- flatten directory structure
- remove CPU time and reduce excess precision from output
- delete redundant and unused files
- regenerate reference outputs
default to shared linkage on MacOSX to avoid linker issues from
configure/cmake library detection differences
link/depend on GSL and LAPACK explicitly only for static linkage
Fix bugs with CMake potentials and frc folder installation. Include base C++ headers for library install, too, so one can use the C++ interface as well.
- use MathSpecial::square(x) instead of pow(x,2) for improved precision
and handling of small and negative numbers
- remove unused include statements
- no need to refetch the compute in every step. during init() is sufficient
make so that for the "serial" make target we not only automatically build
the STUBS library, if it is missing, but also update its compilation when
there are changes and remove it on the "clean-serial" target.
This can be a scenario where the user has KIM installed but does not have the
environment setup correctly to be found. The config. step should provide some
warning of this. Otherwise, it is easy to miss the fact that KIM is being
downloaded and built.
the header lines are now checked using regular expressions
instead of strstr() which allows for stricter checking, but
also is more forgiving in terms of extra or different whitespace
return value of sscanf() calls is checked and on failure LAMMPS errors out
- added doc for read_data spin
- corrected an error in pack/unpack data hybrid
- added mask flags in fix_nve_spin::initial_integrate
- removed spin renormalization in min_spin (was causing a bug)
these new functions allow to choose between aborting with Error::one()
and exiting with Error::all(). in the long run those should replace
all of the functions in Force.
Summary
Very small bug fix - an incorrect MPI datatype was causing undefined behaviour for tabulated bond potentials (bond_style table).
Author(s)
Sam Niblett, LBNL
Licensing
By submitting this pull request, I agree, that my contribution will be included in LAMMPS and redistributed under either the GNU General Public License version 2 (GPL v2) or the GNU Lesser General Public License version 2.1 (LGPL v2.1).
Backward Compatibility
No impact
Implementation Notes
The equilibrium bond length of the tabulated potential (tb->r0) was incorrectly specified as an MPI_INT during a broadcast. Therefore, all non-root processes received a truncated value of this parameter. This simple fix produced the expected behaviour for me.
This remove the CMake configuration of several larger packages and places
it into their own files in the Modules/Packages folder.
- COMPRESS
- KIM
- LATTE
- MESSAGE
- MSCG
- USER-MOLFILE
- USER-NETCDF
- USER-PLUMED
- USER-QMMM
- USER-QUIP
- USER-SCAFACOS
- USER-SMD
- USER-VTK
This will avoid a difficult to interpret warning and in
addition speed up compilation of this one file by avoiding
to try to optimize something, that needs no optimization.
* CMake change to use KIM-API SimulatorModels branch
* Minimal changes to pair_kim to illustrate use of KIM API
interface. Only c++ interface is implemented for development.
* Added example input: in.kim.simulator-model
- moved examples/SPIN/gneb/interpolate/ toward
tools/spin/interpolate/gneb
- added gneb in the command files in doc/src
- modified the error messages in neb_spin.h/cpp
This is to more closely match the old style pair gran/hooke/* damping behavior.
Updated doc page accordingly, as well as adding some examples on how to match old pair gran/* styles.
1. Radius of curvature for curved regions was incorrectly used to compute wall-particle overlaps
2. Uninitialized values of rolling and twisting history could produce crashes in
cases that don't initialize these to 0 by default. These are now initialized to 0.
3. Fixed a bug with the use of 'NULL' for specification of the tangential stiffness for
wall/gran and wall/gran/region
- decouple from USER-OMP
- decouple from OpenMP support
- make MKL and TBB optional
- support compilers other than Intel (but print warning about bad performance)
- expose Long-range thread support selection to CMake
- fix bugs and typos and add missing code, so that it actually compiles and includes all styles
- fixed bug 1: precession_spin had no min_setup
- fixed bug 2: incorrect init of spins in neb/spin
- improved doc min_spin.txt (added eqs, and connected to related
files).
