyword = {cutoff} or {nnn} or {ql}
keyword = {cutoff} or {nnn} or {degrees}
{cutoff} value = distance cutoff
{nnn} value = number of nearest neighbors
{degrees} values = nlvalues, l1, l2,... :pre
@ -111,7 +111,7 @@ options.
[Default:]
The option defaults are {cutoff} = pair style cutoff, {nnn} = 12, {degrees} = 5 4 6 8 9 10 12 i.e. {Q}4, {Q}6, {Q}8, {Q}10, and {Q}12.
The option defaults are {cutoff} = pair style cutoff, {nnn} = 12, {degrees} = 5 4 6 8 10 12 i.e. {Q}4, {Q}6, {Q}8, {Q}10, and {Q}12.
:line

View File

@ -78,7 +78,7 @@ defined by the "pair_style"_pair_style.html command for the types of
the two atoms is used. For the {radius} setting, the sum of the radii
of the two particles is used as a cutoff. For example, this is
appropriate for granular particles which only interact when they are
overlapping, as computed by "granular pair styles"_pair_gran.txt.
overlapping, as computed by "granular pair styles"_pair_gran.html.
If the inputs are bond, angle, etc attributes, the local data is
generated by looping over all the atoms owned on a processor and

View File

@ -60,7 +60,7 @@ produced by a small set of atoms (e.g. 4 atoms in a dihedral or 3
atoms in a Tersoff 3-body interaction) is assigned in equal portions
to each atom in the set. E.g. 1/4 of the dihedral virial to each of
the 4 atoms, or 1/3 of the fix virial due to SHAKE constraints applied
to atoms in a a water molecule via the "fix shake"_fix_shake.html
to atoms in a water molecule via the "fix shake"_fix_shake.html
command.
If no extra keywords are listed, all of the terms in this formula are

View File

@ -69,8 +69,8 @@ velocity for each atom. Note that if there is only one atom in the
bin, its thermal velocity will thus be 0.0.
After the spatially-averaged velocity field has been subtracted from
each atom, the temperature is calculated by the formula KE = (dim/2 N
- dim*Nx*Ny*Nz) k T, where KE = total kinetic energy of the group of
each atom, the temperature is calculated by the formula KE = (dim*N
- dim*Nx*Ny*Nz) k T/2, where KE = total kinetic energy of the group of
atoms (sum of 1/2 m v^2), dim = 2 or 3 = dimensionality of the
simulation, N = number of atoms in the group, k = Boltzmann constant,
and T = temperature. The dim*Nx*Ny*Nz term are degrees of freedom

View File

@ -109,7 +109,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This dihedral style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -76,7 +76,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This dihedral style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -69,7 +69,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This dihedral style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -77,7 +77,7 @@ for specific dihedral types.
[Restrictions:]
This dihedral style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
Unlike other dihedral styles, the hybrid dihedral style does not store

View File

@ -63,7 +63,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This dihedral style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -71,7 +71,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This dihedral style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -154,7 +154,7 @@ radians instead of degrees. (Note: This changes the way the forces
are scaled in the 4th column of the data file.)
The optional "CHECKU" keyword is followed by a filename. This allows
the user to save all of the the {Ntable} different entries in the
the user to save all of the {Ntable} different entries in the
interpolated energy table to a file to make sure that the interpolated
function agrees with the user's expectations. (Note: You can
temporarily increase the {Ntable} parameter to a high value for this

View File

@ -12,6 +12,7 @@ dump command :h3
"dump image"_dump_image.html command :h3
"dump movie"_dump_image.html command :h3
"dump molfile"_dump_molfile.html command :h3
"dump nc"_dump_nc.html command :h3
[Syntax:]
@ -43,7 +44,9 @@ args = list of arguments for a particular style :l
{movie} args = discussed on "dump image"_dump_image.html doc page :pre
{molfile} args = discussed on "dump molfile"_dump_molfile.html doc page :pre
{molfile} args = discussed on "dump molfile"_dump_molfile.html doc page
{nc} args = discussed on "dump nc"_dump_nc.html doc page :pre
{local} args = list of local attributes
possible attributes = index, c_ID, c_ID\[I\], f_ID, f_ID\[I\]

View File

@ -165,7 +165,7 @@ extra buffering.
:line
The {element} keyword applies only to the the dump {cfg}, {xyz}, and
The {element} keyword applies only to the dump {cfg}, {xyz}, and
{image} styles. It associates element names (e.g. H, C, Fe) with
LAMMPS atom types. See the list of element names at the bottom of
this page.
@ -574,7 +574,7 @@ e.g. its x-component of velocity if the atom-attribute "vx" was
specified.
The basic idea of a color map is that the atom-attribute will be
within a range of values, and that range is associated with a a series
within a range of values, and that range is associated with a series
of colors (e.g. red, blue, green). An atom's specific value (vx =
-3.2) can then mapped to the series of colors (e.g. halfway between
red and blue), and a specific color is determined via an interpolation

