Compare commits

..

1 Commits

Author SHA1 Message Date
07982d997d fix typo 2023-03-30 09:47:15 -04:00
1645 changed files with 34219 additions and 57502 deletions

7
.github/CODEOWNERS vendored
View File

@ -67,7 +67,6 @@ src/EXTRA-COMPUTE/compute_born_matrix.* @Bibobu @athomps
src/MISC/*_tracker.* @jtclemm
src/MC/fix_gcmc.* @athomps
src/MC/fix_sgcmc.* @athomps
src/REPLICA/fix_pimd_langevin.* @Yi-FanLi
# core LAMMPS classes
src/lammps.* @sjplimp
@ -151,12 +150,12 @@ tools/vim/* @hammondkd
unittest/* @akohlmey
# cmake
cmake/* @akohlmey
cmake/* @rbberger
cmake/Modules/LAMMPSInterfacePlugin.cmake @akohlmey
cmake/Modules/MPI4WIN.cmake @akohlmey
cmake/Modules/OpenCLLoader.cmake @akohlmey
cmake/Modules/Packages/COLVARS.cmake @giacomofiorin
cmake/Modules/Packages/KIM.cmake @ellio167
cmake/Modules/Packages/COLVARS.cmake @rbberger @giacomofiorin
cmake/Modules/Packages/KIM.cmake @rbberger @ellio167
cmake/presets/*.cmake @akohlmey
# python

View File

@ -1,6 +1,6 @@
# Contributing to LAMMPS via GitHub
Thank you for considering to contribute to the LAMMPS software project.
Thank your for considering to contribute to the LAMMPS software project.
The following is a set of guidelines as well as explanations of policies and work flows for contributing to the LAMMPS molecular dynamics software project. These guidelines focus on submitting issues or pull requests on the LAMMPS GitHub project.

3
.gitignore vendored
View File

@ -57,6 +57,3 @@ out/x86
out/x64
src/Makefile.package-e
src/Makefile.package.settings-e
/cmake/build/x64-Debug-Clang
/install/x64-GUI-MSVC
/install

View File

@ -1,25 +1,25 @@
# FENE beadspring benchmark
units lj
atom_style bond
units lj
atom_style bond
special_bonds fene
read_data data.chain
read_data data.chain
neighbor 0.4 bin
neigh_modify every 1 delay 1
neighbor 0.4 bin
neigh_modify every 1 delay 1
bond_style fene
bond_coeff 1 30.0 1.5 1.0 1.0
bond_coeff 1 30.0 1.5 1.0 1.0
pair_style lj/cut 1.12
pair_modify shift yes
pair_coeff 1 1 1.0 1.0 1.12
pair_style lj/cut 1.12
pair_modify shift yes
pair_coeff 1 1 1.0 1.0 1.12
fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297
fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297
thermo 100
timestep 0.012
timestep 0.012
run 100
run 100

View File

@ -1,32 +1,32 @@
# FENE beadspring benchmark
variable x index 1
variable y index 1
variable z index 1
variable x index 1
variable y index 1
variable z index 1
units lj
atom_style bond
atom_modify map hash
units lj
atom_style bond
atom_modify map hash
special_bonds fene
read_data data.chain
read_data data.chain
replicate $x $y $z
replicate $x $y $z
neighbor 0.4 bin
neigh_modify every 1 delay 1
neighbor 0.4 bin
neigh_modify every 1 delay 1
bond_style fene
bond_coeff 1 30.0 1.5 1.0 1.0
bond_coeff 1 30.0 1.5 1.0 1.0
pair_style lj/cut 1.12
pair_modify shift yes
pair_coeff 1 1 1.0 1.0 1.12
pair_style lj/cut 1.12
pair_modify shift yes
pair_coeff 1 1 1.0 1.0 1.12
fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297
fix 1 all nve
fix 2 all langevin 1.0 1.0 10.0 904297
thermo 100
timestep 0.012
timestep 0.012
run 100
run 100

View File

@ -1,33 +1,33 @@
# LAMMPS benchmark of granular flow
# chute flow of 32000 atoms with frozen base at 26 degrees
units lj
atom_style sphere
boundary p p fs
newton off
comm_modify vel yes
units lj
atom_style sphere
boundary p p fs
newton off
comm_modify vel yes
read_data data.chute
read_data data.chute
pair_style gran/hooke/history 200000.0 NULL 50.0 NULL 0.5 0
pair_coeff * *
pair_style gran/hooke/history 200000.0 NULL 50.0 NULL 0.5 0
pair_coeff * *
neighbor 0.1 bin
neigh_modify every 1 delay 0
neighbor 0.1 bin
neigh_modify every 1 delay 0
timestep 0.0001
timestep 0.0001
group bottom type 2
group active subtract all bottom
neigh_modify exclude group bottom bottom
group bottom type 2
group active subtract all bottom
neigh_modify exclude group bottom bottom
fix 1 all gravity 1.0 chute 26.0
fix 2 bottom freeze
fix 3 active nve/sphere
fix 1 all gravity 1.0 chute 26.0
fix 2 bottom freeze
fix 3 active nve/sphere
compute 1 all erotate/sphere
thermo_style custom step atoms ke c_1 vol
thermo_modify norm no
thermo 100
compute 1 all erotate/sphere
thermo_style custom step atoms ke c_1 vol
thermo_modify norm no
thermo 100
run 100
run 100

View File

@ -1,38 +1,38 @@
# LAMMPS benchmark of granular flow
# chute flow of 32000 atoms with frozen base at 26 degrees
variable x index 1
variable y index 1
variable x index 1
variable y index 1
units lj
atom_style sphere
boundary p p fs
newton off
comm_modify vel yes
units lj
atom_style sphere
boundary p p fs
newton off
comm_modify vel yes
read_data data.chute
read_data data.chute
replicate $x $y 1
replicate $x $y 1
pair_style gran/hooke/history 200000.0 NULL 50.0 NULL 0.5 0
pair_coeff * *
pair_style gran/hooke/history 200000.0 NULL 50.0 NULL 0.5 0
pair_coeff * *
neighbor 0.1 bin
neigh_modify every 1 delay 0
neighbor 0.1 bin
neigh_modify every 1 delay 0
timestep 0.0001
timestep 0.0001
group bottom type 2
group active subtract all bottom
neigh_modify exclude group bottom bottom
group bottom type 2
group active subtract all bottom
neigh_modify exclude group bottom bottom
fix 1 all gravity 1.0 chute 26.0
fix 2 bottom freeze
fix 3 active nve/sphere
fix 1 all gravity 1.0 chute 26.0
fix 2 bottom freeze
fix 3 active nve/sphere
compute 1 all erotate/sphere
thermo_style custom step atoms ke c_1 vol
thermo_modify norm no
thermo 100
compute 1 all erotate/sphere
thermo_style custom step atoms ke c_1 vol
thermo_modify norm no
thermo 100
run 100
run 100

View File

@ -1,32 +1,32 @@
# bulk Cu lattice
variable x index 1
variable y index 1
variable z index 1
variable x index 1
variable y index 1
variable z index 1
variable xx equal 20*$x
variable yy equal 20*$y
variable zz equal 20*$z
variable xx equal 20*$x
variable yy equal 20*$y
variable zz equal 20*$z
units metal
atom_style atomic
units metal
atom_style atomic
lattice fcc 3.615
region box block 0 ${xx} 0 ${yy} 0 ${zz}
create_box 1 box
create_atoms 1 box
lattice fcc 3.615
region box block 0 ${xx} 0 ${yy} 0 ${zz}
create_box 1 box
create_atoms 1 box
pair_style eam
pair_coeff 1 1 Cu_u3.eam
pair_style eam
pair_coeff 1 1 Cu_u3.eam
velocity all create 1600.0 376847 loop geom
velocity all create 1600.0 376847 loop geom
neighbor 1.0 bin
neighbor 1.0 bin
neigh_modify every 1 delay 5 check yes
fix 1 all nve
fix 1 all nve
timestep 0.005
thermo 50
timestep 0.005
thermo 50
run 100
run 100

View File

@ -1,30 +1,30 @@
# 3d Lennard-Jones melt
variable x index 1
variable y index 1
variable z index 1
variable x index 1
variable y index 1
variable z index 1
variable xx equal 20*$x
variable yy equal 20*$y
variable zz equal 20*$z
variable xx equal 20*$x
variable yy equal 20*$y
variable zz equal 20*$z
units lj
atom_style atomic
units lj
atom_style atomic
lattice fcc 0.8442
region box block 0 ${xx} 0 ${yy} 0 ${zz}
create_box 1 box
create_atoms 1 box
mass 1 1.0
lattice fcc 0.8442
region box block 0 ${xx} 0 ${yy} 0 ${zz}
create_box 1 box
create_atoms 1 box
mass 1 1.0
velocity all create 1.44 87287 loop geom
velocity all create 1.44 87287 loop geom
pair_style lj/cut 2.5
pair_coeff 1 1 1.0 1.0 2.5
pair_style lj/cut 2.5
pair_coeff 1 1 1.0 1.0 2.5
neighbor 0.3 bin
neigh_modify delay 0 every 20 check no
neighbor 0.3 bin
neigh_modify delay 0 every 20 check no
fix 1 all nve
fix 1 all nve
run 100
run 100

View File

@ -1,27 +1,27 @@
# Rhodopsin model
units real
neigh_modify delay 5 every 1
units real
neigh_modify delay 5 every 1
atom_style full
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/long 8.0 10.0
pair_modify mix arithmetic
kspace_style pppm 1e-4
atom_style full
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/long 8.0 10.0
pair_modify mix arithmetic
kspace_style pppm 1e-4
read_data data.rhodo
fix 1 all shake 0.0001 5 0 m 1.0 a 232
fix 2 all npt temp 300.0 300.0 100.0 &
z 0.0 0.0 1000.0 mtk no pchain 0 tchain 1
z 0.0 0.0 1000.0 mtk no pchain 0 tchain 1
special_bonds charmm
thermo 50
thermo_style multi
thermo_style multi
timestep 2.0
run 100
run 100

View File

@ -1,34 +1,34 @@
# Rhodopsin model
variable x index 1
variable y index 1
variable z index 1
variable x index 1
variable y index 1
variable z index 1
units real
neigh_modify delay 5 every 1
units real
neigh_modify delay 5 every 1
atom_style full
atom_modify map hash
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/long 8.0 10.0
pair_modify mix arithmetic
kspace_style pppm 1e-4
atom_style full
atom_modify map hash
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/long 8.0 10.0
pair_modify mix arithmetic
kspace_style pppm 1e-4
read_data data.rhodo
replicate $x $y $z
replicate $x $y $z
fix 1 all shake 0.0001 5 0 m 1.0 a 232
fix 2 all npt temp 300.0 300.0 100.0 &
z 0.0 0.0 1000.0 mtk no pchain 0 tchain 1
z 0.0 0.0 1000.0 mtk no pchain 0 tchain 1
special_bonds charmm
thermo 50
thermo_style multi
thermo_style multi
timestep 2.0
run 100
run 100

615
cmake/CMakeLists.jpeg Normal file
View File

@ -0,0 +1,615 @@
cmake_minimum_required(VERSION 3.10)
# When using CMake 3.4 and later, don't export symbols from executables unless
# the CMAKE_ENABLE_EXPORTS variable is set.
if(POLICY CMP0065)
cmake_policy(SET CMP0065 NEW)
endif()
if (POLICY CMP0077)
cmake_policy(SET CMP0077 NEW)
endif()
if(CMAKE_EXECUTABLE_SUFFIX)
set(CMAKE_EXECUTABLE_SUFFIX_TMP ${CMAKE_EXECUTABLE_SUFFIX})
endif()
project(libjpeg-turbo C)
set(VERSION 2.1.3)
set(COPYRIGHT_YEAR "1991-2022")
string(REPLACE "." ";" VERSION_TRIPLET ${VERSION})
list(GET VERSION_TRIPLET 0 VERSION_MAJOR)
list(GET VERSION_TRIPLET 1 VERSION_MINOR)
list(GET VERSION_TRIPLET 2 VERSION_REVISION)
function(pad_number NUMBER OUTPUT_LEN)
string(LENGTH "${${NUMBER}}" INPUT_LEN)
if(INPUT_LEN LESS OUTPUT_LEN)
math(EXPR ZEROES "${OUTPUT_LEN} - ${INPUT_LEN} - 1")
set(NUM ${${NUMBER}})
foreach(C RANGE ${ZEROES})
set(NUM "0${NUM}")
endforeach()
set(${NUMBER} ${NUM} PARENT_SCOPE)
endif()
endfunction()
pad_number(VERSION_MINOR 3)
pad_number(VERSION_REVISION 3)
set(LIBJPEG_TURBO_VERSION_NUMBER ${VERSION_MAJOR}${VERSION_MINOR}${VERSION_REVISION})
# CMake 3.14 and later sets CMAKE_MACOSX_BUNDLE to TRUE by default when
# CMAKE_SYSTEM_NAME is iOS, tvOS, or watchOS, which breaks the libjpeg-turbo
# build. (Specifically, when CMAKE_MACOSX_BUNDLE is TRUE, executables for
# Apple platforms are built as application bundles, which causes CMake to
# complain that our install() directives for executables do not specify a
# BUNDLE DESTINATION. Even if CMake did not complain, building executables as
# application bundles would break our iOS packages.)
set(CMAKE_MACOSX_BUNDLE FALSE)
string(TIMESTAMP DEFAULT_BUILD "%Y%m%d")
set(BUILD ${DEFAULT_BUILD} CACHE STRING "Build string (default: ${DEFAULT_BUILD})")
# NOTE: On Windows, this does nothing except when using MinGW or Cygwin.
# CMAKE_BUILD_TYPE has no meaning in Visual Studio, and it always defaults to
# Debug when using NMake.
if(NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release)
endif()
message(STATUS "CMAKE_BUILD_TYPE = ${CMAKE_BUILD_TYPE}")
message(STATUS "VERSION = ${VERSION}, BUILD = ${BUILD}")
include(cmakescripts/PackageInfo.cmake)
# Detect CPU type and whether we're building 64-bit or 32-bit code
math(EXPR BITS "${CMAKE_SIZEOF_VOID_P} * 8")
string(TOLOWER ${CMAKE_SYSTEM_PROCESSOR} CMAKE_SYSTEM_PROCESSOR_LC)
set(COUNT 1)
foreach(ARCH ${CMAKE_OSX_ARCHITECTURES})
if(COUNT GREATER 1)
message(FATAL_ERROR "The libjpeg-turbo build system does not support multiple values in CMAKE_OSX_ARCHITECTURES.")
endif()
math(EXPR COUNT "${COUNT}+1")
endforeach()
if(CMAKE_SYSTEM_PROCESSOR_LC MATCHES "x86_64" OR
CMAKE_SYSTEM_PROCESSOR_LC MATCHES "amd64" OR
CMAKE_SYSTEM_PROCESSOR_LC MATCHES "i[0-9]86" OR
CMAKE_SYSTEM_PROCESSOR_LC MATCHES "x86" OR
CMAKE_SYSTEM_PROCESSOR_LC MATCHES "ia32")
if(BITS EQUAL 64 OR CMAKE_C_COMPILER_ABI MATCHES "ELF X32")
set(CPU_TYPE x86_64)
else()
set(CPU_TYPE i386)
endif()
if(NOT CMAKE_SYSTEM_PROCESSOR STREQUAL ${CPU_TYPE})
set(CMAKE_SYSTEM_PROCESSOR ${CPU_TYPE})
endif()
elseif(CMAKE_SYSTEM_PROCESSOR_LC STREQUAL "aarch64" OR
CMAKE_SYSTEM_PROCESSOR_LC MATCHES "^arm")
if(BITS EQUAL 64)
set(CPU_TYPE arm64)
else()
set(CPU_TYPE arm)
endif()
elseif(CMAKE_SYSTEM_PROCESSOR_LC MATCHES "^ppc" OR
CMAKE_SYSTEM_PROCESSOR_LC MATCHES "^powerpc")
set(CPU_TYPE powerpc)
else()
set(CPU_TYPE ${CMAKE_SYSTEM_PROCESSOR_LC})
endif()
if(CMAKE_OSX_ARCHITECTURES MATCHES "x86_64" OR
CMAKE_OSX_ARCHITECTURES MATCHES "arm64" OR
CMAKE_OSX_ARCHITECTURES MATCHES "i386")
set(CPU_TYPE ${CMAKE_OSX_ARCHITECTURES})
endif()
if(CMAKE_OSX_ARCHITECTURES MATCHES "ppc")
set(CPU_TYPE powerpc)
endif()
if(MSVC_IDE AND CMAKE_GENERATOR_PLATFORM MATCHES "arm64")
set(CPU_TYPE arm64)
endif()
message(STATUS "${BITS}-bit build (${CPU_TYPE})")
macro(report_directory var)
if(CMAKE_INSTALL_${var} STREQUAL CMAKE_INSTALL_FULL_${var})
message(STATUS "CMAKE_INSTALL_${var} = ${CMAKE_INSTALL_${var}}")
else()
message(STATUS "CMAKE_INSTALL_${var} = ${CMAKE_INSTALL_${var}} (${CMAKE_INSTALL_FULL_${var}})")
endif()
mark_as_advanced(CLEAR CMAKE_INSTALL_${var})
endmacro()
set(DIRLIST "BINDIR;DATAROOTDIR;DOCDIR;INCLUDEDIR;LIBDIR")
if(UNIX)
list(APPEND DIRLIST "MANDIR")
endif()
foreach(dir ${DIRLIST})
report_directory(${dir})
endforeach()
###############################################################################
# CONFIGURATION OPTIONS
###############################################################################
macro(boolean_number var)
if(${var})
set(${var} 1 ${ARGN})
else()
set(${var} 0 ${ARGN})
endif()
endmacro()
option(ENABLE_SHARED "Build shared libraries" FALSE)
boolean_number(ENABLE_SHARED)
option(ENABLE_STATIC "Build static libraries" TRUE)
boolean_number(ENABLE_STATIC)
option(REQUIRE_SIMD "Generate a fatal error if SIMD extensions are not available for this platform (default is to fall back to a non-SIMD build)" FALSE)
boolean_number(REQUIRE_SIMD)
option(WITH_12BIT "Encode/decode JPEG images with 12-bit samples (implies WITH_ARITH_DEC=0 WITH_ARITH_ENC=0 WITH_JAVA=0 WITH_SIMD=0 WITH_TURBOJPEG=0 )" FALSE)
boolean_number(WITH_12BIT)
option(WITH_ARITH_DEC "Include arithmetic decoding support when emulating the libjpeg v6b API/ABI" TRUE)
boolean_number(WITH_ARITH_DEC)
option(WITH_ARITH_ENC "Include arithmetic encoding support when emulating the libjpeg v6b API/ABI" TRUE)
boolean_number(WITH_ARITH_ENC)
if(CMAKE_C_COMPILER_ABI MATCHES "ELF X32")
set(WITH_JAVA 0)
else()
option(WITH_JAVA "Build Java wrapper for the TurboJPEG API library (implies ENABLE_SHARED=1)" FALSE)
boolean_number(WITH_JAVA)
endif()
option(WITH_JPEG7 "Emulate libjpeg v7 API/ABI (this makes ${CMAKE_PROJECT_NAME} backward-incompatible with libjpeg v6b)" FALSE)
boolean_number(WITH_JPEG7)
option(WITH_JPEG8 "Emulate libjpeg v8 API/ABI (this makes ${CMAKE_PROJECT_NAME} backward-incompatible with libjpeg v6b)" FALSE)
boolean_number(WITH_JPEG8)
option(WITH_MEM_SRCDST "Include in-memory source/destination manager functions when emulating the libjpeg v6b or v7 API/ABI" TRUE)
boolean_number(WITH_MEM_SRCDST)
option(WITH_SIMD "Include SIMD extensions, if available for this platform" FALSE)
boolean_number(WITH_SIMD)
option(WITH_TURBOJPEG "Include the TurboJPEG API library and associated test programs" FALSE)
boolean_number(WITH_TURBOJPEG)
option(WITH_FUZZ "Build fuzz targets" FALSE)
macro(report_option var desc)
if(${var})
message(STATUS "${desc} enabled (${var} = ${${var}})")
else()
message(STATUS "${desc} disabled (${var} = ${${var}})")
endif()
endmacro()
if(WITH_JAVA)
set(ENABLE_SHARED 1)
endif()
# Explicitly setting CMAKE_POSITION_INDEPENDENT_CODE=FALSE disables PIC for all
# targets, which will cause the shared library builds to fail. Thus, if shared
# libraries are enabled and CMAKE_POSITION_INDEPENDENT_CODE is explicitly set
# to FALSE, we need to unset it, thus restoring the default behavior
# (automatically using PIC for shared library targets.)
if(DEFINED CMAKE_POSITION_INDEPENDENT_CODE AND
NOT CMAKE_POSITION_INDEPENDENT_CODE AND ENABLE_SHARED)
unset(CMAKE_POSITION_INDEPENDENT_CODE CACHE)
endif()
report_option(ENABLE_SHARED "Shared libraries")
report_option(ENABLE_STATIC "Static libraries")
if(ENABLE_SHARED)
set(CMAKE_INSTALL_RPATH ${CMAKE_INSTALL_FULL_LIBDIR})
endif()
if(WITH_JPEG8 OR WITH_JPEG7)
set(WITH_ARITH_ENC 1)
set(WITH_ARITH_DEC 1)
endif()
if(WITH_JPEG8)
set(WITH_MEM_SRCDST 0)
endif()
if(WITH_12BIT)
set(WITH_ARITH_DEC 0)
set(WITH_ARITH_ENC 0)
set(WITH_JAVA 0)
set(WITH_SIMD 0)
set(WITH_TURBOJPEG 0)
set(BITS_IN_JSAMPLE 12)
else()
set(BITS_IN_JSAMPLE 8)
endif()
report_option(WITH_12BIT "12-bit JPEG support")
if(WITH_ARITH_DEC)
set(D_ARITH_CODING_SUPPORTED 1)
endif()
if(NOT WITH_12BIT)
report_option(WITH_ARITH_DEC "Arithmetic decoding support")
endif()
if(WITH_ARITH_ENC)
set(C_ARITH_CODING_SUPPORTED 1)
endif()
if(NOT WITH_12BIT)
report_option(WITH_ARITH_ENC "Arithmetic encoding support")
endif()
if(NOT WITH_12BIT)
report_option(WITH_TURBOJPEG "TurboJPEG API library")
report_option(WITH_JAVA "TurboJPEG Java wrapper")
endif()
if(WITH_MEM_SRCDST)
set(MEM_SRCDST_SUPPORTED 1)
set(MEM_SRCDST_FUNCTIONS "global: jpeg_mem_dest; jpeg_mem_src;")
endif()
if(NOT WITH_JPEG8)
report_option(WITH_MEM_SRCDST "In-memory source/destination managers")
endif()
set(SO_AGE 2)
if(WITH_MEM_SRCDST)
set(SO_AGE 3)
endif()
if(WITH_JPEG8)
set(JPEG_LIB_VERSION 80)
elseif(WITH_JPEG7)
set(JPEG_LIB_VERSION 70)
else()
set(JPEG_LIB_VERSION 62)
endif()
math(EXPR JPEG_LIB_VERSION_DIV10 "${JPEG_LIB_VERSION} / 10")
math(EXPR JPEG_LIB_VERSION_MOD10 "${JPEG_LIB_VERSION} % 10")
if(JPEG_LIB_VERSION STREQUAL "62")
set(DEFAULT_SO_MAJOR_VERSION ${JPEG_LIB_VERSION})
else()
set(DEFAULT_SO_MAJOR_VERSION ${JPEG_LIB_VERSION_DIV10})
endif()
if(JPEG_LIB_VERSION STREQUAL "80")
set(DEFAULT_SO_MINOR_VERSION 2)
else()
set(DEFAULT_SO_MINOR_VERSION 0)
endif()
# This causes SO_MAJOR_VERSION/SO_MINOR_VERSION to reset to defaults if
# WITH_JPEG7 or WITH_JPEG8 has changed.
if((DEFINED WITH_JPEG7_INT AND NOT WITH_JPEG7 EQUAL WITH_JPEG7_INT) OR
(DEFINED WITH_JPEG8_INT AND NOT WITH_JPEG8 EQUAL WITH_JPEG8_INT))
set(FORCE_SO_VERSION "FORCE")
endif()
set(WITH_JPEG7_INT ${WITH_JPEG7} CACHE INTERNAL "")
set(WITH_JPEG8_INT ${WITH_JPEG8} CACHE INTERNAL "")
set(SO_MAJOR_VERSION ${DEFAULT_SO_MAJOR_VERSION} CACHE STRING
"Major version of the libjpeg API shared library (default: ${DEFAULT_SO_MAJOR_VERSION})"
${FORCE_SO_VERSION})
set(SO_MINOR_VERSION ${DEFAULT_SO_MINOR_VERSION} CACHE STRING
"Minor version of the libjpeg API shared library (default: ${DEFAULT_SO_MINOR_VERSION})"
${FORCE_SO_VERSION})
set(JPEG_LIB_VERSION_DECIMAL "${JPEG_LIB_VERSION_DIV10}.${JPEG_LIB_VERSION_MOD10}")
message(STATUS "Emulating libjpeg API/ABI v${JPEG_LIB_VERSION_DECIMAL} (WITH_JPEG7 = ${WITH_JPEG7}, WITH_JPEG8 = ${WITH_JPEG8})")
message(STATUS "libjpeg API shared library version = ${SO_MAJOR_VERSION}.${SO_AGE}.${SO_MINOR_VERSION}")
# Because the TurboJPEG API library uses versioned symbols and changes the
# names of functions whenever they are modified in a backward-incompatible
# manner, it is always backward-ABI-compatible with itself, so the major and
# minor SO versions don't change. However, we increase the middle number (the
# SO "age") whenever functions are added to the API.
set(TURBOJPEG_SO_MAJOR_VERSION 0)
set(TURBOJPEG_SO_AGE 2)
set(TURBOJPEG_SO_VERSION 0.${TURBOJPEG_SO_AGE}.0)
###############################################################################
# COMPILER SETTINGS
###############################################################################
if(MSVC)
option(WITH_CRT_DLL
"Link all ${CMAKE_PROJECT_NAME} libraries and executables with the C run-time DLL (msvcr*.dll) instead of the static C run-time library (libcmt*.lib.) The default is to use the C run-time DLL only with the libraries and executables that need it."
FALSE)
if(NOT WITH_CRT_DLL)
# Use the static C library for all build types
foreach(var CMAKE_C_FLAGS CMAKE_C_FLAGS_DEBUG CMAKE_C_FLAGS_RELEASE
CMAKE_C_FLAGS_MINSIZEREL CMAKE_C_FLAGS_RELWITHDEBINFO)
if(${var} MATCHES "/MD")
string(REGEX REPLACE "/MD" "/MT" ${var} "${${var}}")
endif()
endforeach()
endif()
add_definitions(-D_CRT_NONSTDC_NO_WARNINGS)
endif()
if(CMAKE_COMPILER_IS_GNUCC OR CMAKE_C_COMPILER_ID STREQUAL "Clang")
# Use the maximum optimization level for release builds
foreach(var CMAKE_C_FLAGS_RELEASE CMAKE_C_FLAGS_RELWITHDEBINFO)
if(${var} MATCHES "-O2")
string(REGEX REPLACE "-O2" "-O3" ${var} "${${var}}")
endif()
endforeach()
endif()
if(CMAKE_SYSTEM_NAME STREQUAL "SunOS")
if(CMAKE_C_COMPILER_ID MATCHES "SunPro")
# Use the maximum optimization level for release builds
foreach(var CMAKE_C_FLAGS_RELEASE CMAKE_C_FLAGS_RELWITHDEBINFO)
if(${var} MATCHES "-xO3")
string(REGEX REPLACE "-xO3" "-xO5" ${var} "${${var}}")
endif()
if(${var} MATCHES "-xO2")
string(REGEX REPLACE "-xO2" "-xO5" ${var} "${${var}}")
endif()
endforeach()
endif()
endif()
string(TOUPPER ${CMAKE_BUILD_TYPE} CMAKE_BUILD_TYPE_UC)
set(EFFECTIVE_C_FLAGS "${CMAKE_C_FLAGS} ${CMAKE_C_FLAGS_${CMAKE_BUILD_TYPE_UC}}")
message(STATUS "Compiler flags = ${EFFECTIVE_C_FLAGS}")
set(EFFECTIVE_LD_FLAGS "${CMAKE_EXE_LINKER_FLAGS} ${CMAKE_EXE_LINKER_FLAGS_${CMAKE_BUILD_TYPE_UC}}")
message(STATUS "Linker flags = ${EFFECTIVE_LD_FLAGS}")
include(CheckCSourceCompiles)
include(CheckIncludeFiles)
include(CheckTypeSize)
check_type_size("size_t" SIZE_T)
check_type_size("unsigned long" UNSIGNED_LONG)
if(SIZE_T EQUAL UNSIGNED_LONG)
check_c_source_compiles("int main(int argc, char **argv) { unsigned long a = argc; return __builtin_ctzl(a); }"
HAVE_BUILTIN_CTZL)
endif()
if(MSVC)
check_include_files("intrin.h" HAVE_INTRIN_H)
endif()
if(UNIX)
if(CMAKE_CROSSCOMPILING)
set(RIGHT_SHIFT_IS_UNSIGNED 0)
else()
include(CheckCSourceRuns)
check_c_source_runs("
#include <stdio.h>
#include <stdlib.h>
int is_shifting_signed (long arg) {
long res = arg >> 4;
if (res == -0x7F7E80CL)
return 1; /* right shift is signed */
/* see if unsigned-shift hack will fix it. */
/* we can't just test exact value since it depends on width of long... */
res |= (~0L) << (32-4);
if (res == -0x7F7E80CL)
return 0; /* right shift is unsigned */
printf(\"Right shift isn't acting as I expect it to.\\\\n\");
printf(\"I fear the JPEG software will not work at all.\\\\n\\\\n\");
return 0; /* try it with unsigned anyway */
}
int main (void) {
exit(is_shifting_signed(-0x7F7E80B1L));
}" RIGHT_SHIFT_IS_UNSIGNED)
endif()
endif()
if(MSVC)
set(INLINE_OPTIONS "__inline;inline")
else()
set(INLINE_OPTIONS "__inline__;inline")
endif()
option(FORCE_INLINE "Force function inlining" TRUE)
boolean_number(FORCE_INLINE)
if(FORCE_INLINE)
if(MSVC)
list(INSERT INLINE_OPTIONS 0 "__forceinline")
else()
list(INSERT INLINE_OPTIONS 0 "inline __attribute__((always_inline))")
list(INSERT INLINE_OPTIONS 0 "__inline__ __attribute__((always_inline))")
endif()
endif()
foreach(inline ${INLINE_OPTIONS})
check_c_source_compiles("${inline} static int foo(void) { return 0; } int main(void) { return foo(); }"
INLINE_WORKS)
if(INLINE_WORKS)
set(INLINE ${inline})
break()
endif()
endforeach()
if(NOT INLINE_WORKS)
message(FATAL_ERROR "Could not determine how to inline functions.")
endif()
message(STATUS "INLINE = ${INLINE} (FORCE_INLINE = ${FORCE_INLINE})")
if(WITH_TURBOJPEG)
if(MSVC)
set(THREAD_LOCAL "__declspec(thread)")
else()
set(THREAD_LOCAL "__thread")
endif()
check_c_source_compiles("${THREAD_LOCAL} int i; int main(void) { i = 0; return i; }" HAVE_THREAD_LOCAL)
if(HAVE_THREAD_LOCAL)
message(STATUS "THREAD_LOCAL = ${THREAD_LOCAL}")
else()
message(WARNING "Thread-local storage is not available. The TurboJPEG API library's global error handler will not be thread-safe.")
unset(THREAD_LOCAL)
endif()
endif()
if(UNIX AND NOT APPLE)
file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/conftest.map "VERS_1 { global: *; };")
set(CMAKE_REQUIRED_FLAGS
"-Wl,--version-script,${CMAKE_CURRENT_BINARY_DIR}/conftest.map")
check_c_source_compiles("int main(void) { return 0; }" HAVE_VERSION_SCRIPT)
set(CMAKE_REQUIRED_FLAGS)
file(REMOVE ${CMAKE_CURRENT_BINARY_DIR}/conftest.map)
if(HAVE_VERSION_SCRIPT)
message(STATUS "Linker supports GNU-style version scripts")
set(MAPFLAG "-Wl,--version-script,")
set(TJMAPFLAG "-Wl,--version-script,")
else()
message(STATUS "Linker does not support GNU-style version scripts")
if(CMAKE_SYSTEM_NAME STREQUAL "SunOS")
# The Solaris linker doesn't like our version script for the libjpeg API
# library, but the version script for the TurboJPEG API library should
# still work.
file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/conftest.map
"VERS_1 { global: foo; local: *; }; VERS_2 { global: foo2; } VERS_1;")
set(CMAKE_REQUIRED_FLAGS "-Wl,-M,${CMAKE_CURRENT_BINARY_DIR}/conftest.map -shared")
check_c_source_compiles("int foo() { return 0; } int foo2() { return 2; }"
HAVE_MAPFILE)
set(CMAKE_REQUIRED_FLAGS)
file(REMOVE ${CMAKE_CURRENT_BINARY_DIR}/conftest.map)
if(HAVE_MAPFILE)
message(STATUS "Linker supports mapfiles")
set(TJMAPFLAG "-Wl,-M,")
else()
message(STATUS "Linker does not support mapfiles")
endif()
endif()
endif()
endif()
# Generate files
if(WIN32)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/win/jconfig.h.in jconfig.h)
else()
configure_file(jconfig.h.in jconfig.h)
endif()
configure_file(jconfigint.h.in jconfigint.h)
configure_file(jversion.h.in jversion.h)
if(UNIX)
configure_file(libjpeg.map.in libjpeg.map)
endif()
# Include directories and compiler definitions
include_directories(${CMAKE_CURRENT_BINARY_DIR} ${CMAKE_CURRENT_SOURCE_DIR})
###############################################################################
# TARGETS
###############################################################################
if(CMAKE_EXECUTABLE_SUFFIX_TMP)
set(CMAKE_EXECUTABLE_SUFFIX ${CMAKE_EXECUTABLE_SUFFIX_TMP})
endif()
message(STATUS "CMAKE_EXECUTABLE_SUFFIX = ${CMAKE_EXECUTABLE_SUFFIX}")
set(JPEG_SOURCES jcapimin.c jcapistd.c jccoefct.c jccolor.c jcdctmgr.c jchuff.c
jcicc.c jcinit.c jcmainct.c jcmarker.c jcmaster.c jcomapi.c jcparam.c
jcphuff.c jcprepct.c jcsample.c jctrans.c jdapimin.c jdapistd.c jdatadst.c
jdatasrc.c jdcoefct.c jdcolor.c jddctmgr.c jdhuff.c jdicc.c jdinput.c
jdmainct.c jdmarker.c jdmaster.c jdmerge.c jdphuff.c jdpostct.c jdsample.c
jdtrans.c jerror.c jfdctflt.c jfdctfst.c jfdctint.c jidctflt.c jidctfst.c
jidctint.c jidctred.c jquant1.c jquant2.c jutils.c jmemmgr.c jmemnobs.c)
if(WITH_ARITH_ENC OR WITH_ARITH_DEC)
set(JPEG_SOURCES ${JPEG_SOURCES} jaricom.c)
endif()
if(WITH_ARITH_ENC)
set(JPEG_SOURCES ${JPEG_SOURCES} jcarith.c)
endif()
if(WITH_ARITH_DEC)
set(JPEG_SOURCES ${JPEG_SOURCES} jdarith.c)
endif()
if(WITH_SIMD)
add_subdirectory(simd)
if(NEON_INTRINSICS)
add_definitions(-DNEON_INTRINSICS)
endif()
elseif(NOT WITH_12BIT)
message(STATUS "SIMD extensions: None (WITH_SIMD = ${WITH_SIMD})")
endif()
if(WITH_SIMD)
message(STATUS "SIMD extensions: ${CPU_TYPE} (WITH_SIMD = ${WITH_SIMD})")
if(MSVC_IDE OR XCODE)
set_source_files_properties(${SIMD_OBJS} PROPERTIES GENERATED 1)
endif()
else()
add_library(simd OBJECT jsimd_none.c)
if(NOT WIN32 AND (CMAKE_POSITION_INDEPENDENT_CODE OR ENABLE_SHARED))
set_target_properties(simd PROPERTIES POSITION_INDEPENDENT_CODE 1)
endif()
endif()
if(WITH_JAVA)
add_subdirectory(java)
endif()
if(ENABLE_SHARED)
add_subdirectory(sharedlib)
endif()
if(ENABLE_STATIC)
add_library(jpeg-static STATIC ${JPEG_SOURCES} $<TARGET_OBJECTS:simd>
${SIMD_OBJS})
if(NOT MSVC)
set_target_properties(jpeg-static PROPERTIES OUTPUT_NAME jpeg)
endif()
endif()
if(WITH_TURBOJPEG)
if(ENABLE_SHARED)
set(TURBOJPEG_SOURCES ${JPEG_SOURCES} $<TARGET_OBJECTS:simd> ${SIMD_OBJS}
turbojpeg.c transupp.c jdatadst-tj.c jdatasrc-tj.c rdbmp.c rdppm.c
wrbmp.c wrppm.c)
set(TJMAPFILE ${CMAKE_CURRENT_SOURCE_DIR}/turbojpeg-mapfile)
if(WITH_JAVA)
set(TURBOJPEG_SOURCES ${TURBOJPEG_SOURCES} turbojpeg-jni.c)
include_directories(${JAVA_INCLUDE_PATH} ${JAVA_INCLUDE_PATH2})
set(TJMAPFILE ${CMAKE_CURRENT_SOURCE_DIR}/turbojpeg-mapfile.jni)
endif()
if(MSVC)
configure_file(${CMAKE_SOURCE_DIR}/win/turbojpeg.rc.in
${CMAKE_BINARY_DIR}/win/turbojpeg.rc)
set(TURBOJPEG_SOURCES ${TURBOJPEG_SOURCES}
${CMAKE_BINARY_DIR}/win/turbojpeg.rc)
endif()
add_library(turbojpeg SHARED ${TURBOJPEG_SOURCES})
set_property(TARGET turbojpeg PROPERTY COMPILE_FLAGS
"-DBMP_SUPPORTED -DPPM_SUPPORTED")
if(WIN32)
set_target_properties(turbojpeg PROPERTIES DEFINE_SYMBOL DLLDEFINE)
endif()
if(MINGW)
set_target_properties(turbojpeg PROPERTIES LINK_FLAGS -Wl,--kill-at)
endif()
if(APPLE AND (NOT CMAKE_OSX_DEPLOYMENT_TARGET OR
CMAKE_OSX_DEPLOYMENT_TARGET VERSION_GREATER 10.4))
if(NOT CMAKE_SHARED_LIBRARY_RUNTIME_C_FLAG)
set(CMAKE_SHARED_LIBRARY_RUNTIME_C_FLAG "-Wl,-rpath,")
endif()
set_target_properties(turbojpeg PROPERTIES MACOSX_RPATH 1)
endif()
set_target_properties(turbojpeg PROPERTIES
SOVERSION ${TURBOJPEG_SO_MAJOR_VERSION} VERSION ${TURBOJPEG_SO_VERSION})
if(TJMAPFLAG)
set_target_properties(turbojpeg PROPERTIES
LINK_FLAGS "${TJMAPFLAG}${TJMAPFILE}")
endif()
endif()
if(ENABLE_STATIC)
add_library(turbojpeg-static STATIC ${JPEG_SOURCES} $<TARGET_OBJECTS:simd>
${SIMD_OBJS} turbojpeg.c transupp.c jdatadst-tj.c jdatasrc-tj.c rdbmp.c
rdppm.c wrbmp.c wrppm.c)
set_property(TARGET turbojpeg-static PROPERTY COMPILE_FLAGS
"-DBMP_SUPPORTED -DPPM_SUPPORTED")
if(NOT MSVC)
set_target_properties(turbojpeg-static PROPERTIES OUTPUT_NAME turbojpeg)
endif()
endif()
endif()
if(WIN32)
set(USE_SETMODE "-DUSE_SETMODE")
endif()
if(WITH_12BIT)
set(COMPILE_FLAGS "-DGIF_SUPPORTED -DPPM_SUPPORTED ${USE_SETMODE}")
else()
set(COMPILE_FLAGS "-DBMP_SUPPORTED -DGIF_SUPPORTED -DPPM_SUPPORTED -DTARGA_SUPPORTED ${USE_SETMODE}")
set(CJPEG_BMP_SOURCES rdbmp.c rdtarga.c)
set(DJPEG_BMP_SOURCES wrbmp.c wrtarga.c)
endif()