- moved gneb files from src/REPLICA to src/SPIN
- changed name of min/spin
- implemented read_param in min.cpp and min_spin.cpp
- set sp_flag tests in min_spin.cpp and neb_spin.cpp
- ewald_dipole with virial, torque and slabcorr
- run and valgrind test ok
Merge branch 'pppm_spin' of github.com:julient31/lammps into pppm_spin
Conflicts:
src/KSPACE/ewald_dipole.cpp
- merge with modifs Stan 1
- energy correction
Merge branch 'pppm_spin' of github.com:julient31/lammps into pppm_spin
Conflicts:
src/KSPACE/ewald_dipole.cpp
- corrected memory errors in pppm_dipole and pppm_dipole_spin
- created fm_long in atom_vec_spin
- fm_long added to fm in initial_integrate (in ComputeInteractionsSpin)
- created pppm_dipole_spin.h/cpp (child-class of pppm_dipole)
- improved pair_spin_long.h/cpp
- created documentation for pair_spin_long
- new 3xN fm_long vector in atom_vec_spin (with associated comm)
message(FATAL_ERROR"Voro++ library not found. Help CMake to find it by setting VORO_LIBRARY and VORO_INCLUDE_DIR, or set DOWNLOAD_VORO=ON to download it")
<p>A pair style for the modified embedded atom (MEAM) potential.</p>
<p><strong>Please note that the MEAM package has been superseded by the USER-MEAMC package,
which is a direct translation of the MEAM package to C++. USER-MEAMC contains
additional optimizations making it run faster than MEAM on most machines, while
providing the identical features and USER interface.</strong></p>
</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_MISC</code></td>
<td>
@ -632,21 +641,6 @@ providing the identical features and USER interface.</strong></p>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_REAX</code></td>
<td>
A pair style which wraps a Fortran library which implements the ReaxFF
potential, which is a universal reactive force field. See the USER-REAXC
package for an alternate implementation in C/C++. Also a fix reax/bonds
command for monitoring molecules as bonds are created and destroyed.
</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_REPLICA</code></td>
<td>
@ -693,6 +687,16 @@ providing the identical features and USER interface.</strong></p>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_SPIN</code></td>
<td>Model atomic magnetic spins classically, coupled to atoms moving in the usual manner via MD. Various pair, fix, and compute styles.</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_SNAP</code></td>
<td>
@ -755,6 +759,16 @@ providing the identical features and USER interface.</strong></p>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_MESSAGE</code></td>
<td>Commands to use LAMMPS as either a client or server and couple it to another application.</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_MSCG</code></td>
<td>
@ -809,6 +823,18 @@ providing the identical features and USER interface.</strong></p>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_VORONOI</code></td>
<td>
A compute command which calculates the Voronoi tesselation of a collection of atoms by wrapping the Voro++ library. This can be used to calculate the local volume or each atoms or its near neighbors.
</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
</tbody>
</table>
@ -823,6 +849,16 @@ providing the identical features and USER interface.</strong></p>
</tr>
</thead>
<tbody>
<tr>
<td><code>PKG_USER-ADIOS</code></td>
<td>ADIOS is a high-performance I/O library. This package implements the dump “atom/adios” and dump “custom/adios” commands to write data using the ADIOS library.</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_USER-ATC</code></td>
<td>
@ -851,6 +887,18 @@ providing the identical features and USER interface.</strong></p>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_USER-BOCS</code></td>
<td>
This package provides fix bocs, a modified version of fix npt which includes the pressure correction to the barostat as outlined in: N. J. H. Dunn and W. G. Noid, “Bottom-up coarse-grained models that accurately describe the structure, pressure, and compressibility of molecular liquids,” J. Chem. Phys. 143, 243148 (2015).
</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_USER-CGDNA</code></td>
<td>
@ -1140,6 +1188,30 @@ providing the identical features and USER interface.</strong></p>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_USER-PLUMED</code></td>
<td>
The fix plumed command allows you to use the PLUMED free energy plugin for molecular dynamics to analyze and bias your LAMMPS trajectory on the fly. The PLUMED library is called from within the LAMMPS input script by using the <code>fix plumed</code> command.
</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_USER-PTM</code></td>
<td>
A <code>compute ptm/atom</code> command that calculates local structure characterization using the Polyhedral Template Matching methodology.
</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_USER-QTB</code></td>
<td>
@ -1195,6 +1267,33 @@ providing the identical features and USER interface.</strong></p>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_USER-SCAFACOS</code></td>
<td>
A KSpace style which wraps the ScaFaCoS Coulomb solver library to compute long-range Coulombic interactions.