View File

@ -31,30 +31,32 @@ dump 1 all nc/mpiio 1000 traj.nc id type x y z :pre
[Description:]
Dump a snapshot of atom coordinates every N timesteps in Amber-style
NetCDF file format. NetCDF files are binary, portable and self-describing.
This dump style will write only one file on the root node. The dump
style {nc} uses the "standard NetCDF library"_netcdf-home all data is
collected on one processor and then written to the dump file. Dump style
{nc/mpiio} used the "parallel NetCDF library"_pnetcdf-home and MPI-IO;
it has better performance on a larger number of processors. Note that
'nc' outputs all atoms sorted by atom tag while 'nc/mpiio' outputs in
order of the MPI rank.
NetCDF file format. NetCDF files are binary, portable and
self-describing. This dump style will write only one file on the root
node. The dump style {nc} uses the "standard NetCDF
library"_netcdf-home all data is collected on one processor and then
written to the dump file. Dump style {nc/mpiio} used the "parallel
NetCDF library"_pnetcdf-home and MPI-IO; it has better performance on
a larger number of processors. Note that 'nc' outputs all atoms sorted
by atom tag while 'nc/mpiio' outputs in order of the MPI rank.
In addition to per-atom data, also global (i.e. not per atom, but per frame)
quantities can be included in the dump file. This can be variables, output
from computes or fixes data prefixed with v_, c_ and f_, respectively.
These properties are included via "dump_modify"_dump_modify.html {global}.
In addition to per-atom data, also global (i.e. not per atom, but per
frame) quantities can be included in the dump file. This can be
variables, output from computes or fixes data prefixed with v_, c_ and
f_, respectively. These properties are included via
"dump_modify"_dump_modify.html {global}.
:link(netcdf-home,http://www.unidata.ucar.edu/software/netcdf/)
:link(pnetcdf-home,http://trac.mcs.anl.gov/projects/parallel-netcdf/)
:line
[Restrictions:]
The {nc} and {nc/mpiio} dump styles are part of the USER-NC-DUMP package.
It is only enabled if LAMMPS was built with that package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
:link(netcdf-home,http://www.unidata.ucar.edu/software/netcdf/)
:link(pnetcdf-home,http://trac.mcs.anl.gov/projects/parallel-netcdf/)
The {nc} and {nc/mpiio} dump styles are part of the USER-NC-DUMP
package. It is only enabled if LAMMPS was built with that
package. See the "Making LAMMPS"_Section_start.html#start_3 section
for more info.
:line

View File

@ -190,6 +190,7 @@ of "this page"_Section_commands.html#cmd_5.
"gcmc"_fix_gcmc.html - grand canonical insertions/deletions
"gld"_fix_gcmc.html - generalized Langevin dynamics integrator
"gravity"_fix_gravity.html - add gravity to atoms in a granular simulation
"halt"_fix_halt.html - terminate a dynamics run or minimization
"heat"_fix_heat.html - add/subtract momentum-conserving heat
"indent"_fix_indent.html - impose force due to an indenter
"langevin"_fix_langevin.html - Langevin temperature control

View File

@ -113,7 +113,7 @@ quantity being minimized), you MUST enable the
[Restrictions:]
This fix can only be used if LAMMPS was built with the MOLECULE
package (which it is by default). See the "Making
package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -150,7 +150,7 @@ initial box length is 100 Angstroms, and V is 10 Angstroms/psec, then
after 10 psec, the box length will have doubled. After 20 psec, it
will have tripled.
The {erate} style changes a dimension of the the box at a "constant
The {erate} style changes a dimension of the box at a "constant
engineering strain rate". The units of the specified strain rate are
1/time. See the "units"_units.html command for the time units
associated with different choices of simulation units,

View File

@ -237,7 +237,7 @@ described in the papers cited below, the purpose of this method is to
enable longer timesteps to be used (up to the numerical stability
limit of the integrator), while still producing the correct Boltzmann
distribution of atom positions. It is implemented within LAMMPS, by
changing how the the random force is applied so that it is composed of
changing how the random force is applied so that it is composed of
the average of two random forces representing half-contributions from
the previous and current time intervals.