741
cmake/CMakeLists.png Normal file
View File

@ -0,0 +1,741 @@
# CMakeLists.txt
# Copyright (C) 2018 Cosmin Truta
# Copyright (C) 2007,2009-2018 Glenn Randers-Pehrson
# Written by Christian Ehrlicher, 2007
# Revised by Roger Lowman, 2009-2010
# Revised by Clifford Yapp, 2011-2012,2017
# Revised by Roger Leigh, 2016
# Revised by Andreas Franek, 2016
# Revised by Sam Serrels, 2017
# Revised by Vadim Barkov, 2017
# Revised by Vicky Pfau, 2018
# Revised by Cameron Cawley, 2018
# Revised by Cosmin Truta, 2018
# Revised by Kyle Bentley, 2018
# This code is released under the libpng license.
# For conditions of distribution and use, see the disclaimer
# and license in png.h
cmake_minimum_required(VERSION 3.10)
cmake_policy(VERSION 3.1)
# When using CMake 3.4 and later, don't export symbols from executables unless
# the CMAKE_ENABLE_EXPORTS variable is set.
if(POLICY CMP0065)
cmake_policy(SET CMP0065 NEW)
endif()
if (POLICY CMP0077)
cmake_policy(SET CMP0077 NEW)
endif()
set(CMAKE_ALLOW_LOOSE_LOOP_CONSTRUCTS ON)
project(libpng C ASM)
enable_testing()
set(PNGLIB_MAJOR 1)
set(PNGLIB_MINOR 6)
set(PNGLIB_RELEASE 37)
set(PNGLIB_NAME libpng${PNGLIB_MAJOR}${PNGLIB_MINOR})
set(PNGLIB_VERSION ${PNGLIB_MAJOR}.${PNGLIB_MINOR}.${PNGLIB_RELEASE})
include(GNUInstallDirs)
# needed packages
# Allow users to specify location of Zlib.
# Useful if zlib is being built alongside this as a sub-project.
option(PNG_BUILD_ZLIB "Custom zlib Location, else find_package is used" ON)
if(NOT PNG_BUILD_ZLIB)
find_package(ZLIB REQUIRED)
include_directories(${ZLIB_INCLUDE_DIR})
endif()
if(UNIX AND NOT APPLE AND NOT BEOS AND NOT HAIKU)
find_library(M_LIBRARY m)
else()
# libm is not needed and/or not available
set(M_LIBRARY "")
endif()
# COMMAND LINE OPTIONS
option(PNG_SHARED "Build shared lib" OFF)
option(PNG_STATIC "Build static lib" ON)
option(PNG_TESTS "Build libpng tests" OFF)
# Many more configuration options could be added here
option(PNG_FRAMEWORK "Build OS X framework" OFF)
option(PNG_DEBUG "Build with debug output" OFF)
option(PNG_HARDWARE_OPTIMIZATIONS "Enable hardware optimizations" OFF)
set(PNG_PREFIX "" CACHE STRING "Prefix to add to the API function names")
set(DFA_XTRA "" CACHE FILEPATH "File containing extra configuration settings")
if(PNG_HARDWARE_OPTIMIZATIONS)
# set definitions and sources for arm
if(CMAKE_SYSTEM_PROCESSOR MATCHES "^arm" OR
CMAKE_SYSTEM_PROCESSOR MATCHES "^aarch64")
set(PNG_ARM_NEON_POSSIBLE_VALUES check on off)
set(PNG_ARM_NEON "check" CACHE STRING "Enable ARM NEON optimizations:
check: (default) use internal checking code;
off: disable the optimizations;
on: turn on unconditionally.")
set_property(CACHE PNG_ARM_NEON PROPERTY STRINGS
${PNG_ARM_NEON_POSSIBLE_VALUES})
list(FIND PNG_ARM_NEON_POSSIBLE_VALUES ${PNG_ARM_NEON} index)
if(index EQUAL -1)
message(FATAL_ERROR
"PNG_ARM_NEON must be one of [${PNG_ARM_NEON_POSSIBLE_VALUES}]")
elseif(NOT ${PNG_ARM_NEON} STREQUAL "off")
set(libpng_arm_sources
arm/arm_init.c
arm/filter_neon.S
arm/filter_neon_intrinsics.c
arm/palette_neon_intrinsics.c)
if(${PNG_ARM_NEON} STREQUAL "on")
add_definitions(-DPNG_ARM_NEON_OPT=2)
elseif(${PNG_ARM_NEON} STREQUAL "check")
add_definitions(-DPNG_ARM_NEON_CHECK_SUPPORTED)
endif()
else()
add_definitions(-DPNG_ARM_NEON_OPT=0)
endif()
endif()
# set definitions and sources for powerpc
if(CMAKE_SYSTEM_PROCESSOR MATCHES "^powerpc*" OR
CMAKE_SYSTEM_PROCESSOR MATCHES "^ppc64*")
set(PNG_POWERPC_VSX_POSSIBLE_VALUES on off)
set(PNG_POWERPC_VSX "on" CACHE STRING "Enable POWERPC VSX optimizations:
off: disable the optimizations.")
set_property(CACHE PNG_POWERPC_VSX PROPERTY STRINGS
${PNG_POWERPC_VSX_POSSIBLE_VALUES})
list(FIND PNG_POWERPC_VSX_POSSIBLE_VALUES ${PNG_POWERPC_VSX} index)
if(index EQUAL -1)
message(FATAL_ERROR
"PNG_POWERPC_VSX must be one of [${PNG_POWERPC_VSX_POSSIBLE_VALUES}]")
elseif(NOT ${PNG_POWERPC_VSX} STREQUAL "off")
set(libpng_powerpc_sources
powerpc/powerpc_init.c
powerpc/filter_vsx_intrinsics.c)
if(${PNG_POWERPC_VSX} STREQUAL "on")
add_definitions(-DPNG_POWERPC_VSX_OPT=2)
endif()
else()
add_definitions(-DPNG_POWERPC_VSX_OPT=0)
endif()
endif()
# set definitions and sources for intel
if(CMAKE_SYSTEM_PROCESSOR MATCHES "^i?86" OR
CMAKE_SYSTEM_PROCESSOR MATCHES "^x86_64*")
set(PNG_INTEL_SSE_POSSIBLE_VALUES on off)
set(PNG_INTEL_SSE "on" CACHE STRING "Enable INTEL_SSE optimizations:
off: disable the optimizations")
set_property(CACHE PNG_INTEL_SSE PROPERTY STRINGS
${PNG_INTEL_SSE_POSSIBLE_VALUES})
list(FIND PNG_INTEL_SSE_POSSIBLE_VALUES ${PNG_INTEL_SSE} index)
if(index EQUAL -1)
message(FATAL_ERROR
"PNG_INTEL_SSE must be one of [${PNG_INTEL_SSE_POSSIBLE_VALUES}]")
elseif(NOT ${PNG_INTEL_SSE} STREQUAL "off")
set(libpng_intel_sources
intel/intel_init.c
intel/filter_sse2_intrinsics.c)
if(${PNG_INTEL_SSE} STREQUAL "on")
add_definitions(-DPNG_INTEL_SSE_OPT=1)
endif()
else()
add_definitions(-DPNG_INTEL_SSE_OPT=0)
endif()
endif()
# set definitions and sources for MIPS
if(CMAKE_SYSTEM_PROCESSOR MATCHES "mipsel*" OR
CMAKE_SYSTEM_PROCESSOR MATCHES "mips64el*")
set(PNG_MIPS_MSA_POSSIBLE_VALUES on off)
set(PNG_MIPS_MSA "on" CACHE STRING "Enable MIPS_MSA optimizations:
off: disable the optimizations")
set_property(CACHE PNG_MIPS_MSA PROPERTY STRINGS
${PNG_MIPS_MSA_POSSIBLE_VALUES})
list(FIND PNG_MIPS_MSA_POSSIBLE_VALUES ${PNG_MIPS_MSA} index)
if(index EQUAL -1)
message(FATAL_ERROR
"PNG_MIPS_MSA must be one of [${PNG_MIPS_MSA_POSSIBLE_VALUES}]")
elseif(NOT ${PNG_MIPS_MSA} STREQUAL "off")
set(libpng_mips_sources
mips/mips_init.c
mips/filter_msa_intrinsics.c)
if(${PNG_MIPS_MSA} STREQUAL "on")
add_definitions(-DPNG_MIPS_MSA_OPT=2)
endif()
else()
add_definitions(-DPNG_MIPS_MSA_OPT=0)
endif()
endif()
else(PNG_HARDWARE_OPTIMIZATIONS)
# set definitions and sources for arm
if(CMAKE_SYSTEM_PROCESSOR MATCHES "^arm" OR
CMAKE_SYSTEM_PROCESSOR MATCHES "^aarch64")
add_definitions(-DPNG_ARM_NEON_OPT=0)
endif()
# set definitions and sources for powerpc
if(CMAKE_SYSTEM_PROCESSOR MATCHES "^powerpc*" OR
CMAKE_SYSTEM_PROCESSOR MATCHES "^ppc64*")
add_definitions(-DPNG_POWERPC_VSX_OPT=0)
endif()
# set definitions and sources for intel
if(CMAKE_SYSTEM_PROCESSOR MATCHES "^i?86" OR
CMAKE_SYSTEM_PROCESSOR MATCHES "^x86_64*")
add_definitions(-DPNG_INTEL_SSE_OPT=0)
endif()
# set definitions and sources for MIPS
if(CMAKE_SYSTEM_PROCESSOR MATCHES "mipsel*" OR
CMAKE_SYSTEM_PROCESSOR MATCHES "mips64el*")
add_definitions(-DPNG_MIPS_MSA_OPT=0)
endif()
endif(PNG_HARDWARE_OPTIMIZATIONS)
# SET LIBNAME
set(PNG_LIB_NAME png${PNGLIB_MAJOR}${PNGLIB_MINOR})
# to distinguish between debug and release lib
set(CMAKE_DEBUG_POSTFIX "d")
include(CheckCSourceCompiles)
option(ld-version-script "Enable linker version script" ON)
if(ld-version-script AND NOT APPLE)
# Check if LD supports linker scripts.
file(WRITE "${CMAKE_CURRENT_BINARY_DIR}/conftest.map" "VERS_1 {
global: sym;
local: *;
};
VERS_2 {
global: sym2;
main;
} VERS_1;
")
set(CMAKE_REQUIRED_FLAGS_SAVE ${CMAKE_REQUIRED_FLAGS})
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS} "-Wl,--version-script='${CMAKE_CURRENT_BINARY_DIR}/conftest.map'")
check_c_source_compiles("void sym(void) {}
void sym2(void) {}
int main(void) {return 0;}
" HAVE_LD_VERSION_SCRIPT)
if(NOT HAVE_LD_VERSION_SCRIPT)
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE} "-Wl,-M -Wl,${CMAKE_CURRENT_BINARY_DIR}/conftest.map")
check_c_source_compiles("void sym(void) {}
void sym2(void) {}
int main(void) {return 0;}
" HAVE_SOLARIS_LD_VERSION_SCRIPT)
endif()
set(CMAKE_REQUIRED_FLAGS ${CMAKE_REQUIRED_FLAGS_SAVE})
file(REMOVE "${CMAKE_CURRENT_BINARY_DIR}/conftest.map")
endif()
# Find symbol prefix. Likely obsolete and unnecessary with recent
# toolchains (it's not done in many other projects).
function(symbol_prefix)
set(SYMBOL_PREFIX)
execute_process(COMMAND "${CMAKE_C_COMPILER}" "-E" "-"
INPUT_FILE /dev/null
OUTPUT_VARIABLE OUT
RESULT_VARIABLE STATUS)
if(CPP_FAIL)
message(WARNING "Failed to run the C preprocessor")
endif()
string(REPLACE "\n" ";" OUT "${OUT}")
foreach(line ${OUT})
string(REGEX MATCH "^PREFIX=" found_match "${line}")
if(found_match)
string(REGEX REPLACE "^PREFIX=(.*\)" "\\1" prefix "${line}")
string(REGEX MATCH "__USER_LABEL_PREFIX__" found_match "${prefix}")
if(found_match)
string(REGEX REPLACE "(.*)__USER_LABEL_PREFIX__(.*)" "\\1\\2" prefix "${prefix}")
endif()
set(SYMBOL_PREFIX "${prefix}")
endif()
endforeach()
message(STATUS "Symbol prefix: ${SYMBOL_PREFIX}")
set(SYMBOL_PREFIX "${SYMBOL_PREFIX}" PARENT_SCOPE)
endfunction()
if(UNIX)
symbol_prefix()
endif()
find_program(AWK NAMES gawk awk)
include_directories(${CMAKE_CURRENT_BINARY_DIR})
if(NOT AWK OR ANDROID)
# No awk available to generate sources; use pre-built pnglibconf.h
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/scripts/pnglibconf.h.prebuilt
${CMAKE_CURRENT_BINARY_DIR}/pnglibconf.h)
add_custom_target(genfiles) # Dummy
else()
include(CMakeParseArguments)
# Generate .chk from .out with awk
# generate_chk(INPUT inputfile OUTPUT outputfile [DEPENDS dep1 [dep2...]])
function(generate_chk)
set(options)
set(oneValueArgs INPUT OUTPUT)
set(multiValueArgs DEPENDS)
cmake_parse_arguments(_GC "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
if(NOT _GC_INPUT)
message(FATAL_ERROR "generate_chk: Missing INPUT argument")
endif()
if(NOT _GC_OUTPUT)
message(FATAL_ERROR "generate_chk: Missing OUTPUT argument")
endif()
add_custom_command(OUTPUT "${_GC_OUTPUT}"
COMMAND "${CMAKE_COMMAND}"
"-DINPUT=${_GC_INPUT}"
"-DOUTPUT=${_GC_OUTPUT}"
-P "${CMAKE_CURRENT_BINARY_DIR}/scripts/genchk.cmake"
DEPENDS "${_GC_INPUT}" ${_GC_DEPENDS}
WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}")
endfunction()
# Generate .out from .c with awk
# generate_out(INPUT inputfile OUTPUT outputfile [DEPENDS dep1 [dep2...]])
function(generate_out)
set(options)
set(oneValueArgs INPUT OUTPUT)
set(multiValueArgs DEPENDS)
cmake_parse_arguments(_GO "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
if(NOT _GO_INPUT)
message(FATAL_ERROR "generate_out: Missing INPUT argument")
endif()
if(NOT _GO_OUTPUT)
message(FATAL_ERROR "generate_out: Missing OUTPUT argument")
endif()
add_custom_command(OUTPUT "${_GO_OUTPUT}"
COMMAND "${CMAKE_COMMAND}"
"-DINPUT=${_GO_INPUT}"
"-DOUTPUT=${_GO_OUTPUT}"
-P "${CMAKE_CURRENT_BINARY_DIR}/scripts/genout.cmake"
DEPENDS "${_GO_INPUT}" ${_GO_DEPENDS}
WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}")
endfunction()
# Generate specific source file with awk
# generate_source(OUTPUT outputfile [DEPENDS dep1 [dep2...]])
function(generate_source)
set(options)
set(oneValueArgs OUTPUT)
set(multiValueArgs DEPENDS)
cmake_parse_arguments(_GSO "${options}" "${oneValueArgs}" "${multiValueArgs}" ${ARGN})
if(NOT _GSO_OUTPUT)
message(FATAL_ERROR "generate_source: Missing OUTPUT argument")
endif()
add_custom_command(OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/${_GSO_OUTPUT}"
COMMAND "${CMAKE_COMMAND}"
"-DOUTPUT=${_GSO_OUTPUT}"
-P "${CMAKE_CURRENT_BINARY_DIR}/scripts/gensrc.cmake"
DEPENDS ${_GSO_DEPENDS}
WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}")
endfunction()
# Copy file
function(generate_copy source destination)
add_custom_command(OUTPUT "${destination}"
COMMAND "${CMAKE_COMMAND}" -E remove "${destination}"
COMMAND "${CMAKE_COMMAND}" -E copy "${source}"
"${destination}"
DEPENDS "${source}")
endfunction()
# Generate scripts/pnglibconf.h
generate_source(OUTPUT "scripts/pnglibconf.c"
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/scripts/pnglibconf.dfa"
"${CMAKE_CURRENT_SOURCE_DIR}/scripts/options.awk"
"${CMAKE_CURRENT_SOURCE_DIR}/pngconf.h")
# Generate pnglibconf.c
generate_source(OUTPUT "pnglibconf.c"
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/scripts/pnglibconf.dfa"
"${CMAKE_CURRENT_SOURCE_DIR}/scripts/options.awk"
"${CMAKE_CURRENT_SOURCE_DIR}/pngconf.h")
if(PNG_PREFIX)
set(PNGLIBCONF_H_EXTRA_DEPENDS
"${CMAKE_CURRENT_BINARY_DIR}/scripts/prefix.out"
"${CMAKE_CURRENT_SOURCE_DIR}/scripts/macro.lst")
set(PNGPREFIX_H_EXTRA_DEPENDS
"${CMAKE_CURRENT_BINARY_DIR}/scripts/intprefix.out")
endif()
generate_out(INPUT "${CMAKE_CURRENT_BINARY_DIR}/pnglibconf.c"
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/pnglibconf.out")
# Generate pnglibconf.h
generate_source(OUTPUT "pnglibconf.h"
DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/pnglibconf.out"
${PNGLIBCONF_H_EXTRA_DEPENDS})
generate_out(INPUT "${CMAKE_CURRENT_SOURCE_DIR}/scripts/intprefix.c"
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/scripts/intprefix.out"
DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/pnglibconf.h")
generate_out(INPUT "${CMAKE_CURRENT_SOURCE_DIR}/scripts/prefix.c"
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/scripts/prefix.out"
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/png.h"
"${CMAKE_CURRENT_SOURCE_DIR}/pngconf.h"
"${CMAKE_CURRENT_BINARY_DIR}/pnglibconf.out")
# Generate pngprefix.h
generate_source(OUTPUT "pngprefix.h"
DEPENDS ${PNGPREFIX_H_EXTRA_DEPENDS})
generate_out(INPUT "${CMAKE_CURRENT_SOURCE_DIR}/scripts/sym.c"
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/scripts/sym.out"
DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/pnglibconf.h")
generate_out(INPUT "${CMAKE_CURRENT_SOURCE_DIR}/scripts/symbols.c"
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/scripts/symbols.out"
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/png.h"
"${CMAKE_CURRENT_SOURCE_DIR}/pngconf.h"
"${CMAKE_CURRENT_SOURCE_DIR}/scripts/pnglibconf.h.prebuilt")
generate_out(INPUT "${CMAKE_CURRENT_SOURCE_DIR}/scripts/vers.c"
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/scripts/vers.out"
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/png.h"
"${CMAKE_CURRENT_SOURCE_DIR}/pngconf.h"
"${CMAKE_CURRENT_BINARY_DIR}/pnglibconf.h")
generate_chk(INPUT "${CMAKE_CURRENT_BINARY_DIR}/scripts/symbols.out"
OUTPUT "${CMAKE_CURRENT_BINARY_DIR}/scripts/symbols.chk"
DEPENDS "${CMAKE_CURRENT_SOURCE_DIR}/scripts/checksym.awk"
"${CMAKE_CURRENT_SOURCE_DIR}/scripts/symbols.def")
add_custom_target(symbol-check DEPENDS
"${CMAKE_CURRENT_BINARY_DIR}/scripts/symbols.chk")
generate_copy("${CMAKE_CURRENT_BINARY_DIR}/scripts/sym.out"
"${CMAKE_CURRENT_BINARY_DIR}/libpng.sym")
generate_copy("${CMAKE_CURRENT_BINARY_DIR}/scripts/vers.out"
"${CMAKE_CURRENT_BINARY_DIR}/libpng.vers")
add_custom_target(genvers DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/libpng.vers")
add_custom_target(gensym DEPENDS "${CMAKE_CURRENT_BINARY_DIR}/libpng.sym")
add_custom_target("genprebuilt"
COMMAND "${CMAKE_COMMAND}"
"-DOUTPUT=scripts/pnglibconf.h.prebuilt"
-P "${CMAKE_CURRENT_BINARY_DIR}/scripts/gensrc.cmake"
WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}")
# A single target handles generation of all generated files. If
# they are depended upon separately by multiple targets, this
# confuses parallel make (it would require a separate top-level
# target for each file to track the dependencies properly).
add_custom_target(genfiles DEPENDS
"${CMAKE_CURRENT_BINARY_DIR}/libpng.sym"
"${CMAKE_CURRENT_BINARY_DIR}/libpng.vers"
"${CMAKE_CURRENT_BINARY_DIR}/pnglibconf.c"
"${CMAKE_CURRENT_BINARY_DIR}/pnglibconf.h"
"${CMAKE_CURRENT_BINARY_DIR}/pnglibconf.out"
"${CMAKE_CURRENT_BINARY_DIR}/pngprefix.h"
"${CMAKE_CURRENT_BINARY_DIR}/scripts/intprefix.out"
"${CMAKE_CURRENT_BINARY_DIR}/scripts/pnglibconf.c"
"${CMAKE_CURRENT_BINARY_DIR}/scripts/prefix.out"
"${CMAKE_CURRENT_BINARY_DIR}/scripts/sym.out"
"${CMAKE_CURRENT_BINARY_DIR}/scripts/symbols.chk"
"${CMAKE_CURRENT_BINARY_DIR}/scripts/symbols.out"
"${CMAKE_CURRENT_BINARY_DIR}/scripts/vers.out")
endif(NOT AWK OR ANDROID)
# OUR SOURCES
set(libpng_public_hdrs
png.h
pngconf.h
"${CMAKE_CURRENT_BINARY_DIR}/pnglibconf.h"
)
set(libpng_private_hdrs
pngpriv.h
pngdebug.h
pnginfo.h
pngstruct.h
)
if(AWK AND NOT ANDROID)
list(APPEND libpng_private_hdrs "${CMAKE_CURRENT_BINARY_DIR}/pngprefix.h")
endif()
set(libpng_sources
${libpng_public_hdrs}
${libpng_private_hdrs}
png.c
pngerror.c
pngget.c
pngmem.c
pngpread.c
pngread.c
pngrio.c
pngrtran.c
pngrutil.c
pngset.c
pngtrans.c
pngwio.c
pngwrite.c
pngwtran.c
pngwutil.c
${libpng_arm_sources}
${libpng_intel_sources}
${libpng_mips_sources}
${libpng_powerpc_sources}
)
set(pngtest_sources
pngtest.c
)
set(pngvalid_sources
contrib/libtests/pngvalid.c
)
set(pngstest_sources
contrib/libtests/pngstest.c
)
set(pngunknown_sources
contrib/libtests/pngunknown.c
)
set(pngimage_sources
contrib/libtests/pngimage.c
)
set(pngfix_sources
contrib/tools/pngfix.c
)
set(png_fix_itxt_sources
contrib/tools/png-fix-itxt.c
)
if(MSVC)
add_definitions(-D_CRT_SECURE_NO_DEPRECATE)
endif()
if(PNG_DEBUG)
add_definitions(-DPNG_DEBUG)
endif()
# NOW BUILD OUR TARGET
include_directories(${CMAKE_CURRENT_SOURCE_DIR} ${ZLIB_INCLUDE_DIR})
unset(PNG_LIB_TARGETS)
if(PNG_STATIC)
# does not work without changing name
set(PNG_LIB_NAME_STATIC png_static)
add_library(png_static STATIC ${libpng_sources})
add_dependencies(png_static genfiles)
# MSVC doesn't use a different file extension for shared vs. static
# libs. We are able to change OUTPUT_NAME to remove the _static
# for all other platforms.
if(NOT MSVC)
set_target_properties(png_static PROPERTIES
OUTPUT_NAME "${PNG_LIB_NAME}"
CLEAN_DIRECT_OUTPUT 1)
else()
set_target_properties(png_static PROPERTIES
OUTPUT_NAME "${PNG_LIB_NAME}_static"
CLEAN_DIRECT_OUTPUT 1)
endif()
list(APPEND PNG_LIB_TARGETS png_static)
if(MSVC)
# msvc does not append 'lib' - do it here to have consistent name
set_target_properties(png_static PROPERTIES PREFIX "lib")
endif()
target_link_libraries(png_static ${M_LIBRARY})
endif()
if(NOT PNG_LIB_TARGETS)
message(SEND_ERROR
"No library variant selected to build. "
"Please enable at least one of the following options: "
"PNG_STATIC, PNG_SHARED, PNG_FRAMEWORK")
endif()
# Set a variable with CMake code which:
# Creates a symlink from src to dest (if possible) or alternatively
# copies if different.
include(CMakeParseArguments)
function(create_symlink DEST_FILE)
cmake_parse_arguments(S "" "FILE;TARGET" "" ${ARGN})
if(NOT S_TARGET AND NOT S_FILE)
message(FATAL_ERROR "create_symlink: Missing TARGET or FILE argument")
endif()
if(S_TARGET AND S_FILE)
message(FATAL_ERROR "create_symlink: Both source file ${S_FILE} and build target ${S_TARGET} arguments are present; can only have one.")
endif()
if(S_FILE)
# If we don't need to symlink something that's coming from a build target,
# we can go ahead and symlink/copy at configure time.
if(CMAKE_HOST_WIN32 AND NOT CYGWIN)
execute_process(
COMMAND "${CMAKE_COMMAND}" -E copy_if_different ${S_FILE} ${DEST_FILE}
WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}")
else()
execute_process(
COMMAND ${CMAKE_COMMAND} -E create_symlink ${S_FILE} ${DEST_FILE}
WORKING_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}")
endif()
endif()
if(S_TARGET)
# We need to use generator expressions, which can be a bit tricky, so for
# simplicity make the symlink a POST_BUILD step and use the TARGET
# signature of add_custom_command.
if(CMAKE_HOST_WIN32 AND NOT CYGWIN)
add_custom_command(TARGET ${S_TARGET} POST_BUILD
COMMAND "${CMAKE_COMMAND}" -E copy_if_different $<TARGET_LINKER_FILE_NAME:${S_TARGET}> $<TARGET_LINKER_FILE_DIR:${S_TARGET}>/${DEST_FILE})
else()
add_custom_command(TARGET ${S_TARGET} POST_BUILD
COMMAND "${CMAKE_COMMAND}" -E create_symlink $<TARGET_LINKER_FILE_NAME:${S_TARGET}> $<TARGET_LINKER_FILE_DIR:${S_TARGET}>/${DEST_FILE})
endif()
endif()
endfunction()
# Create source generation scripts.
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/scripts/genchk.cmake.in
${CMAKE_CURRENT_BINARY_DIR}/scripts/genchk.cmake @ONLY)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/scripts/genout.cmake.in
${CMAKE_CURRENT_BINARY_DIR}/scripts/genout.cmake @ONLY)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/scripts/gensrc.cmake.in
${CMAKE_CURRENT_BINARY_DIR}/scripts/gensrc.cmake @ONLY)
# libpng is a library so default to 'lib'
if(NOT DEFINED CMAKE_INSTALL_LIBDIR)
set(CMAKE_INSTALL_LIBDIR lib)
endif()
# CREATE PKGCONFIG FILES
# We use the same files like ./configure, so we have to set its vars.
# Only do this on Windows for Cygwin - the files don't make much sense outside
# of a UNIX look-alike.
if(NOT WIN32 OR CYGWIN OR MINGW)
set(prefix ${CMAKE_INSTALL_PREFIX})
set(exec_prefix ${CMAKE_INSTALL_PREFIX})
set(libdir ${CMAKE_INSTALL_FULL_LIBDIR})
set(includedir ${CMAKE_INSTALL_FULL_INCLUDEDIR})
set(LIBS "-lz -lm")
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/libpng.pc.in
${CMAKE_CURRENT_BINARY_DIR}/${PNGLIB_NAME}.pc @ONLY)
create_symlink(libpng.pc FILE ${PNGLIB_NAME}.pc)
configure_file(${CMAKE_CURRENT_SOURCE_DIR}/libpng-config.in
${CMAKE_CURRENT_BINARY_DIR}/${PNGLIB_NAME}-config @ONLY)
create_symlink(libpng-config FILE ${PNGLIB_NAME}-config)
endif()
# SET UP LINKS
if(PNG_SHARED)
set_target_properties(png PROPERTIES
# VERSION 16.${PNGLIB_RELEASE}.1.6.37
VERSION 16.${PNGLIB_RELEASE}.0
SOVERSION 16
CLEAN_DIRECT_OUTPUT 1)
endif()
# INSTALL
if(NOT SKIP_INSTALL_LIBRARIES AND NOT SKIP_INSTALL_ALL)
install(TARGETS ${PNG_LIB_TARGETS}
EXPORT libpng
RUNTIME DESTINATION bin
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
FRAMEWORK DESTINATION ${CMAKE_INSTALL_LIBDIR})
if(PNG_SHARED)
# Create a symlink for libpng.dll.a => libpng16.dll.a on Cygwin
if(CYGWIN OR MINGW)
create_symlink(libpng${CMAKE_IMPORT_LIBRARY_SUFFIX} TARGET png)
install(FILES $<TARGET_LINKER_FILE_DIR:png>/libpng${CMAKE_IMPORT_LIBRARY_SUFFIX}
DESTINATION ${CMAKE_INSTALL_LIBDIR})
endif()
if(NOT WIN32)
create_symlink(libpng${CMAKE_SHARED_LIBRARY_SUFFIX} TARGET png)
install(FILES $<TARGET_LINKER_FILE_DIR:png>/libpng${CMAKE_SHARED_LIBRARY_SUFFIX}
DESTINATION ${CMAKE_INSTALL_LIBDIR})
endif()
endif()
if(PNG_STATIC)
if(NOT WIN32 OR CYGWIN OR MINGW)
create_symlink(libpng${CMAKE_STATIC_LIBRARY_SUFFIX} TARGET png_static)
install(FILES $<TARGET_LINKER_FILE_DIR:png_static>/libpng${CMAKE_STATIC_LIBRARY_SUFFIX}
DESTINATION ${CMAKE_INSTALL_LIBDIR})
endif()
endif()
endif()
if(NOT SKIP_INSTALL_HEADERS AND NOT SKIP_INSTALL_ALL)
install(FILES ${libpng_public_hdrs} DESTINATION include)
install(FILES ${libpng_public_hdrs} DESTINATION include/${PNGLIB_NAME})
endif()
if(NOT SKIP_INSTALL_EXECUTABLES AND NOT SKIP_INSTALL_ALL)
if(NOT WIN32 OR CYGWIN OR MINGW)
install(PROGRAMS ${CMAKE_CURRENT_BINARY_DIR}/libpng-config DESTINATION bin)
install(PROGRAMS ${CMAKE_CURRENT_BINARY_DIR}/${PNGLIB_NAME}-config DESTINATION bin)
endif()
endif()
if(NOT SKIP_INSTALL_PROGRAMS AND NOT SKIP_INSTALL_ALL)
install(TARGETS ${PNG_BIN_TARGETS}
RUNTIME DESTINATION bin)
endif()
if(NOT SKIP_INSTALL_FILES AND NOT SKIP_INSTALL_ALL)
# Install man pages
if(NOT PNG_MAN_DIR)
set(PNG_MAN_DIR "share/man")
endif()
install(FILES libpng.3 libpngpf.3 DESTINATION ${PNG_MAN_DIR}/man3)
install(FILES png.5 DESTINATION ${PNG_MAN_DIR}/man5)
# Install pkg-config files
if(NOT CMAKE_HOST_WIN32 OR CYGWIN OR MINGW)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/libpng.pc
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)
install(PROGRAMS ${CMAKE_CURRENT_BINARY_DIR}/libpng-config
DESTINATION bin)
install(FILES ${CMAKE_CURRENT_BINARY_DIR}/${PNGLIB_NAME}.pc
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)
install(PROGRAMS ${CMAKE_CURRENT_BINARY_DIR}/${PNGLIB_NAME}-config
DESTINATION bin)
endif()
endif()
# Create an export file that CMake users can include() to import our targets.
if(NOT SKIP_INSTALL_EXPORT AND NOT SKIP_INSTALL_ALL)
install(EXPORT libpng DESTINATION lib/libpng FILE lib${PNG_LIB_NAME}.cmake)
endif()
# what's with libpng-manual.txt and all the extra files?
# UNINSTALL
# do we need this?
# DIST
# do we need this?
# to create msvc import lib for mingw compiled shared lib
# pexports libpng.dll > libpng.def
# lib /def:libpng.def /machine:x86