</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_USER-SDPD</code></td>
<td>
A pair style for smoothed dissipative particle dynamics (SDPD), which is an
extension of smoothed particle hydrodynamics (SPH) to mesoscale where thermal
fluctuations are important (see the USER-SPH package). Also two fixes for
moving and rigid body integration of SPH/SDPD particles (particles of
<code>atom_style meso</code>).</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_USER-SMD</code></td>
<td>
@ -1278,6 +1377,23 @@ providing the identical features and USER interface.</strong></p>
</dl>
</td>
</tr>
<tr>
<td><code>PKG_USER-YAFF</code></td>
<td>
Some potentials that are also implemented in the Yet Another Force Field (YAFF) code.
The expressions and their use are discussed in the following papers:
<ul>
<li><ahref="http://dx.doi.org/10.1002/jcc.23877"target="_blank">Vanduyfhuys et al., J. Comput. Chem., 36 (13), 1015-1027 (2015)</a></li>
<li><ahref="http://dx.doi.org/10.1002/jcc.25173"target="_blank">Vanduyfhuys et al., J. Comput. Chem., 39 (16), 999-1011 (2018)</a></li>
</ul>
</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
</tbody>
</table>
@ -1298,14 +1414,27 @@ providing the identical features and USER interface.</strong></p>
<td><code>FFT</code></td>
<td>
<p>FFT library for KSPACE package</p>
<p>If either MKL or FFTW is selected <code>cmake</code> will try to locate these libraries automatically. To control which one should be used please see the options below for each FFT library.</p>
<p>If either MKL or FFTW is selected <code>cmake</code> will try to locate
these libraries automatically. To control which one should be used please see
the options below for each FFT library. Otherwise it will default to KISS
FFT.</p>
</td>
<td>
<dl>
<dt><code>KISS</code></dt>
<dt><code>FFTW3</code></dt>
<dt><code>FFTW2</code></dt>
<dt><code>MKL</code></dt>
<dt><code>KISS</code> (default)</dt>
</dl>
</td>
</tr>
<tr>
<td><code>FFT_SINGLE</code></td>
<td>Use single-precision floating-point in FFT</td>
@ -1323,60 +1452,6 @@ providing the identical features and USER interface.</strong></p>
</tbody>
</table>
### MKL
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MKL_INCLUDE_DIRS</code></td>
<td></td>
<td>
</td>
</tr>
<tr>
<td><code>MKL_LIBRARIES</code></td>
<td></td>
<td>
</td>
</tr>
</tbody>
</table>
TODO static vs dynamic linking
### FFTW2
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>FFTW2_INCLUDE_DIRS</code></td>
<td></td>
<td>
</td>
</tr>
<tr>
<td><code>FFTW2_LIBRARIES</code></td>
<td></td>
<td>
</td>
</tr>
</tbody>
</table>
### FFTW3
<table>
@ -1390,24 +1465,57 @@ TODO static vs dynamic linking
<tbody>
<tr>
<td><code>FFTW3_INCLUDE_DIRS</code></td>
<td></td>
<td>path to FFTW3 include files</td>
<td>
</td>
</tr>
<tr>
<td><code>FFTW3_LIBRARIES</code></td>
<td></td>
<td>list of paths to FFTW3 libraries</td>
<td>
</td>
</tr>
</tbody>
</table>
### MKL
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MKL_INCLUDE_DIRS</code></td>
<td>path to MKL include files</td>
<td>
</td>
</tr>
<tr>
<td><code>MKL_LIBRARIES</code></td>
<td>list of paths to MKL libraries</td>
<td>
</td>
</tr>
</tbody>
</table>
### BLAS
See [FindBLAS documentation](https://cmake.org/cmake/help/latest/module/FindBLAS.html)
### LAPACK
TODO
See [FindLAPACK documentation](https://cmake.org/cmake/help/latest/module/FindLAPACK.html)
### PYTHON Package
See [FindPYTHON documentation](https://cmake.org/cmake/help/latest/module/FindPython.html)
### USER-INTEL Package
<table>
@ -1429,6 +1537,17 @@ TODO
</dl>
</td>
</tr>
<tr>
<td><code>INTEL_LRT_MODE</code></td>
<td>How to support Long-range thread mode in Verlet integration</td>
<td>
<dl>
<dt><code>threads</code> (default, if pthreads available)</dt>
<dt><code>none</code> (default, if pthreads not available)</dt>
<dt><code>c++11</code></dt>
</dl>
</td>
</tr>
</tbody>
</table>
@ -1486,10 +1605,11 @@ target API.