View File

@ -233,7 +233,7 @@ present, the speed of sound squared is set equal to (1/3)*(dx/dt)^2.
Setting a0 > (dx/dt)^2 is not allowed, as this may lead to
instabilities.
If the {noise} keyword is used, followed by a a positive temperature
If the {noise} keyword is used, followed by a positive temperature
value, and a positive integer random number seed, a thermal
lattice-Boltzmann algorithm is used. If {LBtype} is set equal to 1
(i.e. the standard LB integrator is chosen), the thermal LB algorithm

View File

@ -184,7 +184,7 @@ This fix requires LAMMPS be built with an FFT library. See the
[Default:]
The option defaults are sysdim = the same dimemsion as specified by
the "dimension"_dimension command, and nasr = 20.
the "dimension"_dimension.html command, and nasr = 20.
:line

View File

@ -177,7 +177,7 @@ their values. This means that the values can be output via the "dump
custom"_dump.html command, accessed by fixes like "fix
ave/atom"_fix_ave_atom.html, accessed by other computes like "compute
reduce"_compute_reduce.html, or used in "atom-style
variables"_variables.
variables"_variable.html.
For example, these commands will output two new properties to a custom
dump file:

View File

@ -8,6 +8,7 @@
fix reax/bonds command :h3
fix reax/c/bonds command :h3
fix reax/c/bonds/kk command :h3
[Syntax:]
@ -47,6 +48,31 @@ commands"_Section_howto.html#howto_15. No parameter of this fix can
be used with the {start/stop} keywords of the "run"_run.html command.
This fix is not invoked during "energy minimization"_minimize.html.
:line
Styles with a {gpu}, {intel}, {kk}, {omp}, or {opt} suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed in "Section_accelerate"_Section_accelerate.html
of the manual. The accelerated styles take the same arguments and
should produce the same results, except for round-off and precision
issues.
These accelerated styles are part of the GPU, USER-INTEL, KOKKOS,
USER-OMP and OPT packages, respectively. They are only enabled if
LAMMPS was built with those packages. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section_accelerate"_Section_accelerate.html of the manual for
more instructions on how to use the accelerated styles effectively.
:line
[Restrictions:]
The fix reax/bonds command requires that the "pair_style

View File

@ -7,6 +7,7 @@
:line
fix reax/c/species command :h3
fix reax/c/species/kk command :h3
[Syntax:]
@ -129,6 +130,31 @@ No parameter of this fix can be used with the {start/stop} keywords of
the "run"_run.html command. This fix is not invoked during "energy
minimization"_minimize.html.
:line
Styles with a {gpu}, {intel}, {kk}, {omp}, or {opt} suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed in "Section_accelerate"_Section_accelerate.html
of the manual. The accelerated styles take the same arguments and
should produce the same results, except for round-off and precision
issues.
These accelerated styles are part of the GPU, USER-INTEL, KOKKOS,
USER-OMP and OPT packages, respectively. They are only enabled if
LAMMPS was built with those packages. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section_accelerate"_Section_accelerate.html of the manual for
more instructions on how to use the accelerated styles effectively.
:line
[Restrictions:]
The fix species currently only works with

View File

@ -620,7 +620,7 @@ rigid styles for the rigid bodies. :l
Use "fix press/berendsen"_fix_press_berendsen.html to compute the
pressure and change the box dimensions. Use one of the 4 NVE or 2 NVT
rigid styles for the rigid bodies. Use "fix nvt"_fix_nh.thml (or any
rigid styles for the rigid bodies. Use "fix nvt"_fix_nh.html (or any
other thermostat) for the non-rigid particles. :l
:ule

View File

@ -87,7 +87,7 @@ end of each run. A positive value N means that the diagnostics are reported once
per N time-steps.
The diagnostics report the average # of integrator steps and RHS function evaluations
and run-time per ODE as well as the the average/RMS/min/max per process. If the
and run-time per ODE as well as the average/RMS/min/max per process. If the
reporting frequency is 1, the RMS/min/max per ODE are also reported. The per ODE
statistics can be used to adjust the tolerance and min/max step parameters. The
statistics per MPI process can be useful to examine any load imbalance caused by the

View File

@ -28,7 +28,7 @@ fix 1 all smd/adjust_dt 0.1 :pre
The fix calculates a new stable time increment for use with the SMD time integrators.
The stable time increment is based on multiple conditions. For the SPH pair styles, a
CFL criterion (Courant, Friedrichs & Lewy, 1928) is evaluated, which determines the the speed of
CFL criterion (Courant, Friedrichs & Lewy, 1928) is evaluated, which determines the speed of
sound cannot propagate further than a typical spacing between particles within a single time step to ensure
no information is lost. For the contact pair styles, a linear analysis of the pair potential determines a
stable maximum time step.

View File

@ -101,7 +101,7 @@ particles move in the normal way via a time integration "fix"_fix.html
with a short timestep dt. SRD particles advect with a large timestep
dt_SRD >= dt.
If the {lamda} keyword is not specified, the the SRD temperature
If the {lamda} keyword is not specified, the SRD temperature
{Tsrd} is used in the above formula to compute lamda. If the {lamda}
keyword is specified, then the {Tsrd} setting is ignored and the above
equation is used to compute the SRD temperature.

