Compare commits
51 Commits
patch_27Oc
...
stable_5No
| Author | SHA1 | Date | |
|---|---|---|---|
| a23b287a7a | |||
| 31204aab6a | |||
| 77bbf03f0f | |||
| 7cff08ca0a | |||
| f0131393e0 | |||
| 32e0a58343 | |||
| 60908eeab4 | |||
| 8214555b29 | |||
| f48b71f46b | |||
| 6cc4eb19af | |||
| 7d23a0737e | |||
| 02510ec321 | |||
| 33140e5004 | |||
| 639fb6f444 | |||
| b156771721 | |||
| 5d787f7f16 | |||
| c8f4b55588 | |||
| e13e4031cf | |||
| 782a328080 | |||
| e81ae21dbd | |||
| 7fdd6e2807 | |||
| 2e0d304c7e | |||
| c4b86a25a7 | |||
| 218e121b41 | |||
| 93d393aa69 | |||
| 4216be49f3 | |||
| c3a1e72183 | |||
| f9a9e27f5a | |||
| 35753b8f08 | |||
| f028a9a967 | |||
| ef9f7c818e | |||
| 8e61bed2d8 | |||
| 3267b34590 | |||
| 0a417b4016 | |||
| 399c0af150 | |||
| e8b3f79690 | |||
| 7f3f5e8c38 | |||
| f350500e69 | |||
| d7c77a419d | |||
| d2da0fabb4 | |||
| 13ce1037f2 | |||
| fa984b2c3b | |||
| 8540a9f038 | |||
| 13b6eb1bae | |||
| d80a9def17 | |||
| be4734bdce | |||
| 2551619b07 | |||
| d8bf149edc | |||
| 473b12ded4 | |||
| 27c3149590 | |||
| 3b408d71fe |
@ -1,7 +1,7 @@
|
||||
<!-- HTML_ONLY -->
|
||||
<HEAD>
|
||||
<TITLE>LAMMPS Users Manual</TITLE>
|
||||
<META NAME="docnumber" CONTENT="27 Oct 2016 version">
|
||||
<META NAME="docnumber" CONTENT="5 Nov 2016 version">
|
||||
<META NAME="author" CONTENT="http://lammps.sandia.gov - Sandia National Laboratories">
|
||||
<META NAME="copyright" CONTENT="Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.">
|
||||
</HEAD>
|
||||
@ -21,7 +21,7 @@
|
||||
<H1></H1>
|
||||
|
||||
LAMMPS Documentation :c,h3
|
||||
27 Oct 2016 version :c,h4
|
||||
5 Nov 2016 version :c,h4
|
||||
|
||||
Version info: :h4
|
||||
|
||||
|
||||
@ -2729,7 +2729,7 @@ production runs and is only required during equilibration. This way one
|
||||
is consistent with literature (based on the code packages DL_POLY or
|
||||
GULP for instance).
|
||||
|
||||
The mentioned energy transfer will typically lead to a a small drift
|
||||
The mentioned energy transfer will typically lead to a small drift
|
||||
in total energy over time. This internal energy can be monitored
|
||||
using the "compute chunk/atom"_compute_chunk_atom.html and "compute
|
||||
temp/chunk"_compute_temp_chunk.html commands. The internal kinetic
|
||||
@ -2830,7 +2830,7 @@ temp/drude"_compute_temp_drude.html. This requires also to use the
|
||||
command {comm_modify vel yes}.
|
||||
|
||||
Short-range damping of the induced dipole interactions can be achieved
|
||||
using Thole functions through the the "pair style
|
||||
using Thole functions through the "pair style
|
||||
thole"_pair_thole.html in "pair_style hybrid/overlay"_pair_hybrid.html
|
||||
with a Coulomb pair style. It may be useful to use {coul/long/cs} or
|
||||
similar from the CORESHELL package if the core and Drude particle come
|
||||
|
||||
@ -706,7 +706,7 @@ future changes to LAMMPS.
|
||||
User packages, such as user-atc or user-omp, have been contributed by
|
||||
users, and always begin with the user prefix. If they are a single
|
||||
command (single file), they are typically in the user-misc package.
|
||||
Otherwise, they are a a set of files grouped together which add a
|
||||
Otherwise, they are a set of files grouped together which add a
|
||||
specific functionality to the code.
|
||||
|
||||
User packages don't necessarily meet the requirements of the standard
|
||||
|
||||
@ -74,7 +74,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This angle style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -61,7 +61,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This angle style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -66,7 +66,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This angle style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -74,7 +74,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This angle style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -66,7 +66,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This angle style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -65,11 +65,11 @@ more instructions on how to use the accelerated styles effectively.
|
||||
|
||||
:line
|
||||
|
||||
[Restrictions:] none
|
||||
[Restrictions:]
|
||||
|
||||
This angle style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
MOLECULE package. See the "Making LAMMPS"_Section_start.html#start_3
|
||||
section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
|
||||
@ -76,7 +76,7 @@ for specific angle types.
|
||||
[Restrictions:]
|
||||
|
||||
This angle style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
Unlike other angle styles, the hybrid angle style does not store angle
|
||||
|
||||
@ -147,7 +147,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This angle style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -70,7 +70,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This bond style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
You typically should specify "special_bonds fene"_special_bonds.html
|
||||
|
||||
@ -73,7 +73,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This bond style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
You typically should specify "special_bonds fene"_special_bonds.html
|
||||
|
||||
@ -65,7 +65,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This bond style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -59,7 +59,7 @@ bond types.
|
||||
[Restrictions:]
|
||||
|
||||
This bond style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
Unlike other bond styles, the hybrid bond style does not store bond
|
||||
|
||||
@ -64,7 +64,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This bond style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -64,7 +64,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This bond style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -99,7 +99,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This bond style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
The {quartic} style requires that "special_bonds"_special_bonds.html
|
||||
|
||||
@ -144,7 +144,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This bond style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -114,7 +114,7 @@ local defects surrounding the central atom, as described above. For
|
||||
the {axes yes} case, the vector components are also unitless, since
|
||||
they represent spatial directions.
|
||||
|
||||
Here are typical centro-symmetry values, from a a nanoindentation
|
||||
Here are typical centro-symmetry values, from a nanoindentation
|
||||
simulation into gold (FCC). These were provided by Jon Zimmerman
|
||||
(Sandia):
|
||||
|
||||
|
||||
@ -536,7 +536,7 @@ For the {bin/cylinder} style the details are as follows. If {discard}
|
||||
is set to {yes}, an out-of-domain atom will have its chunk ID set to
|
||||
0. If {discard} is set to {no}, the atom will have its chunk ID set
|
||||
to the first or last bin in both the radial and axis dimensions. If
|
||||
{discard} is set to {mixed}, which is the default, the the radial
|
||||
{discard} is set to {mixed}, which is the default, the radial
|
||||
dimension is treated the same as for {discard} = no. But for the axis
|
||||
dimensinon, it will only have its chunk ID set to the first or last
|
||||
bin if bins extend to the simulation box boundary in the axis
|
||||
|
||||
@ -60,7 +60,7 @@ produced by a small set of atoms (e.g. 4 atoms in a dihedral or 3
|
||||
atoms in a Tersoff 3-body interaction) is assigned in equal portions
|
||||
to each atom in the set. E.g. 1/4 of the dihedral virial to each of
|
||||
the 4 atoms, or 1/3 of the fix virial due to SHAKE constraints applied
|
||||
to atoms in a a water molecule via the "fix shake"_fix_shake.html
|
||||
to atoms in a water molecule via the "fix shake"_fix_shake.html
|
||||
command.
|
||||
|
||||
If no extra keywords are listed, all of the terms in this formula are
|
||||
|
||||
@ -69,8 +69,8 @@ velocity for each atom. Note that if there is only one atom in the
|
||||
bin, its thermal velocity will thus be 0.0.
|
||||
|
||||
After the spatially-averaged velocity field has been subtracted from
|
||||
each atom, the temperature is calculated by the formula KE = (dim/2 N
|
||||
- dim*Nx*Ny*Nz) k T, where KE = total kinetic energy of the group of
|
||||
each atom, the temperature is calculated by the formula KE = (dim*N
|
||||
- dim*Nx*Ny*Nz) k T/2, where KE = total kinetic energy of the group of
|
||||
atoms (sum of 1/2 m v^2), dim = 2 or 3 = dimensionality of the
|
||||
simulation, N = number of atoms in the group, k = Boltzmann constant,
|
||||
and T = temperature. The dim*Nx*Ny*Nz term are degrees of freedom
|
||||
|
||||
@ -109,7 +109,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This dihedral style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -76,7 +76,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This dihedral style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -69,7 +69,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This dihedral style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -77,7 +77,7 @@ for specific dihedral types.
|
||||
[Restrictions:]
|
||||
|
||||
This dihedral style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
Unlike other dihedral styles, the hybrid dihedral style does not store
|
||||
|
||||
@ -63,7 +63,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This dihedral style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -71,7 +71,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This dihedral style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -154,7 +154,7 @@ radians instead of degrees. (Note: This changes the way the forces
|
||||
are scaled in the 4th column of the data file.)
|
||||
|
||||
The optional "CHECKU" keyword is followed by a filename. This allows
|
||||
the user to save all of the the {Ntable} different entries in the
|
||||
the user to save all of the {Ntable} different entries in the
|
||||
interpolated energy table to a file to make sure that the interpolated
|
||||
function agrees with the user's expectations. (Note: You can
|
||||
temporarily increase the {Ntable} parameter to a high value for this
|
||||
|
||||
@ -165,7 +165,7 @@ extra buffering.
|
||||
|
||||
:line
|
||||
|
||||
The {element} keyword applies only to the the dump {cfg}, {xyz}, and
|
||||
The {element} keyword applies only to the dump {cfg}, {xyz}, and
|
||||
{image} styles. It associates element names (e.g. H, C, Fe) with
|
||||
LAMMPS atom types. See the list of element names at the bottom of
|
||||
this page.
|
||||
@ -574,7 +574,7 @@ e.g. its x-component of velocity if the atom-attribute "vx" was
|
||||
specified.