<td>
<dl>
<dt><code>sm_20</code> (Fermi)</dt>
<dt><code>sm_30</code> (Kepler)</dt>
<dt><code>sm_30</code> (Kepler) (default)</dt>
<dt><code>sm_50</code> (Maxwell)</dt>
<dt><code>sm_60</code> (Pascal)</dt>
<dt><code>sm_70</code> (Volta)</dt>
<dt><code>sm_75</code> (Turing)</dt>
</dl>
</td>
</tr>
@ -1521,13 +1641,14 @@ target API.
</tbody>
</table>
### VORONOI Package
### KIM Package
TODO
Requires installation of the KIM library with API v2
### USER-SMD Package
Requires a Eigen3 installation
If `DOWNLOAD_KIM` is set, the KIM library will be downloaded and built inside
the CMake build directory. If the KIM library is already on your system (in a
location CMake cannot find it), set the `PKG_CONFIG_PATH` environment variable
so that `libkim-api` can be found.
<table>
<thead>
@ -1538,9 +1659,323 @@ Requires a Eigen3 installation
</tr>
</thead>
<tbody>
<tr>
<td><code>DOWNLOAD_KIM</code></td>
<td>Download KIM API v2 and compile it as part of the build.</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
</tbody>
</table>
### MESSAGE Package
This package can optionally include support for messaging via sockets, using the open-source [ZeroMQ library](http://zeromq.org/), which must be installed on your system.
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MESSAGE_ZMQ</code></td>
<td>Build with ZeroMQ support</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>ZMQ_LIBRARY</code></td>
<td>
ZMQ library file (only needed if at custom location)
</td>
<td>
</td>
</tr>
<tr>
<td><code>ZMG_INCLUDE_DIR</code></td>
<td>
Provide include directory of existing ZMQ installation (only needed if at custom location)
</td>
<td>
</td>
</tr>
</tbody>
</table>
### MSCG Package
Requires installation of the MSCG library
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DOWNLOAD_MSCG</code></td>
<td>Download MSCG and compile it as part of the build</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>MSCG_LIBRARY</code></td>
<td>
MSCG library file (only needed if at custom location)
</td>
<td>
</td>
</tr>
<tr>
<td><code>MSCG_INCLUDE_DIR</code></td>
<td>
Provide include directory of existing MSCG installation (only needed if at custom location)
</td>
<td>
</td>
</tr>
</tbody>
</table>
### VORONOI Package
Requires installation of the Voro++ library
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DOWNLOAD_VORO</code></td>
<td>Download Voro++ and compile it as part of the build</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>VORO_LIBRARY</code></td>
<td>
Voro++ library file (only needed if at custom location)
</td>
<td>
</td>
</tr>
<tr>
<td><code>VORO_INCLUDE_DIR</code></td>
<td>
Provide include directory of existing Voro++ installation (only needed if at custom location)
</td>
<td>
</td>
</tr>
</tbody>
</table>
### USER-LATTE Package
Requires installation of the LATTE library
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DOWNLOAD_LATTE</code></td>
<td>Download LATTE and compile it as part of the build</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>LATTE_LIBRARY</code></td>
<td>
LATTE library file (only needed if at custom location)
</td>
<td>
</td>
</tr>
</tbody>
</table>
### USER-PLUMED Package
Requires installation of the PLUMED library
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DOWNLOAD_PLUMED</code></td>
<td>Download PLUMED and compile it as part of the build</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>PLUMED_MODE</code></td>
<td>
Determines the linkage mode for the PLUMED library.