View File

@ -104,7 +104,7 @@ the Nose-Hoover thermostat ("fix nvt"_fix_nh.html) is {NOT}
recommended due to its well documented issues with the canonical
sampling of harmonic degrees of freedom (notice that the {chain}
option will {NOT} solve this problem). The Langevin thermostat ("fix
langevin"_fix_langevin.html") correctly thermostats the system and we
langevin"_fix_langevin.html) correctly thermostats the system and we
advise its usage with ti/spring command.
[Restart, fix_modify, output, run start/stop, minimize info:]

View File

@ -107,7 +107,7 @@ specified as parameters to the fix. The other quantities are derived.
The form of the heat diffusion equation used here is almost the same
as that in equation 6 of "(Duffy)"_#Duffy, with the exception that the
electronic density is explicitly reprensented, rather than being part
of the the specific heat parameter.
of the specific heat parameter.
Currently, fix ttm assumes that none of the user-supplied parameters
will vary with temperature. Note that "(Duffy)"_#Duffy used a tanh()

View File

@ -77,7 +77,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This improper style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -81,7 +81,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This improper style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -55,7 +55,7 @@ types.
[Restrictions:]
This improper style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
Unlike other improper styles, the hybrid improper style does not store

View File

@ -27,7 +27,7 @@ between quadruplets of atoms, which remain in force for the duration
of the simulation. The list of improper quadruplets is read in by a
"read_data"_read_data.html or "read_restart"_read_restart.html command
from a data or restart file. Note that the ordering of the 4 atoms in
an improper quadruplet determines the the definition of the improper
an improper quadruplet determines the definition of the improper
angle used in the formula for each style. See the doc pages of
individual styles for details.

View File

@ -74,7 +74,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This improper style can only be used if LAMMPS was built with the
MOLECULE package (which it is by default). See the "Making
MOLECULE package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -83,9 +83,9 @@ replica. Conceptually, the non-NEB atoms provide a background force
field for the NEB atoms. They can be allowed to move during the NEB
minimiation procedure (which will typically induce different
coordinates for non-NEB atoms in different replicas), or held fixed
using other LAMMPS commands such as "fix setforce"_fix_setforce. Note
that the "partition"_partition.html command can be used to invoke a
command on a subset of the replicas, e.g. if you wish to hold NEB or
using other LAMMPS commands such as "fix setforce"_fix_setforce.html.
Note that the "partition"_partition.html command can be used to invoke
a command on a subset of the replicas, e.g. if you wish to hold NEB or
non-NEB atoms fixed in only the end-point replicas.
The initial atomic configuration for each of the replicas can be
@ -284,7 +284,7 @@ ID2 x2 y2 z2
...
IDN xN yN zN :pre
The fields are the the atom ID, followed by the x,y,z coordinates.
The fields are the atom ID, followed by the x,y,z coordinates.
The lines can be listed in any order. Additional trailing information
on the line is OK, such as a comment.

View File

@ -44,7 +44,7 @@ one value from their respective list of values. A {file}-style
variable reads the next line from its associated file. An
{atomfile}-style variable reads the next set of lines (one per atom)
from its associated file. {String-} or {atom}- or {equal}- or
{world}-style variables cannot be used with the the next command,
{world}-style variables cannot be used with the next command,
since they only store a single value.
When any of the variables in the next command has no more values, a

View File

@ -168,7 +168,7 @@ This pair style can only be used via the {pair} keyword of the
[Restrictions:]
This pair style is part of the MANYBODY package. It is only enabled
if LAMMPS was built with that package (which it is by default).
if LAMMPS was built with that package.
[Related commands:]

View File

@ -203,9 +203,8 @@ These pair styles can only be used via the {pair} keyword of the
[Restrictions:]
These pair styles are part of the MANYBODY package. They are only
enabled if LAMMPS was built with that package (which it is by
default). See the "Making LAMMPS"_Section_start.html#start_3 section
for more info.
enabled if LAMMPS was built with that package. See the
"Making LAMMPS"_Section_start.html#start_3 section for more info.
These pair potentials require the "newton"_newton.html setting to be
"on" for pair interactions.

View File

@ -382,7 +382,7 @@ This pair style can only be used via the {pair} keyword of the
[Restrictions:]
These pair styles are part of the MANYBODY package. They are only
enabled if LAMMPS was built with that package (which it is by default).
enabled if LAMMPS was built with that package.
See the "Making LAMMPS"_Section_start.html#start_3 section for more
info.