View File

@ -1,7 +1,7 @@
# -*- CMake -*- master configuration file for building LAMMPS
########################################
# CMake build system
# This file is part of LAMMPS
# Created by Christoph Junghans and Richard Berger
cmake_minimum_required(VERSION 3.10)
########################################
# set policy to silence warnings about ignoring <PackageName>_ROOT but use it
@ -12,6 +12,11 @@ endif()
if(POLICY CMP0075)
cmake_policy(SET CMP0075 NEW)
endif()
# set policy to silence warnings about missing executable permissions in
# pythonx.y-config when cross-compiling. review occasionally if it may be set to NEW
if(POLICY CMP0109)
cmake_policy(SET CMP0109 OLD)
endif()
# set policy to silence warnings about timestamps of downloaded files. review occasionally if it may be set to NEW
if(POLICY CMP0135)
cmake_policy(SET CMP0135 OLD)
@ -111,7 +116,7 @@ if(CMAKE_CXX_COMPILER_ID STREQUAL "Intel")
if(CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 17.3 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 17.4)
set(CMAKE_TUNE_DEFAULT "-xCOMMON-AVX512")
else()
set(CMAKE_TUNE_DEFAULT "-xHost -fp-model fast=2 -no-prec-div -qoverride-limits -diag-disable=10441 -diag-disable=11074 -diag-disable=11076 -diag-disable=2196")
set(CMAKE_TUNE_DEFAULT "-xHost -fp-model fast=2 -no-prec-div -qoverride-limits -diag-disable=10441 -diag-disable=2196")
endif()
endif()
endif()
@ -150,7 +155,6 @@ if(MSVC)
add_compile_options(/Zc:__cplusplus)
add_compile_options(/wd4244)
add_compile_options(/wd4267)
add_compile_options(/wd4250)
add_compile_options(/EHsc)
endif()
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
@ -188,7 +192,6 @@ option(BUILD_SHARED_LIBS "Build shared library" OFF)
option(CMAKE_POSITION_INDEPENDENT_CODE "Create object compatible with shared libraries" ON)
option(BUILD_TOOLS "Build and install LAMMPS tools (msi2lmp, binary2txt, chain)" OFF)
option(BUILD_LAMMPS_SHELL "Build and install the LAMMPS shell" OFF)
option(BUILD_LAMMPS_GUI "Build and install the LAMMPS GUI" OFF)
# Support using clang-tidy for C++ files with selected options
set(ENABLE_CLANG_TIDY OFF CACHE BOOL "Include clang-tidy processing when compiling")
@ -254,6 +257,7 @@ set(STANDARD_PACKAGES
KIM
KSPACE
LATBOLTZ
LATTE
LEPTON
MACHDYN
MANIFOLD
@ -400,7 +404,6 @@ pkg_depends(CG-DNA MOLECULE)
pkg_depends(CG-DNA ASPHERE)
pkg_depends(ELECTRODE KSPACE)
pkg_depends(EXTRA-MOLECULE MOLECULE)
pkg_depends(MESONT MOLECULE)
# detect if we may enable OpenMP support by default
set(BUILD_OMP_DEFAULT OFF)
@ -438,19 +441,7 @@ if(BUILD_OMP)
target_link_libraries(lmp PRIVATE OpenMP::OpenMP_CXX)
endif()
# lower C++ standard for fmtlib sources when using Intel classic compiler
if((CMAKE_CXX_COMPILER_ID STREQUAL "Intel") AND (CMAKE_CXX_STANDARD GREATER_EQUAL 17)
AND (CMAKE_CXX_COMPILER_VERSION VERSION_LESS 2021.10))
message(STATUS "Lowering C++ standard for compiling fmtlib sources with Intel Classic compiler")
get_filename_component(LMP_UTILS_SRC "${LAMMPS_SOURCE_DIR}/utils.cpp" ABSOLUTE)
get_filename_component(LMP_VARIABLE_SRC "${LAMMPS_SOURCE_DIR}/variable.cpp" ABSOLUTE)
get_filename_component(FMT_FORMAT_SRC "${LAMMPS_SOURCE_DIR}/fmtlib_format.cpp" ABSOLUTE)
get_filename_component(FMT_OS_SRC "${LAMMPS_SOURCE_DIR}/fmtlib_os.cpp" ABSOLUTE)
set_source_files_properties("${FMT_FORMAT_SRC}" "${FMT_OS_SRC}" "${LMP_VARIABLE_SRC}" "${LMP_UTILS_SRC}"
PROPERTIES COMPILE_OPTIONS "-std=c++14")
endif()
if(PKG_MSCG OR PKG_ATC OR PKG_AWPMD OR PKG_ML-QUIP OR PKG_ML-POD OR PKG_ELECTRODE OR BUILD_TOOLS)
if(PKG_MSCG OR PKG_ATC OR PKG_AWPMD OR PKG_ML-QUIP OR PKG_ML-POD OR PKG_LATTE OR PKG_ELECTRODE)
enable_language(C)
if (NOT USE_INTERNAL_LINALG)
find_package(LAPACK)
@ -530,7 +521,7 @@ else()
endif()
foreach(PKG_WITH_INCL KSPACE PYTHON ML-IAP VORONOI COLVARS ML-HDNNP MDI MOLFILE NETCDF
PLUMED QMMM ML-QUIP SCAFACOS MACHDYN VTK KIM MSCG COMPRESS ML-PACE LEPTON)
PLUMED QMMM ML-QUIP SCAFACOS MACHDYN VTK KIM LATTE MSCG COMPRESS ML-PACE LEPTON)
if(PKG_${PKG_WITH_INCL})
include(Packages/${PKG_WITH_INCL})
endif()
@ -805,11 +796,9 @@ include(Tools)
include(Documentation)
###############################################################################
# Install bench, potential and force field files in data directory
# Install potential and force field files in data directory
###############################################################################
set(LAMMPS_INSTALL_DATADIR ${CMAKE_INSTALL_DATADIR}/lammps)
install(DIRECTORY ${LAMMPS_DIR}/bench DESTINATION ${LAMMPS_INSTALL_DATADIR})
set(LAMMPS_INSTALL_DATADIR ${CMAKE_INSTALL_FULL_DATADIR}/lammps)
install(DIRECTORY ${LAMMPS_POTENTIALS_DIR} DESTINATION ${LAMMPS_INSTALL_DATADIR})
if(BUILD_TOOLS)
install(DIRECTORY ${LAMMPS_TOOLS_DIR}/msi2lmp/frc_files DESTINATION ${LAMMPS_INSTALL_DATADIR})
@ -902,23 +891,13 @@ else()
endif()
include(FeatureSummary)
feature_summary(DESCRIPTION "The following tools and libraries have been found and configured:" WHAT PACKAGES_FOUND)
if(GIT_FOUND AND EXISTS ${LAMMPS_DIR}/.git)
execute_process(COMMAND ${GIT_EXECUTABLE} describe --dirty=-modified --always
OUTPUT_VARIABLE GIT_DESCRIBE
ERROR_QUIET
WORKING_DIRECTORY ${LAMMPS_DIR}
OUTPUT_STRIP_TRAILING_WHITESPACE)
endif()
message(STATUS "<<< Build configuration >>>
LAMMPS Version: ${PROJECT_VERSION} ${GIT_DESCRIBE}
LAMMPS Version: ${PROJECT_VERSION}
Operating System: ${CMAKE_SYSTEM_NAME} ${CMAKE_LINUX_DISTRO} ${CMAKE_DISTRO_VERSION}
CMake Version: ${CMAKE_VERSION}
Build type: ${LAMMPS_BUILD_TYPE}
Install path: ${CMAKE_INSTALL_PREFIX}
Generator: ${CMAKE_GENERATOR} using ${CMAKE_MAKE_PROGRAM}")
if(CMAKE_CROSSCOMPILING)
message(STATUS "Cross compiling on ${CMAKE_HOST_SYSTEM}")
endif()
###############################################################################
# Print package summary
###############################################################################
@ -1047,14 +1026,6 @@ endif()
if(BUILD_LAMMPS_SHELL)
message(STATUS "<<< Building LAMMPS Shell >>>")
endif()
if(BUILD_LAMMPS_GUI)
message(STATUS "<<< Building LAMMPS GUI >>>")
if(LAMMPS_GUI_USE_PLUGIN)
message(STATUS "Loading LAMMPS library as plugin at run time")
else()
message(STATUS "Linking LAMMPS library at compile time")
endif()
endif()
if(ENABLE_TESTING)
message(STATUS "<<< Building Unit Tests >>>")
if(ENABLE_COVERAGE)

195
cmake/CMakeLists.zlib Normal file
View File

@ -0,0 +1,195 @@
cmake_minimum_required(VERSION 3.10)
# When using CMake 3.4 and later, don't export symbols from executables unless
# the CMAKE_ENABLE_EXPORTS variable is set.
if(POLICY CMP0065)
cmake_policy(SET CMP0065 NEW)
endif()
if (POLICY CMP0077)
cmake_policy(SET CMP0077 NEW)
endif()
set(CMAKE_ALLOW_LOOSE_LOOP_CONSTRUCTS ON)
project(zlib C)
set(VERSION "1.2.11")
option(ASM686 "Enable building i686 assembly implementation" OFF)
option(AMD64 "Enable building amd64 assembly implementation" OFF)
set(INSTALL_BIN_DIR "${CMAKE_INSTALL_PREFIX}/bin" CACHE PATH "Installation directory for executables")
set(INSTALL_LIB_DIR "${CMAKE_INSTALL_PREFIX}/lib" CACHE PATH "Installation directory for libraries")
set(INSTALL_INC_DIR "${CMAKE_INSTALL_PREFIX}/include" CACHE PATH "Installation directory for headers")
set(INSTALL_MAN_DIR "${CMAKE_INSTALL_PREFIX}/share/man" CACHE PATH "Installation directory for manual pages")
set(INSTALL_PKGCONFIG_DIR "${CMAKE_INSTALL_PREFIX}/share/pkgconfig" CACHE PATH "Installation directory for pkgconfig (.pc) files")
include(CheckTypeSize)
include(CheckFunctionExists)
include(CheckIncludeFile)
include(CheckCSourceCompiles)
check_include_file(sys/types.h HAVE_SYS_TYPES_H)
check_include_file(stdint.h HAVE_STDINT_H)
check_include_file(stddef.h HAVE_STDDEF_H)
#
# Check to see if we have large file support
#
set(CMAKE_REQUIRED_DEFINITIONS -D_LARGEFILE64_SOURCE=1)
# We add these other definitions here because CheckTypeSize.cmake
# in CMake 2.4.x does not automatically do so and we want
# compatibility with CMake 2.4.x.
if(HAVE_SYS_TYPES_H)
list(APPEND CMAKE_REQUIRED_DEFINITIONS -DHAVE_SYS_TYPES_H)
endif()
if(HAVE_STDINT_H)
list(APPEND CMAKE_REQUIRED_DEFINITIONS -DHAVE_STDINT_H)
endif()
if(HAVE_STDDEF_H)
list(APPEND CMAKE_REQUIRED_DEFINITIONS -DHAVE_STDDEF_H)
endif()
check_type_size(off64_t OFF64_T)
check_type_size(off64_t OFF64_T)
if(HAVE_OFF64_T)
add_definitions(-D_LARGEFILE64_SOURCE=1)
endif()
set(CMAKE_REQUIRED_DEFINITIONS) # clear variable
#
# Check for fseeko
#
check_function_exists(fseeko HAVE_FSEEKO)
if(NOT HAVE_FSEEKO)
add_definitions(-DNO_FSEEKO)
endif()
#
# Check for unistd.h
#
check_include_file(unistd.h Z_HAVE_UNISTD_H)
if(MSVC)
set(CMAKE_DEBUG_POSTFIX "d")
add_definitions(-D_CRT_SECURE_NO_DEPRECATE)
add_definitions(-D_CRT_NONSTDC_NO_DEPRECATE)
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
endif()
if(NOT CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_CURRENT_BINARY_DIR)
# If we're doing an out of source build and the user has a zconf.h
# in their source tree...
if(EXISTS ${CMAKE_CURRENT_SOURCE_DIR}/zconf.h)
file(RENAME ${CMAKE_CURRENT_SOURCE_DIR}/zconf.h ${CMAKE_CURRENT_SOURCE_DIR}/zconf.h.included)
endif()
endif()
set(ZLIB_PC ${CMAKE_CURRENT_BINARY_DIR}/zlib.pc)
configure_file( ${CMAKE_CURRENT_SOURCE_DIR}/zlib.pc.cmakein
${ZLIB_PC} @ONLY)
configure_file( ${CMAKE_CURRENT_SOURCE_DIR}/zconf.h.cmakein
${CMAKE_CURRENT_BINARY_DIR}/zconf.h @ONLY)
include_directories(${CMAKE_CURRENT_BINARY_DIR} ${CMAKE_SOURCE_DIR})
#============================================================================
# zlib
#============================================================================
set(ZLIB_PUBLIC_HDRS
${CMAKE_CURRENT_BINARY_DIR}/zconf.h
zlib.h
)
set(ZLIB_PRIVATE_HDRS
crc32.h
deflate.h
gzguts.h
inffast.h
inffixed.h
inflate.h
inftrees.h
trees.h
zutil.h
)
set(ZLIB_SRCS
adler32.c
compress.c
crc32.c
deflate.c
gzclose.c
gzlib.c
gzread.c
gzwrite.c
inflate.c
infback.c
inftrees.c
inffast.c
trees.c
uncompr.c
zutil.c
)
if(NOT MINGW)
set(ZLIB_DLL_SRCS
win32/zlib1.rc # If present will override custom build rule below.
)
endif()
if(CMAKE_COMPILER_IS_GNUCC)
if(ASM686)
set(ZLIB_ASMS contrib/asm686/match.S)
elseif (AMD64)
set(ZLIB_ASMS contrib/amd64/amd64-match.S)
endif ()
if(ZLIB_ASMS)
add_definitions(-DASMV)
set_source_files_properties(${ZLIB_ASMS} PROPERTIES LANGUAGE C COMPILE_FLAGS -DNO_UNDERLINE)
endif()
endif()
if(MSVC)
if(ASM686)
ENABLE_LANGUAGE(ASM_MASM)
set(ZLIB_ASMS
contrib/masmx86/inffas32.asm
contrib/masmx86/match686.asm
)
elseif (AMD64)
ENABLE_LANGUAGE(ASM_MASM)
set(ZLIB_ASMS
contrib/masmx64/gvmat64.asm
contrib/masmx64/inffasx64.asm
)
endif()
if(ZLIB_ASMS)
add_definitions(-DASMV -DASMINF)
endif()
endif()
# parse the full version number from zlib.h and include in ZLIB_FULL_VERSION
file(READ ${CMAKE_CURRENT_SOURCE_DIR}/zlib.h _zlib_h_contents)
string(REGEX REPLACE ".*#define[ \t]+ZLIB_VERSION[ \t]+\"([-0-9A-Za-z.]+)\".*"
"\\1" ZLIB_FULL_VERSION ${_zlib_h_contents})
if(MINGW)
# This gets us DLL resource information when compiling on MinGW.
if(NOT CMAKE_RC_COMPILER)
set(CMAKE_RC_COMPILER windres.exe)
endif()
add_custom_command(OUTPUT ${CMAKE_CURRENT_BINARY_DIR}/zlib1rc.obj
COMMAND ${CMAKE_RC_COMPILER}
-D GCC_WINDRES
-I ${CMAKE_CURRENT_SOURCE_DIR}
-I ${CMAKE_CURRENT_BINARY_DIR}
-o ${CMAKE_CURRENT_BINARY_DIR}/zlib1rc.obj
-i ${CMAKE_CURRENT_SOURCE_DIR}/win32/zlib1.rc)
set(ZLIB_DLL_SRCS ${CMAKE_CURRENT_BINARY_DIR}/zlib1rc.obj)
endif(MINGW)
add_library(zlibstatic STATIC ${ZLIB_SRCS} ${ZLIB_ASMS} ${ZLIB_PUBLIC_HDRS} ${ZLIB_PRIVATE_HDRS})
if(UNIX)
# On unix-like platforms the library is almost always called libz
set_target_properties(zlibstatic PROPERTIES OUTPUT_NAME z)
endif()

View File

@ -63,11 +63,6 @@
"name": "ENABLE_TESTING",
"value": "True",
"type": "BOOL"
},
{
"name": "BUILD_LAMMPS_GUI",
"value": "False",
"type": "BOOL"
}
]
},
@ -308,54 +303,6 @@
"type": "STRING"
}
]
},
{
"name": "x64-GUI-MSVC",
"generator": "Ninja",
"configurationType": "Release",
"buildRoot": "${workspaceRoot}\\build\\${name}",
"installRoot": "${workspaceRoot}\\install\\${name}",
"cmakeCommandArgs": "-C ${workspaceRoot}\\cmake\\presets\\windows.cmake -D QT_DIR=C:\\Qt\\5.15.2\\msvc2019_64\\lib\\cmake\\Qt5 -D Qt5_DIR=C:\\Qt\\5.15.2\\msvc2019_64\\lib\\cmake\\Qt5",
"buildCommandArgs": "",
"ctestCommandArgs": "-V",
"inheritEnvironments": [ "msvc_x64_x64" ],
"variables": [
{
"name": "BUILD_SHARED_LIBS",
"value": "True",
"type": "BOOL"
},
{
"name": "BUILD_TOOLS",
"value": "True",
"type": "BOOL"
},
{
"name": "LAMMPS_EXCEPTIONS",
"value": "True",
"type": "BOOL"
},
{
"name": "ENABLE_TESTING",
"value": "False",
"type": "BOOL"
},
{
"name": "BUILD_MPI",
"value": "False",
"type": "BOOL"
},
{
"name": "WITH_PNG",
"value": "False",
"type": "BOOL"
},
{
"name": "BUILD_LAMMPS_GUI",
"value": "True",
"type": "BOOL"
}
]
}
]
}

View File

@ -5,10 +5,6 @@ if(CMAKE_VERSION VERSION_LESS 3.12)
set(Python3_VERSION ${PYTHON_VERSION_STRING})
endif()
else()
# use default (or custom) Python executable, if version is sufficient
if(Python_VERSION VERSION_GREATER_EQUAL 3.5)
set(Python3_EXECUTABLE ${Python_EXECUTABLE})
endif()
find_package(Python3 COMPONENTS Interpreter QUIET)
endif()

View File

@ -1,16 +0,0 @@
if(NOT DEFINED HIP_PATH)
if(NOT DEFINED ENV{HIP_PATH})
message(FATAL_ERROR "HIP support requires HIP_PATH to be defined.\n"
"Either pass the HIP_PATH as a CMake option via -DHIP_PATH=... or set the HIP_PATH environment variable.")
else()
set(HIP_PATH $ENV{HIP_PATH} CACHE PATH "Path to HIP installation")
endif()
endif()
if(NOT DEFINED ROCM_PATH)
if(NOT DEFINED ENV{ROCM_PATH})
set(ROCM_PATH "/opt/rocm" CACHE PATH "Path to ROCm installation")
else()
set(ROCM_PATH $ENV{ROCM_PATH} CACHE PATH "Path to ROCm installation")
endif()
endif()
list(APPEND CMAKE_PREFIX_PATH ${HIP_PATH} ${ROCM_PATH})

View File

@ -4,18 +4,14 @@
option(BUILD_DOC "Build LAMMPS HTML documentation" OFF)
if(BUILD_DOC)
# Current Sphinx versions require at least Python 3.8
# Sphinx 3.x requires at least Python 3.5
if(CMAKE_VERSION VERSION_LESS 3.12)
find_package(PythonInterp 3.8 REQUIRED)
find_package(PythonInterp 3.5 REQUIRED)
set(VIRTUALENV ${PYTHON_EXECUTABLE} -m venv)
else()
# use default (or custom) Python executable, if version is sufficient
if(Python_VERSION VERSION_GREATER_EQUAL 3.8)
set(Python3_EXECUTABLE ${Python_EXECUTABLE})
endif()
find_package(Python3 REQUIRED COMPONENTS Interpreter)
if(Python3_VERSION VERSION_LESS 3.8)
message(FATAL_ERROR "Python 3.8 and up is required to build the HTML documentation")
if(Python3_VERSION VERSION_LESS 3.5)
message(FATAL_ERROR "Python 3.5 and up is required to build the HTML documentation")
endif()
set(VIRTUALENV ${Python3_EXECUTABLE} -m venv)
endif()

View File

@ -1,7 +1,5 @@
# Find clang-format
find_program(ClangFormat_EXECUTABLE NAMES clang-format
clang-format-17.0
clang-format-16.0
clang-format-15.0
clang-format-14.0
clang-format-13.0
@ -21,7 +19,7 @@ if(ClangFormat_EXECUTABLE)
OUTPUT_VARIABLE clang_format_version
ERROR_QUIET OUTPUT_STRIP_TRAILING_WHITESPACE)
if(clang_format_version MATCHES "^(Ubuntu |Debian |)clang-format version .*")
if(clang_format_version MATCHES "^(Ubuntu |)clang-format version .*")
# Arch Linux output:
# clang-format version 10.0.0
#
@ -34,15 +32,9 @@ if(ClangFormat_EXECUTABLE)
# Ubuntu 22.04 LTS output:
# Ubuntu clang-format version 14.0.0-1ubuntu1
#
# Debian 11 output:
# Debian clang-format version 11.0.1-2
#
# Debian 12 output:
# Debian clang-format version 14.0.6
#
# Fedora 36 output:
# clang-format version 14.0.5 (Fedora 14.0.5-1.fc36)
string(REGEX REPLACE "^(Ubuntu |Debian |)clang-format version ([0-9.]+).*"
string(REGEX REPLACE "^(Ubuntu |)clang-format version ([0-9.]+).*"
"\\2"
ClangFormat_VERSION
"${clang_format_version}")

View File

@ -83,17 +83,17 @@ function(check_for_autogen_files source_dir)
file(GLOB SRC_AUTOGEN_FILES ${CONFIGURE_DEPENDS} ${source_dir}/style_*.h)
file(GLOB SRC_AUTOGEN_PACKAGES ${CONFIGURE_DEPENDS} ${source_dir}/packages_*.h)
list(APPEND SRC_AUTOGEN_FILES ${SRC_AUTOGEN_PACKAGES} ${source_dir}/lmpinstalledpkgs.h ${source_dir}/lmpgitversion.h)
list(APPEND SRC_AUTOGEN_FILES ${source_dir}/mliap_model_python_couple.h ${source_dir}/mliap_model_python_couple.cpp)
list(APPEND SRC_AUTOGEN_FILES ${SRC_AUTOGEN_PACKAGES} ${source_dir}/mliap_model_python_couple.h ${source_dir}/mliap_model_python_couple.cpp)
foreach(_SRC ${SRC_AUTOGEN_FILES})
get_filename_component(FILENAME "${_SRC}" NAME)
if(EXISTS ${source_dir}/${FILENAME})
message(FATAL_ERROR "\n########################################################################\n"
"Found header file ${source_dir}/${FILENAME} generated by the make-based build system\n"
"\n"
"Please run\n"
"make -C ${source_dir} purge\n"
"to remove\n"
"########################################################################")
"Found header file(s) generated by the make-based build system\n"
"\n"
"Please run\n"
"make -C ${source_dir} purge\n"
"to remove\n"
"########################################################################")
endif()
endforeach()
endfunction()
@ -152,7 +152,7 @@ endfunction(FetchPotentials)
# set CMAKE_LINUX_DISTRO and CMAKE_DISTRO_VERSION on Linux
if((CMAKE_SYSTEM_NAME STREQUAL "Linux") AND (EXISTS /etc/os-release))
file(STRINGS /etc/os-release distro REGEX "^NAME=")
string(REGEX REPLACE "NAME=\"?([^ ]+).*\"?" "\\1" distro "${distro}")
string(REGEX REPLACE "NAME=\"?([^\"]*)\"?" "\\1" distro "${distro}")
file(STRINGS /etc/os-release disversion REGEX "^VERSION_ID=")
string(REGEX REPLACE "VERSION_ID=\"?([^\"]*)\"?" "\\1" disversion "${disversion}")
set(CMAKE_LINUX_DISTRO ${distro})

View File

@ -64,8 +64,6 @@ if(GPU_API STREQUAL "CUDA")
endif()
set(GPU_CUDA_MPS_FLAGS "-DCUDA_MPS_SUPPORT")
endif()
option(CUDA_BUILD_MULTIARCH "Enable building CUDA kernels for all supported GPU architectures" ON)
mark_as_advanced(GPU_BUILD_MULTIARCH)
set(GPU_ARCH "sm_50" CACHE STRING "LAMMPS GPU CUDA SM primary architecture (e.g. sm_60)")
@ -95,58 +93,56 @@ if(GPU_API STREQUAL "CUDA")
# --arch translates directly instead of JIT, so this should be for the preferred or most common architecture
set(GPU_CUDA_GENCODE "-arch=${GPU_ARCH}")
if(CUDA_BUILD_MULTIARCH)
# apply the following to build "fat" CUDA binaries only for known CUDA toolkits since version 8.0
# only the Kepler achitecture and beyond is supported
# comparison chart according to: https://en.wikipedia.org/wiki/CUDA#GPUs_supported
if(CUDA_VERSION VERSION_LESS 8.0)
message(FATAL_ERROR "CUDA Toolkit version 8.0 or later is required")
elseif(CUDA_VERSION VERSION_GREATER_EQUAL "13.0")
message(WARNING "Untested CUDA Toolkit version ${CUDA_VERSION}. Use at your own risk")
set(GPU_CUDA_GENCODE "-arch=all")
elseif(CUDA_VERSION VERSION_GREATER_EQUAL "12.0")
set(GPU_CUDA_GENCODE "-arch=all")
else()
# Kepler (GPU Arch 3.0) is supported by CUDA 5 to CUDA 10.2
if((CUDA_VERSION VERSION_GREATER_EQUAL "5.0") AND (CUDA_VERSION VERSION_LESS "11.0"))
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_30,code=[sm_30,compute_30] ")
endif()
# Kepler (GPU Arch 3.5) is supported by CUDA 5 to CUDA 11
if((CUDA_VERSION VERSION_GREATER_EQUAL "5.0") AND (CUDA_VERSION VERSION_LESS "12.0"))
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_35,code=[sm_35,compute_35]")
endif()
# Maxwell (GPU Arch 5.x) is supported by CUDA 6 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "6.0")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52]")
endif()
# Pascal (GPU Arch 6.x) is supported by CUDA 8 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "8.0")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_60,code=[sm_60,compute_60] -gencode arch=compute_61,code=[sm_61,compute_61]")
endif()
# Volta (GPU Arch 7.0) is supported by CUDA 9 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "9.0")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_70,code=[sm_70,compute_70]")
endif()
# Turing (GPU Arch 7.5) is supported by CUDA 10 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "10.0")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_75,code=[sm_75,compute_75]")
endif()
# Ampere (GPU Arch 8.0) is supported by CUDA 11 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "11.0")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_80,code=[sm_80,compute_80]")
endif()
# Ampere (GPU Arch 8.6) is supported by CUDA 11.1 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "11.1")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_86,code=[sm_86,compute_86]")
endif()
# Lovelace (GPU Arch 8.9) is supported by CUDA 11.8 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "11.8")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_90,code=[sm_90,compute_90]")
endif()
# Hopper (GPU Arch 9.0) is supported by CUDA 12.0 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "12.0")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_90,code=[sm_90,compute_90]")
endif()
# apply the following to build "fat" CUDA binaries only for known CUDA toolkits since version 8.0
# only the Kepler achitecture and beyond is supported
# comparison chart according to: https://en.wikipedia.org/wiki/CUDA#GPUs_supported
if(CUDA_VERSION VERSION_LESS 8.0)
message(FATAL_ERROR "CUDA Toolkit version 8.0 or later is required")
elseif(CUDA_VERSION VERSION_GREATER_EQUAL "13.0")
message(WARNING "Untested CUDA Toolkit version ${CUDA_VERSION}. Use at your own risk")
set(GPU_CUDA_GENCODE "-arch=all")
elseif(CUDA_VERSION VERSION_GREATER_EQUAL "12.0")
set(GPU_CUDA_GENCODE "-arch=all")
else()
# Kepler (GPU Arch 3.0) is supported by CUDA 5 to CUDA 10.2
if((CUDA_VERSION VERSION_GREATER_EQUAL "5.0") AND (CUDA_VERSION VERSION_LESS "11.0"))
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_30,code=[sm_30,compute_30] ")
endif()
# Kepler (GPU Arch 3.5) is supported by CUDA 5 to CUDA 11
if((CUDA_VERSION VERSION_GREATER_EQUAL "5.0") AND (CUDA_VERSION VERSION_LESS "12.0"))
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_35,code=[sm_35,compute_35]")
endif()
# Maxwell (GPU Arch 5.x) is supported by CUDA 6 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "6.0")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_50,code=[sm_50,compute_50] -gencode arch=compute_52,code=[sm_52,compute_52]")
endif()
# Pascal (GPU Arch 6.x) is supported by CUDA 8 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "8.0")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_60,code=[sm_60,compute_60] -gencode arch=compute_61,code=[sm_61,compute_61]")
endif()
# Volta (GPU Arch 7.0) is supported by CUDA 9 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "9.0")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_70,code=[sm_70,compute_70]")
endif()
# Turing (GPU Arch 7.5) is supported by CUDA 10 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "10.0")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_75,code=[sm_75,compute_75]")
endif()
# Ampere (GPU Arch 8.0) is supported by CUDA 11 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "11.0")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_80,code=[sm_80,compute_80]")
endif()
# Ampere (GPU Arch 8.6) is supported by CUDA 11.1 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "11.1")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_86,code=[sm_86,compute_86]")
endif()
# Lovelace (GPU Arch 8.9) is supported by CUDA 11.8 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "11.8")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_90,code=[sm_90,compute_90]")
endif()
# Hopper (GPU Arch 9.0) is supported by CUDA 12.0 and later
if(CUDA_VERSION VERSION_GREATER_EQUAL "12.0")
string(APPEND GPU_CUDA_GENCODE " -gencode arch=compute_90,code=[sm_90,compute_90]")
endif()
endif()
@ -260,7 +256,22 @@ elseif(GPU_API STREQUAL "OPENCL")
add_dependencies(ocl_get_devices OpenCL::OpenCL)
elseif(GPU_API STREQUAL "HIP")
include(DetectHIPInstallation)
if(NOT DEFINED HIP_PATH)
if(NOT DEFINED ENV{HIP_PATH})
message(FATAL_ERROR "GPU_API=HIP requires HIP_PATH to be defined.\n"
"Either pass the HIP_PATH as a CMake option via -DHIP_PATH=... or set the HIP_PATH environment variable.")
else()
set(HIP_PATH $ENV{HIP_PATH} CACHE PATH "Path to HIP installation")
endif()
endif()
if(NOT DEFINED ROCM_PATH)
if(NOT DEFINED ENV{ROCM_PATH})
set(ROCM_PATH "/opt/rocm" CACHE PATH "Path to ROCm installation")
else()
set(ROCM_PATH $ENV{ROCM_PATH} CACHE PATH "Path to ROCm installation")
endif()
endif()
list(APPEND CMAKE_PREFIX_PATH ${HIP_PATH} ${ROCM_PATH})
find_package(hip REQUIRED)
option(HIP_USE_DEVICE_SORT "Use GPU sorting" ON)

View File

@ -16,8 +16,8 @@ if(Kokkos_ENABLE_OPENMP)
if(NOT BUILD_OMP)
message(FATAL_ERROR "Must enable BUILD_OMP with Kokkos_ENABLE_OPENMP")
else()
# NVHPC/(AMD)Clang does not seem to provide a detectable OpenMP version, but is far beyond version 3.1
if((OpenMP_CXX_VERSION VERSION_LESS 3.1) AND NOT ((CMAKE_CXX_COMPILER_ID STREQUAL "NVHPC") OR (CMAKE_CXX_COMPILER_ID STREQUAL "Clang")))
# NVHPC does not seem to provide a detectable OpenMP version, but is far beyond version 3.1
if((OpenMP_CXX_VERSION VERSION_LESS 3.1) AND NOT (CMAKE_CXX_COMPILER_ID STREQUAL "NVHPC"))
message(FATAL_ERROR "Compiler must support OpenMP 3.1 or later with Kokkos_ENABLE_OPENMP")
endif()
endif()
@ -49,8 +49,8 @@ if(DOWNLOAD_KOKKOS)
list(APPEND KOKKOS_LIB_BUILD_ARGS "-DCMAKE_CXX_EXTENSIONS=${CMAKE_CXX_EXTENSIONS}")
list(APPEND KOKKOS_LIB_BUILD_ARGS "-DCMAKE_TOOLCHAIN_FILE=${CMAKE_TOOLCHAIN_FILE}")
include(ExternalProject)
set(KOKKOS_URL "https://github.com/kokkos/kokkos/archive/3.7.02.tar.gz" CACHE STRING "URL for KOKKOS tarball")
set(KOKKOS_MD5 "34d7860d548c06a4040236d959c9f99a" CACHE STRING "MD5 checksum of KOKKOS tarball")
set(KOKKOS_URL "https://github.com/kokkos/kokkos/archive/3.7.01.tar.gz" CACHE STRING "URL for KOKKOS tarball")
set(KOKKOS_MD5 "f140e02b826223b1045207d9bc10d404" CACHE STRING "MD5 checksum of KOKKOS tarball")
mark_as_advanced(KOKKOS_URL)
mark_as_advanced(KOKKOS_MD5)
GetFallbackURL(KOKKOS_URL KOKKOS_FALLBACK)
@ -75,7 +75,7 @@ if(DOWNLOAD_KOKKOS)
add_dependencies(LAMMPS::KOKKOSCORE kokkos_build)
add_dependencies(LAMMPS::KOKKOSCONTAINERS kokkos_build)
elseif(EXTERNAL_KOKKOS)
find_package(Kokkos 3.7.02 REQUIRED CONFIG)
find_package(Kokkos 3.7.01 REQUIRED CONFIG)
target_link_libraries(lammps PRIVATE Kokkos::kokkos)
else()
set(LAMMPS_LIB_KOKKOS_SRC_DIR ${LAMMPS_LIB_SOURCE_DIR}/kokkos)
@ -88,7 +88,7 @@ else()
if(CMAKE_REQUEST_PIC)
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
endif()
add_subdirectory(${LAMMPS_LIB_KOKKOS_SRC_DIR} ${LAMMPS_LIB_KOKKOS_BIN_DIR} EXCLUDE_FROM_ALL)
add_subdirectory(${LAMMPS_LIB_KOKKOS_SRC_DIR} ${LAMMPS_LIB_KOKKOS_BIN_DIR})
set(Kokkos_INCLUDE_DIRS ${LAMMPS_LIB_KOKKOS_SRC_DIR}/core/src
${LAMMPS_LIB_KOKKOS_SRC_DIR}/containers/src
@ -121,11 +121,6 @@ set(KOKKOS_PKG_SOURCES ${KOKKOS_PKG_SOURCES_DIR}/kokkos.cpp
${KOKKOS_PKG_SOURCES_DIR}/domain_kokkos.cpp
${KOKKOS_PKG_SOURCES_DIR}/modify_kokkos.cpp)
# fix wall/gran has been refactored in an incompatible way. Use old version of base class for now
if(PKG_GRANULAR)
list(APPEND KOKKOS_PKG_SOURCES ${KOKKOS_PKG_SOURCES_DIR}/fix_wall_gran_old.cpp)
endif()
if(PKG_KSPACE)
list(APPEND KOKKOS_PKG_SOURCES ${KOKKOS_PKG_SOURCES_DIR}/fft3d_kokkos.cpp
${KOKKOS_PKG_SOURCES_DIR}/grid3d_kokkos.cpp
@ -137,10 +132,8 @@ if(PKG_KSPACE)
endif()
elseif(Kokkos_ENABLE_HIP)
if(NOT (FFT STREQUAL "KISS"))
include(DetectHIPInstallation)
find_package(hipfft REQUIRED)
target_compile_definitions(lammps PRIVATE -DFFT_HIPFFT)
target_link_libraries(lammps PRIVATE hip::hipfft)
target_link_libraries(lammps PRIVATE hipfft)
endif()
endif()
endif()

View File

@ -0,0 +1,54 @@
enable_language(Fortran)
# using lammps in a super-build setting
if(TARGET LATTE::latte)
target_link_libraries(lammps PRIVATE LATTE::latte)
return()
endif()
find_package(LATTE 1.2.2 CONFIG)
if(LATTE_FOUND)
set(DOWNLOAD_LATTE_DEFAULT OFF)
else()
set(DOWNLOAD_LATTE_DEFAULT ON)
endif()
option(DOWNLOAD_LATTE "Download the LATTE library instead of using an already installed one" ${DOWNLOAD_LATTE_DEFAULT})
if(DOWNLOAD_LATTE)
message(STATUS "LATTE download requested - we will build our own")
set(LATTE_URL "https://github.com/lanl/LATTE/archive/v1.2.2.tar.gz" CACHE STRING "URL for LATTE tarball")
set(LATTE_MD5 "820e73a457ced178c08c71389a385de7" CACHE STRING "MD5 checksum of LATTE tarball")
mark_as_advanced(LATTE_URL)
mark_as_advanced(LATTE_MD5)
GetFallbackURL(LATTE_URL LATTE_FALLBACK)
# CMake cannot pass BLAS or LAPACK library variable to external project if they are a list
list(LENGTH BLAS_LIBRARIES} NUM_BLAS)
list(LENGTH LAPACK_LIBRARIES NUM_LAPACK)
if((NUM_BLAS GREATER 1) OR (NUM_LAPACK GREATER 1) AND NOT USE_INTERNAL_LINALG)
message(FATAL_ERROR "Cannot compile downloaded LATTE library due to a technical limitation. "
"Try to configure LAMMPS with '-D USE_INTERNAL_LINALG=on' added as a workaround.")
endif()
include(ExternalProject)
ExternalProject_Add(latte_build
URL ${LATTE_URL} ${LATTE_FALLBACK}
URL_MD5 ${LATTE_MD5}
SOURCE_SUBDIR cmake
CMAKE_ARGS -DCMAKE_INSTALL_PREFIX=<INSTALL_DIR> ${CMAKE_REQUEST_PIC} -DCMAKE_INSTALL_LIBDIR=lib
-DBLAS_LIBRARIES=${BLAS_LIBRARIES} -DLAPACK_LIBRARIES=${LAPACK_LIBRARIES}
-DCMAKE_Fortran_COMPILER=${CMAKE_Fortran_COMPILER} -DCMAKE_Fortran_FLAGS=${CMAKE_Fortran_FLAGS}
-DCMAKE_Fortran_FLAGS_${BTYPE}=${CMAKE_Fortran_FLAGS_${BTYPE}} -DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
-DCMAKE_MAKE_PROGRAM=${CMAKE_MAKE_PROGRAM} -DCMAKE_TOOLCHAIN_FILE=${CMAKE_TOOLCHAIN_FILE}
BUILD_BYPRODUCTS <INSTALL_DIR>/lib/liblatte.a
)
ExternalProject_get_property(latte_build INSTALL_DIR)
add_library(LAMMPS::LATTE UNKNOWN IMPORTED)
set_target_properties(LAMMPS::LATTE PROPERTIES
IMPORTED_LOCATION "${INSTALL_DIR}/lib/liblatte.a"
INTERFACE_LINK_LIBRARIES "${LAPACK_LIBRARIES}")
target_link_libraries(lammps PRIVATE LAMMPS::LATTE)
add_dependencies(LAMMPS::LATTE latte_build)
else()
find_package(LATTE 1.2.2 REQUIRED CONFIG)
target_link_libraries(lammps PRIVATE LATTE::latte)
endif()