</td>
<td>
<dl>
<dt><code>static</code> (default)</dt>
<dt><code>shared</code></dt>
<dt><code>runtime</code></dt>
</dl>
</td>
</tr>
</tbody>
</table>
### USER-LATTE Package
Requires installation of the LATTE library
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DOWNLOAD_LATTE</code></td>
<td>Download LATTE and compile it as part of the build</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>LATTE_LIBRARY</code></td>
<td>
LATTE library file (only needed if at custom location)
</td>
<td>
</td>
</tr>
</tbody>
</table>
### USER-SMD Package
Requires installation of the Eigen3 library
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DOWNLOAD_EIGEN3</code></td>
<td>Download Eigen3 and compile it as part of the build</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>EIGEN3_INCLUDE_DIR</code></td>
<td></td>
<td>
Provide include directory of existing Eigen3 installation (only needed if at custom location)
</td>
<td>
</td>
</tr>
</tbody>
</table>
### USER-SCAFACOS Package
To build with this package, you must download and build the [ScaFaCoS Coulomb solver library](http://www.scafacos.de/)
<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>DOWNLOAD_SCAFACOS</code></td>
<td>Download SCAFACOS and compile it as part of the build</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>SCAFACOS_LIBRARY</code></td>
<td>
SCAFACOS library file (only needed if at custom location)
</td>
<td>
</td>
</tr>
<tr>
<td><code>SCAFACOS_INCLUDE_DIR</code></td>
<td>
SCAFACOS include directory (only needed if at custom location)
<td>Custom location of lammps-testing repository (optional). If not specified it will download it via Git</td>
<td>
</td>
</tr>
<tr>
<td><code>LAMMPS_TESTING_GIT_TAG</code></td>
<td>If lammps-testing repository is cloned, this is the tag/commit that will be checked out</td>
<td>
<dl>
<dt><code>master</code> (default)</dt>
</dl>
</td>
</tr>
<tr>
<td><code>ENABLE_COVERAGE</code></td>
<td>Enables code coverage support via gcov and adds a gcovr build target to generate a coverage report.</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>ENABLE_SANITIZE_ADDRESS</code></td>
<td>Enables Address Sanitizer support when compiling using GCC or Clang for detecting memory leaks in binaries while running them. See https://clang.llvm.org/docs/AddressSanitizer.html</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>ENABLE_SANITIZE_UNDEFINED</code></td>
<td>Enables Undefined Behavior Sanitizer support when compiling using GCC or Clang for detecting code that is running into undefined behavior of the language. See https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html</td>
<td>
<dl>
<dt><code>off</code> (default)</dt>
<dt><code>on</code></dt>
</dl>
</td>
</tr>
<tr>
<td><code>ENABLE_SANITIZE_THREAD</code></td>
<td>Enables Thread Sanitizer support when compiling using GCC or Clang for detecting data races in binaries while running them. See https://clang.llvm.org/docs/ThreadSanitizer.html</td>
@ -610,6 +610,62 @@ This means there is something invalid about the topology definitions. :dd
The data file header lists bonds but no bond types. :dd
{Bond/react: Cannot use fix bond/react with non-molecular systems} :dt
Only systems with bonds that can be changed can be used. Atom_style
template does not qualify. :dd
{Bond/react: Rmax cutoff is longer than pairwise cutoff} :dt
This is not allowed because bond creation is done using the pairwise
neighbor list. :dd
{Bond/react: Molecule template ID for fix bond/react does not exist} :dt
A valid molecule template must have been created with the molecule
command. :dd
{Bond/react: Reaction templates must contain the same number of atoms} :dt
There should be a one-to-one correspondence between atoms in the
pre-reacted and post-reacted templates, as specified by the map file. :dd
{Bond/react: Unknown section in map file} :dt
Please ensure reaction map files are properly formatted. :dd
{Bond/react: Atom affected by reaction too close to template edge} :dt
This means an atom which changes type or connectivity during the
reaction is too close to an 'edge' atom defined in the superimpose
file. This could cause incorrect assignment of bonds, angle, etc.