View File

@ -19,6 +19,8 @@ pair_style born/coul/msm/omp command :h3
pair_style born/coul/wolf command :h3
pair_style born/coul/wolf/gpu command :h3
pair_style born/coul/wolf/omp command :h3
pair_style born/coul/dsf command :h3
pair_style born/coul/dsf/cs command :h3
[Syntax:]
@ -37,7 +39,11 @@ args = list of arguments for a particular style :ul
{born/coul/wolf} args = alpha cutoff (cutoff2)
alpha = damping parameter (inverse distance units)
cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units) :pre
cutoff2 = global cutoff for Coulombic (optional) (distance units)
{born/coul/dsf} or {born/coul/dsf/cs} args = alpha cutoff (cutoff2)
alpha = damping parameter (inverse distance units)
cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (distance units) :pre
[Examples:]
@ -62,6 +68,10 @@ pair_style born/coul/wolf 0.25 10.0 9.0
pair_coeff * * 6.08 0.317 2.340 24.18 11.51
pair_coeff 1 1 6.08 0.317 2.340 24.18 11.51 :pre
pair_style born/coul/dsf 0.1 10.0 12.0
pair_coeff * * 0.0 1.00 0.00 0.00 0.00
pair_coeff 1 1 480.0 0.25 0.00 1.05 0.50 :pre
[Description:]
The {born} style computes the Born-Mayer-Huggins or Tosi/Fumi
@ -90,10 +100,14 @@ term.
The {born/coul/wolf} style adds a Coulombic term as described for the
Wolf potential in the "coul/wolf"_pair_coul.html pair style.
The {born/coul/dsf} style computes the Coulomb contribution with the
damped shifted force model as in the "coul/dsf"_pair_coul.html style.
Style {born/coul/long/cs} is identical to {born/coul/long} except that
a term is added for the "core/shell model"_Section_howto.html#howto_25
to allow charges on core and shell particles to be separated by r =
0.0.
0.0. The same correction is introduced for {born/coul/dsf/cs} style
which is identical to {born/coul/dsf}.
Note that these potentials are related to the "Buckingham
potential"_pair_buck.html.
@ -116,9 +130,10 @@ The second coefficient, rho, must be greater than zero.
The last coefficient is optional. If not specified, the global A,C,D
cutoff specified in the pair_style command is used.
For {born/coul/long} and {born/coul/wolf} no Coulombic cutoff can be
specified for an individual I,J type pair. All type pairs use the
same global Coulombic cutoff specified in the pair_style command.
For {born/coul/long}, {born/coul/wolf} and {born/coul/dsf} no
Coulombic cutoff can be specified for an individual I,J type pair.
All type pairs use the same global Coulombic cutoff specified in the
pair_style command.
:line
@ -174,9 +189,8 @@ respa"_run_style.html command. They do not support the {inner},
[Restrictions:]
The {born/coul/long} style is part of the KSPACE package. It is only
enabled if LAMMPS was built with that package (which it is by
default). See the "Making LAMMPS"_Section_start.html#start_3 section
for more info.
enabled if LAMMPS was built with that package. See the
"Making LAMMPS"_Section_start.html#start_3 section for more info.
[Related commands:]

View File

@ -186,9 +186,8 @@ respa"_run_style.html command. They do not support the {inner},
The {buck/coul/long} style is part of the KSPACE package. The
{buck/coul/long/cs} style is part of the CORESHELL package. They are
only enabled if LAMMPS was built with that package (which it is by
default). See the "Making LAMMPS"_Section_start.html#start_3 section
for more info.
only enabled if LAMMPS was built with that package. See the
"Making LAMMPS"_Section_start.html#start_3 section for more info.
[Related commands:]

View File

@ -156,7 +156,7 @@ These pair styles can only be used via the {pair} keyword of the
[Restrictions:]
These pair styles are part of the MANYBODY package. It is only enabled
if LAMMPS was built with that package (which it is by default). See
if LAMMPS was built with that package. See
the "Making LAMMPS"_Section_start.html#start_3 section for more info.
These pair styles requires the "newton"_newton.html setting to be "on"

View File

@ -313,9 +313,8 @@ This pair style can only be used via the {pair} keyword of the
The {coul/long}, {coul/msm} and {tip4p/long} styles are part of the
KSPACE package. The {coul/long/cs} style is part of the CORESHELL
package. They are only enabled if LAMMPS was built with that package
(which it is by default). See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
package. They are only enabled if LAMMPS was built with that package.
See the "Making LAMMPS"_Section_start.html#start_3 section for more info.
[Related commands:]