View File

@ -1,6 +1,6 @@
set(PACELIB_URL "https://github.com/ICAMS/lammps-user-pace/archive/refs/tags/v.2023.10.04.tar.gz" CACHE STRING "URL for PACE evaluator library sources")
set(PACELIB_URL "https://github.com/ICAMS/lammps-user-pace/archive/refs/tags/v.2023.01.3.fix.tar.gz" CACHE STRING "URL for PACE evaluator library sources")
set(PACELIB_MD5 "70ff79f4e59af175e55d24f3243ad1ff" CACHE STRING "MD5 checksum of PACE evaluator library tarball")
set(PACELIB_MD5 "4f0b3b5b14456fe9a73b447de3765caa" CACHE STRING "MD5 checksum of PACE evaluator library tarball")
mark_as_advanced(PACELIB_URL)
mark_as_advanced(PACELIB_MD5)
GetFallbackURL(PACELIB_URL PACELIB_FALLBACK)

View File

@ -1,169 +1,106 @@
# Plumed2 support for PLUMED package
set(PLUMED_MODE "static" CACHE STRING "Linkage mode for Plumed2 library")
set(PLUMED_MODE_VALUES static shared runtime)
set_property(CACHE PLUMED_MODE PROPERTY STRINGS ${PLUMED_MODE_VALUES})
validate_option(PLUMED_MODE PLUMED_MODE_VALUES)
string(TOUPPER ${PLUMED_MODE} PLUMED_MODE)
if(BUILD_MPI)
set(PLUMED_CONFIG_MPI "--enable-mpi")
set(PLUMED_CONFIG_CC ${CMAKE_MPI_C_COMPILER})
set(PLUMED_CONFIG_CXX ${CMAKE_MPI_CXX_COMPILER})
set(PLUMED_CONFIG_CPP "-I ${MPI_CXX_INCLUDE_PATH}")
set(PLUMED_CONFIG_LIB "${MPI_CXX_LIBRARIES}")
set(PLUMED_CONFIG_DEP "mpi4win_build")
else()
set(PLUMED_CONFIG_MPI "--disable-mpi")
set(PLUMED_CONFIG_CC ${CMAKE_C_COMPILER})
set(PLUMED_CONFIG_CXX ${CMAKE_CXX_COMPILER})
set(PLUMED_CONFIG_CPP "")
set(PLUMED_CONFIG_LIB "")
set(PLUMED_CONFIG_DEP "")
endif()
if(BUILD_OMP)
set(PLUMED_CONFIG_OMP "--enable-openmp")
else()
set(PLUMED_CONFIG_OMP "--disable-openmp")
endif()
set(PLUMED_URL "https://github.com/plumed/plumed2/releases/download/v2.8.2/plumed-src-2.8.2.tgz"
CACHE STRING "URL for PLUMED tarball")
set(PLUMED_MD5 "599092b6a0aa6fff992612537ad98994" CACHE STRING "MD5 checksum of PLUMED tarball")
mark_as_advanced(PLUMED_URL)
mark_as_advanced(PLUMED_MD5)
GetFallbackURL(PLUMED_URL PLUMED_FALLBACK)
if((CMAKE_SYSTEM_NAME STREQUAL "Windows") AND (CMAKE_CROSSCOMPILING))
if(CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64")
set(CROSS_CONFIGURE mingw64-configure)
elseif(CMAKE_SYSTEM_PROCESSOR STREQUAL "x86")
set(CROSS_CONFIGURE mingw32-configure)
else()
message(FATAL_ERROR "Unsupported target system: ${CMAKE_SYSTEM_NAME}/${CMAKE_SYSTEM_PROCESSOR}")
set(PLUMED_LINK_LIBS)
if(PLUMED_MODE STREQUAL "STATIC")
find_package(LAPACK REQUIRED)
find_package(BLAS REQUIRED)
find_package(GSL REQUIRED)
list(APPEND PLUMED_LINK_LIBS ${LAPACK_LIBRARIES} ${BLAS_LIBRARIES} GSL::gsl)
find_package(ZLIB QUIET)
if(ZLIB_FOUND)
list(APPEND PLUMED_LINK_LIBS ZLIB::ZLIB)
endif()
message(STATUS "Downloading and cross-compiling Plumed2 for ${CMAKE_SYSTEM_NAME}/${CMAKE_SYSTEM_PROCESSOR} with ${CROSS_CONFIGURE}")
find_package(FFTW3 QUIET)
if(FFTW3_FOUND)
list(APPEND PLUMED_LINK_LIBS FFTW3::FFTW3)
endif()
endif()
find_package(PkgConfig QUIET)
set(DOWNLOAD_PLUMED_DEFAULT ON)
if(PKG_CONFIG_FOUND)
pkg_check_modules(PLUMED QUIET plumed)
if(PLUMED_FOUND)
set(DOWNLOAD_PLUMED_DEFAULT OFF)
endif()
endif()
option(DOWNLOAD_PLUMED "Download Plumed package instead of using an already installed one" ${DOWNLOAD_PLUMED_DEFAULT})
if(DOWNLOAD_PLUMED)
if(BUILD_MPI)
set(PLUMED_CONFIG_MPI "--enable-mpi")
set(PLUMED_CONFIG_CC ${CMAKE_MPI_C_COMPILER})
set(PLUMED_CONFIG_CXX ${CMAKE_MPI_CXX_COMPILER})
else()
set(PLUMED_CONFIG_MPI "--disable-mpi")
set(PLUMED_CONFIG_CC ${CMAKE_C_COMPILER})
set(PLUMED_CONFIG_CXX ${CMAKE_CXX_COMPILER})
endif()
if(BUILD_OMP)
set(PLUMED_CONFIG_OMP "--enable-openmp")
else()
set(PLUMED_CONFIG_OMP "--disable-openmp")
endif()
message(STATUS "PLUMED download requested - we will build our own")
if(PLUMED_MODE STREQUAL "STATIC")
set(PLUMED_BUILD_BYPRODUCTS "<INSTALL_DIR>/lib/${CMAKE_STATIC_LIBRARY_PREFIX}plumed${CMAKE_STATIC_LIBRARY_SUFFIX}")
elseif(PLUMED_MODE STREQUAL "SHARED")
set(PLUMED_BUILD_BYPRODUCTS "<INSTALL_DIR>/lib/${CMAKE_SHARED_LIBRARY_PREFIX}plumed${CMAKE_SHARED_LIBRARY_SUFFIX};<INSTALL_DIR>/lib/${CMAKE_SHARED_LIBRARY_PREFIX}plumedKernel${CMAKE_SHARED_LIBRARY_SUFFIX}")
elseif(PLUMED_MODE STREQUAL "RUNTIME")
set(PLUMED_BUILD_BYPRODUCTS "<INSTALL_DIR>/lib/${CMAKE_STATIC_LIBRARY_PREFIX}plumedWrapper${CMAKE_STATIC_LIBRARY_PREFIX}")
endif()
set(PLUMED_URL "https://github.com/plumed/plumed2/releases/download/v2.8.2/plumed-src-2.8.2.tgz" CACHE STRING "URL for PLUMED tarball")
set(PLUMED_MD5 "599092b6a0aa6fff992612537ad98994" CACHE STRING "MD5 checksum of PLUMED tarball")
mark_as_advanced(PLUMED_URL)
mark_as_advanced(PLUMED_MD5)
GetFallbackURL(PLUMED_URL PLUMED_FALLBACK)
include(ExternalProject)
ExternalProject_Add(plumed_build
URL ${PLUMED_URL} ${PLUMED_FALLBACK}
URL_MD5 ${PLUMED_MD5}
BUILD_IN_SOURCE 1
CONFIGURE_COMMAND ${CROSS_CONFIGURE} --disable-shared --disable-bsymbolic
--disable-python --enable-cxx=11
--enable-modules=-adjmat:+crystallization:-dimred:+drr:+eds:-fisst:+funnel:+logmfd:+manyrestraints:+maze:+opes:+multicolvar:-pamm:-piv:+s2cm:-sasa:-ves
${PLUMED_CONFIG_OMP}
${PLUMED_CONFIG_MPI}
CXX=${PLUMED_CONFIG_CXX}
CC=${PLUMED_CONFIG_CC}
CPPFLAGS=${PLUMED_CONFIG_CPP}
LIBS=${PLUMED_CONFIG_LIB}
INSTALL_COMMAND ""
BUILD_BYPRODUCTS "<SOURCE_DIR>/src/lib/install/libplumed.a" "<SOURCE_DIR>/src/lib/install/plumed.exe"
DEPENDS "${PLUMED_MPI_CONFIG_DEP}"
)
ExternalProject_Get_Property(plumed_build SOURCE_DIR)
set(PLUMED_BUILD_DIR ${SOURCE_DIR})
set(PLUMED_INSTALL_DIR ${PLUMED_BUILD_DIR}/src/lib/install)
file(MAKE_DIRECTORY ${PLUMED_BUILD_DIR}/src/include)
add_library(LAMMPS::PLUMED UNKNOWN IMPORTED)
add_dependencies(LAMMPS::PLUMED plumed_build)
set_target_properties(LAMMPS::PLUMED PROPERTIES
IMPORTED_LOCATION "${PLUMED_INSTALL_DIR}/libplumed.a"
INTERFACE_LINK_LIBRARIES "-Wl,--image-base -Wl,0x10000000 -lfftw3 -lz -fstack-protector -lssp -fopenmp"
INTERFACE_INCLUDE_DIRECTORIES "${PLUMED_BUILD_DIR}/src/include")
add_custom_target(plumed_copy ALL ${CMAKE_COMMAND} -E rm -rf ${CMAKE_BINARY_DIR}/plumed.exe ${CMAKE_BINARY_DIR}/plumed_patches
COMMAND ${CMAKE_COMMAND} -E copy ${PLUMED_INSTALL_DIR}/plumed.exe ${CMAKE_BINARY_DIR}/plumed.exe
COMMAND ${CMAKE_COMMAND} -E copy_directory ${PLUMED_BUILD_DIR}/patches ${CMAKE_BINARY_DIR}/patches
BYPRODUCTS ${CMAKE_BINARY_DIR}/plumed.exe ${CMAKE_BINARY_DIR}/patches
DEPENDS plumed_build
COMMENT "Copying Plumed files"
)
else()
set(PLUMED_MODE "static" CACHE STRING "Linkage mode for Plumed2 library")
set(PLUMED_MODE_VALUES static shared runtime)
set_property(CACHE PLUMED_MODE PROPERTY STRINGS ${PLUMED_MODE_VALUES})
validate_option(PLUMED_MODE PLUMED_MODE_VALUES)
string(TOUPPER ${PLUMED_MODE} PLUMED_MODE)
set(PLUMED_LINK_LIBS)
if(PLUMED_MODE STREQUAL "STATIC")
find_package(LAPACK REQUIRED)
find_package(BLAS REQUIRED)
find_package(GSL REQUIRED)
list(APPEND PLUMED_LINK_LIBS ${LAPACK_LIBRARIES} ${BLAS_LIBRARIES} GSL::gsl)
find_package(ZLIB QUIET)
if(ZLIB_FOUND)
list(APPEND PLUMED_LINK_LIBS ZLIB::ZLIB)
endif()
find_package(FFTW3 QUIET)
if(FFTW3_FOUND)
list(APPEND PLUMED_LINK_LIBS FFTW3::FFTW3)
endif()
endif()
find_package(PkgConfig QUIET)
set(DOWNLOAD_PLUMED_DEFAULT ON)
if(PKG_CONFIG_FOUND)
pkg_check_modules(PLUMED QUIET plumed)
if(PLUMED_FOUND)
set(DOWNLOAD_PLUMED_DEFAULT OFF)
endif()
endif()
option(DOWNLOAD_PLUMED "Download Plumed package instead of using an already installed one" ${DOWNLOAD_PLUMED_DEFAULT})
if(DOWNLOAD_PLUMED)
message(STATUS "PLUMED download requested - we will build our own")
if(PLUMED_MODE STREQUAL "STATIC")
set(PLUMED_BUILD_BYPRODUCTS "<INSTALL_DIR>/lib/${CMAKE_STATIC_LIBRARY_PREFIX}plumed${CMAKE_STATIC_LIBRARY_SUFFIX}")
elseif(PLUMED_MODE STREQUAL "SHARED")
set(PLUMED_BUILD_BYPRODUCTS "<INSTALL_DIR>/lib/${CMAKE_SHARED_LIBRARY_PREFIX}plumed${CMAKE_SHARED_LIBRARY_SUFFIX};<INSTALL_DIR>/lib/${CMAKE_SHARED_LIBRARY_PREFIX}plumedKernel${CMAKE_SHARED_LIBRARY_SUFFIX}")
elseif(PLUMED_MODE STREQUAL "RUNTIME")
set(PLUMED_BUILD_BYPRODUCTS "<INSTALL_DIR>/lib/${CMAKE_STATIC_LIBRARY_PREFIX}plumedWrapper${CMAKE_STATIC_LIBRARY_PREFIX}")
endif()
include(ExternalProject)
ExternalProject_Add(plumed_build
URL ${PLUMED_URL} ${PLUMED_FALLBACK}
URL_MD5 ${PLUMED_MD5}
BUILD_IN_SOURCE 1
CONFIGURE_COMMAND <SOURCE_DIR>/configure --prefix=<INSTALL_DIR>
CONFIGURE_COMMAND <SOURCE_DIR>/configure --prefix=<INSTALL_DIR>
${CONFIGURE_REQUEST_PIC}
--enable-modules=all
--enable-cxx=11
--disable-python
${PLUMED_CONFIG_MPI}
${PLUMED_CONFIG_OMP}
CXX=${PLUMED_CONFIG_CXX}
CC=${PLUMED_CONFIG_CC}
BUILD_BYPRODUCTS ${PLUMED_BUILD_BYPRODUCTS}
)
ExternalProject_get_property(plumed_build INSTALL_DIR)
add_library(LAMMPS::PLUMED UNKNOWN IMPORTED)
add_dependencies(LAMMPS::PLUMED plumed_build)
if(PLUMED_MODE STREQUAL "STATIC")
set_target_properties(LAMMPS::PLUMED PROPERTIES IMPORTED_LOCATION ${INSTALL_DIR}/lib/${CMAKE_STATIC_LIBRARY_PREFIX}plumed${CMAKE_STATIC_LIBRARY_SUFFIX} INTERFACE_LINK_LIBRARIES "${PLUMED_LINK_LIBS};${CMAKE_DL_LIBS}")
elseif(PLUMED_MODE STREQUAL "SHARED")
set_target_properties(LAMMPS::PLUMED PROPERTIES IMPORTED_LOCATION ${INSTALL_DIR}/lib/${CMAKE_SHARED_LIBRARY_PREFIX}plumed${CMAKE_SHARED_LIBRARY_SUFFIX} INTERFACE_LINK_LIBRARIES "${INSTALL_DIR}/lib/${CMAKE_SHARED_LIBRARY_PREFIX}plumedKernel${CMAKE_SHARED_LIBRARY_SUFFIX};${CMAKE_DL_LIBS}")
elseif(PLUMED_MODE STREQUAL "RUNTIME")
set_target_properties(LAMMPS::PLUMED PROPERTIES INTERFACE_COMPILE_DEFINITIONS "__PLUMED_DEFAULT_KERNEL=${INSTALL_DIR}/lib/${CMAKE_SHARED_LIBRARY_PREFIX}plumedKernel${CMAKE_SHARED_LIBRARY_SUFFIX}")
set_target_properties(LAMMPS::PLUMED PROPERTIES IMPORTED_LOCATION ${INSTALL_DIR}/lib/${CMAKE_STATIC_LIBRARY_PREFIX}plumedWrapper${CMAKE_STATIC_LIBRARY_SUFFIX} INTERFACE_LINK_LIBRARIES "${CMAKE_DL_LIBS}")
endif()
set_target_properties(LAMMPS::PLUMED PROPERTIES INTERFACE_INCLUDE_DIRECTORIES ${INSTALL_DIR}/include)
file(MAKE_DIRECTORY ${INSTALL_DIR}/include)
else()
find_package(PkgConfig REQUIRED)
pkg_check_modules(PLUMED REQUIRED plumed)
add_library(LAMMPS::PLUMED INTERFACE IMPORTED)
if(PLUMED_MODE STREQUAL "STATIC")
include(${PLUMED_LIBDIR}/plumed/src/lib/Plumed.cmake.static)
elseif(PLUMED_MODE STREQUAL "SHARED")
include(${PLUMED_LIBDIR}/plumed/src/lib/Plumed.cmake.shared)
elseif(PLUMED_MODE STREQUAL "RUNTIME")
set_target_properties(LAMMPS::PLUMED PROPERTIES INTERFACE_COMPILE_DEFINITIONS "__PLUMED_DEFAULT_KERNEL=${PLUMED_LIBDIR}/${CMAKE_SHARED_LIBRARY_PREFIX}plumedKernel${CMAKE_SHARED_LIBRARY_SUFFIX}")
include(${PLUMED_LIBDIR}/plumed/src/lib/Plumed.cmake.runtime)
endif()
set_target_properties(LAMMPS::PLUMED PROPERTIES INTERFACE_LINK_LIBRARIES "${PLUMED_LOAD}")
set_target_properties(LAMMPS::PLUMED PROPERTIES INTERFACE_INCLUDE_DIRECTORIES "${PLUMED_INCLUDE_DIRS}")
BUILD_BYPRODUCTS ${PLUMED_BUILD_BYPRODUCTS}
)
ExternalProject_get_property(plumed_build INSTALL_DIR)
add_library(LAMMPS::PLUMED UNKNOWN IMPORTED)
add_dependencies(LAMMPS::PLUMED plumed_build)
if(PLUMED_MODE STREQUAL "STATIC")
set_target_properties(LAMMPS::PLUMED PROPERTIES IMPORTED_LOCATION ${INSTALL_DIR}/lib/${CMAKE_STATIC_LIBRARY_PREFIX}plumed${CMAKE_STATIC_LIBRARY_SUFFIX} INTERFACE_LINK_LIBRARIES "${PLUMED_LINK_LIBS};${CMAKE_DL_LIBS}")
elseif(PLUMED_MODE STREQUAL "SHARED")
set_target_properties(LAMMPS::PLUMED PROPERTIES IMPORTED_LOCATION ${INSTALL_DIR}/lib/${CMAKE_SHARED_LIBRARY_PREFIX}plumed${CMAKE_SHARED_LIBRARY_SUFFIX} INTERFACE_LINK_LIBRARIES "${INSTALL_DIR}/lib/${CMAKE_SHARED_LIBRARY_PREFIX}plumedKernel${CMAKE_SHARED_LIBRARY_SUFFIX};${CMAKE_DL_LIBS}")
elseif(PLUMED_MODE STREQUAL "RUNTIME")
set_target_properties(LAMMPS::PLUMED PROPERTIES INTERFACE_COMPILE_DEFINITIONS "__PLUMED_DEFAULT_KERNEL=${INSTALL_DIR}/lib/${CMAKE_SHARED_LIBRARY_PREFIX}plumedKernel${CMAKE_SHARED_LIBRARY_SUFFIX}")
set_target_properties(LAMMPS::PLUMED PROPERTIES IMPORTED_LOCATION ${INSTALL_DIR}/lib/${CMAKE_STATIC_LIBRARY_PREFIX}plumedWrapper${CMAKE_STATIC_LIBRARY_SUFFIX} INTERFACE_LINK_LIBRARIES "${CMAKE_DL_LIBS}")
endif()
set_target_properties(LAMMPS::PLUMED PROPERTIES INTERFACE_INCLUDE_DIRECTORIES ${INSTALL_DIR}/include)
file(MAKE_DIRECTORY ${INSTALL_DIR}/include)
else()
find_package(PkgConfig REQUIRED)
pkg_check_modules(PLUMED REQUIRED plumed)
add_library(LAMMPS::PLUMED INTERFACE IMPORTED)
if(PLUMED_MODE STREQUAL "STATIC")
include(${PLUMED_LIBDIR}/plumed/src/lib/Plumed.cmake.static)
elseif(PLUMED_MODE STREQUAL "SHARED")
include(${PLUMED_LIBDIR}/plumed/src/lib/Plumed.cmake.shared)
elseif(PLUMED_MODE STREQUAL "RUNTIME")
set_target_properties(LAMMPS::PLUMED PROPERTIES INTERFACE_COMPILE_DEFINITIONS "__PLUMED_DEFAULT_KERNEL=${PLUMED_LIBDIR}/${CMAKE_SHARED_LIBRARY_PREFIX}plumedKernel${CMAKE_SHARED_LIBRARY_SUFFIX}")
include(${PLUMED_LIBDIR}/plumed/src/lib/Plumed.cmake.runtime)
endif()
set_target_properties(LAMMPS::PLUMED PROPERTIES INTERFACE_LINK_LIBRARIES "${PLUMED_LOAD}")
set_target_properties(LAMMPS::PLUMED PROPERTIES INTERFACE_INCLUDE_DIRECTORIES "${PLUMED_INCLUDE_DIRS}")
endif()
target_link_libraries(lammps PRIVATE LAMMPS::PLUMED)

View File

@ -18,33 +18,29 @@ if(ENABLE_TESTING)
# we need to build and link a LOT of tester executables, so it is worth checking if
# a faster linker is available. requires GNU or Clang compiler, newer CMake.
# also only verified with Fedora Linux > 30 and Ubuntu 18.04 or 22.04+(Ubuntu 20.04 fails)
# also only verified with Fedora Linux > 30 and Ubuntu <= 18.04 (Ubuntu 20.04 fails)
if((CMAKE_SYSTEM_NAME STREQUAL "Linux") AND (CMAKE_VERSION VERSION_GREATER_EQUAL 3.13)
AND ((CMAKE_CXX_COMPILER_ID STREQUAL "GNU") OR (CMAKE_CXX_COMPILER_ID STREQUAL "Clang")))
if(((CMAKE_LINUX_DISTRO STREQUAL "Ubuntu") AND
((CMAKE_DISTRO_VERSION VERSION_LESS_EQUAL 18.04) OR (CMAKE_DISTRO_VERSION VERSION_GREATER_EQUAL 22.04)))
AND ((CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
OR (CMAKE_CXX_COMPILER_ID STREQUAL "Clang")))
if(((CMAKE_LINUX_DISTRO STREQUAL "Ubuntu") AND (CMAKE_DISTRO_VERSION VERSION_LESS_EQUAL 18.04))
OR ((CMAKE_LINUX_DISTRO STREQUAL "Fedora") AND (CMAKE_DISTRO_VERSION VERSION_GREATER 30)))
include(CheckCXXCompilerFlag)
set(CMAKE_CUSTOM_LINKER_DEFAULT default)
check_cxx_compiler_flag(-fuse-ld=mold HAVE_MOLD_LINKER_FLAG)
check_cxx_compiler_flag(-fuse-ld=lld HAVE_LLD_LINKER_FLAG)
check_cxx_compiler_flag(-fuse-ld=gold HAVE_GOLD_LINKER_FLAG)
check_cxx_compiler_flag(-fuse-ld=bfd HAVE_BFD_LINKER_FLAG)
find_program(HAVE_MOLD_LINKER_BIN ld.mold)
find_program(HAVE_LLD_LINKER_BIN lld ld.lld)
find_program(HAVE_GOLD_LINKER_BIN ld.gold)
find_program(HAVE_BFD_LINKER_BIN ld.bfd)
if(HAVE_MOLD_LINKER_FLAG AND HAVE_MOLD_LINKER_BIN)
set(CMAKE_CUSTOM_LINKER_DEFAULT mold)
elseif(HAVE_LLD_LINKER_FLAG AND HAVE_LLD_LINKER_BIN)
if(HAVE_LLD_LINKER_FLAG AND HAVE_LLD_LINKER_BIN)
set(CMAKE_CUSTOM_LINKER_DEFAULT lld)
elseif(HAVE_GOLD_LINKER_FLAG AND HAVE_GOLD_LINKER_BIN)
set(CMAKE_CUSTOM_LINKER_DEFAULT gold)
elseif(HAVE_BFD_LINKER_FLAG AND HAVE_BFD_LINKER_BIN)
set(CMAKE_CUSTOM_LINKER_DEFAULT bfd)
endif()
set(CMAKE_CUSTOM_LINKER_VALUES mold lld gold bfd default)
set(CMAKE_CUSTOM_LINKER ${CMAKE_CUSTOM_LINKER_DEFAULT} CACHE STRING "Choose a custom linker for faster linking (mold, lld, gold, bfd, default)")
set(CMAKE_CUSTOM_LINKER_VALUES lld gold bfd default)
set(CMAKE_CUSTOM_LINKER ${CMAKE_CUSTOM_LINKER_DEFAULT} CACHE STRING "Choose a custom linker for faster linking (lld, gold, bfd, default)")
validate_option(CMAKE_CUSTOM_LINKER CMAKE_CUSTOM_LINKER_VALUES)
mark_as_advanced(CMAKE_CUSTOM_LINKER)
if(NOT "${CMAKE_CUSTOM_LINKER}" STREQUAL "default")

View File

@ -33,15 +33,9 @@ if(BUILD_TOOLS)
endif()
install(TARGETS msi2lmp DESTINATION ${CMAKE_INSTALL_BINDIR})
install(FILES ${LAMMPS_DOC_DIR}/msi2lmp.1 DESTINATION ${CMAKE_INSTALL_MANDIR}/man1)
add_subdirectory(${LAMMPS_TOOLS_DIR}/phonon ${CMAKE_BINARY_DIR}/phana_build)
endif()
find_package(PkgConfig QUIET)
if(BUILD_LAMMPS_SHELL)
if(NOT PkgConfig_FOUND)
message(FATAL_ERROR "Must have pkg-config installed for building LAMMPS shell")
endif()
find_package(PkgConfig REQUIRED)
pkg_check_modules(READLINE IMPORTED_TARGET REQUIRED readline)
if(NOT LAMMPS_EXCEPTIONS)
@ -71,8 +65,4 @@ if(BUILD_LAMMPS_SHELL)
install(FILES ${LAMMPS_TOOLS_DIR}/lammps-shell/lammps-shell.desktop DESTINATION ${CMAKE_INSTALL_DATAROOTDIR}/applications/)
endif()
if(BUILD_LAMMPS_GUI)
get_filename_component(LAMMPS_GUI_DIR ${LAMMPS_SOURCE_DIR}/../tools/lammps-gui ABSOLUTE)
get_filename_component(LAMMPS_GUI_BIN ${CMAKE_BINARY_DIR}/lammps-gui-build ABSOLUTE)
add_subdirectory(${LAMMPS_GUI_DIR} ${LAMMPS_GUI_BIN})
endif()

Binary file not shown.

Before

Width:  |  Height:  |  Size: 85 KiB

View File

@ -1,34 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>CFBundleDevelopmentRegion</key>
<string>en-US</string>
<key>CFBundleExecutable</key>
<string>${MACOSX_BUNDLE_EXECUTABLE_NAME}</string>
<key>CFBundleDisplayName</key>
<string>The LAMMPS Molecular Dynamics Software</string>
<key>CFBundleIconFile</key>
<string>lammps</string>
<key>CFBundleIdentifier</key>
<string>org.lammps.gui</string>
<key>CFBundleInfoDictionaryVersion</key>
<string>6.0</string>
<key>CFBundleLongVersionString</key>
<string>${MACOSX_BUNDLE_LONG_VERSION_STRING}</string>
<key>CFBundleName</key>
<string>LAMMPS</string>
<key>CFBundlePackageType</key>
<string>APPL</string>
<key>CFBundleShortVersionString</key>
<string>${MACOSX_BUNDLE_SHORT_VERSION_STRING}</string>
<key>CFBundleSignature</key>
<string>????</string>
<key>CFBundleVersion</key>
<string>${MACOSX_BUNDLE_BUNDLE_VERSION}</string>
<key>CSResourcesFileMapped</key>
<true/>
<key>NSHumanReadableCopyright</key>
<string>${MACOSX_BUNDLE_COPYRIGHT}</string>
</dict>
</plist>

View File

@ -1,69 +0,0 @@
LAMMPS and LAMMPS GUI universal binaries for macOS (arm64/x86_64)
=================================================================
This package provides universal binaries of LAMMPS and LAMMPS GUI that should
run on macOS systems running running macOS version 11 (Big Sur) or newer. Note
the binaries are compiled without MPI support and contain a compatible subset
of the available packages.
The following individual commands are included:
binary2txt lammps-gui lmp msi2lmp phana stl_bin2txt
After copying the lammps-gui folder into your Applications folder, please follow
these steps:
1. Open the Terminal app
2. Type the following command and press ENTER:
open ~/.zprofile
This will open a text editor for modifying the .zprofile file in your home
directory.
3. Add the following lines to the end of the file, save it, and close the editor
LAMMPS_INSTALL_DIR=/Applications/LAMMPS.app/Contents
LAMMPS_POTENTIALS=${LAMMPS_INSTALL_DIR}/share/lammps/potentials
LAMMPS_BENCH_DIR=${LAMMPS_INSTALL_DIR}/share/lammps/bench
MSI2LMP_LIBRARY=${LAMMPS_INSTALL_DIR}/share/lammps/frc_files
PATH=${LAMMPS_INSTALL_DIR}/bin:$PATH
export LAMMPS_POTENTIALS LAMMPS_BENCH_DIR PATH
4. In your existing terminal, type the following command make the settings active
source ~/.zprofile
Note, you don't have to type this in new terminals, since they will apply
the changes from .zprofile automatically.
Note: the above assumes you use the default shell (zsh) that comes with
MacOS. If you customized MacOS to use a different shell, you'll need to modify
that shell's init file (.cshrc, .bashrc, etc.) instead with appropiate commands
to modify the same environment variables.
5. Try running LAMMPS (which might fail, see step 7)
lmp -in ${LAMMPS_BENCH_DIR}/in.lj
6. Try running the LAMMPS GUI
lammps-gui ${LAMMPS_BENCH_DIR}/in.rhodo
Depending on the size and resolution of your screen, the fonts may
be too small to read. This can be adjusted by setting the environment
variable QT_FONT_DPI. The default value would be 72, so to increase
the fonts by a third one can add to the .zprofile file the line
export QT_FONT_DPI=96
and reload as shown above.
7. Give permission to execute the commands (lmp, lammps-gui, msi2lmp, binary2txt, phana, stl_bin2txt)
MacOS will likely block the initial run of the executables, since they
were downloaded from the internet and are missing a known signature from an
identified developer. Go to "Settings" and search for "Security settings". It
should display a message that an executable like "lmp" was blocked. Press
"Open anyway", which might prompt you for your admin credentials. Afterwards
"lmp" and the other executables should work as expected.

View File

@ -1,77 +0,0 @@
#!/bin/bash
APP_NAME=lammps-gui
DESTDIR=${PWD}/../LAMMPS_GUI
echo "Delete old files, if they exist"
rm -rf ${DESTDIR} ../LAMMPS-Linux-amd64.tar.gz
echo "Create staging area for deployment and populate"
DESTDIR=${DESTDIR} cmake --install . --prefix "/"
echo "Remove debug info"
for s in ${DESTDIR}/bin/* ${DESTDIR}/lib/liblammps*
do \
test -f $s && strip --strip-debug $s
done
echo "Remove libc, gcc, and X11 related shared libs"
rm -f ${DESTDIR}/lib/ld*.so ${DESTDIR}/lib/ld*.so.[0-9]
rm -f ${DESTDIR}/lib/lib{c,dl,rt,m,pthread}.so.?
rm -f ${DESTDIR}/lib/lib{c,dl,rt,m,pthread}-[0-9].[0-9]*.so
rm -f ${DESTDIR}/lib/libX* ${DESTDIR}/lib/libxcb*
rm -f ${DESTDIR}/lib/libgcc_s*
rm -f ${DESTDIR}/lib/libstdc++*
# get qt dir
QTDIR=$(ldd ${DESTDIR}/bin/lammps-gui | grep libQt5Core | sed -e 's/^.*=> *//' -e 's/libQt5Core.so.*$/qt5/')
cat > ${DESTDIR}/bin/qt.conf <<EOF
[Paths]
Plugins = ../qt5plugins
EOF
# platform plugin
mkdir -p ${DESTDIR}/qt5plugins/platforms
cp ${QTDIR}/plugins/platforms/libqxcb.so ${DESTDIR}/qt5plugins/platforms
# get platform plugin dependencies
QTDEPS=$(LD_LIBRARY_PATH=${DESTDIR}/lib ldd ${QTDIR}/plugins/platforms/libqxcb.so | grep -v ${DESTDIR} | grep libQt5 | sed -e 's/^.*=> *//' -e 's/\(libQt5.*.so.*\) .*$/\1/')
for dep in ${QTDEPS}
do \
cp ${dep} ${DESTDIR}/lib
done
echo "Add additional plugins for Qt"
for dir in styles imageformats
do \
cp -r ${QTDIR}/plugins/${dir} ${DESTDIR}/qt5plugins/
done
# get imageplugin dependencies
for s in ${DESTDIR}/qt5plugins/imageformats/*.so
do \
QTDEPS=$(LD_LIBRARY_PATH=${DESTDIR}/lib ldd $s | grep -v ${DESTDIR} | grep -E '(libQt5|jpeg)' | sed -e 's/^.*=> *//' -e 's/\(lib.*.so.*\) .*$/\1/')
for dep in ${QTDEPS}
do \
cp ${dep} ${DESTDIR}/lib
done
done
echo "Set up wrapper script"
MYDIR=$(dirname "$0")
cp ${MYDIR}/linux_wrapper.sh ${DESTDIR}/bin
for s in ${DESTDIR}/bin/*
do \
EXE=$(basename $s)
test ${EXE} = linux_wrapper.sh && continue
test ${EXE} = qt.conf && continue
ln -s bin/linux_wrapper.sh ${DESTDIR}/${EXE}
done
pushd ..
tar -czvvf LAMMPS-Linux-amd64.tar.gz LAMMPS_GUI
popd
echo "Cleanup dir"
rm -r ${DESTDIR}
exit 0

View File

@ -1,111 +0,0 @@
#!/bin/bash
APP_NAME=lammps-gui
echo "Delete old files, if they exist"
rm -f ${APP_NAME}.dmg ${APP_NAME}-rw.dmg LAMMPS-macOS-multiarch.dmg
echo "Create initial dmg file with macdeployqt"
macdeployqt lammps-gui.app -dmg
echo "Create writable dmg file"
hdiutil convert ${APP_NAME}.dmg -format UDRW -o ${APP_NAME}-rw.dmg
echo "Mount writeable DMG file in read-write mode. Keep track of device and volume names"
DEVICE=$(hdiutil attach -readwrite -noverify ${APP_NAME}-rw.dmg | grep '^/dev/' | sed 1q | awk '{print $1}')
VOLUME=$(df | grep ${DEVICE} | sed -e 's/^.*\(\/Volumes\/\)/\1/')
sleep 2
echo "Create link to Application folder and move README and background image files"
pushd "${VOLUME}"
ln -s /Applications .
mv ${APP_NAME}.app/Contents/Resources/README.txt .
mkdir .background
mv ${APP_NAME}.app/Contents/Resources/LAMMPS_DMG_Background.png .background/background.png
mv ${APP_NAME}.app LAMMPS.app
cd LAMMPS.app/Contents
echo "Attach icons to LAMMPS console and GUI executables"
echo "read 'icns' (-16455) \"Resources/lammps.icns\";" > icon.rsrc
Rez -a icon.rsrc -o bin/lmp
SetFile -a C bin/lmp
Rez -a icon.rsrc -o MacOS/lammps-gui
SetFile -a C MacOS/lammps-gui
rm icon.rsrc
popd
echo 'Tell the Finder to resize the window, set the background,'
echo 'change the icon size, place the icons in the right position, etc.'
echo '
tell application "Finder"
tell disk "'${APP_NAME}'"
-- wait for the image to finish mounting
set open_attempts to 0
repeat while open_attempts < 4
try
open
delay 1
set open_attempts to 5
close
on error errStr number errorNumber
set open_attempts to open_attempts + 1
delay 10
end try
end repeat
delay 5
-- open the image the first time and save a .DS_Store
-- just the background and icon setup
open
set current view of container window to icon view
set theViewOptions to the icon view options of container window
set background picture of theViewOptions to file ".background:background.png"
set arrangement of theViewOptions to not arranged
set icon size of theViewOptions to 64
delay 5
close
-- next set up the position of the app and Applications symlink
-- plus hide all window decorations
open
update without registering applications
tell container window
set sidebar width to 0
set statusbar visible to false
set toolbar visible to false
set the bounds to { 100, 40, 868, 640 }
set position of item "'LAMMPS'.app" to { 190, 216 }
set position of item "Applications" to { 576, 216 }
set position of item "README.txt" to { 190, 400 }
end tell
update without registering applications
delay 5
close
-- one last open and close to check the results
open
delay 5
close
end tell
delay 1
end tell
' | osascript
sync
echo "Unmount modified disk image and convert to compressed read-only image"
hdiutil detach "${DEVICE}"
hdiutil convert "${APP_NAME}-rw.dmg" -format UDZO -o "LAMMPS-macOS-multiarch.dmg"
echo "Attach icon to .dmg file"
echo "read 'icns' (-16455) \"lammps-gui.app/Contents/Resources/lammps.icns\";" > icon.rsrc
Rez -a icon.rsrc -o LAMMPS-macOS-multiarch.dmg
SetFile -a C LAMMPS-macOS-multiarch.dmg
rm icon.rsrc
echo "Delete temporary disk images"
rm -f "${APP_NAME}-rw.dmg"
rm -f "${APP_NAME}.dmg"
exit 0