|
||||
|
||||
The basic idea of a color map is that the atom-attribute will be
|
||||
within a range of values, and that range is associated with a a series
|
||||
within a range of values, and that range is associated with a series
|
||||
of colors (e.g. red, blue, green). An atom's specific value (vx =
|
||||
-3.2) can then mapped to the series of colors (e.g. halfway between
|
||||
red and blue), and a specific color is determined via an interpolation
|
||||
|
||||
@ -113,7 +113,7 @@ quantity being minimized), you MUST enable the
|
||||
[Restrictions:]
|
||||
|
||||
This fix can only be used if LAMMPS was built with the MOLECULE
|
||||
package (which it is by default). See the "Making
|
||||
package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -150,7 +150,7 @@ initial box length is 100 Angstroms, and V is 10 Angstroms/psec, then
|
||||
after 10 psec, the box length will have doubled. After 20 psec, it
|
||||
will have tripled.
|
||||
|
||||
The {erate} style changes a dimension of the the box at a "constant
|
||||
The {erate} style changes a dimension of the box at a "constant
|
||||
engineering strain rate". The units of the specified strain rate are
|
||||
1/time. See the "units"_units.html command for the time units
|
||||
associated with different choices of simulation units,
|
||||
|
||||
@ -237,7 +237,7 @@ described in the papers cited below, the purpose of this method is to
|
||||
enable longer timesteps to be used (up to the numerical stability
|
||||
limit of the integrator), while still producing the correct Boltzmann
|
||||
distribution of atom positions. It is implemented within LAMMPS, by
|
||||
changing how the the random force is applied so that it is composed of
|
||||
changing how the random force is applied so that it is composed of
|
||||
the average of two random forces representing half-contributions from
|
||||
the previous and current time intervals.
|
||||
|
||||
|
||||
@ -233,7 +233,7 @@ present, the speed of sound squared is set equal to (1/3)*(dx/dt)^2.
|
||||
Setting a0 > (dx/dt)^2 is not allowed, as this may lead to
|
||||
instabilities.
|
||||
|
||||
If the {noise} keyword is used, followed by a a positive temperature
|
||||
If the {noise} keyword is used, followed by a positive temperature
|
||||
value, and a positive integer random number seed, a thermal
|
||||
lattice-Boltzmann algorithm is used. If {LBtype} is set equal to 1
|
||||
(i.e. the standard LB integrator is chosen), the thermal LB algorithm
|
||||
|
||||
@ -8,6 +8,7 @@
|
||||
|
||||
fix reax/bonds command :h3
|
||||
fix reax/c/bonds command :h3
|
||||
fix reax/c/bonds/kk command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
@ -47,6 +48,31 @@ commands"_Section_howto.html#howto_15. No parameter of this fix can
|
||||
be used with the {start/stop} keywords of the "run"_run.html command.
|
||||
This fix is not invoked during "energy minimization"_minimize.html.
|
||||
|
||||
:line
|
||||
|
||||
Styles with a {gpu}, {intel}, {kk}, {omp}, or {opt} suffix are
|
||||
functionally the same as the corresponding style without the suffix.
|
||||
They have been optimized to run faster, depending on your available
|
||||
hardware, as discussed in "Section_accelerate"_Section_accelerate.html
|
||||
of the manual. The accelerated styles take the same arguments and
|
||||
should produce the same results, except for round-off and precision
|
||||
issues.
|
||||
|
||||
These accelerated styles are part of the GPU, USER-INTEL, KOKKOS,
|
||||
USER-OMP and OPT packages, respectively. They are only enabled if
|
||||
LAMMPS was built with those packages. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
You can specify the accelerated styles explicitly in your input script
|
||||
by including their suffix, or you can use the "-suffix command-line
|
||||
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
|
||||
use the "suffix"_suffix.html command in your input script.
|
||||
|
||||
See "Section_accelerate"_Section_accelerate.html of the manual for
|
||||
more instructions on how to use the accelerated styles effectively.
|
||||
|
||||
:line
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
The fix reax/bonds command requires that the "pair_style
|
||||
|
||||
@ -7,6 +7,7 @@
|
||||
:line
|
||||
|
||||
fix reax/c/species command :h3
|
||||
fix reax/c/species/kk command :h3
|
||||
|
||||
[Syntax:]
|
||||
|
||||
@ -129,6 +130,31 @@ No parameter of this fix can be used with the {start/stop} keywords of
|
||||
the "run"_run.html command. This fix is not invoked during "energy
|
||||
minimization"_minimize.html.
|
||||
|
||||
:line
|
||||
|
||||
Styles with a {gpu}, {intel}, {kk}, {omp}, or {opt} suffix are
|
||||
functionally the same as the corresponding style without the suffix.
|
||||
They have been optimized to run faster, depending on your available
|
||||
hardware, as discussed in "Section_accelerate"_Section_accelerate.html
|
||||
of the manual. The accelerated styles take the same arguments and
|
||||
should produce the same results, except for round-off and precision
|
||||
issues.
|
||||
|
||||
These accelerated styles are part of the GPU, USER-INTEL, KOKKOS,
|
||||
USER-OMP and OPT packages, respectively. They are only enabled if
|
||||
LAMMPS was built with those packages. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
You can specify the accelerated styles explicitly in your input script
|
||||
by including their suffix, or you can use the "-suffix command-line
|
||||
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
|
||||
use the "suffix"_suffix.html command in your input script.
|
||||
|
||||
See "Section_accelerate"_Section_accelerate.html of the manual for
|
||||
more instructions on how to use the accelerated styles effectively.
|
||||
|
||||
:line
|
||||
|
||||
[Restrictions:]
|
||||
|
||||
The fix species currently only works with
|
||||
|
||||
@ -87,7 +87,7 @@ end of each run. A positive value N means that the diagnostics are reported once
|
||||
per N time-steps.
|
||||
|
||||
The diagnostics report the average # of integrator steps and RHS function evaluations
|
||||
and run-time per ODE as well as the the average/RMS/min/max per process. If the
|
||||
and run-time per ODE as well as the average/RMS/min/max per process. If the
|
||||
reporting frequency is 1, the RMS/min/max per ODE are also reported. The per ODE
|
||||
statistics can be used to adjust the tolerance and min/max step parameters. The
|
||||
statistics per MPI process can be useful to examine any load imbalance caused by the
|
||||
|
||||
@ -28,7 +28,7 @@ fix 1 all smd/adjust_dt 0.1 :pre
|
||||
The fix calculates a new stable time increment for use with the SMD time integrators.
|
||||
|
||||
The stable time increment is based on multiple conditions. For the SPH pair styles, a
|
||||
CFL criterion (Courant, Friedrichs & Lewy, 1928) is evaluated, which determines the the speed of
|
||||
CFL criterion (Courant, Friedrichs & Lewy, 1928) is evaluated, which determines the speed of
|
||||
sound cannot propagate further than a typical spacing between particles within a single time step to ensure
|
||||
no information is lost. For the contact pair styles, a linear analysis of the pair potential determines a
|
||||
stable maximum time step.
|
||||
|
||||
@ -101,7 +101,7 @@ particles move in the normal way via a time integration "fix"_fix.html
|
||||
with a short timestep dt. SRD particles advect with a large timestep
|
||||
dt_SRD >= dt.
|
||||
|
||||
If the {lamda} keyword is not specified, the the SRD temperature
|
||||
If the {lamda} keyword is not specified, the SRD temperature
|
||||
{Tsrd} is used in the above formula to compute lamda. If the {lamda}
|
||||
keyword is specified, then the {Tsrd} setting is ignored and the above
|
||||
equation is used to compute the SRD temperature.
|
||||
|
||||
@ -107,7 +107,7 @@ specified as parameters to the fix. The other quantities are derived.
|
||||
The form of the heat diffusion equation used here is almost the same
|
||||
as that in equation 6 of "(Duffy)"_#Duffy, with the exception that the
|
||||
electronic density is explicitly reprensented, rather than being part
|
||||
of the the specific heat parameter.
|
||||
of the specific heat parameter.
|
||||
|
||||
Currently, fix ttm assumes that none of the user-supplied parameters
|
||||
will vary with temperature. Note that "(Duffy)"_#Duffy used a tanh()
|
||||
|
||||
@ -77,7 +77,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This improper style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -81,7 +81,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This improper style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -55,7 +55,7 @@ types.
|
||||
[Restrictions:]
|
||||
|
||||
This improper style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
Unlike other improper styles, the hybrid improper style does not store
|
||||
|
||||
@ -27,7 +27,7 @@ between quadruplets of atoms, which remain in force for the duration
|
||||
of the simulation. The list of improper quadruplets is read in by a
|
||||
"read_data"_read_data.html or "read_restart"_read_restart.html command
|
||||
from a data or restart file. Note that the ordering of the 4 atoms in
|
||||
an improper quadruplet determines the the definition of the improper
|
||||
an improper quadruplet determines the definition of the improper
|
||||
angle used in the formula for each style. See the doc pages of
|
||||
individual styles for details.
|
||||
|
||||
|
||||
@ -74,7 +74,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This improper style can only be used if LAMMPS was built with the
|
||||
MOLECULE package (which it is by default). See the "Making
|
||||
MOLECULE package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -284,7 +284,7 @@ ID2 x2 y2 z2
|
||||
...
|
||||
IDN xN yN zN :pre
|
||||
|
||||
The fields are the the atom ID, followed by the x,y,z coordinates.
|
||||
The fields are the atom ID, followed by the x,y,z coordinates.
|
||||
The lines can be listed in any order. Additional trailing information
|
||||
on the line is OK, such as a comment.
|
||||
|
||||
|
||||
@ -44,7 +44,7 @@ one value from their respective list of values. A {file}-style
|
||||
variable reads the next line from its associated file. An
|
||||
{atomfile}-style variable reads the next set of lines (one per atom)
|
||||
from its associated file. {String-} or {atom}- or {equal}- or
|
||||
{world}-style variables cannot be used with the the next command,
|
||||
{world}-style variables cannot be used with the next command,
|
||||
since they only store a single value.
|
||||
|
||||
When any of the variables in the next command has no more values, a
|
||||
|
||||
@ -168,7 +168,7 @@ This pair style can only be used via the {pair} keyword of the
|
||||
[Restrictions:]
|
||||
|
||||
This pair style is part of the MANYBODY package. It is only enabled
|
||||
if LAMMPS was built with that package (which it is by default).
|
||||
if LAMMPS was built with that package.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
|
||||
@ -203,9 +203,8 @@ These pair styles can only be used via the {pair} keyword of the
|
||||
[Restrictions:]
|
||||
|
||||
These pair styles are part of the MANYBODY package. They are only
|
||||
enabled if LAMMPS was built with that package (which it is by
|
||||
default). See the "Making LAMMPS"_Section_start.html#start_3 section
|
||||
for more info.