View File

@ -8,19 +8,24 @@
pair_style born/coul/long/cs command :h3
pair_style buck/coul/long/cs command :h3
pair_style born/coul/dsf/cs command :h3
[Syntax:]
pair_style style args :pre
style = {born/coul/long/cs} or {buck/coul/long/cs}
style = {born/coul/long/cs} or {buck/coul/long/cs} or {born/coul/dsf/cs}
args = list of arguments for a particular style :ul
{born/coul/long/cs} args = cutoff (cutoff2)
cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units)
{buck/coul/long/cs} args = cutoff (cutoff2)
cutoff = global cutoff for Buckingham (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units) :pre
cutoff2 = global cutoff for Coulombic (optional) (distance units)
{born/coul/dsf/cs} args = alpha cutoff (cutoff2)
alpha = damping parameter (inverse distance units)
cutoff = global cutoff for non-Coulombic (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (distance units) :pre
[Examples:]
@ -32,6 +37,10 @@ pair_style buck/coul/long/cs 10.0 8.0
pair_coeff * * 100.0 1.5 200.0
pair_coeff 1 1 100.0 1.5 200.0 9.0 :pre
pair_style born/coul/dsf/cs 0.1 10.0 12.0
pair_coeff * * 0.0 1.00 0.00 0.00 0.00
pair_coeff 1 1 480.0 0.25 0.00 1.05 0.50 :pre
[Description:]
These pair styles are designed to be used with the adiabatic
@ -39,7 +48,7 @@ core/shell model of "(Mitchell and Finchham)"_#MitchellFinchham. See
"Section 6.25"_Section_howto.html#howto_25 of the manual for an
overview of the model as implemented in LAMMPS.
These pair styles are identical to the "pair_style
The styles with a {coul/long} term are identical to the "pair_style
born/coul/long"_pair_born.html and "pair_style
buck/coul/long"_pair_buck.html styles, except they correctly treat the
special case where the distance between two charged core and shell
@ -63,6 +72,14 @@ where C is an energy-conversion constant, Qi and Qj are the charges on
the core and shell, epsilon is the dielectric constant and r_min is the
minimal distance.
The pair style {born/coul/dsf/cs} is identical to the
"pair_style born/coul/dsf"_pair_born.html style, which uses the
the damped shifted force model as in "coul/dsf"_pair_coul.html
to compute the Coulomb contribution. This approach does not require
a long-range solver, thus the only correction is the addition of a
minimal distance to avoid the possible r = 0.0 case for a
core/shell pair.
[Restrictions:]
These pair styles are part of the CORESHELL package. They are only

View File

@ -412,9 +412,8 @@ The eam pair styles can only be used via the {pair} keyword of the
[Restrictions:]
All of these styles except the {eam/cd} style are part of the MANYBODY
package. They are only enabled if LAMMPS was built with that package
(which it is by default). See the "Making
LAMMPS"_Section_start.html#start_3 section for more info.
package. They are only enabled if LAMMPS was built with that package.
See the "Making LAMMPS"_Section_start.html#start_3 section for more info.
The {eam/cd} style is part of the USER-MISC package and also requires
the MANYBODY package. It is only enabled if LAMMPS was built with

View File

@ -159,7 +159,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This style is part of the MANYBODY package. It is only enabled if
LAMMPS was built with that package (which it is by default).
LAMMPS was built with that package.
[Related commands:]

View File

@ -138,8 +138,8 @@ angle cutoff (degrees) :ul
A single hydrogen atom type K can be specified, or a wild-card
asterisk can be used in place of or in conjunction with the K
arguments to select multiple types as hydrogens. This takes the form
"*" or "*n" or "n*" or "m*n". See the "pair_coeff"_pair_coeff command
doc page for details.
"*" or "*n" or "n*" or "m*n". See the "pair_coeff"_pair_coeff.html
command doc page for details.
If the donor flag is {i}, then the atom of type I in the pair_coeff
command is treated as the donor, and J is the acceptor. If the donor

View File

@ -72,7 +72,7 @@ This pair style can only be used via the {pair} keyword of the
[Restrictions:]
This pair styles is part of the MANYBODY package. It is only enabled
if LAMMPS was built with that package (which it is by default). See
if LAMMPS was built with that package. See
the "Making LAMMPS"_Section_start.html#start_3 section for more info.
This pair potential requires the "newton"_newton.html setting to be

View File

@ -60,8 +60,8 @@ pair_style command or overridden with an optional argument in the
pair_coeff command for a type pair as discussed below. The distance
between the centers of 2 line segments, or the center of a line
segment and a point particle, must be less than this distance (plus
the neighbor skin; see the "neighbor"_neighbor command), for the pair
of particles to be included in the neighbor list.
the neighbor skin; see the "neighbor"_neighbor.html command), for
the pair of particles to be included in the neighbor list.
NOTE: This means that a too-short value for the {cutoff} setting can
exclude a pair of particles from the neighbor list even if pairs of

View File

@ -119,7 +119,7 @@ of walls (whether moving or stationary) will affect the volume
fraction available to colloidal particles. This is currently accounted
for with the following types of walls: "wall/lj93"_fix_wall.html,
"wall/lj126"_fix_wall.html, "wall/colloid"_fix_wall.html, and
"wall/harmonic_fix_wall.html". For these wall styles, the correct
"wall/harmonic"_fix_wall.html. For these wall styles, the correct
volume fraction will be used when walls do not coincide with the box
boundary, as well as when walls move and thereby cause a change in the
volume fraction. To use these wall styles with pair_style {lubricateU}