View File

@ -1,64 +0,0 @@
#!/bin/bash
APP_NAME=lammps-gui
DESTDIR=${PWD}/LAMMPS_GUI
SYSROOT="$1"
echo "Delete old files, if they exist"
rm -rvf ${DESTDIR}/LAMMPS_GUI ${DESTDIR}/LAMMPS-Win10-amd64.zip
echo "Create staging area for deployment and populate"
DESTDIR=${DESTDIR} cmake --install . --prefix "/"
# no static libs needed
rm -rvf ${DESTDIR}/lib
# but the LAMMPS lib
echo "Copying required DLL files"
for dll in $(objdump -p *.exe *.dll | sed -n -e '/DLL Name:/s/^.*DLL Name: *//p' | sort | uniq)
do \
doskip=0
for skip in ADVAPI32 CFGMGR32 GDI32 KERNEL32 MPR NETAPI32 PSAPI SHELL32 USER32 USERENV UxTheme VERSION WS2_32 WSOCK32 d3d11 dwmapi liblammps msvcrt_ole32
do \
test ${dll} = ${skip}.dll && doskip=1
done
test ${doskip} -eq 1 && continue
test -f ${DESTDIR}/bin/${dll} || cp -v ${SYSROOT}/bin/${dll} ${DESTDIR}/bin
done
echo "Copy required Qt plugins"
mkdir -p ${DESTDIR}/qt5plugins
for plugin in imageformats platforms styles
do \
cp -r ${SYSROOT}/lib/qt5/plugins/${plugin} ${DESTDIR}/qt5plugins/
done
echo "Check dependencies of DLL files"
for dll in $(objdump -p ${DESTDIR}/bin/*.dll ${DESTDIR}/qt5plugins/*/*.dll | sed -n -e '/DLL Name:/s/^.*DLL Name: *//p' | sort | uniq)
do \
doskip=0
for skip in ADVAPI32 CFGMGR32 GDI32 KERNEL32 MPR NETAPI32 PSAPI SHELL32 USER32 USERENV UxTheme VERSION WS2_32 WSOCK32 d3d11 dwmapi liblammps msvcrt_ole32
do \
test ${dll} = ${skip}.dll && doskip=1
done
test ${doskip} -eq 1 && continue
test -f ${DESTDIR}/bin/${dll} || cp -v ${SYSROOT}/bin/${dll} ${DESTDIR}/bin
done
for dll in $(objdump -p ${DESTDIR}/bin/*.dll ${DESTDIR}/qt5plugins/*/*.dll | sed -n -e '/DLL Name:/s/^.*DLL Name: *//p' | sort | uniq)
do \
doskip=0
for skip in ADVAPI32 CFGMGR32 GDI32 KERNEL32 MPR NETAPI32 PSAPI SHELL32 USER32 USERENV UxTheme VERSION WS2_32 WSOCK32 d3d11 dwmapi liblammps msvcrt_ole32
do \
test ${dll} = ${skip}.dll && doskip=1
done
test ${doskip} -eq 1 && continue
test -f ${DESTDIR}/bin/${dll} || cp -v ${SYSROOT}/bin/${dll} ${DESTDIR}/bin
done
cat > ${DESTDIR}/bin/qt.conf <<EOF
[Paths]
Plugins = ../qt5plugins
EOF
zip -9rvD LAMMPS-Win10-amd64.zip LAMMPS_GUI

View File

@ -1,28 +0,0 @@
# CMake script to be run post installation to build zipped package
# clean up old zipfile and deployment tree
file(REMOVE LAMMPS-Win10-amd64.zip)
file(REMOVE_RECURSE LAMMPS_GUI)
file(RENAME ${INSTNAME} LAMMPS_GUI)
# move all executables and dlls to main folder and delete bin folder
file(GLOB BINFILES LIST_DIRECTORIES FALSE LAMMPS_GUI/bin/*.exe LAMMPS_GUI/bin/*.dll)
foreach(bin ${BINFILES})
get_filename_component(exe ${bin} NAME)
file(RENAME ${bin} LAMMPS_GUI/${exe})
endforeach()
file(REMOVE_RECURSE LAMMPS_GUI/bin)
# create qt.conf so Qt will find its plugins
file(WRITE LAMMPS_GUI/qt.conf "[Paths]\r\nPlugins = qt5plugins\r\n")
# initialize environment and then run windeployqt to populate folder with missing dependencies and Qt plugins
file(WRITE qtdeploy.bat "@ECHO OFF\r\nset VSCMD_DEBUG=0\r\nCALL ${VC_INIT} x64\r\nset PATH=${QT5_BIN_DIR};%PATH%\r\nwindeployqt --plugindir LAMMPS_GUI/qt5plugins --release LAMMPS_GUI/lammps-gui.exe --no-quick-import --no-webkit2 --no-translations --no-system-d3d-compiler --no-angle --no-opengl-sw\r\n")
execute_process(COMMAND cmd.exe /c qtdeploy.bat COMMAND_ECHO STDERR)
file(REMOVE qtdeploy.bat)
# create zip archive
file(WRITE makearchive.ps1 "Compress-Archive -Path LAMMPS_GUI -CompressionLevel Optimal -DestinationPath LAMMPS-Win10-amd64.zip")
execute_process(COMMAND powershell -ExecutionPolicy Bypass -File makearchive.ps1)
file(REMOVE makearchive.ps1)
file(REMOVE_RECURSE LAMMPS_GUI)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 598 KiB

Binary file not shown.

View File

@ -1,18 +0,0 @@
#!/bin/sh
# wrapper for bundled executables
# reset locale to avoid problems with decimal numbers
export LC_ALL=C
BASEDIR=$(dirname "$0")
EXENAME=$(basename "$0")
# append to LD_LIBRARY_PATH to prefer local (newer) libs
LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:${BASEDIR}/lib
# set some environment variables for LAMMPS etc.
LAMMPS_POTENTIALS=${BASEDIR}/share/lammps/potentials
MSI2LMP_LIBRARY=${BASEDIR}/share/lammps/frc_files
export LD_LIBRARY_PATH LAMMPS_POTENTIALS MSI2LMP_LIBRARY
exec "${BASEDIR}/bin/${EXENAME}" "$@"

View File

@ -1,30 +0,0 @@
#!/bin/sh
if [ $# != 2 ]
then
echo "usage: $0 <pngfile> <iconset name>"
exit 1
fi
png="$1"
ico="$2"
if [ ! -f ${png} ]
then
echo "PNG Image $1 not found"
fi
rm -rf ${ico}.iconset
mkdir ${ico}.iconset
sips -z 16 16 ${png} --out ${ico}.iconset/icon_16x16.png
sips -z 32 32 ${png} --out ${ico}.iconset/icon_16x16@2x.png
sips -z 32 32 ${png} --out ${ico}.iconset/icon_32x32.png
sips -z 64 64 ${png} --out ${ico}.iconset/icon_32x32@2x.png
sips -z 128 128 ${png} --out ${ico}.iconset/icon_128x128.png
sips -z 256 256 ${png} --out ${ico}.iconset/icon_128x128@2x.png
sips -z 256 256 ${png} --out ${ico}.iconset/icon_256x256.png
sips -z 512 512 ${png} --out ${ico}.iconset/icon_256x256@2x.png
sips -z 512 512 ${png} --out ${ico}.iconset/icon_512x512.png
sips -z 1024 1024 ${png} --out ${ico}.iconset/icon_512x512@2x.png
iconutil -c icns ${ico}.iconset
rm -rf ${ico}.iconset

View File

@ -43,6 +43,7 @@ set(ALL_PACKAGES
KOKKOS
KSPACE
LATBOLTZ
LATTE
LEPTON
MACHDYN
MANIFOLD

View File

@ -45,6 +45,7 @@ set(ALL_PACKAGES
KOKKOS
KSPACE
LATBOLTZ
LATTE
LEPTON
MACHDYN
MANIFOLD

View File

@ -1,13 +1,14 @@
# Preset that turns on packages with automatic downloads of sources or potentials.
# Compilation of libraries like Plumed or ScaFaCoS can take a considerable amount of time.
set(ALL_PACKAGES KIM MSCG VORONOI PLUMED SCAFACOS MACHDYN MESONT MDI ML-PACE)
set(ALL_PACKAGES KIM LATTE MSCG VORONOI PLUMED SCAFACOS MACHDYN MESONT MDI ML-PACE)
foreach(PKG ${ALL_PACKAGES})
set(PKG_${PKG} ON CACHE BOOL "" FORCE)
endforeach()
set(DOWNLOAD_KIM ON CACHE BOOL "" FORCE)
set(DOWNLOAD_LATTE ON CACHE BOOL "" FORCE)
set(DOWNLOAD_MDI ON CACHE BOOL "" FORCE)
set(DOWNLOAD_MSCG ON CACHE BOOL "" FORCE)
set(DOWNLOAD_VORO ON CACHE BOOL "" FORCE)

View File

@ -6,8 +6,6 @@ set(Kokkos_ENABLE_SERIAL ON CACHE BOOL "" FORCE)
set(Kokkos_ENABLE_CUDA ON CACHE BOOL "" FORCE)
set(Kokkos_ARCH_PASCAL60 ON CACHE BOOL "" FORCE)
set(BUILD_OMP ON CACHE BOOL "" FORCE)
get_filename_component(NVCC_WRAPPER_CMD ${CMAKE_CURRENT_SOURCE_DIR}/../lib/kokkos/bin/nvcc_wrapper ABSOLUTE)
set(CMAKE_CXX_COMPILER ${NVCC_WRAPPER_CMD} CACHE FILEPATH "" FORCE)
# hide deprecation warnings temporarily for stable release
set(Kokkos_ENABLE_DEPRECATION_WARNINGS OFF CACHE BOOL "" FORCE)

View File

@ -1,14 +0,0 @@
# preset that will build portable multi-arch binaries on macOS without MPI
set(CMAKE_OSX_ARCHITECTURES "arm64;x86_64" CACHE STRING "" FORCE)
set(CMAKE_OSX_DEPLOYMENT_TARGET 11.0 CACHE STRING "" FORCE)
set(CMAKE_BUILD_TYPE Release CACHE STRING "" FORCE)
set(CMAKE_CXX_COMPILER "clang++" CACHE STRING "" FORCE)
set(CMAKE_C_COMPILER "clang" CACHE STRING "" FORCE)
set(CMAKE_CXX_FLAGS_RELEASE "-O3 -DNDEBUG" CACHE STRING "" FORCE)
set(CMAKE_C_FLAGS_RELEASE "-O3 -DNDEBUG" CACHE STRING "" FORCE)
set(BUILD_MPI FALSE CACHE BOOL "" FORCE)
set(BUILD_SHARED_LIBS FALSE CACHE BOOL "" FORCE)
set(LAMMPS_EXCEPTIONS TRUE CACHE BOOL "" FORCE)

View File

@ -35,6 +35,7 @@ set(WIN_PACKAGES
INTEL
INTERLAYER
KSPACE
LATTE
LEPTON
MACHDYN
MANIFOLD

View File

@ -12,6 +12,7 @@ set(PACKAGES_WITH_LIB
KIM
KOKKOS
LATBOLTZ
LATTE
LEPTON
MACHDYN
MDI

View File

@ -32,7 +32,6 @@ set(WIN_PACKAGES
INTERLAYER
KSPACE
LEPTON
MACHDYN
MANIFOLD
MANYBODY
MC
@ -46,7 +45,6 @@ set(WIN_PACKAGES
MOLECULE
MOLFILE
OPENMP
OPT
ORIENT
PERI
PHONON

View File

@ -63,7 +63,6 @@ help:
@echo " anchor_check scan for duplicate anchor labels"
@echo " style_check check for complete and consistent style lists"
@echo " package_check check for complete and consistent package lists"
@echo " role_check check for misformatted role keywords"
@echo " spelling spell-check the manual"
# ------------------------------------------
@ -99,7 +98,6 @@ html: xmlgen $(VENV) $(SPHINXCONFIG)/conf.py $(ANCHORCHECK) $(MATHJAX)
env LC_ALL=C grep -n '[^ -~]' $(RSTDIR)/*.rst ;\
env LC_ALL=C grep -n ' :[a-z]\+`' $(RSTDIR)/*.rst ;\
env LC_ALL=C grep -n ' `[^`]\+<[a-z][^`]\+`[^_]' $(RSTDIR)/*.rst ;\
env LC_ALL=C grep -n ':\(ref\|doc\):[^`]' $(RSTDIR)/*.rst ;\
$(PYTHON) $(BUILDDIR)/utils/check-styles.py -s ../src -d src ;\
echo "############################################" ;\
deactivate ;\
@ -181,7 +179,6 @@ pdf: xmlgen $(VENV) $(SPHINXCONFIG)/conf.py $(ANCHORCHECK)
env LC_ALL=C grep -n '[^ -~]' $(RSTDIR)/*.rst ;\
env LC_ALL=C grep -n ' :[a-z]\+`' $(RSTDIR)/*.rst ;\
env LC_ALL=C grep -n ' `[^`]\+<[a-z][^`]\+`[^_]' $(RSTDIR)/*.rst ;\
env LC_ALL=C grep -n ':\(ref\|doc\):[^`]' $(RSTDIR)/*.rst ;\
$(PYTHON) utils/check-styles.py -s ../src -d src ;\
echo "############################################" ;\
deactivate ;\
@ -230,7 +227,6 @@ char_check :
role_check :
@( env LC_ALL=C grep -n ' :[a-z]\+`' $(RSTDIR)/*.rst && exit 1 || : )
@( env LC_ALL=C grep -n ' `[^`]\+<[a-z][^`]\+`[^_]' $(RSTDIR)/*.rst && exit 1 || : )
@( env LC_ALL=C grep -n ':\(ref\|doc\):[^`]' $(RSTDIR)/*.rst && exit 1 || : )
link_check : $(VENV) html
@(\

View File

@ -1,7 +1,7 @@
.TH LAMMPS "1" "2 August 2023" "2023-08-2"
.TH LAMMPS "1" "28 March 2023" "2023-03-28"
.SH NAME
.B LAMMPS
\- Molecular Dynamics Simulator. Version 2 August 2023
\- Molecular Dynamics Simulator. Version 28 March 2023
.SH SYNOPSIS
.B lmp

View File

@ -203,7 +203,7 @@ Bibliography
A Caro, DA Crowson, M Caro; Phys Rev Lett, 95, 075702 (2005)
**(CasP)**
CasP webpage: http://www.casp-program.org/
CasP webpage: https://www.helmholtz-berlin.de/people/gregor-schiwietz/casp_en.html
**(Cawkwell2012)**
A.\ M. N. Niklasson, M. J. Cawkwell, Phys. Rev. B, 86 (17), 174308 (2012).

View File

@ -128,14 +128,14 @@ and adds vectorization support when compiled with compatible compilers,
in particular the Intel compilers on top of OpenMP. Also, the ``KOKKOS``
package can be compiled to include OpenMP threading.
In addition, there are a few commands in LAMMPS that have native
OpenMP support included as well. These are commands in the ``MPIIO``,
``ML-SNAP``, ``DIFFRACTION``, and ``DPD-REACT`` packages.
Furthermore, some packages support OpenMP threading indirectly through
the libraries they interface to: e.g. ``KSPACE``, and ``COLVARS``.
See the :doc:`Packages details <Packages_details>` page for more info
on these packages, and the pages for their respective commands for
OpenMP threading info.
In addition, there are a few commands in LAMMPS that have native OpenMP
support included as well. These are commands in the ``MPIIO``,
``ML-SNAP``, ``DIFFRACTION``, and ``DPD-REACT`` packages. Furthermore,
some packages support OpenMP threading indirectly through the libraries
they interface to: e.g. ``LATTE``, ``KSPACE``, and ``COLVARS``. See the
:doc:`Packages details <Packages_details>` page for more info on these
packages, and the pages for their respective commands for OpenMP
threading info.
For CMake, if you use ``BUILD_OMP=yes``, you can use these packages
and turn on their native OpenMP support and turn on their native OpenMP
@ -489,9 +489,8 @@ using CMake or Make.
.. code-block:: bash
-D BUILD_TOOLS=value # yes or no (default). Build binary2txt, chain.x, micelle2d.x, msi2lmp, phana, stl_bin2txt
-D BUILD_LAMMPS_SHELL=value # yes or no (default). Build lammps-shell
-D BUILD_LAMMPS_GUI=value # yes or no (default). Build lammps-gui
-D BUILD_TOOLS=value # yes or no (default)
-D BUILD_LAMMPS_SHELL=value # yes or no (default)
The generated binaries will also become part of the LAMMPS installation
(see below).
@ -505,6 +504,7 @@ using CMake or Make.
make binary2txt # build only binary2txt tool
make chain # build only chain tool
make micelle2d # build only micelle2d tool
make thermo_extract # build only thermo_extract tool
cd lammps/tools/lammps-shell
make # build LAMMPS shell

View File

@ -43,6 +43,7 @@ This is the list of packages that may require additional steps.
* :ref:`INTEL <intel>`
* :ref:`KIM <kim>`
* :ref:`KOKKOS <kokkos>`
* :ref:`LATTE <latte>`
* :ref:`LEPTON <lepton>`
* :ref:`MACHDYN <machdyn>`
* :ref:`MDI <mdi>`
@ -140,8 +141,6 @@ CMake build
# value = yes or no (default)
-D CUDA_MPS_SUPPORT=value # enables some tweaks required to run with active nvidia-cuda-mps daemon
# value = yes or no (default)
-D CUDA_BUILD_MULTIARCH=value # enables building CUDA kernels for all supported GPU architectures
# value = yes (default) or no
-D USE_STATIC_OPENCL_LOADER=value # downloads/includes OpenCL ICD loader library, no local OpenCL headers/libs needed
# value = yes (default) or no
@ -160,49 +159,41 @@ CMake build
A more detailed list can be found, for example,
at `Wikipedia's CUDA article <https://en.wikipedia.org/wiki/CUDA#GPUs_supported>`_
CMake can detect which version of the CUDA toolkit is used and thus will
try to include support for **all** major GPU architectures supported by
this toolkit. Thus the GPU_ARCH setting is merely an optimization, to
have code for the preferred GPU architecture directly included rather
than having to wait for the JIT compiler of the CUDA driver to translate
it. This behavior can be turned off (e.g. to speed up compilation) by
setting :code:`CUDA_ENABLE_MULTIARCH` to :code:`no`.
CMake can detect which version of the CUDA toolkit is used and thus will try
to include support for **all** major GPU architectures supported by this toolkit.
Thus the GPU_ARCH setting is merely an optimization, to have code for
the preferred GPU architecture directly included rather than having to wait
for the JIT compiler of the CUDA driver to translate it.
When compiling for CUDA or HIP with CUDA, version 8.0 or later of the
CUDA toolkit is required and a GPU architecture of Kepler or later,
which must *also* be supported by the CUDA toolkit in use **and** the
CUDA driver in use. When compiling for OpenCL, OpenCL version 1.2 or
later is required and the GPU must be supported by the GPU driver and
OpenCL runtime bundled with the driver.
When compiling for CUDA or HIP with CUDA, version 8.0 or later of the CUDA toolkit
is required and a GPU architecture of Kepler or later, which must *also* be
supported by the CUDA toolkit in use **and** the CUDA driver in use.
When compiling for OpenCL, OpenCL version 1.2 or later is required and the
GPU must be supported by the GPU driver and OpenCL runtime bundled with the driver.
When building with CMake, you **must NOT** build the GPU library in
``lib/gpu`` using the traditional build procedure. CMake will detect
files generated by that process and will terminate with an error and a
suggestion for how to remove them.
When building with CMake, you **must NOT** build the GPU library in ``lib/gpu``
using the traditional build procedure. CMake will detect files generated by that
process and will terminate with an error and a suggestion for how to remove them.
If you are compiling for OpenCL, the default setting is to download,
build, and link with a static OpenCL ICD loader library and standard
OpenCL headers. This way no local OpenCL development headers or library
needs to be present and only OpenCL compatible drivers need to be
installed to use OpenCL. If this is not desired, you can set
:code:`USE_STATIC_OPENCL_LOADER` to :code:`no`.
If you are compiling for OpenCL, the default setting is to download, build, and
link with a static OpenCL ICD loader library and standard OpenCL headers. This
way no local OpenCL development headers or library needs to be present and only
OpenCL compatible drivers need to be installed to use OpenCL. If this is not
desired, you can set :code:`USE_STATIC_OPENCL_LOADER` to :code:`no`.
The GPU library has some multi-thread support using OpenMP. If LAMMPS
is built with ``-D BUILD_OMP=on`` this will also be enabled.
The GPU library has some multi-thread support using OpenMP. If LAMMPS is built
with ``-D BUILD_OMP=on`` this will also be enabled.
If you are compiling with HIP, note that before running CMake you will
have to set appropriate environment variables. Some variables such as
:code:`HCC_AMDGPU_TARGET` (for ROCm <= 4.0) or :code:`CUDA_PATH` are
necessary for :code:`hipcc` and the linker to work correctly.
If you are compiling with HIP, note that before running CMake you will have to
set appropriate environment variables. Some variables such as
:code:`HCC_AMDGPU_TARGET` (for ROCm <= 4.0) or :code:`CUDA_PATH` are necessary for :code:`hipcc`
and the linker to work correctly.
.. versionadded:: 3Aug2022
Using the CHIP-SPV implementation of HIP is supported. It allows one to
run HIP code on Intel GPUs via the OpenCL or Level Zero backends. To use
CHIP-SPV, you must set :code:`-DHIP_USE_DEVICE_SORT=OFF` in your CMake
command line as CHIP-SPV does not yet support hipCUB. As of Summer 2022,
the use of HIP for Intel GPUs is experimental. You should only use this
option in preparations to run on Aurora system at Argonne.
Using CHIP-SPV implementation of HIP is now supported. It allows one to run HIP
code on Intel GPUs via the OpenCL or Level Zero backends. To use CHIP-SPV, you must
set :code:`-DHIP_USE_DEVICE_SORT=OFF` in your CMake command line as CHIP-SPV does not
yet support hipCUB. The use of HIP for Intel GPUs is still experimental so you
should only use this option in preparations to run on Aurora system at ANL.
.. code:: bash
@ -693,11 +684,20 @@ This list was last updated for version 3.7.1 of the Kokkos library.
-D Kokkos_ARCH_GPUARCH=yes # GPUARCH = GPU from list above
-D Kokkos_ENABLE_CUDA=yes
-D Kokkos_ENABLE_OPENMP=yes
-D CMAKE_CXX_COMPILER=wrapper # wrapper = full path to Cuda nvcc wrapper
This will also enable executing FFTs on the GPU, either via the
internal KISSFFT library, or - by preference - with the cuFFT
library bundled with the CUDA toolkit, depending on whether CMake
can identify its location.
can identify its location. The *wrapper* value for
``CMAKE_CXX_COMPILER`` variable is the path to the CUDA nvcc
compiler wrapper provided in the Kokkos library:
``lib/kokkos/bin/nvcc_wrapper``\ . The setting should include the
full path name to the wrapper, e.g.
.. code-block:: bash
-D CMAKE_CXX_COMPILER=${HOME}/lammps/lib/kokkos/bin/nvcc_wrapper
For AMD or NVIDIA GPUs using HIP, set these variables:
@ -832,6 +832,63 @@ will thus always enable it.
----------
.. _latte:
LATTE package
-------------------------
To build with this package, you must download and build the LATTE
library.
.. tabs::
.. tab:: CMake build
.. code-block:: bash
-D DOWNLOAD_LATTE=value # download LATTE for build, value = no (default) or yes
-D LATTE_LIBRARY=path # LATTE library file (only needed if a custom location)
-D USE_INTERNAL_LINALG=value # Use the internal linear algebra library instead of LAPACK
# value = no (default) or yes
If ``DOWNLOAD_LATTE`` is set, the LATTE library will be downloaded
and built inside the CMake build directory. If the LATTE library
is already on your system (in a location CMake cannot find it),
``LATTE_LIBRARY`` is the filename (plus path) of the LATTE library
file, not the directory the library file is in.
The LATTE library requires LAPACK (and BLAS) and CMake can identify
their locations and pass that info to the LATTE build script. But
on some systems this triggers a (current) limitation of CMake and
the configuration will fail. Try enabling ``USE_INTERNAL_LINALG`` in
those cases to use the bundled linear algebra library and work around
the limitation.
.. tab:: Traditional make
You can download and build the LATTE library manually if you
prefer; follow the instructions in ``lib/latte/README``\ . You
can also do it in one step from the ``lammps/src`` dir, using a
command like these, which simply invokes the
``lib/latte/Install.py`` script with the specified args:
.. code-block:: bash
make lib-latte # print help message
make lib-latte args="-b" # download and build in lib/latte/LATTE-master
make lib-latte args="-p $HOME/latte" # use existing LATTE installation in $HOME/latte
make lib-latte args="-b -m gfortran" # download and build in lib/latte and
# copy Makefile.lammps.gfortran to Makefile.lammps
Note that 3 symbolic (soft) links, ``includelink`` and ``liblink``
and ``filelink.o``, are created in ``lib/latte`` to point to
required folders and files in the LATTE home directory. When
LAMMPS itself is built it will use these links. You should also
check that the ``Makefile.lammps`` file you create is appropriate
for the compiler you use on your system to build LATTE.
----------
.. _lepton:
LEPTON package
@ -881,50 +938,6 @@ included in the LAMMPS source distribution in the ``lib/lepton`` folder.
----------
.. _machdyn:
MACHDYN package
-------------------------------
To build with this package, you must download the Eigen3 library.
Eigen3 is a template library, so you do not need to build it.
.. tabs::
.. tab:: CMake build
.. code-block:: bash
-D DOWNLOAD_EIGEN3 # download Eigen3, value = no (default) or yes
-D EIGEN3_INCLUDE_DIR=path # path to Eigen library (only needed if a custom location)
If ``DOWNLOAD_EIGEN3`` is set, the Eigen3 library will be
downloaded and inside the CMake build directory. If the Eigen3
library is already on your system (in a location where CMake
cannot find it), set ``EIGEN3_INCLUDE_DIR`` to the directory the
``Eigen3`` include file is in.
.. tab:: Traditional make
You can download the Eigen3 library manually if you prefer; follow
the instructions in ``lib/machdyn/README``. You can also do it in one
step from the ``lammps/src`` dir, using a command like these,
which simply invokes the ``lib/machdyn/Install.py`` script with the
specified args:
.. code-block:: bash
make lib-machdyn # print help message
make lib-machdyn args="-b" # download to lib/machdyn/eigen3
make lib-machdyn args="-p /usr/include/eigen3" # use existing Eigen installation in /usr/include/eigen3
Note that a symbolic (soft) link named ``includelink`` is created
in ``lib/machdyn`` to point to the Eigen dir. When LAMMPS builds it
will use this link. You should not need to edit the
``lib/machdyn/Makefile.lammps`` file.
----------
.. _mliap:
ML-IAP package
@ -1400,9 +1413,9 @@ This package depends on the KSPACE package.
KSPACE package so the latter one *must* be enabled.
The ELECTRODE package also requires LAPACK (and BLAS) and CMake
can identify their locations and pass that info to the ELECTRODE
build script. But on some systems this may cause problems when
linking or the dependency is not desired. Try enabling
can identify their locations and pass that info to the LATTE build
script. But on some systems this may cause problems when linking
or the dependency is not desired. Try enabling
``USE_INTERNAL_LINALG`` in those cases to use the bundled linear
algebra library and work around the limitation.
@ -1523,55 +1536,6 @@ ML-POD package
----------
.. _ml-quip:
ML-QUIP package
---------------------------------
To build with this package, you must download and build the QUIP
library. It can be obtained from GitHub. For support of GAP
potentials, additional files with specific licensing conditions need
to be downloaded and configured. The automatic download will from
within CMake will download the non-commercial use version.
.. tabs::
.. tab:: CMake build
.. code-block:: bash
-D DOWNLOAD_QUIP=value # download QUIP library for build, value = no (default) or yes
-D QUIP_LIBRARY=path # path to libquip.a (only needed if a custom location)
-D USE_INTERNAL_LINALG=value # Use the internal linear algebra library instead of LAPACK
# value = no (default) or yes
CMake will try to download and build the QUIP library from GitHub,
if it is not found on the local machine. This requires to have git
installed. It will use the same compilers and flags as used for
compiling LAMMPS. Currently this is only supported for the GNU
and the Intel compilers. Set the ``QUIP_LIBRARY`` variable if you
want to use a previously compiled and installed QUIP library and
CMake cannot find it.
The QUIP library requires LAPACK (and BLAS) and CMake can identify
their locations and pass that info to the QUIP build script. But
on some systems this triggers a (current) limitation of CMake and
the configuration will fail. Try enabling ``USE_INTERNAL_LINALG`` in
those cases to use the bundled linear algebra library and work around
the limitation.
.. tab:: Traditional make
The download/build procedure for the QUIP library, described in
``lib/quip/README`` file requires setting two environment
variables, ``QUIP_ROOT`` and ``QUIP_ARCH``. These are accessed by
the ``lib/quip/Makefile.lammps`` file which is used when you
compile and link LAMMPS with this package. You should only need
to edit ``Makefile.lammps`` if the LAMMPS build can not use its
settings to successfully build on your system.
----------
.. _plumed:
PLUMED package
@ -2093,6 +2057,55 @@ verified to work in February 2020 with Quantum Espresso versions 6.3 to
----------
.. _ml-quip:
ML-QUIP package
---------------------------------
To build with this package, you must download and build the QUIP
library. It can be obtained from GitHub. For support of GAP
potentials, additional files with specific licensing conditions need
to be downloaded and configured. The automatic download will from
within CMake will download the non-commercial use version.
.. tabs::
.. tab:: CMake build
.. code-block:: bash
-D DOWNLOAD_QUIP=value # download QUIP library for build, value = no (default) or yes
-D QUIP_LIBRARY=path # path to libquip.a (only needed if a custom location)
-D USE_INTERNAL_LINALG=value # Use the internal linear algebra library instead of LAPACK
# value = no (default) or yes
CMake will try to download and build the QUIP library from GitHub,
if it is not found on the local machine. This requires to have git
installed. It will use the same compilers and flags as used for
compiling LAMMPS. Currently this is only supported for the GNU
and the Intel compilers. Set the ``QUIP_LIBRARY`` variable if you
want to use a previously compiled and installed QUIP library and
CMake cannot find it.
The QUIP library requires LAPACK (and BLAS) and CMake can identify
their locations and pass that info to the QUIP build script. But
on some systems this triggers a (current) limitation of CMake and
the configuration will fail. Try enabling ``USE_INTERNAL_LINALG`` in
those cases to use the bundled linear algebra library and work around
the limitation.
.. tab:: Traditional make
The download/build procedure for the QUIP library, described in
``lib/quip/README`` file requires setting two environment
variables, ``QUIP_ROOT`` and ``QUIP_ARCH``. These are accessed by
the ``lib/quip/Makefile.lammps`` file which is used when you
compile and link LAMMPS with this package. You should only need
to edit ``Makefile.lammps`` if the LAMMPS build can not use its
settings to successfully build on your system.
----------
.. _scafacos:
SCAFACOS package
@ -2140,6 +2153,50 @@ To build with this package, you must download and build the
----------
.. _machdyn:
MACHDYN package
-------------------------------
To build with this package, you must download the Eigen3 library.
Eigen3 is a template library, so you do not need to build it.
.. tabs::
.. tab:: CMake build
.. code-block:: bash
-D DOWNLOAD_EIGEN3 # download Eigen3, value = no (default) or yes
-D EIGEN3_INCLUDE_DIR=path # path to Eigen library (only needed if a custom location)
If ``DOWNLOAD_EIGEN3`` is set, the Eigen3 library will be
downloaded and inside the CMake build directory. If the Eigen3
library is already on your system (in a location where CMake
cannot find it), set ``EIGEN3_INCLUDE_DIR`` to the directory the
``Eigen3`` include file is in.
.. tab:: Traditional make
You can download the Eigen3 library manually if you prefer; follow
the instructions in ``lib/smd/README``. You can also do it in one
step from the ``lammps/src`` dir, using a command like these,
which simply invokes the ``lib/smd/Install.py`` script with the
specified args:
.. code-block:: bash
make lib-smd # print help message
make lib-smd args="-b" # download to lib/smd/eigen3
make lib-smd args="-p /usr/include/eigen3" # use existing Eigen installation in /usr/include/eigen3
Note that a symbolic (soft) link named ``includelink`` is created
in ``lib/smd`` to point to the Eigen dir. When LAMMPS builds it
will use this link. You should not need to edit the
``lib/smd/Makefile.lammps`` file.
----------
.. _vtk:
VTK package

View File

@ -117,8 +117,8 @@ their settings may become outdated, too:
.. code-block:: bash
make mac # build serial LAMMPS on macOS
make mac_mpi # build parallel LAMMPS on macOS
make mac # build serial LAMMPS on a Mac
make mac_mpi # build parallel LAMMPS on a Mac
make intel_cpu # build with the INTEL package optimized for CPUs
make knl # build with the INTEL package optimized for KNLs
make opt # build with the OPT package optimized for CPUs

View File

@ -53,10 +53,10 @@ incorporates programmer documentation extracted from the LAMMPS C++
sources through the `Doxygen <https://doxygen.nl/>`_ program. Currently
the translation to HTML, PDF (via LaTeX), ePUB (for many e-book readers)
and MOBI (for Amazon Kindle readers) are supported. For that to work a
Python interpreter version 3.8 or later, the ``doxygen`` tools and
internet access to download additional files and tools are required.
This download is usually only required once or after the documentation
folder is returned to a pristine state with ``make clean-all``.
Python 3 interpreter, the ``doxygen`` tools and internet access to
download additional files and tools are required. This download is
usually only required once or after the documentation folder is returned
to a pristine state with ``make clean-all``.
For the documentation build a python virtual environment is set up in
the folder ``doc/docenv`` and various python packages are installed into

View File

@ -46,6 +46,7 @@ packages:
* :ref:`INTEL <intel>`
* :ref:`KIM <kim>`
* :ref:`KOKKOS <kokkos>`
* :ref:`LATTE <latte>`
* :ref:`LEPTON <lepton>`
* :ref:`MACHDYN <machdyn>`
* :ref:`MDI <mdi>`

View File

@ -46,7 +46,6 @@ KOKKOS, o = OPENMP, t = OPT.
* :doc:`com/chunk <compute_com_chunk>`
* :doc:`contact/atom <compute_contact_atom>`
* :doc:`coord/atom (k) <compute_coord_atom>`
* :doc:`count/type <compute_count_type>`
* :doc:`damage/atom <compute_damage_atom>`
* :doc:`dihedral <compute_dihedral>`
* :doc:`dihedral/local <compute_dihedral_local>`
@ -64,7 +63,7 @@ KOKKOS, o = OPENMP, t = OPT.
* :doc:`entropy/atom <compute_entropy_atom>`
* :doc:`erotate/asphere <compute_erotate_asphere>`
* :doc:`erotate/rigid <compute_erotate_rigid>`
* :doc:`erotate/sphere (k) <compute_erotate_sphere>`
* :doc:`erotate/sphere <compute_erotate_sphere>`
* :doc:`erotate/sphere/atom <compute_erotate_sphere_atom>`
* :doc:`event/displace <compute_event_displace>`
* :doc:`fabric <compute_fabric>`
@ -153,11 +152,11 @@ KOKKOS, o = OPENMP, t = OPT.
* :doc:`sph/t/atom <compute_sph_t_atom>`
* :doc:`spin <compute_spin>`
* :doc:`stress/atom <compute_stress_atom>`
* :doc:`stress/cartesian <compute_stress_cartesian>`
* :doc:`stress/cylinder <compute_stress_curvilinear>`
* :doc:`stress/cartesian <compute_stress_profile>`
* :doc:`stress/cylinder <compute_stress_profile>`
* :doc:`stress/mop <compute_stress_mop>`
* :doc:`stress/mop/profile <compute_stress_mop>`
* :doc:`stress/spherical <compute_stress_curvilinear>`
* :doc:`stress/spherical <compute_stress_profile>`
* :doc:`stress/tally <compute_tally>`
* :doc:`tdpd/cc/atom <compute_tdpd_cc_atom>`
* :doc:`temp (k) <compute_temp>`