|
||||
enabled if LAMMPS was built with that package. See the
|
||||
"Making LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
These pair potentials require the "newton"_newton.html setting to be
|
||||
"on" for pair interactions.
|
||||
|
||||
@ -382,7 +382,7 @@ This pair style can only be used via the {pair} keyword of the
|
||||
[Restrictions:]
|
||||
|
||||
These pair styles are part of the MANYBODY package. They are only
|
||||
enabled if LAMMPS was built with that package (which it is by default).
|
||||
enabled if LAMMPS was built with that package.
|
||||
See the "Making LAMMPS"_Section_start.html#start_3 section for more
|
||||
info.
|
||||
|
||||
|
||||
@ -174,9 +174,8 @@ respa"_run_style.html command. They do not support the {inner},
|
||||
[Restrictions:]
|
||||
|
||||
The {born/coul/long} style is part of the KSPACE package. It is only
|
||||
enabled if LAMMPS was built with that package (which it is by
|
||||
default). See the "Making LAMMPS"_Section_start.html#start_3 section
|
||||
for more info.
|
||||
enabled if LAMMPS was built with that package. See the
|
||||
"Making LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
|
||||
@ -186,9 +186,8 @@ respa"_run_style.html command. They do not support the {inner},
|
||||
|
||||
The {buck/coul/long} style is part of the KSPACE package. The
|
||||
{buck/coul/long/cs} style is part of the CORESHELL package. They are
|
||||
only enabled if LAMMPS was built with that package (which it is by
|
||||
default). See the "Making LAMMPS"_Section_start.html#start_3 section
|
||||
for more info.
|
||||
only enabled if LAMMPS was built with that package. See the
|
||||
"Making LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
|
||||
@ -156,7 +156,7 @@ These pair styles can only be used via the {pair} keyword of the
|
||||
[Restrictions:]
|
||||
|
||||
These pair styles are part of the MANYBODY package. It is only enabled
|
||||
if LAMMPS was built with that package (which it is by default). See
|
||||
if LAMMPS was built with that package. See
|
||||
the "Making LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
These pair styles requires the "newton"_newton.html setting to be "on"
|
||||
|
||||
@ -313,9 +313,8 @@ This pair style can only be used via the {pair} keyword of the
|
||||
|
||||
The {coul/long}, {coul/msm} and {tip4p/long} styles are part of the
|
||||
KSPACE package. The {coul/long/cs} style is part of the CORESHELL
|
||||
package. They are only enabled if LAMMPS was built with that package
|
||||
(which it is by default). See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
package. They are only enabled if LAMMPS was built with that package.
|
||||
See the "Making LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
|
||||
@ -412,9 +412,8 @@ The eam pair styles can only be used via the {pair} keyword of the
|
||||
[Restrictions:]
|
||||
|
||||
All of these styles except the {eam/cd} style are part of the MANYBODY
|
||||
package. They are only enabled if LAMMPS was built with that package
|
||||
(which it is by default). See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
package. They are only enabled if LAMMPS was built with that package.
|
||||
See the "Making LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
The {eam/cd} style is part of the USER-MISC package and also requires
|
||||
the MANYBODY package. It is only enabled if LAMMPS was built with
|
||||
|
||||
@ -159,7 +159,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This style is part of the MANYBODY package. It is only enabled if
|
||||
LAMMPS was built with that package (which it is by default).
|
||||
LAMMPS was built with that package.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
|
||||
@ -72,7 +72,7 @@ This pair style can only be used via the {pair} keyword of the
|
||||
[Restrictions:]
|
||||
|
||||
This pair styles is part of the MANYBODY package. It is only enabled
|
||||
if LAMMPS was built with that package (which it is by default). See
|
||||
if LAMMPS was built with that package. See
|
||||
the "Making LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
This pair potential requires the "newton"_newton.html setting to be
|
||||
|
||||
@ -113,7 +113,7 @@ more instructions on how to use the accelerated styles effectively.
|
||||
[Restrictions:]
|
||||
|
||||
This pair style can only be used if LAMMPS was built with the MANYBODY
|
||||
package (which it is by default). See the "Making
|
||||
package. See the "Making
|
||||
LAMMPS"_Section_start.html#start_3 section for more info on packages.
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -191,7 +191,7 @@ input script. If using read_data, atomic masses must be defined in the
|
||||
atomic structure data file.
|
||||
|
||||
This pair style is part of the MANYBODY package. It is only enabled if
|
||||
LAMMPS was built with that package (which it is by default). See the
|
||||
LAMMPS was built with that package. See the
|
||||
"Making LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
This pair potential requires the "newtion"_newton.html setting to be
|
||||
|
||||
@ -15,7 +15,7 @@ pair_style snap :pre
|
||||
[Examples:]
|
||||
|
||||
pair_style snap
|
||||
pair_coeff * * snap InP.snapcoeff In P InP.snapparam In In P P :pre
|
||||
pair_coeff * * InP.snapcoeff In P InP.snapparam In In P P :pre
|
||||
|
||||
[Description:]
|
||||
|
||||
@ -27,9 +27,9 @@ it uses bispectrum components
|
||||
to characterize the local neighborhood of each atom
|
||||
in a very general way. The mathematical definition of the
|
||||
bispectrum calculation used by SNAP is identical
|
||||
to that used of "compute sna/atom"_compute_sna_atom.html.
|
||||
to that used by "compute sna/atom"_compute_sna_atom.html.
|
||||
In SNAP, the total energy is decomposed into a sum over
|
||||
atom energies. The energy of atom {i} is
|
||||
atom energies. The energy of atom {i } is
|
||||
expressed as a weighted sum over bispectrum components.
|
||||
|
||||
:c,image(Eqs/pair_snap.jpg)
|
||||
@ -183,8 +183,7 @@ LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
:line
|
||||
|
||||
:link(Thompson2014)
|
||||
[(Thompson)] Thompson, Swiler, Trott, Foiles, Tucker, under review, preprint
|
||||
available at "arXiv:1409.3880"_http://arxiv.org/abs/1409.3880
|
||||
[(Thompson)] Thompson, Swiler, Trott, Foiles, Tucker, J Comp Phys, 285, 316 (2015).
|
||||
|
||||
:link(Bartok2010)
|
||||
[(Bartok2010)] Bartok, Payne, Risi, Csanyi, Phys Rev Lett, 104, 136403 (2010).
|
||||
|
||||
@ -99,7 +99,7 @@ The optional {exclude} keyword determines if forces are computed
|
||||
between first neighbor (directly connected) bonds. For a setting of
|
||||
{no}, first neighbor forces are computed; for {yes} they are not
|
||||
computed. A setting of {no} cannot be used with the {min} option for
|
||||
distance calculation because the the minimum distance between directly
|
||||
distance calculation because the minimum distance between directly
|
||||
connected bonds is zero.
|
||||
|
||||
Pair style {srp} turns off normalization of thermodynamic properties
|
||||
|
||||
@ -192,7 +192,7 @@ This pair style can only be used via the {pair} keyword of the
|
||||
[Restrictions:]
|
||||
|
||||
This pair style is part of the MANYBODY package. It is only enabled
|
||||
if LAMMPS was built with that package (which it is by default). See
|
||||
if LAMMPS was built with that package. See
|
||||
the "Making LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
This pair style requires the "newton"_newton.html setting to be "on"
|
||||
|
||||
@ -222,7 +222,7 @@ This pair style can only be used via the {pair} keyword of the
|
||||
[Restrictions:]
|
||||
|
||||
This pair style is part of the MANYBODY package. It is only enabled
|
||||
if LAMMPS was built with that package (which it is by default). See
|
||||
if LAMMPS was built with that package. See
|
||||
the "Making LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
This pair style requires the "newton"_newton.html setting to be "on"
|
||||
|
||||
@ -156,7 +156,7 @@ This pair style can only be used via the {pair} keyword of the
|
||||
[Restrictions:]
|
||||
|
||||
This pair style is part of the MANYBODY package. It is only enabled
|
||||
if LAMMPS was built with that package (which it is by default). See
|
||||
if LAMMPS was built with that package. See
|
||||
the "Making LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
This pair style requires the "newton"_newton.html setting to be "on"
|
||||
|
||||
@ -232,7 +232,7 @@ This pair style can only be used via the {pair} keyword of the
|
||||
[Restrictions:]
|
||||
|
||||
This pair style is part of the MANYBODY package. It is only enabled
|
||||
if LAMMPS was built with that package (which it is by default). See
|
||||
if LAMMPS was built with that package. See
|
||||
the "Making LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
This pair style requires the "newton"_newton.html setting to be "on"
|
||||
|
||||
@ -212,9 +212,8 @@ This pair style can only be used via the {pair} keyword of the
|
||||
[Restrictions:]
|
||||
|
||||
These pair style are part of the MANYBODY package. They is only
|
||||
enabled if LAMMPS was built with that package (which it is by
|
||||
default). See the "Making LAMMPS"_Section_start.html#start_3 section
|
||||
for more info.
|
||||
enabled if LAMMPS was built with that package. See the
|
||||
"Making LAMMPS"_Section_start.html#start_3 section for more info.
|
||||
|
||||
These pair styles requires the "newton"_newton.html setting to be "on"
|
||||
for pair interactions.
|
||||
|
||||
@ -214,7 +214,7 @@ when a correlated event occurs during the third stage of the loop
|
||||
listed above, i.e. when only one replica is running dynamics.
|
||||
|
||||
When more than one replica detects an event at the end of the same
|
||||
event check (every {t_event} steps) during the the second stage, then
|
||||
event check (every {t_event} steps) during the second stage, then
|
||||
one of them is chosen at random. The number of coincident events is
|
||||
the number of replicas that detected an event. Normally, this value
|
||||
should be 1. If it is often greater than 1, then either the number of
|
||||
@ -241,7 +241,7 @@ time was spent in each stage (dephasing, dynamics, quenching, etc).
|
||||
|
||||
Any "dump files"_dump.html defined in the input script, will be
|
||||
written to during a PRD run at timesteps corresponding to both
|
||||
uncorrelated and correlated events. This means the the requested dump
|
||||
uncorrelated and correlated events. This means the requested dump
|
||||
frequency in the "dump"_dump.html command is ignored. There will be
|
||||
one dump file (per dump command) created for all partitions.
|
||||
|
||||
|
||||
@ -188,7 +188,7 @@ is assumed to have been previously loaded by another python command.