View File

@ -113,7 +113,7 @@ more instructions on how to use the accelerated styles effectively.
[Restrictions:]
This pair style can only be used if LAMMPS was built with the MANYBODY
package (which it is by default). See the "Making
package. See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]

View File

@ -191,7 +191,7 @@ input script. If using read_data, atomic masses must be defined in the
atomic structure data file.
This pair style is part of the MANYBODY package. It is only enabled if
LAMMPS was built with that package (which it is by default). See the
LAMMPS was built with that package. See the
"Making LAMMPS"_Section_start.html#start_3 section for more info.
This pair potential requires the "newtion"_newton.html setting to be

View File

@ -15,7 +15,7 @@ pair_style snap :pre
[Examples:]
pair_style snap
pair_coeff * * snap InP.snapcoeff In P InP.snapparam In In P P :pre
pair_coeff * * InP.snapcoeff In P InP.snapparam In In P P :pre
[Description:]
@ -27,9 +27,9 @@ it uses bispectrum components
to characterize the local neighborhood of each atom
in a very general way. The mathematical definition of the
bispectrum calculation used by SNAP is identical
to that used of "compute sna/atom"_compute_sna_atom.html.
to that used by "compute sna/atom"_compute_sna_atom.html.
In SNAP, the total energy is decomposed into a sum over
atom energies. The energy of atom {i} is
atom energies. The energy of atom {i } is
expressed as a weighted sum over bispectrum components.
:c,image(Eqs/pair_snap.jpg)
@ -183,8 +183,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
:line
:link(Thompson2014)
[(Thompson)] Thompson, Swiler, Trott, Foiles, Tucker, under review, preprint
available at "arXiv:1409.3880"_http://arxiv.org/abs/1409.3880
[(Thompson)] Thompson, Swiler, Trott, Foiles, Tucker, J Comp Phys, 285, 316 (2015).
:link(Bartok2010)
[(Bartok2010)] Bartok, Payne, Risi, Csanyi, Phys Rev Lett, 104, 136403 (2010).

View File

@ -99,7 +99,7 @@ The optional {exclude} keyword determines if forces are computed
between first neighbor (directly connected) bonds. For a setting of
{no}, first neighbor forces are computed; for {yes} they are not
computed. A setting of {no} cannot be used with the {min} option for
distance calculation because the the minimum distance between directly
distance calculation because the minimum distance between directly
connected bonds is zero.
Pair style {srp} turns off normalization of thermodynamic properties

View File

@ -192,7 +192,7 @@ This pair style can only be used via the {pair} keyword of the
[Restrictions:]
This pair style is part of the MANYBODY package. It is only enabled
if LAMMPS was built with that package (which it is by default). See
if LAMMPS was built with that package. See
the "Making LAMMPS"_Section_start.html#start_3 section for more info.
This pair style requires the "newton"_newton.html setting to be "on"

View File

@ -222,7 +222,7 @@ This pair style can only be used via the {pair} keyword of the
[Restrictions:]
This pair style is part of the MANYBODY package. It is only enabled
if LAMMPS was built with that package (which it is by default). See
if LAMMPS was built with that package. See
the "Making LAMMPS"_Section_start.html#start_3 section for more info.
This pair style requires the "newton"_newton.html setting to be "on"

View File

@ -156,7 +156,7 @@ This pair style can only be used via the {pair} keyword of the
[Restrictions:]
This pair style is part of the MANYBODY package. It is only enabled
if LAMMPS was built with that package (which it is by default). See
if LAMMPS was built with that package. See
the "Making LAMMPS"_Section_start.html#start_3 section for more info.
This pair style requires the "newton"_newton.html setting to be "on"

View File

@ -232,7 +232,7 @@ This pair style can only be used via the {pair} keyword of the
[Restrictions:]
This pair style is part of the MANYBODY package. It is only enabled
if LAMMPS was built with that package (which it is by default). See
if LAMMPS was built with that package. See
the "Making LAMMPS"_Section_start.html#start_3 section for more info.
This pair style requires the "newton"_newton.html setting to be "on"

View File

@ -180,7 +180,7 @@ package.
langevin/drude"_fix_langevin_drude.html, "fix
drude/transform"_fix_drude_transform.html, "compute
temp/drude"_compute_temp_drude.html
"pair_style lj/cut/coul/long"_pair_lj_cut_coul_long
"pair_style lj/cut/coul/long"_pair_lj.html
[Default:] none

View File

@ -212,9 +212,8 @@ This pair style can only be used via the {pair} keyword of the
[Restrictions:]
These pair style are part of the MANYBODY package. They is only
enabled if LAMMPS was built with that package (which it is by
default). See the "Making LAMMPS"_Section_start.html#start_3 section
for more info.
enabled if LAMMPS was built with that package. See the
"Making LAMMPS"_Section_start.html#start_3 section for more info.
These pair styles requires the "newton"_newton.html setting to be "on"
for pair interactions.