Generally, this means you must include more atoms in your templates,
such that there are at least two atoms between each atom involved in
the reaction and an edge atom. :dd
{Bond/react: Fix bond/react needs ghost atoms from farther away} :dt
This is because a processor needs to superimpose the entire unreacted
molecule template onto simulation atoms it knows about. The
comm_modify cutoff command can be used to extend the communication
range. :dd
{Bond/react: A deleted atom cannot remain bonded to an atom that is not deleted} :dt
Self-explanatory. :dd
{Bond/react special bond generation overflow} :dt
The number of special bonds per-atom created by a reaction exceeds the
system setting. See the read_data or create_box command for how to
specify this value. :dd
{Bond/react topology/atom exceed system topology/atom} :dt
The number of bonds, angles etc per-atom created by a reaction exceeds
the system setting. See the read_data or create_box command for how to
specify this value. :dd
{Both restart files must use % or neither} :dt
Self-explanatory. :dd
@ -2146,10 +2202,6 @@ Self-explanatory. :dd
This is a current restriction in LAMMPS. :dd
{Cannot use pair hybrid with GPU neighbor list builds} :dt
Neighbor list builds must be done on the CPU for this pair style. :dd
{Cannot use pair tail corrections with 2d simulations} :dt
The correction factors are only currently defined for 3d systems. :dd
@ -2386,6 +2438,14 @@ Self-explanatory. :dd
Self-explanatory. :dd
{Compute gyration ID does not exist for compute gyration/shape} :dt
Self-explanatory. Provide a valid compute ID. :dd
{Compute gyration/shape compute ID does not point to a gyration compute} :dt
Self-explanatory. Provide and ID of a compute gyration command. :dd
{Compute ID for compute reduce does not exist} :dt
Self-explanatory. :dd
@ -5467,10 +5527,6 @@ Self-explanatory. :dd
For this pair style, you cannot run part of the force calculation on
the host. See the package command. :dd
{GPU split param must be positive for hybrid pair styles} :dt
See the package gpu command. :dd
{GPUs are requested but Kokkos has not been compiled for CUDA} :dt
Re-compile Kokkos with CUDA support to use GPUs. :dd
@ -5729,6 +5785,16 @@ definitions. :dd
The data file header lists improper but no improper types. :dd
{Incompatible KIM Simulator Model} :dt
The requested KIM Simulator Model was defined for a different MD code
and thus is not compatible with LAMMPS. :dd
{Incompatible units for KIM Simulator Model} :dt
The selected unit style is not compatible with the requested KIM
Simulator Model. :dd
{Incomplete use of variables in create_atoms command} :dt
The var and set options must be used together. :dd
@ -5828,6 +5894,12 @@ Must have periodic x,y dimensions and non-periodic z dimension to use
Must have periodic x,y dimensions and non-periodic z dimension to use
2d slab option with pppm/disp. :dd
{Incorrect conversion in format string} :dt
A format style variable was not using either a %f, a %g, or a %e conversion.
Or an immediate variable with format suffix was not using either
a %f, a %g or a %e conversion in the format suffix. :dd
{Incorrect element names in ADP potential file} :dt
The element names in the ADP file do not match those requested. :dd
@ -5836,6 +5908,11 @@ The element names in the ADP file do not match those requested. :dd
The element names in the EAM file do not match those requested. :dd
{Incorrect format of ... section in data file} :dt
Number or type of values per line in the given section of the data file
is not consistent with the requirements for this section. :dd
{Incorrect format in COMB potential file} :dt
Incorrect number of words per line in the potential file. :dd
@ -6988,6 +7065,12 @@ The atom style defined does not have this attribute. :dd
The atom style defined does not have these attributes. :dd
{KIM Simulator Model has no Model definition} :dt
There is no model definition (key: model-defn) in the KIM Simulator
Model. Please contact the OpenKIM database maintainers to verify
and potentially correct this. :dd
{KOKKOS package does not yet support comm_style tiled} :dt
Self-explanatory. :dd
@ -7035,6 +7118,18 @@ Self-explanatory. :dd
One or more GPUs must be used when Kokkos is compiled for CUDA. :dd
{Kspace_modify mesh parameter must be all zero or all positive} :dt
Valid kspace mesh parameters are >0. The code will try to auto-detect
suitable values when all three mesh sizes are set to zero (the default). :dd
{Kspace_modify mesh/disp parameter must be all zero or all positive} :dt
Valid kspace mesh/disp parameters are >0. The code will try to auto-detect
suitable values when all three mesh sizes are set to zero [and]
the required accuracy via {force/disp/real} as well as
{force/disp/kspace} is set. :dd
{Kspace style does not support compute group/group} :dt
Self-explanatory. :dd
@ -7448,6 +7543,11 @@ The Atoms section of a data file must come before a Triangles section. :dd