|
||||
|
||||
Note that the Python code that is loaded and run must contain a
|
||||
function with the specified {func} name. To operate properly when
|
||||
later invoked, the the function code must match the {input} and
|
||||
later invoked, the function code must match the {input} and
|
||||
{return} and {format} keywords specified by the python command.
|
||||
Otherwise Python will generate an error.
|
||||
|
||||
|
||||
@ -185,7 +185,7 @@ For dump files in {xyz} format, only the {x}, {y}, and {z} fields are
|
||||
supported. The dump file does not store atom IDs, so these are
|
||||
assigned consecutively to the atoms as they appear in the dump file,
|
||||
starting from 1. Thus you should insure that order of atoms is
|
||||
consistent from snapshot to snapshot in the the XYZ dump file. See
|
||||
consistent from snapshot to snapshot in the XYZ dump file. See
|
||||
the "dump_modify sort"_dump_modify.html command if the XYZ dump file
|
||||
was written by LAMMPS.
|
||||
|
||||
@ -195,7 +195,7 @@ velocities, or their respective plugins may not support reading of
|
||||
velocities. The molfile dump files do not store atom IDs, so these
|
||||
are assigned consecutively to the atoms as they appear in the dump
|
||||
file, starting from 1. Thus you should insure that order of atoms are
|
||||
consistent from snapshot to snapshot in the the molfile dump file.
|
||||
consistent from snapshot to snapshot in the molfile dump file.
|
||||
See the "dump_modify sort"_dump_modify.html command if the dump file
|
||||
was written by LAMMPS.
|
||||
|
||||
|
||||
@ -94,6 +94,13 @@ Of course this is also possible by not using any suffix commands, and
|
||||
explictly appending or not appending the suffix to the relevant
|
||||
commands in your input script.
|
||||
|
||||
NOTE: The default "run_style"_run_style.html verlet is invoked prior to
|
||||
reading the input script and is therefore not affected by a suffix command
|
||||
in the input script. The KOKKOS package requires "run_style verlet/kk",
|
||||
so when using the KOKKOS package it is necessary to either use the command
|
||||
line "-sf kk" command or add an explicit "run_style verlet" command to the
|
||||
input script.
|
||||
|
||||
[Restrictions:] none
|
||||
|
||||
[Related commands:]
|
||||
|
||||
@ -231,7 +231,7 @@ time was spent in each stage (NEB, dynamics, quenching, etc).
|
||||
|
||||
Any "dump files"_dump.html defined in the input script will be written
|
||||
to during a TAD run at timesteps when an event is executed. This
|
||||
means the the requested dump frequency in the "dump"_dump.html command
|
||||
means the requested dump frequency in the "dump"_dump.html command
|
||||
is ignored. There will be one dump file (per dump command) created
|
||||
for all partitions. The atom coordinates of the dump snapshot are
|
||||
those of the minimum energy configuration resulting from quenching
|
||||
|
||||
@ -33,7 +33,7 @@ created by the surrounding particles. Drude oscillators represent
|
||||
these dipoles by two fixed charges: the core (DC) and the Drude
|
||||
particle (DP) bound by a harmonic potential. The Drude particle can be
|
||||
thought of as the electron cloud whose center can be displaced from
|
||||
the position of the the corresponding nucleus.
|
||||
the position of the corresponding nucleus.
|
||||
|
||||
The sum of the masses of a core-Drude pair should be the mass of the
|
||||
initial (unsplit) atom, \(m_C + m_D = m\). The sum of their charges
|
||||
|
||||
74
examples/threebody/BNC.tersoff
Normal file
74
examples/threebody/BNC.tersoff
Normal file
@ -0,0 +1,74 @@
|
||||
# DATE: 2013-03-21 CONTRIBUTOR: Cem Sevik CITATION: Kinaci, Haskins, Sevik and Cagin, Phys Rev B, 86, 115410 (2012)
|
||||
# Tersoff parameters for B, C, and BN-C hybrid based graphene like nano structures
|
||||
# multiple entries can be added to this file, LAMMPS reads the ones it needs
|
||||
|
||||
# these entries are in LAMMPS "metal" units:
|
||||
# A,B = eV; lambda1,lambda2,lambda3 = 1/Angstroms; R,D = Angstroms
|
||||
# other quantities are unitless
|
||||
|
||||
# Cem Sevik (csevik at anadolu.edu.tr) takes full blame for this
|
||||
# file. It specifies B-N, B-C, and N-C interaction parameters
|
||||
# generated and published by the reseacrh group of Prof. Tahir Cagin.
|
||||
|
||||
# 1. Physical Review B 84, 085409 2011
|
||||
# Characterization of thermal transport in low-dimensional boron nitride nanostructures,
|
||||
#
|
||||
|
||||
# 2. Physical Review B 86, 075403 2012
|
||||
# Influence of disorder on thermal transport properties of boron nitride nanostructures
|
||||
#
|
||||
|
||||
# 3. Physical Review B 86, 075403 2012, Please see for further information about B-C and N-C parameters
|
||||
# Thermal conductivity of BN-C nanostructures
|
||||
#
|
||||
|
||||
# The file also specifies C-C, interaction parameters
|
||||
# generated and published by the reseacrh group of Dr. D. A. Broido
|
||||
# Physical Review B 81, 205441 2010
|
||||
# Optimized Tersoff and Brenner empirical potential parameters for
|
||||
# lattice dynamics and phonon thermal transport in carbon nanotubes and graphene
|
||||
|
||||
# Users in referring the full parameters can cite the full parameter paper (3) as:
|
||||
# A. Kinaci, J. B. Haskins, C. Sevik, T. Cagin, Physical Review B 86, 115410 (2012)
|
||||
# Thermal conductivity of BN-C nanostructures
|
||||
#
|
||||
|
||||
# format of a single entry (one or more lines):
|
||||
# element 1, element 2, element 3,
|
||||
# m, gamma, lambda3, c, d, costheta0, n, beta, lambda2, B, R, D, lambda1, A
|
||||
|
||||
N B B 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.199 340.00 1.95 0.05 3.568 1380.0
|
||||
N B N 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.199 340.00 1.95 0.05 3.568 1380.0
|
||||
N B C 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.199 340.00 1.95 0.05 3.568 1380.0
|
||||
|
||||
B N B 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.199 340.00 1.95 0.05 3.568 1380.0
|
||||
B N N 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.199 340.00 1.95 0.05 3.568 1380.0
|
||||
B N C 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.199 340.00 1.95 0.05 3.568 1380.0
|
||||
|
||||
N N B 3.0 1.0 0.0 17.7959 5.9484 0.00000 0.6184432 0.019251 2.6272721 138.77866 2.0 0.1 2.8293093 128.86866
|
||||
N N N 3.0 1.0 0.0 17.7959 5.9484 0.00000 0.6184432 0.019251 2.6272721 138.77866 2.0 0.1 2.8293093 128.86866
|
||||
N N C 3.0 1.0 0.0 17.7959 5.9484 0.00000 0.6184432 0.019251 2.6272721 138.77866 2.0 0.1 2.8293093 128.86866
|
||||
|
||||
B B B 3.0 1.0 0.0 0.52629 0.001587 0.5 3.9929061 1.6e-6 2.0774982 43.132016 2.0 0.1 2.2372578 40.0520156
|
||||
B B N 3.0 1.0 0.0 0.52629 0.001587 0.5 3.9929061 1.6e-6 2.0774982 43.132016 2.0 0.1 2.2372578 40.0520156
|
||||
B B C 3.0 1.0 0.0 0.52629 0.001587 0.5 3.9929061 1.6e-6 2.0774982 43.132016 2.0 0.1 2.2372578 40.0520156
|
||||
|
||||
C C C 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2119 430.00 1.95 0.15 3.4879 1393.6
|
||||
C C B 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2119 430.00 1.95 0.15 3.4879 1393.6
|
||||
C C N 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2119 430.00 1.95 0.15 3.4879 1393.6
|
||||
|
||||
C B B 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2054 339.068910 1.95 0.10 3.5279 1386.78
|
||||
C B N 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2054 339.068910 1.95 0.10 3.5279 1386.78
|
||||
C B C 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2054 339.068910 1.95 0.10 3.5279 1386.78
|
||||
|
||||
C N B 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2054 387.575152 1.95 0.10 3.5279 1386.78
|
||||
C N N 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2054 387.575152 1.95 0.10 3.5279 1386.78
|
||||
C N C 3.0 1.0 0.0 3.8049e4 4.3484 -0.93000 0.72751 1.5724e-7 2.2054 387.575152 1.95 0.10 3.5279 1386.78
|
||||
|
||||
B C C 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.2054 339.068910 1.95 0.10 3.5279 1386.78
|
||||
B C B 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.2054 339.068910 1.95 0.10 3.5279 1386.78
|
||||
B C N 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.2054 339.068910 1.95 0.10 3.5279 1386.78
|
||||
|
||||
N C C 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.2054 387.575152 1.95 0.10 3.5279 1386.78
|
||||
N C B 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.2054 387.575152 1.95 0.10 3.5279 1386.78
|
||||
N C N 3.0 1.0 0.0 25000 4.3484 -0.89000 0.72751 1.25724e-7 2.2054 387.575152 1.95 0.10 3.5279 1386.78
|
||||
233
examples/threebody/CdTeZnSeHgS0.sw
Normal file
233
examples/threebody/CdTeZnSeHgS0.sw
Normal file
@ -0,0 +1,233 @@
|
||||
### DATE: 2013-08-09 CONTRIBUTOR: X. W. Zhou, xzhou@sandia.gov, CITATION: Zhou, Ward, Martin, van Swol, Cruz-Campa, and D. Zubia, Phys. Rev. B, 88, 085309 (2013).