View File

@ -214,7 +214,7 @@ when a correlated event occurs during the third stage of the loop
listed above, i.e. when only one replica is running dynamics.
When more than one replica detects an event at the end of the same
event check (every {t_event} steps) during the the second stage, then
event check (every {t_event} steps) during the second stage, then
one of them is chosen at random. The number of coincident events is
the number of replicas that detected an event. Normally, this value
should be 1. If it is often greater than 1, then either the number of
@ -241,7 +241,7 @@ time was spent in each stage (dephasing, dynamics, quenching, etc).
Any "dump files"_dump.html defined in the input script, will be
written to during a PRD run at timesteps corresponding to both
uncorrelated and correlated events. This means the the requested dump
uncorrelated and correlated events. This means the requested dump
frequency in the "dump"_dump.html command is ignored. There will be
one dump file (per dump command) created for all partitions.

View File

@ -188,7 +188,7 @@ is assumed to have been previously loaded by another python command.
Note that the Python code that is loaded and run must contain a
function with the specified {func} name. To operate properly when
later invoked, the the function code must match the {input} and
later invoked, the function code must match the {input} and
{return} and {format} keywords specified by the python command.
Otherwise Python will generate an error.

View File

@ -431,8 +431,8 @@ Atoms # sphere
Pair Coeffs # lj/cut :pre
will check if the currently-defined "atom_style"_atom_style.html is
{sphere}, and the current "pair_style"_pair_style is {lj/cut}. If
not, LAMMPS will issue a warning to indicate that the data file
{sphere}, and the current "pair_style"_pair_style.html is {lj/cut}.
If not, LAMMPS will issue a warning to indicate that the data file
section likely does not contain the correct number or type of
parameters expected for the currently-defined style.

View File

@ -185,7 +185,7 @@ For dump files in {xyz} format, only the {x}, {y}, and {z} fields are
supported. The dump file does not store atom IDs, so these are
assigned consecutively to the atoms as they appear in the dump file,
starting from 1. Thus you should insure that order of atoms is
consistent from snapshot to snapshot in the the XYZ dump file. See
consistent from snapshot to snapshot in the XYZ dump file. See
the "dump_modify sort"_dump_modify.html command if the XYZ dump file
was written by LAMMPS.
@ -195,7 +195,7 @@ velocities, or their respective plugins may not support reading of
velocities. The molfile dump files do not store atom IDs, so these
are assigned consecutively to the atoms as they appear in the dump
file, starting from 1. Thus you should insure that order of atoms are
consistent from snapshot to snapshot in the the molfile dump file.
consistent from snapshot to snapshot in the molfile dump file.
See the "dump_modify sort"_dump_modify.html command if the dump file
was written by LAMMPS.
@ -322,3 +322,6 @@ They are only enabled if LAMMPS was built with that packages. See the
The option defaults are box = yes, replace = yes, purge = no, trim =
no, add = no, scaled = no, wrapped = yes, and format = native.
:link(vmd,http://www.ks.uiuc.edu/Research/vmd)

View File

@ -141,11 +141,11 @@ these settings after the restart file is read.
"units"_units.html
"newton bond"_newton.html (see discussion of newton command below)
"atom style"_atom_style.html and "atom_modify"_atom_modify.html settings id, map, sort
"comm style"_comm_style.html and "comm_modify"_comm_modify settings mode, cutoff, vel
"comm style"_comm_style.html and "comm_modify"_comm_modify.html settings mode, cutoff, vel
"timestep"_timestep.html
simulation box size and shape and "boundary"_boundary.html settings
atom "group"_group.html definitions
per-type atom settings such as "mass"_mass.thml
per-type atom settings such as "mass"_mass.html
per-atom attributes including their group assignments and molecular topology attributes (bonds, angles, etc)
force field styles ("pair"_pair_style.html, "bond"_bond_style.html, "angle"_angle_style.html, etc)
force field coefficients ("pair"_pair_coeff.html, "bond"_bond_coeff.html, "angle"_angle_coeff.html, etc) in some cases (see below)

View File

@ -94,6 +94,13 @@ Of course this is also possible by not using any suffix commands, and
explictly appending or not appending the suffix to the relevant
commands in your input script.
NOTE: The default "run_style"_run_style.html verlet is invoked prior to
reading the input script and is therefore not affected by a suffix command
in the input script. The KOKKOS package requires "run_style verlet/kk",
so when using the KOKKOS package it is necessary to either use the command
line "-sf kk" command or add an explicit "run_style verlet" command to the
input script.
[Restrictions:] none
[Related commands:]

Some files were not shown because too many files have changed in this diff Show More