The Atoms section of a data file must come before a Velocities
section. :dd
{Must re-specify non-restarted pair style (xxx) after read_restart} :dt
For pair styles, that do not store their settings in a restart file,
it must be defined with a new 'pair_style' command after read_restart. :dd
{Must set both respa inner and outer} :dt
Cannot use just the inner or outer option with respa without using the
@ -7475,6 +7575,18 @@ Self-explanatory. :dd
Self-explanatory. :dd
{Must use 'kim_style init' command before simulation box is defined} :dt
Self-explanatory. :dd
{Must use 'kim_style define' command after simulation box is defined} :dt
Self-explanatory. :dd
{Must use 'kim_style init' command before 'kim_style define'} :dt
Self-explanatory. :dd
{Must use 'kspace_modify pressure/scalar no' for rRESPA with kspace_style MSM} :dt
The kspace scalar pressure option cannot (yet) be used with rRESPA. :dd
@ -9418,6 +9530,11 @@ See the "read_data extra/special/per/atom" command
for info on how to leave space in the special bonds
list to allow for additional bonds to be formed. :dd
{Species XXX is not supported by this KIM Simulator Model} :dt
The kim_style define command was referencing a species that is not
present in the requested KIM Simulator Model. :dd
{Specified processors != physical processors} :dt
The 3d grid of processors defined by the processors command does not
@ -9990,25 +10107,25 @@ quote. :dd
Self-explanatory. :dd
{Unexpected end of AngleCoeffs section} :dt
{Unexpected empty line in AngleCoeffs section} :dt
Read a blank line. :dd
Read a blank line where there should be coefficient data. :dd
{Unexpected end of BondCoeffs section} :dt
{Unexpected empty line in BondCoeffs section} :dt
Read a blank line. :dd
Read a blank line where there should be coefficient data. :dd
{Unexpected end of DihedralCoeffs section} :dt
{Unexpected empty line in DihedralCoeffs section} :dt
Read a blank line. :dd
Read a blank line where there should be coefficient data. :dd
{Unexpected end of ImproperCoeffs section} :dt
{Unexpected empty line in ImproperCoeffs section} :dt
Read a blank line. :dd
Read a blank line where there should be coefficient data. :dd
{Unexpected end of PairCoeffs section} :dt
{Unexpected empty line in PairCoeffs section} :dt
Read a blank line. :dd
Read a blank line where there should be coefficient data. :dd
{Unexpected end of custom file} :dt
@ -10049,19 +10166,19 @@ create_box command. :dd
A universe or uloop style variable must specify a number of values >= to the
number of processor partitions. :dd
{Unknown angle style} :dt
{Unrecognized angle style} :dt
The choice of angle style is unknown. :dd
{Unknown atom style} :dt
{Unrecognized atom style} :dt
The choice of atom style is unknown. :dd
{Unknown body style} :dt
{Unrecognized body style} :dt
The choice of body style is unknown. :dd
{Unknown bond style} :dt
{Unrecognized bond style} :dt
The choice of bond style is unknown. :dd
@ -10077,23 +10194,23 @@ Self-explanatory. :dd
Self-explanatory. :dd
{Unknown command: %s} :dt
{Unrecognized command: %s} :dt
The command is not known to LAMMPS. Check the input script. :dd
{Unknown compute style} :dt
{Unrecognized compute style} :dt
The choice of compute style is unknown. :dd
{Unknown dihedral style} :dt
{Unrecognized dihedral style} :dt
The choice of dihedral style is unknown. :dd
{Unknown dump reader style} :dt
{Unrecognized dump reader style} :dt
The choice of dump reader style via the format keyword is unknown. :dd
{Unknown dump style} :dt
{Unrecognized dump style} :dt
The choice of dump style is unknown. :dd
@ -10101,7 +10218,7 @@ The choice of dump style is unknown. :dd
Self-explanatory. :dd
{Unknown fix style} :dt
{Unrecognized fix style} :dt
The choice of fix style is unknown. :dd
@ -10109,7 +10226,7 @@ The choice of fix style is unknown. :dd
A section of the data file cannot be read by LAMMPS. :dd
{Unknown improper style} :dt
{Unrecognized improper style} :dt
The choice of improper style is unknown. :dd
@ -10117,7 +10234,7 @@ The choice of improper style is unknown. :dd
One or more specified keywords are not recognized. :dd
{Unknown kspace style} :dt
{Unrecognized kspace style} :dt
The choice of kspace style is unknown. :dd
@ -10133,7 +10250,7 @@ Self-explanatory. :dd
Self-explanatory. :dd
{Unknown pair style} :dt
{Unrecognized pair style} :dt
The choice of pair style is unknown. :dd
@ -10141,7 +10258,7 @@ The choice of pair style is unknown. :dd
The choice of sub-style is unknown. :dd
{Unknown region style} :dt
{Unrecognized region style} :dt
The choice of region style is unknown. :dd
Some files were not shown because too many files have changed in this diff
Show More
Reference in New Issue
Block a user
Blocking a user prevents them from interacting with repositories, such as opening or commenting on pull requests or issues. Learn more about blocking a user.