|
||||
#
|
||||
# Note that the way the parameters can be entered is not unique.
|
||||
# As one way, we assume that eps_ijk is equal to eps_ik and
|
||||
# lambda_ijk is equal to sqrt(lambda_ij*eps_ij*lambda_ik*eps_ik)/eps_ik,
|
||||
# and all other parameters in the ijk line are for ik.
|
||||
#
|
||||
# The twobody ik pair parameters are entered on the i*k lines, where *
|
||||
# can be any species. This is consistent with the LAMMPS requirement
|
||||
# that twobody ik parameters be defined on the ikk line. Entries on all
|
||||
# the other i*k lines are ignored by LAMMPS
|
||||
#
|
||||
# These entries are in LAMMPS "metal" units: epsilon = eV;
|
||||
# sigma = Angstroms; other quantities are unitless
|
||||
#
|
||||
# cutoff distance = 4.632
|
||||
# eps sigma a lambda gamma cos(theta) A B p q tol
|
||||
Cd Cd Cd 1.182358e+00 2.663951e+00 1.527956e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.674460e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Cd Te 1.385284e+00 2.352141e+00 1.810919e+00 3.002537e+01 1.200000e+00 -3.333333e-01 7.049600e+00 8.861252e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Cd Zn 6.908179e-01 2.238699e+00 1.812616e+00 4.251831e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.010632e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Cd Se 1.352371e+00 2.045165e+00 1.953387e+00 3.038855e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.116149e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Cd Hg 4.881231e-01 2.432694e+00 1.677987e+00 5.058167e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.250999e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Cd S 1.300376e+00 1.804151e+00 2.124568e+00 3.099013e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.540087e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Te Cd 1.182358e+00 2.663951e+00 1.527956e+00 3.517858e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.674460e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Te Te 1.385284e+00 2.352141e+00 1.810919e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 8.861252e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Te Zn 6.908179e-01 2.238699e+00 1.812616e+00 4.602259e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.010632e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Te Se 1.352371e+00 2.045165e+00 1.953387e+00 3.289311e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.116149e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Te Hg 4.881231e-01 2.432694e+00 1.677987e+00 5.475051e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.250999e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Te S 1.300376e+00 1.804151e+00 2.124568e+00 3.354428e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.540087e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Zn Cd 1.182358e+00 2.663951e+00 1.527956e+00 2.484224e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.674460e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Zn Te 1.385284e+00 2.352141e+00 1.810919e+00 2.295069e+01 1.200000e+00 -3.333333e-01 7.049600e+00 8.861252e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Zn Zn 6.908179e-01 2.238699e+00 1.812616e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.010632e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Zn Se 1.352371e+00 2.045165e+00 1.953387e+00 2.322829e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.116149e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Zn Hg 4.881231e-01 2.432694e+00 1.677987e+00 3.866344e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.250999e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Zn S 1.300376e+00 1.804151e+00 2.124568e+00 2.368813e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.540087e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Se Cd 1.182358e+00 2.663951e+00 1.527956e+00 3.475816e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.674460e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Se Te 1.385284e+00 2.352141e+00 1.810919e+00 3.211159e+01 1.200000e+00 -3.333333e-01 7.049600e+00 8.861252e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Se Zn 6.908179e-01 2.238699e+00 1.812616e+00 4.547256e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.010632e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Se Se 1.352371e+00 2.045165e+00 1.953387e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.116149e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Se Hg 4.881231e-01 2.432694e+00 1.677987e+00 5.409618e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.250999e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Se S 1.300376e+00 1.804151e+00 2.124568e+00 3.314338e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.540087e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Hg Cd 1.182358e+00 2.663951e+00 1.527956e+00 2.088207e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.674460e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Hg Te 1.385284e+00 2.352141e+00 1.810919e+00 1.929206e+01 1.200000e+00 -3.333333e-01 7.049600e+00 8.861252e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Hg Zn 6.908179e-01 2.238699e+00 1.812616e+00 2.731909e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.010632e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Hg Se 1.352371e+00 2.045165e+00 1.953387e+00 1.952541e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.116149e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Hg Hg 4.881231e-01 2.432694e+00 1.677987e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.250999e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd Hg S 1.300376e+00 1.804151e+00 2.124568e+00 1.991194e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.540087e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd S Cd 1.182358e+00 2.663951e+00 1.527956e+00 3.408343e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.674460e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd S Te 1.385284e+00 2.352141e+00 1.810919e+00 3.148823e+01 1.200000e+00 -3.333333e-01 7.049600e+00 8.861252e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd S Zn 6.908179e-01 2.238699e+00 1.812616e+00 4.458985e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.010632e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd S Se 1.352371e+00 2.045165e+00 1.953387e+00 3.186911e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.116149e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd S Hg 4.881231e-01 2.432694e+00 1.677987e+00 5.304605e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.250999e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Cd S S 1.300376e+00 1.804151e+00 2.124568e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.540087e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Cd Cd 1.385284e+00 2.352141e+00 1.810919e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 8.861252e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Cd Te 1.849775e+00 2.905254e+00 1.594353e+00 2.812506e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.307283e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Cd Zn 1.546239e+00 2.056363e+00 1.907922e+00 3.076200e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.255846e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Cd Se 1.295053e+00 2.231716e+00 1.809645e+00 3.361313e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.005396e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Cd Hg 1.204715e+00 2.135591e+00 1.892491e+00 3.485063e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.445180e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Cd S 1.450015e+00 2.297301e+00 1.726905e+00 3.176630e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.794685e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Te Cd 1.385284e+00 2.352141e+00 1.810919e+00 3.755548e+01 1.200000e+00 -3.333333e-01 7.049600e+00 8.861252e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Te Te 1.849775e+00 2.905254e+00 1.594353e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.307283e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Te Zn 1.546239e+00 2.056363e+00 1.907922e+00 3.554713e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.255846e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Te Se 1.295053e+00 2.231716e+00 1.809645e+00 3.884177e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.005396e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Te Hg 1.204715e+00 2.135591e+00 1.892491e+00 4.027176e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.445180e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Te S 1.450015e+00 2.297301e+00 1.726905e+00 3.670765e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.794685e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Zn Cd 1.385284e+00 2.352141e+00 1.810919e+00 3.433620e+01 1.200000e+00 -3.333333e-01 7.049600e+00 8.861252e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Zn Te 1.849775e+00 2.905254e+00 1.594353e+00 2.971408e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.307283e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Zn Zn 1.546239e+00 2.056363e+00 1.907922e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.255846e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Zn Se 1.295053e+00 2.231716e+00 1.809645e+00 3.551222e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.005396e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Zn Hg 1.204715e+00 2.135591e+00 1.892491e+00 3.681964e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.445180e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Zn S 1.450015e+00 2.297301e+00 1.726905e+00 3.356105e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.794685e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Se Cd 1.385284e+00 2.352141e+00 1.810919e+00 3.142373e+01 1.200000e+00 -3.333333e-01 7.049600e+00 8.861252e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Se Te 1.849775e+00 2.905254e+00 1.594353e+00 2.719366e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.307283e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Se Zn 1.546239e+00 2.056363e+00 1.907922e+00 2.974328e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.255846e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Se Se 1.295053e+00 2.231716e+00 1.809645e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.005396e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Se Hg 1.204715e+00 2.135591e+00 1.892491e+00 3.369652e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.445180e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Se S 1.450015e+00 2.297301e+00 1.726905e+00 3.071433e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.794685e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Hg Cd 1.385284e+00 2.352141e+00 1.810919e+00 3.030791e+01 1.200000e+00 -3.333333e-01 7.049600e+00 8.861252e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Hg Te 1.849775e+00 2.905254e+00 1.594353e+00 2.622805e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.307283e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Hg Zn 1.546239e+00 2.056363e+00 1.907922e+00 2.868714e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.255846e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Hg Se 1.295053e+00 2.231716e+00 1.809645e+00 3.134597e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.005396e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Hg Hg 1.204715e+00 2.135591e+00 1.892491e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.445180e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te Hg S 1.450015e+00 2.297301e+00 1.726905e+00 2.962370e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.794685e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te S Cd 1.385284e+00 2.352141e+00 1.810919e+00 3.325065e+01 1.200000e+00 -3.333333e-01 7.049600e+00 8.861252e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te S Te 1.849775e+00 2.905254e+00 1.594353e+00 2.877465e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.307283e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te S Zn 1.546239e+00 2.056363e+00 1.907922e+00 3.147250e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.255846e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te S Se 1.295053e+00 2.231716e+00 1.809645e+00 3.438949e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.005396e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te S Hg 1.204715e+00 2.135591e+00 1.892491e+00 3.565557e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.445180e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Te S S 1.450015e+00 2.297301e+00 1.726905e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.794685e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Cd Cd 6.908179e-01 