View File

@ -104,6 +104,7 @@ OPT.
* :doc:`langevin/drude <fix_langevin_drude>`
* :doc:`langevin/eff <fix_langevin_eff>`
* :doc:`langevin/spin <fix_langevin_spin>`
* :doc:`latte <fix_latte>`
* :doc:`lb/fluid <fix_lb_fluid>`
* :doc:`lb/momentum <fix_lb_momentum>`
* :doc:`lb/viscous <fix_lb_viscous>`
@ -171,7 +172,6 @@ OPT.
* :doc:`pafi <fix_pafi>`
* :doc:`pair <fix_pair>`
* :doc:`phonon <fix_phonon>`
* :doc:`pimd/langevin <fix_pimd>`
* :doc:`pimd/nvt <fix_pimd>`
* :doc:`planeforce <fix_planeforce>`
* :doc:`plumed <fix_plumed>`
@ -261,7 +261,7 @@ OPT.
* :doc:`wall/body/polyhedron <fix_wall_body_polyhedron>`
* :doc:`wall/colloid <fix_wall>`
* :doc:`wall/ees <fix_wall_ees>`
* :doc:`wall/gran (k) <fix_wall_gran>`
* :doc:`wall/gran <fix_wall_gran>`
* :doc:`wall/gran/region <fix_wall_gran_region>`
* :doc:`wall/harmonic <fix_wall>`
* :doc:`wall/lj1043 <fix_wall>`

View File

@ -37,7 +37,6 @@ OPT.
*
* :doc:`adp (ko) <pair_adp>`
* :doc:`agni (o) <pair_agni>`
* :doc:`aip/water/2dm (t) <pair_aip_water_2dm>`
* :doc:`airebo (io) <pair_airebo>`
* :doc:`airebo/morse (io) <pair_airebo>`
* :doc:`amoeba (g) <pair_amoeba>`
@ -138,7 +137,6 @@ OPT.
* :doc:`lennard/mdf <pair_mdf>`
* :doc:`lepton (o) <pair_lepton>`
* :doc:`lepton/coul (o) <pair_lepton>`
* :doc:`lepton/sphere (o) <pair_lepton>`
* :doc:`line/lj <pair_line_lj>`
* :doc:`lj/charmm/coul/charmm (giko) <pair_charmm>`
* :doc:`lj/charmm/coul/charmm/implicit (ko) <pair_charmm>`
@ -173,14 +171,12 @@ OPT.
* :doc:`lj/cut/dipole/long (g) <pair_dipole>`
* :doc:`lj/cut/dipole/sf (go) <pair_dipole>`
* :doc:`lj/cut/soft (o) <pair_fep_soft>`
* :doc:`lj/cut/sphere (o) <pair_lj_cut_sphere>`
* :doc:`lj/cut/thole/long (o) <pair_thole>`
* :doc:`lj/cut/tip4p/cut (o) <pair_lj_cut_tip4p>`
* :doc:`lj/cut/tip4p/long (got) <pair_lj_cut_tip4p>`
* :doc:`lj/cut/tip4p/long/soft (o) <pair_fep_soft>`
* :doc:`lj/expand (gko) <pair_lj_expand>`
* :doc:`lj/expand/coul/long (gk) <pair_lj_expand>`
* :doc:`lj/expand/sphere (o) <pair_lj_expand_sphere>`
* :doc:`lj/gromacs (gko) <pair_gromacs>`
* :doc:`lj/gromacs/coul/gromacs (ko) <pair_gromacs>`
* :doc:`lj/long/coul/long (iot) <pair_lj_long>`

View File

@ -38,20 +38,6 @@ been folded into the :doc:`reset_atoms <reset_atoms>` command. If
present, LAMMPS will replace the commands accordingly and print a
warning.
LATTE package
-------------
.. deprecated:: 15Jun2023
The LATTE package with the fix latte command was removed from LAMMPS.
This functionality has been superseded by :doc:`fix mdi/qm <fix_mdi_qm>`
and :doc:`fix mdi/qmmm <fix_mdi_qmmm>` from the :ref:`MDI package
<PKG-MDI>`. These fixes are compatible with several quantum software
packages, including LATTE. See the ``examples/QUANTUM`` dir and the
:doc:`MDI coupling HOWTO <Howto_mdi>` page. MDI supports running LAMMPS
with LATTE as a plugin library (similar to the way fix latte worked), as
well as on a different set of MPI processors.
MEAM package
------------

View File

@ -13,7 +13,6 @@ of time and requests from the LAMMPS user community.
Developer_org
Developer_code_design
Developer_parallel
Developer_atom
Developer_comm_ops
Developer_flow
Developer_write

View File

@ -1,88 +0,0 @@
Accessing per-atom data
-----------------------
This page discusses how per-atom data is managed in LAMMPS, how it can
be accessed, what communication patters apply, and some of the utility
functions that exist for a variety of purposes.
Owned and ghost atoms
^^^^^^^^^^^^^^^^^^^^^
As described on the :doc:`parallel partitioning algorithms
<Developer_par_part>` page, LAMMPS uses a domain decomposition of the
simulation domain, either in a *brick* or *tiled* manner. Each MPI
process *owns* exactly one subdomain and the atoms within it. To compute
forces for tuples of atoms that are spread across sub-domain boundaries,
also a "halo" of *ghost* atoms are maintained within a the communication
cutoff distance of its subdomain.
The total number of atoms is stored in `Atom::natoms` (within any
typical class this can be referred to at `atom->natoms`. The number of
*owned* (or "local" atoms) are stored in `Atom::nlocal`; the number of
*ghost* atoms is stored in `Atom::nghost`. The sum of `Atom::nlocal`
over all MPI processes should be `Atom::natoms`. This is by default
regularly checked by the Thermo class, and if the sum does not match,
LAMMPS stops with a "lost atoms" error. For convenience also the
property `Atom::nmax` is available, this is the maximum of
`Atom::nlocal + Atom::nghost` across all MPI processes.
Per-atom properties are either managed by the atom style, or individual
classes. or as custom arrays by the individual classes. If only access
to *owned* atoms is needed, they are usually allocated to be of size
`Atom::nlocal`, otherwise of size `Atom::nmax`. Please note that not all
per-atom properties are available or updated on *ghost* atoms. For
example, per-atom velocities are only updated with :doc:`comm_modify vel
yes <comm_modify>`.
Atom indexing
^^^^^^^^^^^^^
When referring to individual atoms, they may be indexed by their local
*index*, their index in their `Atom::x` array. This is densely populated
containing first all *owned* atoms (index < `Atom::nlocal`) and then all
*ghost* atoms. The order of atoms in these arrays can change due to
atoms migrating between between subdomains, atoms being added or
deleted, or atoms being sorted for better cache efficiency. Atoms are
globally uniquely identified by their *atom ID*. There may be multiple
atoms with the same atom ID present, but only one of them may be an
*owned* atom.
To find the local *index* of an atom, when the *atom ID* is known, the
`Atom::map()` function may be used. It will return the local atom index
or -1. If the returned value is between 0 (inclusive) and `Atom::nlocal`
(exclusive) it is an *owned* or "local" atom; for larger values the atom
is present as a ghost atom; for a value of -1, the atom is not present
on the current subdomain at all.
If multiple atoms with the same tag exist in the same subdomain, they
can be found via the `Atom::sametag` array. It points to the next atom
index with the same tag or -1 if there are no more atoms with the same
tag. The list will be exhaustive when starting with an index of an
*owned* atom, since the atom IDs are unique, so there can only be one
such atom. Example code to count atoms with same atom ID in subdomain:
.. code-block:: c++
for (int i = 0; i < atom->nlocal; ++i) {
int count = 0;
while (sametag[i] >= 0) {
i = sametag[i];
++count;
}
printf("Atom ID: %ld is present %d times\n", atom->tag[i], count);
}
Atom class versus AtomVec classes
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The `Atom` class contains all kinds of flags and counters about atoms in
the system and that includes pointers to **all** per-atom properties
available for atoms. However, only a subset of these pointers are
non-NULL and which those are depends on the atom style. For each atom
style there is a corresponding `AtomVecXXX` class derived from the
`AtomVec` base class, where the XXX indicates the atom style. This
`AtomVecXXX` class will update the counters and per-atom pointers if
atoms are added or removed to the system or migrate between subdomains.

View File

@ -92,8 +92,8 @@ Arguments for these methods can be values returned by the
*setup_grid()* method (described below), which define the extent of
the grid cells (owned+ghost) the processor owns. These 4 methods
allocate memory for 2d (first two) and 3d (second two) grid data. The
two methods that end in "_offset" allocate an array which stores a single
value per grid cell. The two that end in "_last" allocate an array
two methods that end in "_one" allocate an array which stores a single
value per grid cell. The two that end in "_multi" allocate an array
which stores *Nvalues* per grid cell.
.. code-block:: c++

View File

@ -94,6 +94,8 @@ Lowercase directories
+-------------+------------------------------------------------------------------+
| kim | use of potentials from the `OpenKIM Repository <openkim_>`_ |
+-------------+------------------------------------------------------------------+
| latte | examples for using fix latte for DFTB via the LATTE library |
+-------------+------------------------------------------------------------------+
| mdi | use of the MDI package and MolSSI MDI code coupling library |
+-------------+------------------------------------------------------------------+
| meam | MEAM test for SiC and shear (same as shear examples) |

View File

@ -56,6 +56,17 @@ C++ in the ``examples/COUPLE/simple`` folder of the LAMMPS distribution.
and Ubuntu 18.04 LTS and not compatible. Either newer compilers
need to be installed or the Linux updated.
.. versionchanged:: 8Feb2023
.. note::
A contributed Fortran interface is available in the
``examples/COUPLE/fortran2`` folder. However, since the completion
of the :f:mod:`LIBLAMMPS` module, this interface is now deprecated,
no longer actively maintained and will likely be removed in the
future. Please see the ``README`` file in that folder for more
information about it and how to contact its author and maintainer.
----------
Creating or deleting a LAMMPS object
@ -192,62 +203,40 @@ Below is an example demonstrating some of the possible uses.
.. code-block:: fortran
PROGRAM testprop
USE LIBLAMMPS
USE, INTRINSIC :: ISO_C_BINDING, ONLY : c_double, c_int64_t, c_int
USE, INTRINSIC :: ISO_FORTRAN_ENV, ONLY : OUTPUT_UNIT
TYPE(lammps) :: lmp
INTEGER(KIND=c_int64_t), POINTER :: natoms, ntimestep, bval
REAL(KIND=c_double), POINTER :: dt, dval
INTEGER(KIND=c_int), POINTER :: nfield, typ, ival
INTEGER(KIND=c_int) :: i
CHARACTER(LEN=11) :: key
REAL(KIND=c_double) :: pe, ke
PROGRAM testprop
USE LIBLAMMPS
USE, INTRINSIC :: ISO_C_BINDING, ONLY : c_double, c_int64_t
USE, INTRINSIC :: ISO_FORTRAN_ENV, ONLY : OUTPUT_UNIT
TYPE(lammps) :: lmp
INTEGER(KIND=c_int64_t), POINTER :: natoms
REAL(KIND=c_double), POINTER :: dt
INTEGER(KIND=c_int64_t), POINTER :: ntimestep
REAL(KIND=c_double) :: pe, ke
lmp = lammps()
CALL lmp%file('in.sysinit')
natoms = lmp%extract_global('natoms')
WRITE(OUTPUT_UNIT,'(A,I0,A)') 'Running a simulation with ', natoms, ' atoms'
WRITE(OUTPUT_UNIT,'(I0,A,I0,A,I0,A)') lmp%extract_setting('nlocal'), &
' local and ', lmp%extract_setting('nghost'), ' ghost atoms. ', &
lmp%extract_setting('ntypes'), ' atom types'
lmp = lammps()
CALL lmp%file('in.sysinit')
natoms = lmp%extract_global('natoms')
WRITE(OUTPUT_UNIT,'(A,I0,A)') 'Running a simulation with ', natoms, ' atoms'
WRITE(OUTPUT_UNIT,'(I0,A,I0,A,I0,A)') lmp%extract_setting('nlocal'), &
' local and ', lmp%extract_setting('nghost'), ' ghost atoms. ', &
lmp%extract_setting('ntypes'), ' atom types'
CALL lmp%command('run 2 post no')
CALL lmp%command('run 2 post no')
dt = lmp%extract_global('dt')
ntimestep = lmp%extract_global('ntimestep')
WRITE(OUTPUT_UNIT,'(A,I0,A,F4.1,A)') 'At step: ', ntimestep, &
' Changing timestep from', dt, ' to 0.5'
dt = 0.5_c_double
CALL lmp%command('run 2 post no')
ntimestep = lmp%last_thermo('step', 0)
nfield = lmp%last_thermo('num', 0)
WRITE(OUTPUT_UNIT,'(A,I0,A,I0)') 'Last thermo output on step: ', ntimestep, &
', number of fields: ', nfield
DO i=1, nfield
key = lmp%last_thermo('keyword',i)
typ = lmp%last_thermo('type',i)
IF (typ == lmp%dtype%i32) THEN
ival = lmp%last_thermo('data',i)
WRITE(OUTPUT_UNIT,*) key, ':', ival
ELSE IF (typ == lmp%dtype%i64) THEN
bval = lmp%last_thermo('data',i)
WRITE(OUTPUT_UNIT,*) key, ':', bval
ELSE IF (typ == lmp%dtype%r64) THEN
dval = lmp%last_thermo('data',i)
WRITE(OUTPUT_UNIT,*) key, ':', dval
END IF
END DO
WRITE(OUTPUT_UNIT,'(A,I0)') 'At step: ', ntimestep
pe = lmp%get_thermo('pe')
ke = lmp%get_thermo('ke')
PRINT*, 'PE = ', pe
PRINT*, 'KE = ', ke
dt = lmp%extract_global('dt')
ntimestep = lmp%extract_global('ntimestep')
WRITE(OUTPUT_UNIT,'(A,I0,A,F4.1,A)') 'At step: ', ntimestep, &
' Changing timestep from', dt, ' to 0.5'
dt = 0.5_c_double
CALL lmp%command('run 2 post no')
WRITE(OUTPUT_UNIT,'(A,I0)') 'At step: ', ntimestep
pe = lmp%get_thermo('pe')
ke = lmp%get_thermo('ke')
WRITE(OUTPUT_UNIT,*) 'PE = ', pe
WRITE(OUTPUT_UNIT,*) 'KE = ', ke
CALL lmp%close(.TRUE.)
END PROGRAM testprop
CALL lmp%close(.TRUE.)
END PROGRAM testprop
---------------
@ -273,8 +262,6 @@ of the contents of the :f:mod:`LIBLAMMPS` Fortran interface to LAMMPS.
:ftype style: type(lammps_style)
:f type: derived type to access lammps type constants
:ftype type: type(lammps_type)
:f dtype: derived type to access lammps data type constants
:ftype dtype: type(lammps_dtype)
:f close: :f:subr:`close`
:ftype close: subroutine
:f subroutine error: :f:subr:`error`
@ -291,8 +278,6 @@ of the contents of the :f:mod:`LIBLAMMPS` Fortran interface to LAMMPS.
:ftype get_natoms: function
:f get_thermo: :f:func:`get_thermo`
:ftype get_thermo: function
:f last_thermo: :f:func:`last_thermo`
:ftype last_thermo: function
:f extract_box: :f:subr:`extract_box`
:ftype extract_box: subroutine
:f reset_box: :f:subr:`reset_box`
@ -602,96 +587,6 @@ Procedures Bound to the :f:type:`lammps` Derived Type
--------
.. f:function:: last_thermo(what, index)
This function will call :cpp:func:`lammps_last_thermo` and returns
either a string or a pointer to a cached copy of LAMMPS last thermodynamic
output, depending on the data requested through *what*. Note that *index*
uses 1-based indexing to access thermo output columns.
.. versionadded:: 15Jun2023
Note that this function actually does not return a value, but rather
associates the pointer on the left side of the assignment to point to
internal LAMMPS data (with the exception of string data, which are
copied and returned as ordinary Fortran strings). Pointers must be
of the correct data type to point to said data (typically
``INTEGER(c_int)``, ``INTEGER(c_int64_t)``, or ``REAL(c_double)``).
The pointer being associated with LAMMPS data is type-checked at
run-time via an overloaded assignment operator. The pointers
returned by this function point to temporary, read-only data that may
be overwritten at any time, so their target values need to be copied
to local storage if they are supposed to persist.
For example,
.. code-block:: fortran
PROGRAM thermo
USE LIBLAMMPS
USE, INTRINSIC :: ISO_C_BINDING, ONLY : c_double, c_int64_t, c_int
TYPE(lammps) :: lmp
INTEGER(KIND=c_int64_t), POINTER :: ntimestep, bval
REAL(KIND=c_double), POINTER :: dval
INTEGER(KIND=c_int), POINTER :: nfield, typ, ival
INTEGER(KIND=c_int) :: i
CHARACTER(LEN=11) :: key
lmp = lammps()
CALL lmp%file('in.sysinit')
ntimestep = lmp%last_thermo('step', 0)
nfield = lmp%last_thermo('num', 0)
PRINT*, 'Last thermo output on step: ', ntimestep, ' Number of fields: ', nfield
DO i=1, nfield
key = lmp%last_thermo('keyword',i)
typ = lmp%last_thermo('type',i)
IF (typ == lmp%dtype%i32) THEN
ival = lmp%last_thermo('data',i)
PRINT*, key, ':', ival
ELSE IF (typ == lmp%dtype%i64) THEN
bval = lmp%last_thermo('data',i)
PRINT*, key, ':', bval
ELSE IF (typ == lmp%dtype%r64) THEN
dval = lmp%last_thermo('data',i)
PRINT*, key, ':', dval
END IF
END DO
CALL lmp%close(.TRUE.)
END PROGRAM thermo
would extract the last timestep where thermo output was done and the number
of columns it printed. Then it loops over the columns to print out column
header keywords and the corresponding data.
.. note::
If :f:func:`last_thermo` returns a string, the string must have a length
greater than or equal to the length of the string (not including the
terminal ``NULL`` character) that LAMMPS returns. If the variable's
length is too short, the string will be truncated. As usual in Fortran,
strings are padded with spaces at the end. If you use an allocatable
string, the string **must be allocated** prior to calling this function.
:p character(len=\*) what: string with the name of the thermo keyword
:p integer(c_int) index: 1-based column index
:to: :cpp:func:`lammps_last_thermo`
:r pointer [polymorphic]: pointer to LAMMPS data. The left-hand side of the
assignment should be either a string (if expecting string data) or a
C-compatible pointer (e.g., ``INTEGER(c_int), POINTER :: nlocal``) to the
extracted property.
.. warning::
Modifying the data in the location pointed to by the returned pointer
may lead to inconsistent internal data and thus may cause failures,
crashes, or bogus simulations. In general, it is much better
to use a LAMMPS input command that sets or changes these parameters.
Using an input command will take care of all side effects and necessary
updates of settings derived from such settings.
--------
.. f:subroutine:: extract_box([boxlo][, boxhi][, xy][, yz][, xz][, pflags][, boxflag])
This subroutine will call :cpp:func:`lammps_extract_box`. All
@ -869,14 +764,13 @@ Procedures Bound to the :f:type:`lammps` Derived Type
.. note::
If :f:func:`extract_global` returns a string, the string must have
a length greater than or equal to the length of the string (not
including the terminal ``NULL`` character) that LAMMPS returns. If
the variable's length is too short, the string will be
truncated. As usual in Fortran, strings are padded with spaces at
the end. If you use an allocatable string, the string **must be
allocated** prior to calling this function, but you can
automatically reallocate it to the correct length after the
If :f:func:`extract_global` returns a string, the string must have length
greater than or equal to the length of the string (not including the
terminal ``NULL`` character) that LAMMPS returns. If the variable's
length is too short, the string will be truncated. As usual in Fortran,
strings are padded with spaces at the end. If you use an allocatable
string, the string **must be allocated** prior to calling this function,
but you can automatically reallocate it to the correct length after the
function returns, viz.,
.. code-block :: fortran

View File

@ -23,6 +23,7 @@ General howto
Howto_library
Howto_couple
Howto_mdi
Howto_bpm
Howto_broken_bonds
Settings howto
@ -82,7 +83,6 @@ Packages howto
Howto_spherical
Howto_granular
Howto_body
Howto_bpm
Howto_polarizable
Howto_coreshell
Howto_drude
@ -100,7 +100,6 @@ Tutorials howto
Howto_cmake
Howto_github
Howto_lammps_gui
Howto_pylammps
Howto_wsl

View File

@ -13,9 +13,9 @@ box with a single z plane of atoms - e.g.
.. code-block:: LAMMPS
create_box 1 -10 10 -10 10 -0.25 0.25
create box 1 -10 10 -10 10 -0.25 0.25
If using the :doc:`read_data <read_data>` command to read in a file of
If using the :doc:`read data <read_data>` command to read in a file of
atom coordinates, set the "zlo zhi" values to be finite but narrow,
similar to the create_box command settings just described. For each
atom in the file, assign a z coordinate so it falls inside the

View File

@ -79,9 +79,9 @@ As bonds can be broken between neighbor list builds, the
bond styles. There are two possible settings which determine how pair
interactions work between bonded particles. First, one can overlay
pair forces with bond forces such that all bonded particles also
feel pair interactions. This can be accomplished by setting the *overlay/pair*
keyword present in all bpm bond styles to *yes* and requires using the
following special bond settings
feel pair interactions. This can be accomplished by using the *overlay/pair*
keyword present in all bpm bond styles and by using the following special
bond settings
.. code-block:: LAMMPS
@ -107,17 +107,7 @@ bond lists is expensive. By setting the lj weight for 1-2 bonds to
zero, this turns off pairwise interactions. Even though there are no
charges in BPM models, setting a nonzero coul weight for 1-2 bonds
ensures all bonded neighbors are still included in the neighbor list
in case bonds break between neighbor list builds. If bond breakage is
disabled during a simulation run by setting the *break* keyword to *no*,
a zero coul weight for 1-2 bonds can be used to exclude bonded atoms
from the neighbor list builds
.. code-block:: LAMMPS
special_bonds lj 0 1 1 coul 0 1 1
This can be useful for post-processing, or to determine pair interaction
properties between distinct bonded particles.
in case bonds break between neighbor list builds.
To monitor the fracture of bonds in the system, all BPM bond styles
have the ability to record instances of bond breakage to output using

View File

@ -1,56 +1,48 @@
Broken Bonds
============
Typically, molecular bond interactions persist for the duration of a
simulation in LAMMPS. However, some commands break bonds dynamically,
including the following:
Typically, bond interactions persist for the duration of a simulation in
LAMMPS. However, there are some exceptions that allow for bonds to
break, including the :doc:`quartic bond style <bond_quartic>` and the
bond styles in the :doc:`BPM package <Howto_bpm>` which contains the
:doc:`bpm/spring <bond_bpm_spring>` and :doc:`bpm/rotational
<bond_bpm_rotational>` bond styles. In these cases, a bond can be broken
if it is stretched beyond a user-defined threshold. LAMMPS accomplishes
this by setting the bond type to 0, such that the bond force is no
longer computed.
* :doc:`bond_style quartic <bond_quartic>`
* :doc:`fix bond/break <fix_bond_break>`
* :doc:`fix bond/react <fix_bond_react>`
* :doc:`BPM package <Howto_bpm>` bond styles
Users are normally able to weight the contribution of pair forces to atoms
that are bonded using the :doc:`special_bonds command <special_bonds>`.
When bonds break, this is not always the case. For the quartic bond style,
pair forces are always turned off between bonded particles. LAMMPS does
this via a computational sleight-of-hand. It subtracts the pairwise
interaction as part of the bond computation. When the bond breaks, the
subtraction stops. For this to work, the pairwise interaction must always
be computed by the :doc:`pair_style <pair_style>` command, whether the bond
is broken or not. This means that :doc:`special_bonds <special_bonds>` must
be set to 1,1,1. After the bond breaks, the pairwise interaction between the
two atoms is turned on, since they are no longer bonded.
A bond can break if it is stretched beyond a user-defined threshold or
more generally if other criteria are met.
In the BPM package, one can either turn off all pair interactions between
bonded particles or leave them on, overlaying pair forces on top of bond
forces. To remove pair forces, the special bond list is dynamically
updated. More details can be found on the :doc:`Howto BPM <Howto_bpm>`
page.
For the quartic bond style, when a bond is broken its bond type is set
to 0 to effectively break it and pairwise forces between the two atoms
in the broken bond are "turned on". Angles, dihedrals, etc cannot be
defined for a system when :doc:`bond_style quartic <bond_quartic>` is
used.
Bonds can also be broken by fixes which change bond topology, including
:doc:`fix bond/break <fix_bond_break>` and
:doc:`fix bond/react <fix_bond_react>`. These fixes will automatically
trigger a rebuild of the neighbor list and update special bond data structures
when bonds are broken.
Similarly, bond styles in the BPM package are also incompatible with
angles, dihedrals, etc. and when a bond breaks its type is set to zero.
However, in the BPM package one can either turn off all pair interactions
between bonded particles or leave them on, overlaying pair forces on
top of bond forces. To remove pair forces, the special bond list is
dynamically updated. More details can be found on the :doc:`Howto BPM
<Howto_bpm>` page.
The :doc:`fix bond/break <fix_bond_break>` and :doc:`fix bond/react
<fix_bond_react>` commands allow breaking of bonds within a molecular
topology with may also define angles, dihedrals, etc. These commands
update internal topology data structures to remove broken bonds, as
well as the appropriate angle, dihedral, etc interactions which
include the bond. They also trigger a rebuild of the neighbor list
when this occurs, to turn on the appropriate pairwise forces.
Note that when bonds are dumped to a file via the :doc:`dump local
<dump>` command, bonds with type 0 are not included.
The :doc:`delete_bonds <delete_bonds>` command can be used to query
the status of broken bonds with type = 0 or permanently delete them,
e.g.:
Note that when bonds are dumped to a file via the :doc:`dump local <dump>` command, bonds with type 0 are not included. The
:doc:`delete_bonds <delete_bonds>` command can also be used to query the
status of broken bonds or permanently delete them, e.g.:
.. code-block:: LAMMPS
delete_bonds all stats
delete_bonds all bond 0 remove
The compute :doc:`count/type <compute_count_type>` command tallies the
current number of bonds (or angles, etc) for each bond (angle, etc)
type. It also tallies broken bonds with type = 0.
The compute :doc:`nbond/atom <compute_nbond_atom>` command tallies the
current number of bonds each atom is part of, excluding broken bonds
with type = 0.
The compute :doc:`nbond/atom <compute_nbond_atom>` can also be used
to tally the current number of bonds per atom, excluding broken bonds.

View File

@ -12,16 +12,16 @@ LAMMPS can be coupled to other codes in at least 4 different ways. Each
has advantages and disadvantages, which you will have to think about in
the context of your application.
1. Define a new :doc:`fix <fix>` or :doc:`compute <compute>` command
that calls the other code. In this scenario, LAMMPS is the driver
code. During timestepping, the fix or compute is invoked, and can
make library calls to the other code, which has been linked to LAMMPS
as a library. This is the way the :ref:`VORONOI <PKG-VORONOI>`
package, which computes Voronoi tesselations using the `Voro++
library <http://math.lbl.gov/voro++>`_, is interfaced to LAMMPS. See
the :doc:`compute voronoi <compute_voronoi_atom>` command for more
1. Define a new :doc:`fix <fix>` command that calls the other code. In
this scenario, LAMMPS is the driver code. During timestepping, the
fix is invoked, and can make library calls to the other code, which
has been linked to LAMMPS as a library. This is the way the
:ref:`LATTE <PKG-LATTE>` package, which performs density-functional
tight-binding calculations using the `LATTE software
<https://github.com/lanl/LATTE>`_ to compute forces, is interfaced to
LAMMPS. See the :doc:`fix latte <fix_latte>` command for more
details. Also see the :doc:`Modify <Modify>` pages for information
on how to add a new fix or compute to LAMMPS.
on how to add a new fix to LAMMPS.
.. spacer

View File

@ -1,402 +0,0 @@
Using the LAMMPS GUI
====================
LAMMPS GUI is a simple graphical text editor that is linked to the
:ref:`LAMMPS C-library interface <lammps_c_api>` and thus can run LAMMPS
directly using the contents of the editor's text buffer as input.
This is similar to what people traditionally would do to run LAMMPS:
using a regular text editor to edit the input and run the necessary
commands, possibly including the text editor, too, from a command line
terminal window. That is quite effective when running LAMMPS on
high-performance computing facilities and when you are very proficient
in using the command line. The main benefit of a GUI application is
that this integrates well with graphical desktop environments and many
basic tasks can be done directly from within the GUI without switching
to a text console or requiring external programs or scripts to extract
data from the generated output. This makes it easier for beginners to
get started running simple LAMMPS simulations and thus very suitable for
tutorials on LAMMPS. But also makes it easier to switch to a full
featured text editor and more sophisticated visualization and analysis
tools.
-----
The following text provides a detailed tour of the features and
functionality of the LAMMPS GUI. This document describes LAMMPS GUI
version 1.2.
Main window
-----------
When LAMMPS GUI starts, it will show the main window with either an
empty buffer, or have a file loaded. In the latter case it may look like
the following:
.. image:: JPG/lammps-gui-main.png
:align: center
:scale: 50%
There is the menu bar at the top, then the main editor buffer with the
input file contents in the center with line numbers on the left and the
input colored according to the LAMMPS input file syntax. At the bottom
is the status bar, which shows the status of LAMMPS execution on the
left ("Ready." when idle) and the current working directory on the
right. The size of the main window will be stored when exiting and
restored when starting again. The name of the current file in the
buffer is shown in the window title and the text `*modified*` is added
in case the buffer has modifications that are not yet saved to a file.
Opening Files
^^^^^^^^^^^^^
The LAMMPS GUI application will try to open the first command line
argument as input file, further arguments are ignored. When no
argument is given LAMMPS GUI will start with an empty buffer.
Files can also be opened via the ``File`` menu or by drag-and-drop
of a file from a file manager to the editor window. Only one
file can be open at a time, so opening a new file with a filled
buffer will close this buffer and in case the buffer has unsaved
modifications will ask to either cancel the load, discard the
changes or save them.
Running LAMMPS
^^^^^^^^^^^^^^
From within the LAMMPS GUI main window LAMMPS can be started either from
the ``Run`` menu, by the hotkey `Ctrl-Enter` (`Command-Enter` on macOS),
or by clicking on the green button in the status bar. LAMMPS runs in a
separate thread, so the GUI stays responsive and thus it is able to
interact with the calculation and access its data. It is important to
note, that LAMMPS is using the contents of the input buffer for the run,
**not** the file it was read from. If there are unsaved changes in the
buffer, they *will* be used.
.. image:: JPG/lammps-gui-running.png
:align: center
:scale: 75%
While LAMMPS is running, the contents of the status bar change: on the
left side there is a text indicating that LAMMPS is running, which will
contain the selected number of threads, if thread-parallel acceleration
was selected in the ``Preferences`` dialog. On the right side, a
progress bar is shown that displays the estimated progress on the
current :doc:`run command <run>`. Additionally, two windows will open:
the log window with the captured screen output and the chart window with
a line graph created from the thermodynamic output of the run.
The run can be stopped cleanly by using either the ``Stop LAMMPS`` entry
in the ``Run`` menu, the hotkey `Ctrl-/` (`Command-/` on macOS), or
clicking on the red button in the status bar. This will cause that the
running LAMMPS process will complete the current iteration and then
stop. This is equivalent to the command :doc:`timer timeout 0 <timer>`
and implemented by calling the :cpp:func:`lammps_force_timeout()` function
of the LAMMPS C-library interface.
Viewing Snapshot Images
^^^^^^^^^^^^^^^^^^^^^^^
By selecting the ``View Image`` entry in the ``Run`` menu, by hitting
the `Ctrl-I` (`Command-I` on macOS) hotkey or by clicking on the
"palette" button in the status bar, LAMMPS GUI will issue a
:doc:`write_dump image <dump_image>` command and read the resulting
snapshot image into an image viewer window. When possible, LAMMPS
GUI will try to detect which elements the atoms correspond to (via
their mass) and then colorize them accordingly. Otherwise just some
predefined sequence of colors are assigned to different atom types.
.. image:: JPG/lammps-gui-image.png
:align: center
:scale: 50%
The default image size, some default image quality settings, the view
style and some colors can be changed in the ``Preferences`` dialog
window. From the image viewer window further adjustments can be made:
actual image size, high-quality rendering, anti-aliasing, view style,
display of box or axes, zoom factor. The the image can be rotated
horizontally and vertically and it is possible to only display the atoms
within a predefined group (default is "all"). After each change, the
image is rendered again and the display updated. The small palette icon
on the top left will be colored while LAMMPS is running to render the
image and it will be grayed out again, when it is done. When there are
many items to show and high quality images with anti-aliasing are
requested, re-rendering can take several seconds. From the ``File``
menu, the shown image can be saved to a file permanently or copied into
the cut-n-paste buffer for pasting into another application.
Editor Functions
^^^^^^^^^^^^^^^^
The editor has most the usual functionality that similar programs have:
text selection via mouse or with cursor moves while holding the Shift
key, Cut, Copy, Paste, Undo, Redo. All of these editing functions are
available via hotkeys. When trying to exit the editor with a modified
buffer, a dialog will pop up asking whether to cancel the quit, or don't
save or save the buffer's contents to a file.
Context Specific Help
^^^^^^^^^^^^^^^^^^^^^
.. image:: JPG/lammps-gui-popup-help.png
:align: center
:scale: 50%
A unique feature of the LAMMPS GUI is the option to look up the
documentation for the command in the current line. This can be achieved
by either clicking the right mouse button or by using the `Ctrl-?`
hotkey. When clicking the mouse there are additional entries in the
context menu that will open the corresponding documentation page in the
online LAMMPS documentation. When using the hotkey, the first of those
entries will be chosen directly.
Menu
----
The menu bar the entries ``File``, ``Edit``, ``Run``, ``View``, and ``About``.
Instead of using the mouse to click on them, the individual menus can also
be activated by hitting the `Alt` key together with the corresponding underlined
letter, that is `Alt-f` will activate the ``File`` menu. For the corresponding
activated sub-menus, also the underlined letter, together with the `Alt` key can
be used to select instead of the mouse.
File
^^^^
The ``File`` menu offers the usual options:
- ``New`` will clear the current buffer and reset the file name to ``*unknown*``
- ``Open`` will open a dialog to select a new file
- ``Save`` will save the current file; if the file name is ``*unknown*``
a dialog will open to select a new file name
- ``Save As`` will open a dialog to select and new file name and save
the buffer to it
- ``Quit`` will exit LAMMPS GUI. If there are unsaved changes, a dialog
will appear to either cancel the quit, save or don't save the file.
In addition, up to 5 recent file names will be listed after the ``Open``
entry that allows to re-open recent files. This list is stored when
quitting and recovered when starting again.
Edit
^^^^
The ``Edit`` menu offers the usual editor functions like ``Undo``,
``Redo``, ``Cut``, ``Copy``, ``Paste``, but also offers to open the
``Preferences`` dialog and to delete all stored preferences so they
will be reset to their defaults.
Run
^^^
The ``Run`` menu allows to start and stop a LAMMPS process. Rather than
calling the LAMMPS executable as a separate executable, the LAMMPS GUI
is linked to the LAMMPS library and thus can run LAMMPS internally
through the :ref:`LAMMPS C-library interface <lammps_c_api>`.
Specifically, a LAMMPS instance will be created by calling
:cpp:func:`lammps_open_no_mpi` and then the buffer contents run by
calling :cpp:func:`lammps_commands_string`. Certain commands and
features are only available, after a LAMMPS instance is created. Its
presence is indicated by a small LAMMPS ``L`` logo in the status bar at
the bottom left of the main window.
The LAMMPS calculation will be run in a concurrent thread so that the
GUI will stay responsive and will be updated during the run. This can
be used to tell the running LAMMPS instance to stop at the next
timestep. The ``Stop LAMMPS`` entry will do this by calling
:cpp:func:`lammps_force_timeout`, which is equivalent to a :doc:`timer
timeout 0 <timer>` command.
The ``Set Variables`` entry will open a dialog box where :doc:`index style variables <variable>`
can be set. Those variables will be passed to the LAMMPS instance when
it is created and are thus set *before* a run is started.
.. image:: JPG/lammps-gui-variables.png
:align: center
:scale: 75%
The ``Set Variables`` dialog will be pre-populated with entries that are
set as index variables in the input and any variables that are used but
not defined as far as the built-in parser can detect them. New rows for
additional variables can be added through the ``Add Row`` button and
existing rows deleted by clicking on the ``X`` icons on the right.
The ``View Image`` entry will send a :doc:`dump image <dump_image>`
command to the LAMMPS instance, read the resulting file, and show it in
an ``Image Viewer`` window.
The ``View in OVITO`` entry will launch `OVITO <https://ovito.org>`_
with a :doc:`data file <write_data>` of the current state of the system.
This option is only available, if the LAMMPS GUI can find the OVITO
executable in the system path.
The ``View in VMD`` entry will instead launch VMD, also to load a
:doc:`data file <write_data>` of the current state of the system. This
option is only available, if the LAMMPS GUI can find the VMD executable
in the system path.
View
^^^^
The ``View`` menu offers to show or hide the three optional windows
with log output, graphs, or images. The default settings for those
can be changed in the ``Preferences dialog``.
About
^^^^^
The ``About`` menu finally offers a couple of dialog windows and an
option to launch the LAMMPS online documentation in a web browser. The
``About LAMMPS GUI`` entry displays a dialog with a summary of the
configuration settings of the LAMMPS library in use and the version
number of LAMMPS GUI itself. The ``Quick Help`` displays a dialog with
a minimal description of LAMMPS GUI. And ``LAMMPS Manual`` will open
the main page of this LAMMPS documentation at https://docs.lammps.org/.
Preferences
-----------
The ``Preferences`` dialog allows to customize some of the behavior
and looks of the LAMMPS GUI application. The settings are grouped
and each group is displayed within a tab.
.. |guiprefs1| image:: JPG/lammps-gui-prefs-general.png
:width: 25%
.. |guiprefs2| image:: JPG/lammps-gui-prefs-accel.png
:width: 25%
.. |guiprefs3| image:: JPG/lammps-gui-prefs-image.png
:width: 25%
|guiprefs1| |guiprefs2| |guiprefs3|
General Settings:
^^^^^^^^^^^^^^^^^
- *Echo input to log:* when checked, all input commands, including
variable expansions, will be echoed to the log window. This is
equivalent to using `-echo screen` at the command line. There is no
log *file* produced since it always uses `-log none`.
- *Include citation details:* when checked full citation info will be
included to the log window. This is equivalent to using `-cite
screen` on the command line.
- *Show log window by default:* when checked, the screen output of a
LAMMPS run will be collected in a log window during the run
- *Show chart window by default:* when checked, the thermodynamic
output of a LAMMPS run will be collected and displayed in a chart
window as line graphs.
- *Replace log window on new run:* when checked, an existing log
window will be replaced on a new LAMMPS run, otherwise each run will
create a new log window.
- *Replace chart window on new run:* when checked, an existing chart
window will be replaced on a new LAMMPS run, otherwise each run will
create a new chart window.
- *Replace image window on new render:* when checked, an existing
chart window will be replaced when a new snapshot image is requested,
otherwise each command will create a new image window.
- *Path to LAMMPS Shared Library File:* this options is only available
when LAMMPS GUI was compiled to load the LAMMPS library at run time
instead of being linked to it directly. With the ``Browse..`` button
or by changing the text, a different shared library file with a
different compilation of LAMMPS with different settings or from a
different version can be loaded. After this setting was changed,
LAMMPS GUI needs to be re-launched.
- *Select Default Font:* Opens a font selection dialog where the type
and size for the default font (used for everything but the editor and
log) of the application can be set.
- *Select Text Font:* Opens a font selection dialog where the type and
size for the text editor and log font of the application can be set.
Accelerators:
^^^^^^^^^^^^^
This tab enables to select which accelerator package is used and is
equivalent to using the `-suffix` and `-package` flags on the command
line. Only settings supported by the LAMMPS library and local hardware
are available. The `Number of threads` field allows to set the maximum
number of threads for the accelerator packages that use threads.
Snapshot Image:
^^^^^^^^^^^^^^^
This tab allows to set some defaults for the snapshot images displayed
in the ``Image Viewer`` window, like its dimensions and the zoom factor
applied. The *Antialias* switch requests to render images with twice
the number of pixels for width and height and then smoothly scales the
image back to the requested size. This produces higher quality images
with smoother edges at the expense of requiring more CPU time to render
the image. The *HQ Image mode* option turns on using a screen space
ambient occlusion mode (SSAO) when rendering images. This is also more
time consuming, but produces a more 'spatial' representation of the
system. The *VDW Style* checkbox selects whether atoms are represented
by space filling spheres when checked or by smaller spheres and stick.
Finally there are a couple of drop down lists to select the background
and box color.
Hotkeys
-------
Almost all functionality is accessible from the menu or via hotkeys.
The following hotkeys are available (On macOS use the Command key
instead of Ctrl/Control).
.. list-table::
:header-rows: 1
:widths: auto
* - Hotkey
- Function
- Hotkey
- Function
- Hotkey
- Function
- Hotkey
- Function
* - Ctrl+N
- New File
- Ctrl+Z
- Undo edit
- Ctrl+Enter
- Run LAMMPS
- Ctrl+Shift+A
- About LAMMPS GUI
* - Ctrl+O
- Open File
- Ctrl+Shift+Z
- Redo edit
- Ctrl+/
- Stop Active Run
- Ctrl+Shift+H
- Quick Help
* - CTRL+S
- Save File
- Ctrl+C
- Copy text
- Ctrl+Shift+V
- Set Variables
- Ctrl+Shift+G
- LAMMPS GUI Howto
* - Ctrl+Shift+S
- Save File As
- Ctrl+X
- Cut text
- Ctrl+I
- Create Snapshot Image
- Ctrl+Shift+M
- LAMMPS Manual
* - Ctrl+Q
- Quit
- Ctrl+V
- Paste text
- Ctrl+P
- Preferences
- Ctrl+?
- Context Help
Further editing keybindings `are documented with the Qt documentation
<https://doc.qt.io/qt-5/qplaintextedit.html#editing-key-bindings>`_. In
case of conflicts the list above takes precedence.