2.238699e+00 1.812616e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.010632e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Cd Te 1.546239e+00 2.056363e+00 1.907922e+00 2.172335e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.255846e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Cd Zn 1.392961e+00 2.367650e+00 1.525521e+00 2.288736e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.676279e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Cd Se 1.691181e+00 2.028827e+00 1.836907e+00 2.077161e+01 1.200000e+00 -3.333333e-01 7.049600e+00 9.510930e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Cd Hg 4.951616e-01 2.239186e+00 1.761363e+00 3.838766e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.461167e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Cd S 2.208390e+00 2.323783e+00 1.589241e+00 1.817721e+01 1.200000e+00 -3.333333e-01 7.049600e+00 4.643181e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Te Cd 6.908179e-01 2.238699e+00 1.812616e+00 4.862279e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.010632e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Te Te 1.546239e+00 2.056363e+00 1.907922e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.255846e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Te Zn 1.392961e+00 2.367650e+00 1.525521e+00 3.424146e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.676279e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Te Se 1.691181e+00 2.028827e+00 1.836907e+00 3.107611e+01 1.200000e+00 -3.333333e-01 7.049600e+00 9.510930e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Te Hg 4.951616e-01 2.239186e+00 1.761363e+00 5.743124e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.461167e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Te S 2.208390e+00 2.323783e+00 1.589241e+00 2.719467e+01 1.200000e+00 -3.333333e-01 7.049600e+00 4.643181e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Zn Cd 6.908179e-01 2.238699e+00 1.812616e+00 4.614993e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.010632e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Zn Te 1.546239e+00 2.056363e+00 1.907922e+00 3.084711e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.255846e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Zn Zn 1.392961e+00 2.367650e+00 1.525521e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.676279e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Zn Se 1.691181e+00 2.028827e+00 1.836907e+00 2.949563e+01 1.200000e+00 -3.333333e-01 7.049600e+00 9.510930e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Zn Hg 4.951616e-01 2.239186e+00 1.761363e+00 5.451040e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.461167e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Zn S 2.208390e+00 2.323783e+00 1.589241e+00 2.581160e+01 1.200000e+00 -3.333333e-01 7.049600e+00 4.643181e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Se Cd 6.908179e-01 2.238699e+00 1.812616e+00 5.085067e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.010632e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Se Te 1.546239e+00 2.056363e+00 1.907922e+00 3.398914e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.255846e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Se Zn 1.392961e+00 2.367650e+00 1.525521e+00 3.581039e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.676279e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Se Se 1.691181e+00 2.028827e+00 1.836907e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 9.510930e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Se Hg 4.951616e-01 2.239186e+00 1.761363e+00 6.006272e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.461167e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Se S 2.208390e+00 2.323783e+00 1.589241e+00 2.844072e+01 1.200000e+00 -3.333333e-01 7.049600e+00 4.643181e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Hg Cd 6.908179e-01 2.238699e+00 1.812616e+00 2.751535e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.010632e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Hg Te 1.546239e+00 2.056363e+00 1.907922e+00 1.839156e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.255846e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Hg Zn 1.392961e+00 2.367650e+00 1.525521e+00 1.937704e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.676279e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Hg Se 1.691181e+00 2.028827e+00 1.836907e+00 1.758578e+01 1.200000e+00 -3.333333e-01 7.049600e+00 9.510930e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Hg Hg 4.951616e-01 2.239186e+00 1.761363e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.461167e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn Hg S 2.208390e+00 2.323783e+00 1.589241e+00 1.538930e+01 1.200000e+00 -3.333333e-01 7.049600e+00 4.643181e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn S Cd 6.908179e-01 2.238699e+00 1.812616e+00 5.810847e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.010632e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn S Te 1.546239e+00 2.056363e+00 1.907922e+00 3.884033e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.255846e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn S Zn 1.392961e+00 2.367650e+00 1.525521e+00 4.092153e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.676279e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn S Se 1.691181e+00 2.028827e+00 1.836907e+00 3.713865e+01 1.200000e+00 -3.333333e-01 7.049600e+00 9.510930e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn S Hg 4.951616e-01 2.239186e+00 1.761363e+00 6.863534e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.461167e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Zn S S 2.208390e+00 2.323783e+00 1.589241e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 4.643181e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Cd Cd 1.352371e+00 2.045165e+00 1.953387e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.116149e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Cd Te 1.295053e+00 2.231716e+00 1.809645e+00 3.321142e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.005396e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Cd Zn 1.691181e+00 2.028827e+00 1.836907e+00 2.906271e+01 1.200000e+00 -3.333333e-01 7.049600e+00 9.510930e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Cd Se 2.400781e+00 2.789002e+00 1.544925e+00 2.439242e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.672131e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Cd Hg 1.299758e+00 2.113406e+00 1.831821e+00 3.315126e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.150200e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Cd S 1.307592e+00 2.229392e+00 1.747782e+00 3.305180e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.932325e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Te Cd 1.352371e+00 2.045165e+00 1.953387e+00 3.180382e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.116149e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Te Te 1.295053e+00 2.231716e+00 1.809645e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.005396e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Te Zn 1.691181e+00 2.028827e+00 1.836907e+00 2.844016e+01 1.200000e+00 -3.333333e-01 7.049600e+00 9.510930e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Te Se 2.400781e+00 2.789002e+00 1.544925e+00 2.386992e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.672131e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Te Hg 1.299758e+00 2.113406e+00 1.831821e+00 3.244113e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.150200e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Te S 1.307592e+00 2.229392e+00 1.747782e+00 3.234380e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.932325e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Zn Cd 1.352371e+00 2.045165e+00 1.953387e+00 3.634382e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.116149e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Zn Te 1.295053e+00 2.231716e+00 1.809645e+00 3.713938e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.005396e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Zn Zn 1.691181e+00 2.028827e+00 1.836907e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 9.510930e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Zn Se 2.400781e+00 2.789002e+00 1.544925e+00 2.727735e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.672131e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Zn Hg 1.299758e+00 2.113406e+00 1.831821e+00 3.707211e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.150200e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Zn S 1.307592e+00 2.229392e+00 1.747782e+00 3.696088e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.932325e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Se Cd 1.352371e+00 2.045165e+00 1.953387e+00 4.330238e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.116149e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Se Te 1.295053e+00 2.231716e+00 1.809645e+00 4.425026e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.005396e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Se Zn 1.691181e+00 2.028827e+00 1.836907e+00 3.872260e+01 1.200000e+00 -3.333333e-01 7.049600e+00 9.510930e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Se Se 2.400781e+00 2.789002e+00 1.544925e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.672131e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Se Hg 1.299758e+00 2.113406e+00 1.831821e+00 4.417011e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.150200e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Se S 1.307592e+00 2.229392e+00 1.747782e+00 4.403758e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.932325e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Hg Cd 1.352371e+00 2.045165e+00 1.953387e+00 3.186153e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.116149e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Hg Te 1.295053e+00 2.231716e+00 1.809645e+00 3.255898e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.005396e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Hg Zn 1.691181e+00 2.028827e+00 1.836907e+00 2.849177e+01 1.200000e+00 -3.333333e-01 7.049600e+00 9.510930e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Hg Se 2.400781e+00 2.789002e+00 1.544925e+00 2.391323e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.672131e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Hg Hg 1.299758e+00 2.113406e+00 1.831821e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.150200e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se Hg S 1.307592e+00 2.229392e+00 1.747782e+00 3.240249e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.932325e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se S Cd 1.352371e+00 2.045165e+00 1.953387e+00 3.195742e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.116149e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se S Te 1.295053e+00 2.231716e+00 1.809645e+00 3.265696e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.005396e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se S Zn 1.691181e+00 2.028827e+00 1.836907e+00 2.857751e+01 1.200000e+00 -3.333333e-01 7.049600e+00 9.510930e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se S Se 2.400781e+00 2.789002e+00 1.544925e+00 2.398520e+01 1.200000e+00 -3.333333e-01 7.917000e+00 7.672131e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se S Hg 1.299758e+00 2.113406e+00 1.831821e+00 3.259780e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.150200e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Se S S 1.307592e+00 2.229392e+00 1.747782e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.932325e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Cd Cd 4.881231e-01 2.432694e+00 1.677987e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.250999e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Cd Te 1.204715e+00 2.135591e+00 1.892491e+00 2.068740e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.445180e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Cd Zn 4.951616e-01 2.239186e+00 1.761363e+00 3.226819e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.461167e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Cd Se 1.299758e+00 2.113406e+00 1.831821e+00 1.991668e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.150200e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Cd Hg 1.272807e+00 2.699097e+00 1.498503e+00 2.012643e+01 1.200000e+00 -3.333333e-01 7.917000e+00 1.211532e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Cd S 1.531211e+00 2.025045e+00 1.833708e+00 1.834976e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.184541e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Te Cd 4.881231e-01 2.432694e+00 1.677987e+00 5.105765e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.250999e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Te Te 1.204715e+00 2.135591e+00 1.892491e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.445180e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Te Zn 4.951616e-01 2.239186e+00 1.761363e+00 5.069347e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.461167e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Te Se 1.299758e+00 2.113406e+00 1.831821e+00 3.128919e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.150200e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Te Hg 1.272807e+00 2.699097e+00 1.498503e+00 3.161872e+01 1.200000e+00 -3.333333e-01 7.917000e+00 1.211532e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Te S 1.531211e+00 2.025045e+00 1.833708e+00 2.882756e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.184541e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Zn Cd 4.881231e-01 2.432694e+00 1.677987e+00 3.273348e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.250999e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Zn Te 1.204715e+00 2.135591e+00 1.892491e+00 2.083602e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.445180e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Zn Zn 4.951616e-01 2.239186e+00 1.761363e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.461167e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Zn Se 1.299758e+00 2.113406e+00 1.831821e+00 2.005976e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.150200e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Zn Hg 1.272807e+00 2.699097e+00 1.498503e+00 2.027102e+01 1.200000e+00 -3.333333e-01 7.917000e+00 1.211532e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Zn S 1.531211e+00 2.025045e+00 1.833708e+00 1.848159e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.184541e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Se Cd 4.881231e-01 2.432694e+00 1.677987e+00 5.303345e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.250999e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Se Te 1.204715e+00 2.135591e+00 1.892491e+00 3.375766e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.445180e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Se Zn 4.951616e-01 2.239186e+00 1.761363e+00 5.265518e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.461167e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Se Se 1.299758e+00 2.113406e+00 1.831821e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.150200e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Se Hg 1.272807e+00 2.699097e+00 1.498503e+00 3.284228e+01 1.200000e+00 -3.333333e-01 7.917000e+00 1.211532e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Se S 1.531211e+00 2.025045e+00 1.833708e+00 2.994311e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.184541e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Hg Cd 4.881231e-01 2.432694e+00 1.677987e+00 5.248074e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.250999e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Hg Te 1.204715e+00 2.135591e+00 1.892491e+00 3.340584e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.445180e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Hg Zn 4.951616e-01 2.239186e+00 1.761363e+00 5.210641e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.461167e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Hg Se 1.299758e+00 2.113406e+00 1.831821e+00 3.216129e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.150200e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Hg Hg 1.272807e+00 2.699097e+00 1.498503e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.917000e+00 1.211532e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg Hg S 1.531211e+00 2.025045e+00 1.833708e+00 2.963105e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.184541e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg S Cd 4.881231e-01 2.432694e+00 1.677987e+00 5.756205e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.250999e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg S Te 1.204715e+00 2.135591e+00 1.892491e+00 3.664028e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.445180e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg S Zn 4.951616e-01 2.239186e+00 1.761363e+00 5.715148e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.461167e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg S Se 1.299758e+00 2.113406e+00 1.831821e+00 3.527522e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.150200e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg S Hg 1.272807e+00 2.699097e+00 1.498503e+00 3.564673e+01 1.200000e+00 -3.333333e-01 7.917000e+00 1.211532e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
Hg S S 1.531211e+00 2.025045e+00 1.833708e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.184541e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Cd Cd 1.300376e+00 1.804151e+00 2.124568e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.540087e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Cd Te 1.450015e+00 2.297301e+00 1.726905e+00 3.077737e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.794685e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Cd Zn 2.208390e+00 2.323783e+00 1.589241e+00 2.493905e+01 1.200000e+00 -3.333333e-01 7.049600e+00 4.643181e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Cd Se 1.307592e+00 2.229392e+00 1.747782e+00 3.241019e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.932325e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Cd Hg 1.531211e+00 2.025045e+00 1.833708e+00 2.995023e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.184541e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Cd S 2.434871e+00 2.423171e+00 1.711097e+00 2.375088e+01 1.200000e+00 -3.333333e-01 7.917000e+00 1.049688e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Te Cd 1.300376e+00 1.804151e+00 2.124568e+00 3.431904e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.540087e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Te Te 1.450015e+00 2.297301e+00 1.726905e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.794685e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Te Zn 2.208390e+00 2.323783e+00 1.589241e+00 2.633490e+01 1.200000e+00 -3.333333e-01 7.049600e+00 4.643181e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Te Se 1.307592e+00 2.229392e+00 1.747782e+00 3.422421e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.932325e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Te Hg 1.531211e+00 2.025045e+00 1.833708e+00 3.162656e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.184541e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Te S 2.434871e+00 2.423171e+00 1.711097e+00 2.508023e+01 1.200000e+00 -3.333333e-01 7.917000e+00 1.049688e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Zn Cd 1.300376e+00 1.804151e+00 2.124568e+00 4.235326e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.540087e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Zn Te 1.450015e+00 2.297301e+00 1.726905e+00 4.010837e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.794685e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Zn Zn 2.208390e+00 2.323783e+00 1.589241e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 4.643181e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Zn Se 1.307592e+00 2.229392e+00 1.747782e+00 4.223622e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.932325e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Zn Hg 1.531211e+00 2.025045e+00 1.833708e+00 3.903046e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.184541e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Zn S 2.434871e+00 2.423171e+00 1.711097e+00 3.095161e+01 1.200000e+00 -3.333333e-01 7.917000e+00 1.049688e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Se Cd 1.300376e+00 1.804151e+00 2.124568e+00 3.259006e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.540087e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Se Te 1.450015e+00 2.297301e+00 1.726905e+00 3.086266e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.794685e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Se Zn 2.208390e+00 2.323783e+00 1.589241e+00 2.500815e+01 1.200000e+00 -3.333333e-01 7.049600e+00 4.643181e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Se Se 1.307592e+00 2.229392e+00 1.747782e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.932325e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Se Hg 1.531211e+00 2.025045e+00 1.833708e+00 3.003322e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.184541e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Se S 2.434871e+00 2.423171e+00 1.711097e+00 2.381670e+01 1.200000e+00 -3.333333e-01 7.917000e+00 1.049688e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Hg Cd 1.300376e+00 1.804151e+00 2.124568e+00 3.526684e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.540087e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Hg Te 1.450015e+00 2.297301e+00 1.726905e+00 3.339756e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.794685e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Hg Zn 2.208390e+00 2.323783e+00 1.589241e+00 2.706220e+01 1.200000e+00 -3.333333e-01 7.049600e+00 4.643181e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Hg Se 1.307592e+00 2.229392e+00 1.747782e+00 3.516939e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.932325e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Hg Hg 1.531211e+00 2.025045e+00 1.833708e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.184541e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S Hg S 2.434871e+00 2.423171e+00 1.711097e+00 2.577288e+01 1.200000e+00 -3.333333e-01 7.917000e+00 1.049688e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S S Cd 1.300376e+00 1.804151e+00 2.124568e+00 4.447203e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.540087e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S S Te 1.450015e+00 2.297301e+00 1.726905e+00 4.211484e+01 1.200000e+00 -3.333333e-01 7.049600e+00 7.794685e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S S Zn 2.208390e+00 2.323783e+00 1.589241e+00 3.412585e+01 1.200000e+00 -3.333333e-01 7.049600e+00 4.643181e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S S Se 1.307592e+00 2.229392e+00 1.747782e+00 4.434914e+01 1.200000e+00 -3.333333e-01 7.049600e+00 6.932325e-01 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S S Hg 1.531211e+00 2.025045e+00 1.833708e+00 4.098300e+01 1.200000e+00 -3.333333e-01 7.049600e+00 1.184541e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
S S S 2.434871e+00 2.423171e+00 1.711097e+00 3.250000e+01 1.200000e+00 -3.333333e-01 7.917000e+00 1.049688e+00 4.000000e+00 0.000000e+00 0.000000e+00
|
||||
38
examples/threebody/InP.vashishta
Normal file
38
examples/threebody/InP.vashishta
Normal file
@ -0,0 +1,38 @@
|
||||
# DATE: 2015-10-14 CONTRIBUTOR: Aidan Thompson, athomps@sandia.gov CITATION: Branicio, Rino, Gan and Tsuzuki, J. Phys Condensed Matter 21 (2009) 095002
|
||||
#
|
||||
# Vashishta potential file for InP, Branicio, Rino, Gan and Tsuzuki,
|
||||
# J. Phys Condensed Matter 21 (2009) 095002
|
||||
#
|
||||
# These entries are in LAMMPS "metal" units:
|
||||
# H = eV*Angstroms^eta; Zi, Zj = |e| (e = electronic charge);
|
||||
# lambda1, lambda4, rc, r0, gamma = Angstroms;
|
||||
# D = eV*Angstroms^4; W = eV*Angstroms^6; B = eV;
|
||||
# other quantities are unitless
|
||||
|
||||
# element1 element2 element3
|
||||
# H eta Zi Zj lambda1 D lambda4
|
||||
# W rc B gamma r0 C cos(theta)
|
||||
|
||||
In In In 273.584 7 -1.21 -1.21 4.5 0.0 2.75
|
||||
0.0 6.0 0.0 0.0 0.0 0.0 0.0
|
||||
|
||||
P P P 1813.06 7 1.21 1.21 4.5 52.7067 2.75
|
||||
0.0 6.0 0.0 0.0 0.0 0.0 -0.333333333333
|
||||
|
||||
In P P 4847.09 9 1.21 -1.21 4.5 26.3533 2.75
|
||||
270.105 6.0 4.34967 1.0 3.55 7.0 -0.333333333333
|
||||
|
||||
P In In 4847.09 9 1.21 -1.21 4.5 26.3533 2.75
|
||||
270.105 6.0 4.34967 1.0 3.55 7.0 -0.333333333333
|
||||
|
||||
In In P 0.0 0.0 0.0 0.0 0.0 0.0 0.0
|
||||
0.0 0.0 0.0 0.0 0.0 0.0 0.0
|
||||
|
||||
In P In 0.0 0.0 0.0 0.0 0.0 0.0 0.0
|
||||
0.0 0.0 0.0 0.0 0.0 0.0 0.0
|
||||
|
||||
P In P 0.0 0.0 0.0 0.0 0.0 0.0 0.0
|
||||
0.0 0.0 0.0 0.0 0.0 0.0 0.0
|
||||
|
||||
P P In 0.0 0.0 0.0 0.0 0.0 0.0 0.0
|
||||
0.0 0.0 0.0 0.0 0.0 0.0 0.0
|
||||
18
examples/threebody/Si.sw
Normal file
18
examples/threebody/Si.sw
Normal file
@ -0,0 +1,18 @@
|
||||
# DATE: 2007-06-11 CONTRIBUTOR: Aidan Thompson, athomps@sandia.gov CITATION: Stillinger and Weber, Phys Rev B, 31, 5262, (1985)