View File

@ -69,13 +69,15 @@ SPC/E with rigid bonds.
timestep 1.0
fix rigid all shake 0.0001 10 10000 b 1 a 1
minimize 0.0 0.0 1000 10000
run 0 post no
reset_timestep 0
velocity all create 300.0 5463576
fix integrate all nvt temp 300.0 300.0 100.0
fix integrate all nvt temp 300.0 300.0 1.0
thermo_style custom step temp press etotal density pe ke
thermo 1000
run 20000 upto
write_data spce.data nocoeff
write_data tip4p.data nocoeff
.. _spce_molecule:
.. code-block::

View File

@ -128,11 +128,11 @@ TIP3P with rigid bonds.
fix rigid all shake 0.001 10 10000 b 1 a 1
minimize 0.0 0.0 1000 10000
run 0 post no
reset_timestep 0
timestep 1.0
velocity all create 300.0 5463576
fix integrate all nvt temp 300 300 100.0
fix integrate all nvt temp 300 300 1.0
thermo_style custom step temp press etotal pe

View File

@ -180,17 +180,17 @@ file changed):
fix rigid all shake 0.001 10 10000 b 1 a 1
minimize 0.0 0.0 1000 10000
run 0 post no
reset_timestep 0
timestep 1.0
velocity all create 300.0 5463576
fix integrate all nvt temp 300 300 100.0
fix integrate all nvt temp 300 300 1.0
thermo_style custom step temp press etotal pe
thermo 1000
run 20000
write_data tip4p-implicit.data nocoeff
write_data tip3p.data nocoeff
Below is the code for a LAMMPS input file using the explicit method and
a TIP4P molecule file. Because of using :doc:`fix rigid/nvt/small
@ -203,7 +203,6 @@ rigid/nvt/small can identify rigid bodies by their molecule ID:
units real
atom_style charge
atom_modify map array
region box block -5 5 -5 5 -5 5
create_box 3 box
@ -220,14 +219,14 @@ rigid/nvt/small can identify rigid bodies by their molecule ID:
molecule water tip4p.mol
create_atoms 0 random 33 34564 NULL mol water 25367 overlap 1.33
timestep 0.5
fix integrate all rigid/nvt/small molecule temp 300.0 300.0 100.0
timestep 0.1
fix integrate all rigid/nvt/small molecule temp 300.0 300.0 1.0
velocity all create 300.0 5463576
thermo_style custom step temp press etotal density pe ke
thermo 1000
run 20000
write_data tip4p-explicit.data nocoeff
write_data tip4p.data nocoeff
.. _tip4p_molecule:
.. code-block::

View File

@ -91,7 +91,6 @@ ID:
units real
atom_style charge
atom_modify map array
region box block -5 5 -5 5 -5 5
create_box 3 box
@ -108,8 +107,8 @@ ID:
molecule water tip5p.mol
create_atoms 0 random 33 34564 NULL mol water 25367 overlap 1.33
timestep 0.5
fix integrate all rigid/nvt/small molecule temp 300.0 300.0 100.0
timestep 0.20
fix integrate all rigid/nvt/small molecule temp 300.0 300.0 1.0
reset_timestep 0
velocity all create 300.0 5463576

View File

@ -1,13 +1,13 @@
Download an executable for Linux or macOS via Conda
---------------------------------------------------
Download an executable for Linux or Mac via Conda
-------------------------------------------------
Pre-compiled LAMMPS binaries are available for macOS and Linux via the
`Conda <conda_>`_ package management system.
First, one must set up the Conda package manager on your system. Follow
the instructions to install `Miniconda <mini_conda_install_>`_, then
create a conda environment (named `my-lammps-env` or whatever you
prefer) for your LAMMPS install:
First, one must set up the Conda package manager on your system. Follow the
instructions to install `Miniconda <mini_conda_install_>`_, then create a conda
environment (named `my-lammps-env` or whatever you prefer) for your LAMMPS
install:
.. code-block:: bash

View File

@ -1,12 +1,12 @@
Download an executable for macOS
--------------------------------
Download an executable for Mac
------------------------------
LAMMPS can be downloaded, built, and configured for macOS with `Homebrew
<homebrew_>`_. (Alternatively, see the installation instructions for
:doc:`downloading an executable via Conda <Install_conda>`.) The
following LAMMPS packages are unavailable at this time because of
additional requirements not yet met: GPU, KOKKOS, MSCG, MPIIO, POEMS,
VORONOI.
LAMMPS can be downloaded, built, and configured for OS X on a Mac with
`Homebrew <homebrew_>`_. (Alternatively, see the installation
instructions for :doc:`downloading an executable via Conda
<Install_conda>`.) The following LAMMPS packages are unavailable at
this time because of additional requirements not yet met: GPU, KOKKOS,
LATTE, MSCG, MPIIO, POEMS, VORONOI.
After installing Homebrew, you can install LAMMPS on your system with
the following commands:
@ -15,9 +15,8 @@ the following commands:
brew install lammps
This will install the executables "lammps_serial" and "lammps_mpi", as
well as the LAMMPS "doc", "potentials", "tools", "bench", and "examples"
directories.
This will install the executables "lammps_serial" and "lammps_mpi", as well as
the LAMMPS "doc", "potentials", "tools", "bench", and "examples" directories.
Once LAMMPS is installed, you can test the installation with the
Lennard-Jones benchmark file:

View File

@ -2,7 +2,7 @@ Download source and documentation as a tarball
----------------------------------------------
You can download a current LAMMPS tarball from the `download page <download_>`_
of the `LAMMPS website <lws_>`_ or from GitHub (see below).
of the `LAMMPS website <lws_>`_.
.. _download: https://www.lammps.org/download.html
.. _bug: https://www.lammps.org/bug.html
@ -17,21 +17,21 @@ tarball occasionally updated. Feature releases occur every 4 to 8
weeks. The new contents in all feature releases are listed on the `bug
and feature page <bug_>`_ of the LAMMPS homepage.
Both tarballs include LAMMPS documentation (HTML and PDF files)
corresponding to that version.
Tarballs of older LAMMPS versions can also be downloaded from `this page
<older_>`_.
Tarballs downloaded from the LAMMPS homepage include the pre-translated
LAMMPS documentation (HTML and PDF files) corresponding to that version.
Once you have a tarball, uncompress and untar it with the following
Once you have a tarball, unzip and untar it with the following
command:
.. code-block:: bash
tar -xzvf lammps*.tar.gz
This will create a LAMMPS directory with the version date in its name,
e.g. lammps-28Mar23.
This will create a LAMMPS directory with the version date
in its name, e.g. lammps-23Jun18.
----------
@ -45,8 +45,7 @@ with the following command, to create a lammps-<version> directory:
unzip lammps*.zip
This version corresponds to the selected LAMMPS feature or stable
release (as indicated by the matching git tag) and will only contain the
source code and no pre-built documentation.
release.
.. _git: https://github.com/lammps/lammps/releases

View File

@ -88,7 +88,7 @@ commands)
* charge equilibration (QEq via dynamic, point, shielded, Slater methods)
* coarse-grained potentials: DPD, GayBerne, REsquared, colloidal, DLVO, oxDNA / oxRNA, SPICA
* mesoscopic potentials: granular, Peridynamics, SPH, mesoscopic tubular potential (MESONT)
* semi-empirical potentials: multi-ion generalized pseudopotential theory (MGPT), second moment tight binding + QEq (SMTB-Q)
* semi-empirical potentials: multi-ion generalized pseudopotential theory (MGPT), second moment tight binding + QEq (SMTB-Q), density functional tight-binding (LATTE)
* electron force field (eFF, AWPMD)
* bond potentials: harmonic, FENE, Morse, nonlinear, Class II (COMPASS), quartic (breakable), tabulated, scripted
* angle potentials: harmonic, CHARMM, cosine, cosine/squared, cosine/periodic, Class II (COMPASS), tabulated, scripted

Binary file not shown.

Before

Width:  |  Height:  |  Size: 73 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 123 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 185 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 91 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 119 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

View File

@ -5,7 +5,6 @@ This section documents the following functions:
- :cpp:func:`lammps_get_natoms`
- :cpp:func:`lammps_get_thermo`
- :cpp:func:`lammps_last_thermo`
- :cpp:func:`lammps_extract_box`
- :cpp:func:`lammps_reset_box`
- :cpp:func:`lammps_memory_usage`
@ -82,11 +81,6 @@ subdomains and processors.
-----------------------
.. doxygenfunction:: lammps_last_thermo
:project: progguide
-----------------------
.. doxygenfunction:: lammps_extract_box
:project: progguide

View File

@ -23,23 +23,10 @@ coordinated.
----------
The content for this manual is part of the LAMMPS distribution in its
doc directory.
* The version of the manual on the LAMMPS website corresponds to the
latest LAMMPS feature release. It is available at:
`https://docs.lammps.org/ <https://docs.lammps.org/>`_.
* A version of the manual corresponding to the latest LAMMPS stable
release (state of the *stable* branch on GitHub) is available online
at: `https://docs.lammps.org/stable/
<https://docs.lammps.org/stable/>`_
* A version of the manual with the features most recently added to
LAMMPS (state of the *develop* branch on GitHub) is available at:
`https://docs.lammps.org/latest/ <https://docs.lammps.org/latest/>`_
If needed, you can build a copy on your local machine of the manual
(HTML pages or PDF file) for the version of LAMMPS you have
downloaded. Follow the steps on the :doc:`Build_manual` page. If you
The content for this manual is part of the LAMMPS distribution. The
online version always corresponds to the latest feature release version.
If needed, you can build a local copy of the manual as HTML pages or a
PDF file by following the steps on the :doc:`Build_manual` page. If you
have difficulties viewing the pages, please :ref:`see this note
<webbrowser>`.
@ -149,21 +136,10 @@ Indices and tables
:class: note
The HTML version of the manual makes use of advanced features present
in "modern" web browsers. This leads to incompatibilities with older
web browsers and specific vendor browsers (e.g. Internet Explorer on Windows)
in "modern" web browsers. This can lead to incompatibilities with older
web browsers (released more than 4 years ago) and specific vendor browsers
(e.g. Internet Explorer on Windows; Microsoft Edge works well though)
where parts of the pages are not rendered as expected (e.g. the layout is
broken or mathematical expressions not typeset). In that case we
recommend to install/use a different/newer web browser or use
the `PDF version of the manual <https://docs.lammps.org/Manual.pdf>`_.
The following web browser versions have been verified to work as
expected on Linux, macOS, and Windows where available:
- Safari version 11.1 and later
- Firefox version 54 and later
- Chrome version 54 and later
- Opera version 41 and later
- Edge version 80 and later
Also Android version 7.1 and later and iOS version 11 and later have
been verified to render this website as expected.

View File

@ -1,30 +1,23 @@
Modifying & extending LAMMPS
****************************
LAMMPS has a modular design, so that it is easy to modify or extend with
new functionality. In fact, about 95% of its source code is optional.
The following pages give basic instructions on adding new features to
LAMMPS. More in-depth explanations and documentation of individual
functions and classes are given in :doc:`Developer`.
LAMMPS is designed in a modular fashion and to be easy to modify or
extend with new functionality. In fact, about 95% of its source code
are optional. The following pages give basic instructions on what
is required when adding new styles of different kinds to LAMMPS.
If you add a new feature to LAMMPS and think it will be of general
interest to other users, we encourage you to submit it for inclusion in
LAMMPS. This process is explained in the following three pages:
* :doc:`how to prepare and submit your code <Modify_contribute>`
* :doc:`requirements for submissions <Modify_requirements>`
* :doc:`style guidelines <Modify_style>`
A summary description of various types of styles in LAMMPS follows.
A discussion of implementing specific styles from scratch is given
in :doc:`writing new styles <Developer_write>`.
LAMMPS as a pull request on our `GitHub site
<https://github.com/lammps/lammps>`_, after reading about :doc:`how to
prepare your code for submission <Modify_contribute>` and :doc:`the
style requirements and recommendations <Modify_style>`.
.. toctree::
:maxdepth: 1
Modify_overview
Modify_contribute
Modify_requirements
Modify_style
.. toctree::

View File

@ -2,59 +2,74 @@ Submitting new features for inclusion in LAMMPS
===============================================
We encourage LAMMPS users to submit new features they wrote for LAMMPS
to be included in the LAMMPS distribution and thus become easily
accessible to all LAMMPS users. The LAMMPS source code is managed
with git and public development is hosted on `GitHub
<https://github.com/lammps/lammps>`_. You can monitor the repository
to be notified of releases, follow the ongoing development, and
comment on topics of interest to you.
This section contains general information regarding the preparation
and submission of new features to LAMMPS. If you are new to
development in LAMMPS, we recommend you read one of the tutorials on
developing a new :doc:`pair style <Developer_write_pair>` or :doc:`fix
style <Developer_write_fix>` which provide a friendly introduction to
what LAMMPS development entails and common vocabulary used on this
section.
to be included into the LAMMPS distribution and thus become easily
accessible to all LAMMPS users. The LAMMPS source code is managed with
git and public development is hosted on `GitHub
<https://github.com/lammps/lammps>`_. You can monitor the repository to
be notified of releases, follow the ongoing development, and comment on
topics of interest to you.
Communication with the LAMMPS developers
----------------------------------------
For any larger modifications or programming project, you are
encouraged to contact the LAMMPS developers ahead of time to discuss
implementation strategies. That will make it easier to integrate your
contribution and typically results in less work for everyone involved.
You are also encouraged to search through the list of `open issues on
GitHub <https://github.com/lammps/lammps/issues>`_ and submit a new
issue for a planned feature, to avoid duplicating work (and possibly
being scooped).
For any larger modifications or programming project, you are encouraged
to contact the LAMMPS developers ahead of time in order to discuss
implementation strategies and coding guidelines. That will make it
easier to integrate your contribution and results in less work for
everybody involved. You are also encouraged to search through the list
of `open issues on GitHub <https://github.com/lammps/lammps/issues>`_
and submit a new issue for a planned feature, so you would not duplicate
the work of others (and possibly get scooped by them) or have your work
duplicated by others.
For informal communication with the LAMMPS developers, you may ask to
join the `LAMMPS developers on Slack <https://lammps.slack.com>`_.
This slack work space is by invitation only. For access, please send
an e-mail to ``slack@lammps.org`` explaining what part of LAMMPS you
are working on. Only discussions related to LAMMPS development are
tolerated in that work space, so this is **NOT** for people looking
For informal communication with the LAMMPS developers you may ask to
join the `LAMMPS developers on Slack <https://lammps.slack.com>`_. This
slack work space is by invitation only. Thus for access, please send an
e-mail to ``slack@lammps.org`` explaining what part of LAMMPS you are
working on. Only discussions related to LAMMPS development are
tolerated in that work space, so this is **NOT** for people that look
for help with compiling, installing, or using LAMMPS. Please post a
message to the `LAMMPS forum <https://www.lammps.org/forum.html>`_ for
those purposes.
Packages versus individual files
--------------------------------
The remainder of this chapter describes how to add new "style" files of
various kinds to LAMMPS. Packages are simply collections of one or more
such new class files which are invoked as a new style within a LAMMPS
input script. In some cases also collections of supporting functions or
classes are included as separate files in a package, especially when
they can be shared between multiple styles. If designed correctly, these
additions typically do not require any changes to the core code of
LAMMPS; they are simply add-on files that are compiled with the rest of
LAMMPS. To make those styles work, you may need some trivial changes to
the core code; an example of a trivial change is making a parent-class
method "virtual" when you derive a new child class from it.
If you think your new feature or package requires some non-trivial
changes in core LAMMPS files, you should communicate with the LAMMPS
developers `on Slack <https://lammps.org/slack.html>`_, `on GitHub
<https://github.com/lammps/lammps/issues>`_, or `via email
<https://www.lammps.org/authors.html>`_, since we may have
recommendations about what changes to do where, or may not want to
include certain changes for some reason and thus you would need to look
for alternatives.
Time and effort required
------------------------
How quickly your contribution will be integrated can vary widely. It
depends largely on how much effort is required by the LAMMPS
developers to integrate and test it, if any and what kind of changes
to the core code are required, how quickly you can address them, and
how much interest the contribution is to the larger LAMMPS
community. This process can be streamlined by following the
:doc:`requirements <Modify_requirements>` and :doc:`style
guidelines<Modify_style>`. A small, modular, well written
contribution may be integrated within hours, but a complex change that
requires a re-design of a core functionality in LAMMPS can take months
before inclusion (though this is rare).
How quickly your contribution will be integrated can vary a lot. It
depends largely on how much effort it will cause the LAMMPS developers
to integrate and test it, how many and what kind of changes to the core
code are required, how quickly you can address them and of how much
interest it is to the larger LAMMPS community. Please see the section
on :doc:`LAMMPS programming style and requirements <Modify_style>` for
instructions, recommendations, and formal requirements. A small,
modular, well written contribution may be integrated within hours, but a
complex change that will require a redesign of some core functionality
in LAMMPS for a clean integration can take many months until it is
considered ready for inclusion (though this is rare).
Submission procedure
@ -63,24 +78,36 @@ Submission procedure
All changes to LAMMPS (including those from LAMMPS developers) are
integrated via pull requests on GitHub and cannot be merged without
passing the automated testing and an approving review by a LAMMPS core
developer. Before submitting your contribution, you should therefore
first ensure that your added or modified code compiles and works
correctly with the latest development version of LAMMPS and contains
all bug fixes from it.
developer. Thus before submitting your contribution, you should first
make certain, that your added or modified code compiles and works
correctly with the latest development version of LAMMPS and contains all
bug fixes from it.
Once you have prepared everything, see the :doc:`LAMMPS GitHub
Tutorial <Howto_github>` page for instructions on how to submit your
changes or new files through a GitHub pull request. If you are unable
or unwilling to submit via GitHub yourself, you may also send patch
files or full files to the `LAMMPS developers
<https://www.lammps.org/authors.html>`_ and ask them to submit a pull
request on GitHub on your behalf. If this is the case, create a
gzipped tar file of all new or changed files or a corresponding patch
file using 'diff -u' or 'diff -c' format and compress it with gzip.
Please only use gzip compression, as this works well and is available
on all platforms. This mode of submission may delay the integration
as it depends more on the LAMMPS developers.
Once you have prepared everything, see the :doc:`LAMMPS GitHub Tutorial
<Howto_github>` page for instructions on how to submit your changes or
new files through a GitHub pull request yourself. If you are unable or
unwilling to submit via GitHub yourself, you may also submit patch files
or full files to the LAMMPS developers and ask them to submit a pull
request on GitHub on your behalf. Then create a gzipped tar file of
all changed or added files or a corresponding patch file using
'diff -u' or 'diff -c' format and compress it with gzip. Please only
use gzip compression, as this works well and is available on all platforms.
If the new features/files are broadly useful we may add them as core
files to LAMMPS or as part of a :doc:`package <Packages_list>`. All
packages are listed and described on the :doc:`Packages details
<Packages_details>` doc page.
Licensing
---------
Note that by providing us files to release, you agree to make them
open-source, i.e. we can release them under the terms of the GPL
(version 2) with the rest of LAMMPS. And similarly as part of a LGPL
(version 2.1) distribution of LAMMPS that we make available to
developers on request only and with files that are not authorized for
that kind of distribution removed (e.g. interface to FFTW). See the
:doc:`LAMMPS license <Intro_opensource>` page for details.
External contributions
----------------------
@ -88,42 +115,11 @@ External contributions
If you prefer to do so, you can also develop and support your add-on
feature **without** having it included in the LAMMPS distribution, for
example as a download from a website of your own. See the `External
LAMMPS packages and tools <https://www.lammps.org/external.html>`_
page of the LAMMPS website for examples of groups that do this. We
are happy to advertise your package and website from that page.
Simply email the `developers <https://www.lammps.org/authors.html>`_
with info about your package, and we will post it there. We recommend
naming external packages USER-\<name\> so they can be easily
distinguished from packages in the LAMMPS distribution which do not
have the USER- prefix.
LAMMPS packages and tools <https://www.lammps.org/external.html>`_ page
of the LAMMPS website for examples of groups that do this. We are happy
to advertise your package and website from that page. Simply email the
`developers <https://www.lammps.org/authors.html>`_ with info about your
package and we will post it there. We recommend to name external
packages USER-\<name\> so they can be easily distinguished from bundled
packages that do not have the USER- prefix.
Location of files: individual files and packages
------------------------------------------------
We rarely accept new styles in the core src folder. Thus, please
review the list of :doc:`available Packages <Packages_details>` to see
if your contribution should be added to one of them. It should fit
into the general purpose of that package. If it does not fit well, it
may be added to one of the EXTRA- packages or the MISC package.
However, if your project includes many related features that are not
covered by one of the existing packages or is dependent on a library
(bundled or external), it is best to create a new package with its own
directory (with a name like FOO). In addition to your new files, the
directory should contain a README text file containing your name and
contact information and a brief description of what your new package
does.
Changes to core LAMMPS files
--------------------------------
If designed correctly, most additions do not require any changes to
the core code of LAMMPS; they are simply add-on files that are
compiled with the rest of LAMMPS. To make those styles work, you may
need some trivial changes to the core code. An example of a trivial
change is making a parent-class method "virtual" when you derive a new
child class from it. If your features involve more substantive
changes to the core LAMMPS files, it is particularly encouraged that
you communicate with the LAMMPS developers early in development.

View File

@ -80,8 +80,8 @@ There are also several type-specific methods
- Optional method to test when particles are in contact. By default, this is when particles overlap.
* - ``GranSubModNormal->pulloff_distance()``
- Optional method to return the distance at which particles stop interacting. By default, this is when particles no longer overlap.
* - ``GranSubModNormal->calculate_radius()``
- Optional method to return the radius of the contact. By default, this returns the radius of the geometric cross section.
* - ``GranSubModNormal->calculate_area()``
- Optional method to return the surface area of the contact. By default, this returns the geometric cross section.
* - ``GranSubModNormal->set_fncrit()``
- Optional method that defines the critical force to break the contact used by some tangential, rolling, and twisting sub-models. By default, this is the current total normal force including damping.
* - ``GranSubModNormal->calculate_forces()``
@ -105,7 +105,9 @@ set of files ``gran_sub_mod_custom.h``:
#ifdef GranSubMod_CLASS
// clang-format off
GranSubModStyle(hooke/piecewise,GranSubModNormalHookePiecewise,NORMAL);
GranSubModStyle(hooke/piecewise,
GranSubModNormalHookePiecewise,
NORMAL);
// clang-format on
#else
@ -117,14 +119,15 @@ set of files ``gran_sub_mod_custom.h``:
namespace LAMMPS_NS {
namespace Granular_NS {
class GranSubModNormalHookePiecewise : public GranSubModNormal {
public:
GranSubModNormalHookePiecewise(class GranularModel *, class LAMMPS *);
void coeffs_to_local() override;
double calculate_forces() override;
protected:
double k1, k2, delta_switch;
};
class GranSubModNormalHookePiecewise : public GranSubModNormal {
public:
GranSubModNormalHookePiecewise(class GranularModel *, class LAMMPS *);
void coeffs_to_local() override;
double calculate_forces();
protected:
double k1, k2, delta_switch;
};
} // namespace Granular_NS
} // namespace LAMMPS_NS
@ -144,8 +147,7 @@ and ``gran_sub_mod_custom.cpp``
using namespace LAMMPS_NS;
using namespace Granular_NS;
GranSubModNormalHookePiecewise::GranSubModNormalHookePiecewise(GranularModel *gm, LAMMPS *lmp) :
GranSubModNormal(gm, lmp)
GranSubModNormalHookePiecewise::GranSubModNormalHookePiecewise(GranularModel *gm, LAMMPS *lmp) : GranSubModNormal(gm, lmp)
{
num_coeffs = 4;
}

View File

@ -1,44 +1,42 @@
Overview
========
The best way to add a new feature to LAMMPS is to find a similar
feature and look at the corresponding source and header files to
figure out what it does. You will need some knowledge of C++ to
understand the high-level structure of LAMMPS and its class
organization. Functions (class methods) that do actual computations
are mostly written in C-style code and operate on simple C-style data
structures (vectors and arrays). A high-level overview of the
programming style choices in LAMMPS is :doc:`given elsewhere
<Developer_code_design>`.
The best way to add a new feature to LAMMPS is to find a similar feature
and look at the corresponding source and header files to figure out what
it does. You will need some knowledge of C++ to be able to understand
the high-level structure of LAMMPS and its class organization, but
functions (class methods) that do actual computations are mostly written
in C-style code and operate on simple C-style data structures (vectors
and arrays). A high-level overview of the programming style choices in
LAMMPS is :doc:`given elsewhere <Developer_code_design>`.
Most of the new features described on the :doc:`Modify <Modify>` doc
page require you to write a new C++ derived class (except for
exceptions described below, where you can make small edits to existing
files). Creating a new class requires 2 files, a source code file
(\*.cpp) and a header file (\*.h). The derived class must provide
certain methods to work as a new option. Depending on how different
your new feature is compared to existing features, you can either
derive from the base class itself, or from a derived class that
already exists. Enabling LAMMPS to invoke the new class is as simple
as putting the two source files in the src directory and re-building
LAMMPS.
page require you to write a new C++ derived class (except for exceptions
described below, where you can make small edits to existing files).
Creating a new class requires 2 files, a source code file (\*.cpp) and a
header file (\*.h). The derived class must provide certain methods to
work as a new option. Depending on how different your new feature is
compared to existing features, you can either derive from the base class
itself, or from a derived class that already exists. Enabling LAMMPS to
invoke the new class is as simple as putting the two source files in the
src directory and re-building LAMMPS.
The advantage of C++ and its object-orientation is that all the code
and variables needed to define the new feature are in the 2 files you
write. Thus, it should not make the rest of LAMMPS more complex or
cause bugs through unwanted side effects.
write, and thus should not make the rest of LAMMPS more complex or
cause side-effect bugs.
Here is a concrete example. Suppose you write 2 files
``pair_foo.cpp`` and ``pair_foo.h`` that define a new class
``PairFoo`` which computes pairwise potentials described in the
classic 1997 :ref:`paper <Foo>` by Foo, *et al.* If you wish to invoke
those potentials in a LAMMPS input script with a command like:
Here is a concrete example. Suppose you write 2 files pair_foo.cpp
and pair_foo.h that define a new class PairFoo that computes pairwise
potentials described in the classic 1997 :ref:`paper <Foo>` by Foo, et al.
If you wish to invoke those potentials in a LAMMPS input script with a
command like
.. code-block:: LAMMPS
pair_style foo 0.1 3.5
then your ``pair_foo.h`` file should be structured as follows:
then your pair_foo.h file should be structured as follows:
.. code-block:: c++
@ -53,27 +51,28 @@ then your ``pair_foo.h`` file should be structured as follows:
#endif
where "foo" is the style keyword in the pair_style command, and
``PairFoo`` is the class name defined in your ``pair_foo.cpp`` and
``pair_foo.h`` files.
PairFoo is the class name defined in your pair_foo.cpp and pair_foo.h
files.
When you re-build LAMMPS, your new pairwise potential becomes part of
the executable and can be invoked with a pair_style command like the
example above. Arguments like 0.1 and 3.5 can be defined and
processed by your new class.
As illustrated by this example, many features referred to in the
LAMMPS documentation are called a "style" of a particular command.
As illustrated by this example pair style, many kinds of options are
referred to in the LAMMPS documentation as the "style" of a particular
command.
The :doc:`Modify page <Modify>` lists all the common styles in LAMMPS,
and discusses the header file for the base class that these styles
derive from. Public variables in that file can be used and set by the
derived classes, and may also be used by the base class. Sometimes
they are also accessed by the rest of LAMMPS. Pure functions, which
means functions declared as virtual in the base class header file and
which are also set to 0, are functions you **must** implement in your
new derived class to give it the functionality LAMMPS expects. Virtual
functions that are not set to 0 are functions you may override or not.
Those are usually defined with an empty function body.
and discusses the header file for the base class that these styles are
derived from. Public variables in that file are ones used and set by
the derived classes which are also used by the base class. Sometimes
they are also used by the rest of LAMMPS. Pure functions, which means
functions declared as virtual in the base class header file which are
also set to 0, are functions you **must** implement in your new derived
class to give it the functionality LAMMPS expects. Virtual functions
that are not set to 0 are functions you may override or not. Those
are usually defined with an empty function body.
Additionally, new output options can be added directly to the
thermo.cpp, dump_custom.cpp, and variable.cpp files. These are also
@ -86,9 +85,9 @@ functionality:
post-processing step. Many computations are more easily and more
quickly done that way.
* Do not try to do anything within the timestepping of a run that is not
parallel. For example, do not accumulate a bunch of data on a single
processor and analyze it. That would run the risk of seriously degrading
the parallel efficiency.
parallel. For example do not accumulate a bunch of data on a single
processor and analyze it. You run the risk of seriously degrading
the parallel efficiency this way.
* If your new feature reads arguments or writes output, make sure you
follow the unit conventions discussed by the :doc:`units <units>`
command.