|
||||
# Stillinger-Weber parameters for various elements and mixtures
|
||||
# multiple entries can be added to this file, LAMMPS reads the ones it needs
|
||||
# these entries are in LAMMPS "metal" units:
|
||||
# epsilon = eV; sigma = Angstroms
|
||||
# other quantities are unitless
|
||||
|
||||
# format of a single entry (one or more lines):
|
||||
# element 1, element 2, element 3,
|
||||
# epsilon, sigma, a, lambda, gamma, costheta0, A, B, p, q, tol
|
||||
|
||||
# Here are the original parameters in metal units, for Silicon from:
|
||||
#
|
||||
# Stillinger and Weber, Phys. Rev. B, v. 31, p. 5262, (1985)
|
||||
#
|
||||
|
||||
Si Si Si 2.1683 2.0951 1.80 21.0 1.20 -0.333333333333
|
||||
7.049556277 0.6022245584 4.0 0.0 0.0
|
||||
116
examples/threebody/in.threebody
Normal file
116
examples/threebody/in.threebody
Normal file
@ -0,0 +1,116 @@
|
||||
# Simple regression tests for threebody potentials
|
||||
|
||||
# NOTE: These are not intended to represent real materials
|
||||
|
||||
units metal
|
||||
|
||||
atom_style atomic
|
||||
atom_modify map array
|
||||
boundary p p p
|
||||
atom_modify sort 0 0.0
|
||||
|
||||
# temperature
|
||||
|
||||
variable t equal 1800.0
|
||||
|
||||
# cubic diamond unit cell
|
||||
|
||||
variable a equal 5.431
|
||||
lattice custom $a &
|
||||
a1 1.0 0.0 0.0 &
|
||||
a2 0.0 1.0 0.0 &
|
||||
a3 0.0 0.0 1.0 &
|
||||
basis 0.0 0.0 0.0 &
|
||||
basis 0.0 0.5 0.5 &
|
||||
basis 0.5 0.0 0.5 &
|
||||
basis 0.5 0.5 0.0 &
|
||||
basis 0.25 0.25 0.25 &
|
||||
basis 0.25 0.75 0.75 &
|
||||
basis 0.75 0.25 0.75 &
|
||||
basis 0.75 0.75 0.25
|
||||
|
||||
region myreg block 0 4 &
|
||||
0 4 &
|
||||
0 4
|
||||
|
||||
create_box 8 myreg
|
||||
create_atoms 1 region myreg &
|
||||
basis 1 1 &
|
||||
basis 2 2 &
|
||||
basis 3 3 &
|
||||
basis 4 4 &
|
||||
basis 5 5 &
|
||||
basis 6 6 &
|
||||
basis 7 7 &
|
||||
basis 8 8
|
||||
|
||||
mass * 28.06
|
||||
|
||||
velocity all create $t 5287287 mom yes rot yes dist gaussian
|
||||
|
||||
# Equilibrate using Stillinger-Weber model for silicon
|
||||
|
||||
pair_style sw
|
||||
pair_coeff * * Si.sw Si Si Si Si Si Si Si Si
|
||||
|
||||
thermo 10
|
||||
fix 1 all nvt temp $t $t 0.1
|
||||
fix_modify 1 energy yes
|
||||
timestep 1.0e-3
|
||||
neighbor 1.0 bin
|
||||
neigh_modify every 1 delay 10 check yes
|
||||
run 100
|
||||
|
||||
write_restart restart.equil
|
||||
|
||||
# Test Stillinger-Weber model for Cd/Te/Zn/Se/Hg/S
|
||||
|
||||
clear
|
||||
read_restart restart.equil
|
||||
|
||||
pair_style sw
|
||||
pair_coeff * * CdTeZnSeHgS0.sw Cd Zn Hg Cd Te S Se Te
|
||||
|
||||
thermo 10
|
||||
fix 1 all nvt temp $t $t 0.1
|
||||
fix_modify 1 energy yes
|
||||
timestep 1.0e-3
|
||||
neighbor 1.0 bin
|
||||
neigh_modify every 1 delay 10 check yes
|
||||
run 100
|
||||
|
||||
# Test Vashishta model for In/P
|
||||
|
||||
clear
|
||||
read_restart restart.equil
|
||||
|
||||
pair_style vashishta
|
||||
pair_coeff * * InP.vashishta In In In In P P P P
|
||||
|
||||
thermo 10
|
||||
fix 1 all nvt temp $t $t 0.1
|
||||
fix_modify 1 energy yes
|
||||
timestep 1.0e-3
|
||||
neighbor 1.0 bin
|
||||
neigh_modify every 1 delay 10 check yes
|
||||
run 100
|
||||
|
||||
# Test Tersoff model for B/N/C
|
||||
|
||||
clear
|
||||
read_restart restart.equil
|
||||
|
||||
variable fac equal 0.6
|
||||
change_box all x scale ${fac} y scale ${fac} z scale ${fac} remap
|
||||
|
||||
pair_style tersoff
|
||||
pair_coeff * * BNC.tersoff N N N C B B C B
|
||||
|
||||
thermo 10
|
||||
fix 1 all nvt temp $t $t 0.1
|
||||
fix_modify 1 energy yes
|
||||
timestep 1.0e-3
|
||||
neighbor 1.0 bin
|
||||
neigh_modify every 1 delay 10 check yes
|
||||
run 100
|
||||
|
||||
@ -18,9 +18,11 @@
|
||||
# sqrt(lambda_ij*epsilon_ij*lambda_ik*epsilon_ik)/lambda_ik, and the
|
||||
# results are directly entered in this table. Obviously, this
|
||||
# conversion does not change the two-body parameters epsilon_ijj.
|
||||
# All other ik pair parameters are entered on the i*k line, where *
|
||||
# can be any species. This is consistent with the requirement of
|
||||
# the ik parameter being on the ikk line.
|
||||
|
||||
# The twobody ik pair parameters are entered on the i*k lines, where *
|
||||
# can be any species. This is consistent with the LAMMPS requirement
|
||||
# that twobody ik parameters be defined on the ikk line. Entries on all
|
||||
# the other i*k lines are ignored by LAMMPS
|
||||
|
||||
# These entries are in LAMMPS "metal" units: epsilon = eV;
|
||||
# sigma = Angstroms; other quantities are unitless
|
||||
|
||||
@ -1,9 +1,17 @@
|
||||
### DATE: 2013-08-09 CONTRIBUTOR: X. W. Zhou, xzhou@sandia.gov, CITATION: Zhou, Ward, Martin, van Swol, Cruz-Campa, and D. Zubia, Phys. Rev. B, 88, 085309 (2013).
|
||||
#
|
||||
# Note that the way the parameters can be entered is not unique. As one way, we assume that eps_ijk is equal to eps_ik and lambda_ijk is equal to
|
||||
# sqrt(lambda_ij*eps_ij*lambda_ik*eps_ik)/eps_ik, and all other parameters in the ijk line are for ik.
|
||||
# Note that the way the parameters can be entered is not unique.
|
||||
# As one way, we assume that eps_ijk is equal to eps_ik and
|
||||
# lambda_ijk is equal to sqrt(lambda_ij*eps_ij*lambda_ik*eps_ik)/eps_ik,
|
||||
# and all other parameters in the ijk line are for ik.
|
||||
#
|
||||
# The twobody ik pair parameters are entered on the i*k lines, where *
|
||||
# can be any species. This is consistent with the LAMMPS requirement
|
||||
# that twobody ik parameters be defined on the ikk line. Entries on all
|
||||
# the other i*k lines are ignored by LAMMPS
|
||||
#
|
||||
# These entries are in LAMMPS "metal" units: epsilon = eV; sigma = Angstroms; other quantities are unitless;
|
||||
# These entries are in LAMMPS "metal" units: epsilon = eV;
|
||||
# sigma = Angstroms; other quantities are unitless
|
||||
#
|
||||
# cutoff distance = 4.632
|
||||
# eps sigma a lambda gamma cos(theta) A B p q tol
|
||||
|
||||
@ -297,8 +297,8 @@ void PairGayBerne::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi,jlo,jhi;
|
||||
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
||||
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
||||
|
||||
double epsilon_one = force->numeric(FLERR,arg[2]);
|
||||
double sigma_one = force->numeric(FLERR,arg[3]);
|
||||
|
||||
@ -371,8 +371,8 @@ void PairLineLJ::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi,jlo,jhi;
|
||||
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
||||
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
||||
|
||||
double size_itype = force->numeric(FLERR,arg[2]);
|
||||
double size_jtype = force->numeric(FLERR,arg[3]);
|
||||
|
||||
@ -269,8 +269,8 @@ void PairRESquared::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi,jlo,jhi;
|
||||
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
||||
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
||||
|
||||
double epsilon_one = force->numeric(FLERR,arg[2]);
|
||||
double sigma_one = force->numeric(FLERR,arg[3]);
|
||||
|
||||
@ -442,8 +442,8 @@ void PairTriLJ::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi,jlo,jhi;
|
||||
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
||||
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
||||
|
||||
double epsilon_one = force->numeric(FLERR,arg[2]);
|
||||
double sigma_one = force->numeric(FLERR,arg[3]);
|
||||
|
||||
@ -388,8 +388,8 @@ void PairBody::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi,jlo,jhi;
|
||||
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
||||
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
||||
|
||||
double epsilon_one = force->numeric(FLERR,arg[2]);
|
||||
double sigma_one = force->numeric(FLERR,arg[3]);
|
||||
|
||||
@ -271,7 +271,7 @@ void AngleClass2::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi;
|
||||
force->bounds(arg[0],atom->nangletypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[0],atom->nangletypes,ilo,ihi);
|
||||
|
||||
int count = 0;
|
||||
|
||||
|
||||
@ -132,7 +132,7 @@ void BondClass2::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi;
|
||||
force->bounds(arg[0],atom->nbondtypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[0],atom->nbondtypes,ilo,ihi);
|
||||
|
||||
double r0_one = force->numeric(FLERR,arg[1]);
|
||||
double k2_one = force->numeric(FLERR,arg[2]);
|
||||
|
||||
@ -640,7 +640,7 @@ void DihedralClass2::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi;
|
||||
force->bounds(arg[0],atom->ndihedraltypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[0],atom->ndihedraltypes,ilo,ihi);
|
||||
|
||||
int count = 0;
|
||||
|
||||
|
||||
@ -529,7 +529,7 @@ void ImproperClass2::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi;
|
||||
force->bounds(arg[0],atom->nimpropertypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[0],atom->nimpropertypes,ilo,ihi);
|
||||
|
||||
int count = 0;
|
||||
|
||||
|
||||
@ -189,8 +189,8 @@ void PairLJClass2::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi,jlo,jhi;
|
||||
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
||||
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
||||
|
||||
double epsilon_one = force->numeric(FLERR,arg[2]);
|
||||
double sigma_one = force->numeric(FLERR,arg[3]);
|
||||
|
||||
@ -220,8 +220,8 @@ void PairLJClass2CoulCut::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi,jlo,jhi;
|
||||
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
||||
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
||||
|
||||
double epsilon_one = force->numeric(FLERR,arg[2]);
|
||||
double sigma_one = force->numeric(FLERR,arg[3]);
|
||||
|
||||
@ -256,8 +256,8 @@ void PairLJClass2CoulLong::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi,jlo,jhi;
|
||||
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
||||
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
||||
|
||||
double epsilon_one = force->numeric(FLERR,arg[2]);
|
||||
double sigma_one = force->numeric(FLERR,arg[3]);
|
||||
|
||||
@ -423,8 +423,8 @@ void PairBrownian::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi,jlo,jhi;
|
||||
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
||||
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
||||
|
||||
double cut_inner_one = cut_inner_global;
|
||||
double cut_one = cut_global;
|
||||
|
||||
@ -272,8 +272,8 @@ void PairColloid::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi,jlo,jhi;
|
||||
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
||||
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
||||
|
||||
double a12_one = force->numeric(FLERR,arg[2]);
|
||||
double sigma_one = force->numeric(FLERR,arg[3]);
|
||||
|
||||
@ -509,8 +509,8 @@ void PairLubricate::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi,jlo,jhi;
|
||||
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
||||
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
||||
|
||||
double cut_inner_one = cut_inner_global;
|
||||
double cut_one = cut_global;
|
||||
|
||||
@ -1739,8 +1739,8 @@ void PairLubricateU::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi,jlo,jhi;
|
||||
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
||||
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
||||
|
||||
double cut_inner_one = cut_inner_global;
|
||||
double cut_one = cut_global;
|
||||
|
||||
@ -326,8 +326,8 @@ void PairLJCutDipoleCut::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi,jlo,jhi;
|
||||
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
||||
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
||||
|
||||
double epsilon_one = force->numeric(FLERR,arg[2]);
|
||||
double sigma_one = force->numeric(FLERR,arg[3]);
|
||||
|
||||
@ -376,8 +376,8 @@ void PairLJCutDipoleLong::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi,jlo,jhi;
|
||||
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
||||
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
||||
|
||||
double epsilon_one = force->numeric(FLERR,arg[2]);
|
||||
double sigma_one = force->numeric(FLERR,arg[3]);
|
||||
|
||||
@ -194,8 +194,8 @@ void PairLJLongDipoleLong::coeff(int narg, char **arg)
|
||||
if (!allocated) allocate();
|
||||
|
||||
int ilo,ihi,jlo,jhi;
|
||||
force->bounds(arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(arg[1],atom->ntypes,jlo,jhi);
|
||||
force->bounds(FLERR,arg[0],atom->ntypes,ilo,ihi);
|
||||
force->bounds(FLERR,arg[1],atom->ntypes,jlo,jhi);
|
||||
|
||||
double epsilon_one = force->numeric(FLERR,arg[2]);
|
||||
double sigma_one = force->numeric(FLERR,arg[3]);
|
||||
|
||||
@ -336,7 +336,7 @@ void PairEAMAlloyGPU::coeff(int narg, char **arg)
|
||||
for (j = i; j <= n; j++) {
|
||||
if (map[i] >= 0 && map[j] >= 0) {
|
||||
setflag[i][j] = 1;
|
||||
if (i == j) atom->set_mass(i,setfl->mass[map[i]]);
|
||||
if (i == j) atom->set_mass(FLERR,i,setfl->mass[map[i]]);
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user