View File

@ -1,384 +0,0 @@
Requirements for contributions to LAMMPS
========================================
The following is a summary of the current requirements and
recommendations for including contributed source code or documentation
into the LAMMPS software distribution.
Motivation
----------
The LAMMPS developers are committed to provide a software package that
is versatile, reliable, high-quality, efficient, portable, and easy to
maintain and modify. Achieving all of these goals is challenging
since a large part of LAMMPS consists of contributed code from many
different authors who may not be professionally trained programmers or
familiar with the idiosyncrasies of maintaining a large software
package. In addition, changes that interfere with the parallel
efficiency of the core code must be avoided. As LAMMPS continues to
grow and more features and functionality are added, it is necessary to
follow established guidelines when accepting new contributions while
also working at the same time to improve the existing code.
The following requirements and recommendations are provided as a
guide. They indicate which individual requirements are strict, and
which represent a preference and thus are negotiable or optional.
Please feel free to contact the LAMMPS core developers in case you
need additional explanations or clarifications, or you need assistance
in implementing the (strict) requirements for your contributions.
Requirements include:
* :ref:`Licensing requirements <ReqLicense>` (strict)
* :ref:`Integration testing <ReqIntegrationTesting>` (strict)
* :ref:`Documentation <ReqDocumentation>` (strict)
* :ref:`Programming language standards <ReqProgrammingStandards>` (strict)
* :ref:`Build system <ReqBuildSystem>` (strict)
* :ref:`Command or style names <ReqNaming>` (strict)
* :ref:`Programming style requirements <ReqProgrammingStyle>` (varied)
* :ref:`Examples <ReqExamples>` (preferred)
* :ref:`Error or warning messages and explanations <ReqErrorMessages>` (preferred)
* :ref:`Citation reminder <ReqCitation>` (optional)
* :ref:`Testing <ReqUnitTesting>` (optional)
.. _ReqLicense:
Licensing requirements (strict)
-------------------------------
Contributing authors agree when submitting a pull request that their
contributions can be distributed under the LAMMPS license conditions.
This is the GNU public license in version 2 (not 3 or later) for the
publicly distributed versions, e.g. on the LAMMPS homepage or on
GitHub. We also have a version of LAMMPS under LGPL 2.1 terms which
is available on request; this will usually be the latest available or
a previous stable version with a few LGPL 2.1 incompatible files
removed. More details are found on the :doc:`LAMMPS open-source
license page <Intro_opensource>`.
Your new source files should have the LAMMPS copyright and GPL notice,
followed by your name and email address at the top, like other
user-contributed LAMMPS source files.
Contributions may be under a different license as long as that license
does not conflict with the aforementioned terms. Contributions that
use code with a conflicting license can be split into two parts:
1. the core parts (i.e. parts that must be in the `src` tree) that are
licensed under compatible terms and bundled with the LAMMPS sources
2. an external library that must be downloaded and compiled (either
separately or as part of the LAMMPS compilation)
Please note, that this split licensing mode may complicate including
the contribution in binary packages.
.. _ReqIntegrationTesting:
Integration testing (strict)
----------------------------
Where possible we use available continuous integration tools to search
for common programming mistakes, portability limitations, incompatible
formatting, and undesired side effects. Contributed code must pass the
automated tests on GitHub before it can be merged with the LAMMPS
distribution. These tests compile LAMMPS in a variety of environments
and settings and run the bundled unit tests. At the discretion of the
LAMMPS developer managing the pull request, additional tests may be
activated that test for "side effects" on running a collection of
input decks and create consistent results. The translation of the
documentation to HTML and PDF is also tested.
This means that contributed source code **must** compile with the most
current version of LAMMPS with ``-DLAMMPS_BIGBIG`` in addition to the
default setting of ``-DLAMMPS_SMALLBIG``. The code needs to work
correctly in both cases, and also in serial and parallel using MPI.
Some "disruptive" changes may break tests and require updates to the
testing tools or scripts or tests themselves. This is rare. If in
doubt, contact the LAMMPS developer that is assigned to the pull
request.
.. _ReqDocumentation:
Documentation (strict)
----------------------
Contributions that add new styles or commands or augment existing ones
must include the corresponding new or modified documentation in
`ReStructuredText format <rst_>`_ (.rst files in the ``doc/src/``
folder). The documentation should be written in American English and the
.rst file must only use ASCII characters, so it can be cleanly
translated to PDF files (via `sphinx <https://www.sphinx-doc.org>`_ and
PDFLaTeX). Special characters may be included via embedded math
expression typeset in a LaTeX subset.
.. _rst: https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
When adding new commands, they need to be integrated into the sphinx
documentation system, and the corresponding command tables and lists
updated. When translating the documentation into html files there
should be no warnings. When adding a new package, some lists
describing packages must also be updated as well as a package specific
description added. Likewise, if necessary, some package specific
build instructions should be included.
As appropriate, the text files with the documentation can include
inline mathematical expressions or figures (see ``doc/JPG`` for
examples). Additional PDF files with further details may also be
included; see ``doc/PDF`` for examples. The page should also include
literature citations as appropriate; see the bottom of
``doc/fix_nh.rst`` for examples and the earlier part of the same file
for how to format the cite itself. Citation labels must be unique
across **all** .rst files. The "Restrictions" section of the page
should indicate if your command is only available if LAMMPS is built
with the appropriate package. See other command doc files for
examples of how to do this.
Please run at least "make html" and "make spelling" from within the
doc/src directory, and carefully inspect and proofread the resulting
HTML format doc page before submitting your code. Upon submission of
a pull request, checks for error free completion of the HTML and PDF
build will be performed and also a spell check, a check for correct
anchors and labels, and a check for completeness of references to all
styles in their corresponding tables and lists is run. In case the
spell check reports false positives, they can be added to the file
``doc/utils/sphinx-config/false_positives.txt``
Contributions that add or modify the library interface or "public"
APIs from the C++ code or the Fortran module must include suitable
doxygen comments in the source and corresponding changes to the
documentation sources for the "Programmer Guide" guide section of the
LAMMPS manual.
If your feature requires some more complex steps and explanations to
be used correctly or some external or bundled tools or scripts, we
recommend that you also contribute a :doc:`Howto document <Howto>`
providing some more background information and some tutorial material.
This can also be used to provide more in-depth explanations of models
that require use of multiple commands.
As a rule-of-thumb, the more clear and self-explanatory you make your
documentation, README files and examples, and the easier you make it
for people to get started, the more likely it is that users will try
out your new feature.
.. _ReqProgrammingStandards:
Programming language standards (strict)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The core of LAMMPS is written in C++11 in a style that can be mostly
described as "C with classes". Advanced C++ features like operator
overloading or excessive use of templates are avoided with the intent to
keep the code readable to programmers that have limited C++ programming
experience. C++ constructs are acceptable when they help improve the
readability and reliability of the code, e.g. when using the
`std::string` class instead of manipulating pointers and calling the
string functions of the C library. In addition, a collection of
convenient :doc:`utility functions and classes <Developer_utils>` for
recurring tasks and a collection of :doc:`platform neutral functions
<Developer_platform>` for improved portability are provided.
Contributions with code requiring more recent C++ standards are only
accepted as packages with the post C++11 standard code confined to the
package so that it is optional.
Included Fortran code has to be compatible with the Fortran 2003
standard. Since not all platforms supported by LAMMPS provide good
support for compiling Fortran files, it should be considered to rewrite
these parts as C++ code, if possible and thus allow for a wider adoption
of the contribution. As of January 2023, all previously included
Fortran code for the LAMMPS executable has been replaced by equivalent
C++ code.
Python code must be compatible with Python 3.5 and later. Large parts
of LAMMPS (including the :ref:`PYTHON package <PKG-PYTHON>`) are also
compatible with Python 2.7. Compatibility with Python 2.7 is desirable,
but compatibility with Python 3.5 is **required**.
Compatibility with older programming language standards is very
important to maintain portability and availability of LAMMPS on many
platforms. This applies especially to HPC cluster environments, which
tend to be running older software stacks and where LAMMPS users may be
required to use those older tools for access to advanced hardware
features or not have the option to install newer compilers or libraries.
.. _ReqBuildSystem:
Build system (strict)
---------------------
LAMMPS currently supports two build systems: one that is based on
:doc:`traditional Makefiles <Build_make>` and one that is based on
:doc:`CMake <Build_cmake>`. Therefore, your contribution must be
compatible with and support both build systems.
For a single pair of header and implementation files that are an
independent feature, it is usually only required to add them to
``src/.gitignore``.
For traditional make, if your contributed files or package depend on
other LAMMPS style files or packages also being installed
(e.g. because your file is a derived class from the other LAMMPS
class), then an ``Install.sh`` file is also needed to check for those
dependencies and modifications to ``src/Depend.sh`` to trigger the checks.
See other README and Install.sh files in other directories as
examples.
Similarly, for CMake support, changes may need to be made to
``cmake/CMakeLists.txt``, some of the files in ``cmake/presets``, and
possibly a file with specific instructions needs to be added to
``cmake/Modules/Packages/``. Please check out how this is handled for
existing packages and ask the LAMMPS developers if you need assistance.
.. _ReqNaming:
Command or style names, file names, and keywords (strict)
---------------------------------------------------------
All user-visible command or style names should be all lower case and
should only use letters, numbers, or forward slashes. They should be
descriptive and initialisms should be avoided unless they are well
established (e.g. lj for Lennard-Jones). For a compute style
"some/name" the source files must be called ``compute_some_name.h`` and
``compute_some_name.cpp``. The "include guard" in the header file would
then be ``LMP_COMPUTE_SOME_NAME_H`` and the class name
``ComputeSomeName``.
.. _ReqProgrammingStyle:
Programming style requirements (varied)
---------------------------------------
To maintain source code consistency across contributions from many
people, there are various programming style requirements for
contributions to LAMMPS. Some of these requirements are strict and
must be followed, while others are only preferred and thus may be
skipped. An in-depth discussion of the style guidelines is provided
in the :doc:`programming style doc page <Modify_style>`.
.. _ReqExamples:
Examples (preferred)
--------------------
For many new features, it is preferred that example scripts (simple,
small, fast to complete on 1 CPU) are included that demonstrate the
use of new or extended functionality. These are typically include
under the examples or examples/PACKAGES directory and are further
described on the :doc:`examples page <Examples>`. Guidelines for
input scripts include:
- commands that generate output should be commented out (except when the
output is the sole purpose or the feature, e.g. for a new compute)
- commands like :doc:`log <log>`, :doc:`echo <echo>`, :doc:`package
<package>`, :doc:`processors <processors>`, :doc:`suffix <suffix>` may
**not** be used in the input file (exception: "processors * * 1" or
similar is acceptable when used to avoid unwanted domain decomposition
of empty volumes)
- outside of the log files, no generated output should be included
- custom thermo_style settings may not include output measuring CPU or other
time as it complicates comparisons between different runs
- input files should be named ``in.name``, data files should be named
``data.name`` and log files should be named ``log.version.name.<compiler>.<ncpu>``
- the total file size of all the inputs and outputs should be small
- where possible, potential files from the "potentials" folder or data
file from other folders should be re-used through symbolic links
.. _ReqErrorMessages:
Error or warning messages and explanations (preferred)
------------------------------------------------------
.. versionchanged:: 4May2022
Starting with LAMMPS version 4 May 2022, the LAMMPS developers have
agreed on a new policy for error and warning messages.
Previously, all error and warning strings were supposed to be listed in
the class header files with an explanation. Those would then be
regularly "harvested" and transferred to alphabetically sorted lists in
the manual. To avoid excessively long lists and to reduce effort, this
came with a requirement to have rather generic error messages (e.g.
"Illegal ... command"). To identify the specific cause, the name of the
source file and the line number of the error location would be printed,
so that one could look up the cause by reading the source code.
The new policy encourages more specific error messages that ideally
indicate the cause directly, and requiring no further lookup. This is
aided by the `{fmt} library <https://fmt.dev>`_ enabling Error class
methods that take a variable number of arguments and an error text that
will be treated like a {fmt} syntax format string. Error messages should
still preferably be kept to a single line or two lines at most.
For more complex explanations or errors that have multiple possible
reasons, a paragraph should be added to the `Error_details` page with an
error code reference (e.g. ``.. _err0001:``) then the utility function
:cpp:func:`utils::errorurl() <LAMMPS_NS::utils::errorurl>` can be used
to generate a URL that will directly lead to that paragraph. An error
for missing arguments can be easily generated using the
:cpp:func:`utils::missing_cmd_args()
<LAMMPS_NS::utils::missing_cmd_args>` convenience function.
An example for this approach would be the
``src/read_data.cpp`` and ``src/atom.cpp`` files that implement the
:doc:`read_data <read_data>` and :doc:`atom_modify <atom_modify>`
commands and that may create :ref:`"Unknown identifier in data file" <err0001>`
errors that may have multiple possible reasons which complicates debugging,
and thus require some additional explanation.
The transformation of existing LAMMPS code to this new scheme is
ongoing. Given the size of the LAMMPS code base, it will take a
significant amount of time to complete. For new code, however,
following the new approach is strongly preferred. The expectation is
that the new scheme will make understanding errors easier for LAMMPS
users, developers, and maintainers.
.. _ReqCitation:
Citation reminder (optional)
-----------------------------
If there is a paper of yours describing your feature (either the
algorithm/science behind the feature itself, or its initial usage, or
its implementation in LAMMPS), you can add the citation to the \*.cpp
source file. See ``src/DIFFRACTION/compute_saed.cpp`` for an example.
A BibTeX format citation is stored in a string variable at the top of
the file, and a single line of code registering this variable is added
to the constructor of the class. When your feature is used, then
LAMMPS (by default) will print the brief info and the DOI in the first
line to the screen and the full citation to the log file.
If there is additional functionality (which may have been added later)
described in a different publication, additional citation descriptions
may be added so long as they are only registered when the
corresponding keyword activating this functionality is used.
With these options, it is possible to have LAMMPS output a specific
citation reminder whenever a user invokes your feature from their
input script. Please note that you should *only* use this for the
*most* relevant paper for a feature and a publication that you or your
group authored. E.g. adding a citation in the source code for a paper
by Nose and Hoover if you write a fix that implements their integrator
is not the intended usage. That kind of citation should just be
included in the documentation page you provide describing your
contribution. If you are not sure what the best option would be,
please contact the LAMMPS developers for advice.
.. _ReqUnitTesting:
Testing (optional)
------------------
If your contribution contains new utility functions or a supporting
class (i.e. anything that does not depend on a LAMMPS object), new
unit tests should be added to a suitable folder in the ``unittest``
tree. When adding a new LAMMPS style computing forces or selected
fixes, a ``.yaml`` file with a test configuration and reference data
should be added for the styles where a suitable tester program already
exists (e.g. pair styles, bond styles, etc.). Please see :ref:`this
section in the manual <testing>` for more information on how to
enable, run, and expand testing.

View File

@ -1,72 +1,350 @@
LAMMPS programming style
========================
LAMMPS programming style and requirements for contributions
===========================================================
The aim of the LAMMPS developers is to use a consistent programming
style and naming conventions across the entire code base, as this
helps with maintenance, debugging, and understanding the code, both
for developers and users. This page provides a list of standard style
choices used in LAMMPS. Some of these standards are required, while
others are just preferred. Following these conventions will make it
much easier to integrate your contribution. If you are uncertain,
please ask.
The following is a summary of the current requirements and
recommendations for including contributed source code or documentation
into the LAMMPS software distribution.
The files `pair_lj_cut.h`, `pair_lj_cut.cpp`, `utils.h`, and
`utils.cpp` may serve as representative examples.
Motivation
----------
Include files (varied)
^^^^^^^^^^^^^^^^^^^^^^
The LAMMPS developers are committed to providing a software package that
is versatile, reliable, high-quality, efficient, portable, and easy to
maintain and modify. Achieving all of these goals is challenging since
a large part of LAMMPS consists of contributed code from many different
authors and not many of them are professionally trained programmers and
familiar with the idiosyncrasies of maintaining a large software
package. In addition, changes that interfere with the parallel
efficiency of the core code must be avoided. As LAMMPS continues to
grow and more features and functionality are added, it becomes a
necessity to be more discriminating with new contributions while also
working at the same time to improve the existing code.
- Header files that define a new LAMMPS style (i.e. that have a
``SomeStyle(some/name,SomeName);`` macro in them) should only use
the include file for the base class and otherwise use forward
declarations and pointers; when interfacing to a library use the
PIMPL (pointer to implementation) approach where you have a pointer
to a struct that contains all library specific data (and thus
requires the library header) but use a forward declaration and
define the struct only in the implementation file. This is a
**strict** requirement since this is where type clashes between
packages and hard-to-find bugs have regularly manifested in the
past.
The following requirements and recommendations are provided to help
maintaining or improving that status. Where possible we utilize
available continuous integration tools to search for common programming
mistakes, portability limitations, incompatible formatting, and
undesired side effects. It is indicated which requirements are strict,
and which represent a preference and thus are negotiable or optional.
- Header files, especially those defining a "style", should only use the
absolute minimum number of include files and **must not** contain any
``using`` statements. Typically, that would only be the header for the
base class. Instead, any include statements should be put in the
corresponding implementation files and forward declarations be used.
For implementation files, the "include what you use" principle should
be employed. However, there is the notable exception that when the
``pointers.h`` header is included (or the header of one of the classes
derived from it), certain headers will *always* be included and thus
do not need to be explicitly specified. These are: `mpi.h`,
`cstddef`, `cstdio`, `cstdlib`, `string`, `utils.h`, `vector`,
`fmt/format.h`, `climits`, `cinttypes`. This also means any such file
can assume that `FILE`, `NULL`, and `INT_MAX` are defined.
Please feel free to contact the LAMMPS core developers in case you need
additional explanations or clarifications or in case you need assistance
in realizing the (strict) requirements for your contributions.
- Class members variables should not be initialized in the header file,
but instead should be initialized either in the initializer list of
the constructor or explicitly assigned in the body of the constructor.
If the member variable is relevant to the functionality of a class
(for example when it stores a value from a command line argument), the
member variable declaration is followed by a brief comment explaining
its purpose and what its values can be. Class members that are
pointers should always be initialized to ``nullptr`` in the
initializer list of the constructor. This reduces clutter in the
header and avoids accessing uninitialized pointers, which leads to
hard to debug issues, class members are often implicitly initialized
to ``NULL`` on the first use (but *not* after a :doc:`clear command
<clear>`). Please see the files ``reset_atoms_mol.h`` and
``reset_atoms_mol.cpp`` as an example.
Licensing requirements (strict)
-------------------------------
- System headers or headers from installed libraries are included with
angular brackets (example: ``#include <vector>``), while local
include files use double quotes (example: ``#include "atom.h"``)
Contributing authors agree when submitting a pull request that their
contributions can be distributed under the LAMMPS license
conditions. This is the GNU public license in version 2 (not 3 or later)
for the publicly distributed versions, e.g. on the LAMMPS homepage or on
GitHub. On request we also make a version of LAMMPS available under
LGPL 2.1 terms; this will usually be the latest available or a previous
stable version with a few LGPL 2.1 incompatible files removed.
- When including system header files from the C library use the
C++-style names (``<cstdlib>`` or ``<cstring>``) instead of the
C-style names (``<stdlib.h>`` or ``<string.h>``)
Your new source files should have the LAMMPS copyright, GPL notice, and
your name and email address at the top, like other user-contributed
LAMMPS source files.
- The order of ``#include`` statements in a file ``some_name.cpp``
that implements a class ``SomeName`` defined in a header file
Contributions may be under a different license for long as that
license does not conflict with the aforementioned terms. Contributions
that use code with a conflicting license can be split into two parts:
1. the core parts (i.e. parts that must be in the `src` tree) that are
licensed under compatible terms and bundled with the LAMMPS sources
2. an external library that must be downloaded and compiled (either
separately or as part of the LAMMPS compilation)
Please note, that this split licensed mode may complicate including the
contribution in binary packages.
Using Pull Requests on GitHub (preferred)
-----------------------------------------
All contributions to LAMMPS are processed as pull requests on GitHub
(this also applies to the work of the core LAMMPS developers). A
:doc:`tutorial for submitting pull requests on GitHub <Howto_github>` is
provided. If this is still problematic, contributors may contact any of
the core LAMMPS developers for help or to create a pull request on their
behalf. This latter way of submission may delay the integration as it
depends on the amount of time required to prepare the pull request and
free time available by the LAMMPS developer in question to spend on this
task.
Integration Testing (strict)
----------------------------
Contributed code, like all pull requests, must pass the automated
tests on GitHub before it can be merged with the LAMMPS distribution.
These tests compile LAMMPS in a variety of environments and settings and
run the bundled unit tests. At the discretion of the LAMMPS developer
managing the pull request, additional tests may be activated that test
for "side effects" on running a collection of input decks and create
consistent results. Also, the translation of the documentation to HTML
and PDF is tested for.
More specifically, this means that contributed source code **must**
compile with the most current version of LAMMPS with ``-DLAMMPS_BIGBIG``
in addition to the default setting of ``-DLAMMPS_SMALLBIG``. The code
needs to work correctly in both cases and also in serial and parallel
using MPI.
Some "disruptive" changes may break tests and require updates to the
testing tools or scripts or tests themselves. This is rare. If in
doubt, contact the LAMMPS developer that is assigned to the pull request
for further details and explanations and suggestions of what needs to be
done.
Documentation (strict)
----------------------
Contributions that add new styles or commands or augment existing ones
must include the corresponding new or modified documentation in
`ReStructuredText format <rst_>`_ (.rst files in the ``doc/src/``
folder). The documentation shall be written in American English and the
.rst file must use only ASCII characters so it can be cleanly translated
to PDF files (via `sphinx <https://www.sphinx-doc.org>`_ and PDFLaTeX).
Special characters may be included via embedded math expression typeset
in a LaTeX subset.
.. _rst: https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
When adding new commands, they need to be integrated into the sphinx
documentation system, and the corresponding command tables and lists
updated. When translating the documentation into html files there should
be no warnings. When adding a new package also some lists describing
packages must be updated as well as a package specific description added
and, if necessary, some package specific build instructions included.
As appropriate, the text files with the documentation can include inline
mathematical expression or figures (see ``doc/JPG`` for examples).
Additional PDF files with further details (see ``doc/PDF`` for examples) may
also be included. The page should also include literature citations as
appropriate; see the bottom of ``doc/fix_nh.rst`` for examples and the
earlier part of the same file for how to format the cite itself.
Citation labels must be unique across **all** .rst files. The
"Restrictions" section of the page should indicate if your command is
only available if LAMMPS is built with the appropriate FOO package. See
other package doc files for examples of how to do this.
Please run at least "make html" and "make spelling" and carefully
inspect and proofread the resulting HTML format doc page before
submitting your code. Upon submission of a pull request, checks for
error free completion of the HTML and PDF build will be performed and
also a spell check, a check for correct anchors and labels, and a check
for completeness of references all styles in their corresponding tables
and lists is run. In case the spell check reports false positives they
can be added to the file ``doc/utils/sphinx-config/false_positives.txt``
Contributions that add or modify the library interface or "public" APIs
from the C++ code or the Fortran module must include suitable doxygen
comments in the source and corresponding changes to the documentation
sources for the "Programmer Guide" guide section of the LAMMPS manual.
Examples (preferred)
--------------------
In most cases, it is preferred that example scripts (simple, small, fast
to complete on 1 CPU) are included that demonstrate the use of new or
extended functionality. These are typically under the examples or
examples/PACKAGES directory. A few guidelines for such example input
decks.
- commands that generate output should be commented out (except when the
output is the sole purpose or the feature, e.g. for a new compute).
- commands like :doc:`log <log>`, :doc:`echo <echo>`, :doc:`package
<package>`, :doc:`processors <processors>`, :doc:`suffix <suffix>` may
**not** be used in the input file (exception: "processors * * 1" or
similar is acceptable when used to avoid unwanted domain decomposition
of empty volumes).
- outside of the log files no generated output should be included
- custom thermo_style settings may not include output measuring CPU or other time
as that makes comparing the thermo output between different runs more complicated.
- input files should be named ``in.name``, data files should be named
``data.name`` and log files should be named ``log.version.name.<compiler>.<ncpu>``
- the total file size of all the inputs and outputs should be small
- where possible potential files from the "potentials" folder or data
file from other folders should be re-used through symbolic links
Howto document (optional)
-------------------------
If your feature requires some more complex steps and explanations to be
used correctly or some external or bundled tools or scripts, we
recommend that you also contribute a :doc:`Howto document <Howto>`
providing some more background information and some tutorial material.
This can also be used to provide more in-depth explanations for bundled
examples.
As a general rule-of-thumb, the more clear and self-explanatory you make
your documentation, README files and examples, and the easier you make
it for people to get started, the more likely it is that users will try
out your new feature.
Programming Style Requirements (varied)
---------------------------------------
The LAMMPS developers aim to employ a consistent programming style and
naming conventions across the entire code base, as this helps with
maintenance, debugging, and understanding the code, both for developers
and users.
The files `pair_lj_cut.h`, `pair_lj_cut.cpp`, `utils.h`, and `utils.cpp`
may serve as representative examples.
Command or Style names, file names, and keywords (mostly strict)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
All user-visible command or style names should be all lower case and
should only use letters, numbers, or forward slashes. They should be
descriptive and initialisms should be avoided unless they are well
established (e.g. lj for Lennard-Jones). For a compute style
"some/name" the source files must be called `compute_some_name.h` and
`compute_some_name.cpp`. The "include guard" would then be
`LMP_COMPUTE_SOME_NAME_H` and the class name `ComputeSomeName`.
Whitespace and permissions (preferred)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Source files should not contain TAB characters unless required by the
syntax (e.g. in makefiles) and no trailing whitespace. Text files
should be added with Unix-style line endings (LF-only). Git will
automatically convert those in both directions when running on Windows;
use dos2unix on Linux machines to convert files. Text files should have
a line ending on the last line.
All files should have 0644 permissions, i.e writable to the user only
and readable by all and no executable permissions. Executable
permissions (0755) should only be on shell scripts or python or similar
scripts for interpreted script languages.
You can check for these issues with the python scripts in the
:ref:`"tools/coding_standard" <coding_standard>` folder. When run
normally with a source file or a source folder as argument, they will
list all non-conforming lines. By adding the `-f` flag to the command
line, they will modify the flagged files to try removing the detected
issues.
Indentation and Placement of Braces (strongly preferred)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
LAMMPS uses 2 characters per indentation level and lines should be
kept within 100 characters wide.
For new files added to the "src" tree, a `clang-format
<https://clang.llvm.org/docs/ClangFormat.html>`_ configuration file is
provided under the name `.clang-format`. This file is compatible with
clang-format version 8 and later. With that file present files can be
reformatted according to the configuration with a command like:
`clang-format -i new-file.cpp`. Ideally, this is done while writing the
code or before a pull request is submitted. Blocks of code where the
reformatting from clang-format yields undesirable output may be
protected with placing a pair `// clang-format off` and `// clang-format
on` comments around that block.
Error or warning messages and explanations (preferred)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. versionchanged:: 4May2022
Starting with LAMMPS version 4 May 2022 the LAMMPS developers have
agreed on a new policy for error and warning messages.
Previously, all error and warning strings were supposed to be listed in
the class header files with an explanation. Those would then be
regularly "harvested" and transferred to alphabetically sorted lists in
the manual. To avoid excessively long lists and to reduce effort, this
came with a requirement to have rather generic error messages (e.g.
"Illegal ... command"). To identify the specific cause, the name of the
source file and the line number of the error location would be printed,
so that one could look up the cause by reading the source code.
The new policy encourages more specific error messages that ideally
indicate the cause directly and no further lookup would be needed.
This is aided by using the `{fmt} library <https://fmt.dev>`_ to convert
the Error class commands so that they take a variable number of arguments
and error text will be treated like a {fmt} syntax format string.
Error messages should still kept to a single line or two lines at the most.
For more complex explanations or errors that have multiple possible
reasons, a paragraph should be added to the `Error_details` page with an
error code reference (e.g. ``.. _err0001:``) then the utility function
:cpp:func:`utils::errorurl() <LAMMPS_NS::utils::errorurl>` can be used
to generate an URL that will directly lead to that paragraph. An error
for missing arguments can be easily generated using the
:cpp:func:`utils::missing_cmd_args()
<LAMMPS_NS::utils::missing_cmd_args>` convenience function.
The transformation of existing LAMMPS code to this new scheme is ongoing
and - given the size of the LAMMPS source code - will take a significant
amount of time until completion. However, for new code following the
new approach is strongly preferred. The expectation is that the new
scheme will make it easier for LAMMPS users, developers, and
maintainers.
An example for this approach would be the
``src/read_data.cpp`` and ``src/atom.cpp`` files that implement the
:doc:`read_data <read_data>` and :doc:`atom_modify <atom_modify>`
commands and that may create :ref:`"Unknown identifier in data file" <err0001>`
errors that seem difficult to debug for users because they may have
one of multiple possible reasons, and thus require some additional explanations.
Programming language standards (required)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The core of LAMMPS is written in C++11 in a style that can be mostly
described as "C with classes". Advanced C++ features like operator
overloading or excessive use of templates are avoided with the intent to
keep the code readable to programmers that have limited C++ programming
experience. C++ constructs are acceptable when they help improving the
readability and reliability of the code, e.g. when using the
`std::string` class instead of manipulating pointers and calling the
string functions of the C library. In addition a collection of
convenient :doc:`utility functions and classes <Developer_utils>` for
recurring tasks and a collection of
:doc:`platform neutral functions <Developer_platform>` for improved
portability are provided.
Included Fortran code has to be compatible with the Fortran 2003
standard. Python code must be compatible with Python 3.5. Large parts
or LAMMPS (including the :ref:`PYTHON package <PKG-PYTHON>`) are also
compatible with Python 2.7. Compatibility with Python 2.7 is
desirable, but compatibility with Python 3.5 is **required**.
Compatibility with these older programming language standards is very
important to maintain portability and availability of LAMMPS on many
platforms. This applies especially to HPC cluster environments, which
tend to be running older software stacks and LAMMPS users may be
required to use those older tools for access to advanced hardware
features or not have the option to install newer compilers or libraries.
Programming conventions (varied)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The following is a collection of conventions that should be applied when
writing code for LAMMPS. Following these steps will make it much easier
to integrate your contribution. Please have a look at the existing files
in packages in the src directory for examples. As a demonstration for
how can be adapted to these conventions you may compare the REAXFF
package with the what it looked like when it was called USER-REAXC. If
you are uncertain, please ask.
- system headers or from installed libraries are include with angular
brackets (example: ``#include <vector>``), while local include file
use double quotes (example: ``#include "atom.h"``).
- when including system header files from the C library use the
C++-style names (``<cstdlib>`` or ``<cstring>``) instead of the
C-style names (``<stdlib.h>`` or ``<string.h>``)
- the order of ``#include`` statements in a file ``some_name.cpp`` that
implements a class ``SomeName`` defined in a header file
``some_name.h`` should be as follows:
- ``#include "some_name.h"`` followed by an empty line
@ -74,70 +352,34 @@ Include files (varied)
- LAMMPS include files e.g. ``#include "comm.h"`` or ``#include
"modify.h"`` in alphabetical order followed by an empty line
- System header files from the C++ or C standard library followed by
- system header files from the C++ or C standard library followed by
an empty line
- ``using namespace LAMMPS_NS`` or other namespace imports.
Whitespace (preferred)
^^^^^^^^^^^^^^^^^^^^^^
Source files should not contain TAB characters unless required by the
syntax (e.g. in makefiles) and no trailing whitespace. Text files
should have Unix-style line endings (LF-only). Git will automatically
convert those in both directions when running on Windows; use dos2unix
on Linux machines to convert files to Unix-style line endings. The
last line of text files include a line ending.
You can check for these issues with the python scripts in the
:ref:`"tools/coding_standard" <coding_standard>` folder. When run
normally with a source file or a source folder as argument, they will
list all non-conforming lines. By adding the `-f` flag to the command
line, they will modify the flagged files to try to remove the detected
issues.
Placement of braces (strongly preferred)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
For new files added to the "src" tree, a `clang-format
<https://clang.llvm.org/docs/ClangFormat.html>`_ configuration file is
provided under the name `.clang-format`. This file is compatible with
clang-format version 8 and later. With that file present, files can be
reformatted according to the configuration with a command like:
`clang-format -i new-file.cpp`. Ideally, this is done while writing
the code or before a pull request is submitted. Blocks of code where
the reformatting from clang-format yields hard-to-read or otherwise
undesirable output may be protected with placing a pair `//
clang-format off` and `// clang-format on` comments around that block.
Miscellaneous standards (varied)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
- I/O is done via the C-style stdio library and **not** iostreams.
- Do not use so-called "alternative tokens" like ``and``, ``or``,
``not`` and similar, but rather use the corresponding operators
``&&``, ``||``, and ``!``. The alternative tokens are not available
by default on all compilers.
by default on all compilers, and also we want to maintain a consistent
programming style.
- Output to the screen and the logfile should use the corresponding
FILE pointers and only be done on MPI rank 0. Use the
:cpp:func:`utils::logmesg` convenience function where possible.
- Output to the screen and the logfile should be using the corresponding
FILE pointers and only be done on MPI rank 0. Use the :cpp:func:`utils::logmesg`
convenience function where possible.
- Usage of C++11 `virtual`, `override`, `final` keywords: Please
follow the `C++ Core Guideline C.128
<https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-override>`_.
- Usage of C++11 `virtual`, `override`, `final` keywords: Please follow the
`C++ Core Guideline C.128 <https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rh-override>`_.
That means, you should only use `virtual` to declare a new virtual
function, `override` to indicate you are overriding an existing
virtual function, and `final` to prevent any further overriding.
function, `override` to indicate you are overriding an existing virtual
function, and `final` to prevent any further overriding.
- Trivial destructors: Do not write destructors when they are empty
and `default`.
- Trivial destructors: Prefer not writing destructors when they are empty and `default`.
.. code-block:: c++
// don't write destructors for A or B like this
class A : protected Pointers {
public:
A();
@ -151,7 +393,6 @@ Miscellaneous standards (varied)
};
// instead, let the compiler create the implicit default destructor by not writing it
class A : protected Pointers {
public:
A();
@ -162,11 +403,37 @@ Miscellaneous standards (varied)
B();
};
- Header files, especially those defining a "style", should only use
the absolute minimum number of include files and **must not** contain
any ``using`` statements. Typically that would be only the header for
the base class. Instead any include statements should be put into the
corresponding implementation files and forward declarations be used.
For implementation files, the "include what you use" principle should
be employed. However, there is the notable exception that when the
``pointers.h`` header is included (or one of the base classes derived
from it) certain headers will always be included and thus do not need
to be explicitly specified.
These are: `mpi.h`, `cstddef`, `cstdio`, `cstdlib`, `string`, `utils.h`,
`vector`, `fmt/format.h`, `climits`, `cinttypes`.
This also means any such file can assume that `FILE`, `NULL`, and
`INT_MAX` are defined.
- Header files that define a new LAMMPS style (i.e. that have a
``SomeStyle(some/name,SomeName);`` macro in them) should only use the
include file for the base class and otherwise use forward declarations
and pointers; when interfacing to a library use the PIMPL (pointer
to implementation) approach where you have a pointer to a struct
that contains all library specific data (and thus requires the library
header) but use a forward declaration and define the struct only in
the implementation file. This is a **strict** requirement since this
is where type clashes between packages and hard to find bugs have
regularly manifested in the past.
- Please use clang-format only to reformat files that you have
contributed. For header files containing a ``SomeStyle(keyword,
ClassName)`` macros it is required to have this macro embedded with
a pair of ``// clang-format off``, ``// clang-format on`` comments
and the line must be terminated with a semicolon (;). Example:
ClassName)`` macros it is required to have this macro embedded with a
pair of ``// clang-format off``, ``// clang-format on`` commends and
the line must be terminated with a semi-colon (;). Example:
.. code-block:: c++
@ -179,10 +446,92 @@ Miscellaneous standards (varied)
#ifndef LMP_RUN_H
[...]
You may also use ``// clang-format on/off`` throughout your files to
protect individual sections from being reformatted.
You may also use ``// clang-format on/off`` throughout your files
to protect individual sections from being reformatted.
- All files should have 0644 permissions, i.e. writable by the user
only and readable by all and no executable permissions. Executable
permissions (0755) should only be for shell scripts or python or
similar scripts for interpreted script languages.
- We rarely accept new styles in the core src folder. Thus please
review the list of :doc:`available Packages <Packages_details>` to see
if your contribution could be added to be added to one of them. It
should fit into the general purposed of that package. If it does not
fit well, it may be added to one of the EXTRA- packages or the MISC
package.
Contributing a package
----------------------
If your contribution has several related features that are not covered
by one of the existing packages or is dependent on a library (bundled or
external), it is best to make it a package directory with a name like
FOO. In addition to your new files, the directory should contain a
README text file. The README should contain your name and contact
information and a brief description of what your new package does.
Build system (strongly preferred)
---------------------------------
LAMMPS currently supports two build systems: one that is based on
:doc:`traditional Makefiles <Build_make>` and one that is based on
:doc:`CMake <Build_cmake>`. Thus your contribution must be compatible
with and support both.
For a single pair of header and implementation files that are an
independent feature, it is usually only required to add them to
`src/.gitignore``.
For traditional make, if your contributed files or package depend on
other LAMMPS style files or packages also being installed (e.g. because
your file is a derived class from the other LAMMPS class), then an
Install.sh file is also needed to check for those dependencies and
modifications to src/Depend.sh to trigger the checks. See other README
and Install.sh files in other directories as examples.
Similarly for CMake support, changes may need to be made to
cmake/CMakeLists.txt, some of the files in cmake/presets, and possibly a
file with specific instructions needs to be added to
cmake/Modules/Packages/. Please check out how this is handled for
existing packages and ask the LAMMPS developers if you need assistance.
Citation reminder (suggested)
-----------------------------
If there is a paper of yours describing your feature (either the
algorithm/science behind the feature itself, or its initial usage, or
its implementation in LAMMPS), you can add the citation to the \*.cpp
source file. See ``src/DIFFRACTION/compute_saed.cpp`` for an example.
A BibTeX format citation is stored in a string variable at the top
of the file and a single line of code registering this variable is
added to the constructor of the class. When your feature is used,
by default, LAMMPS will print the brief info and the DOI
in the first line to the screen and the full citation to the log file.
If there is additional functionality (which may have been added later)
described in a different publication, additional citation descriptions
may be added for as long as they are only registered when the
corresponding keyword activating this functionality is used. With these
options it is possible to have LAMMPS output a specific citation
reminder whenever a user invokes your feature from their input script.
Please note that you should *only* use this for the *most* relevant
paper for a feature and a publication that you or your group authored.
E.g. adding a citation in the code for a paper by Nose and Hoover if you
write a fix that implements their integrator is not the intended usage.
That latter kind of citation should just be included in the
documentation page you provide describing your contribution. If you are
not sure what the best option would be, please contact the LAMMPS
developers for advice.
Testing (optional)
------------------
If your contribution contains new utility functions or a supporting class
(i.e. anything that does not depend on a LAMMPS object), new unit tests
should be added to a suitable folder in the ``unittest`` tree.
When adding a new LAMMPS style computing forces or selected fixes,
a ``.yaml`` file with a test configuration and reference data should be
added for the styles where a suitable tester program already exists
(e.g. pair styles, bond styles, etc.). Please see
:ref:`this section in the manual <testing>` for more information on
how to enable, run, and expand testing.

View File

@ -67,6 +67,7 @@ page gives those details.
* :ref:`KOKKOS <PKG-KOKKOS>`
* :ref:`KSPACE <PKG-KSPACE>`
* :ref:`LATBOLTZ <PKG-LATBOLTZ>`
* :ref:`LATTE <PKG-LATTE>`
* :ref:`LEPTON <PKG-LEPTON>`
* :ref:`MACHDYN <PKG-MACHDYN>`
* :ref:`MANIFOLD <PKG-MANIFOLD>`
@ -1356,6 +1357,43 @@ The LATBOLTZ package requires that LAMMPS is build in :ref:`MPI parallel mode <s
----------
.. _PKG-LATTE:
LATTE package
-------------
**Contents:**
A fix command which wraps the LATTE DFTB code, so that molecular
dynamics can be run with LAMMPS using density-functional tight-binding
quantum forces calculated by LATTE.
More information on LATTE can be found at this website:
`https://github.com/lanl/LATTE <latte-home_>`_. A brief technical
description is given with the :doc:`fix latte <fix_latte>` command.
.. _latte-home: https://github.com/lanl/LATTE
**Authors:** Christian Negre (LANL) and Steve Plimpton (Sandia). LATTE
itself is developed at Los Alamos National Laboratory by Marc
Cawkwell, Anders Niklasson, and Christian Negre.
**Install:**
This package has :ref:`specific installation instructions <latte>` on
the :doc:`Build extras <Build_extras>` page.
**Supporting info:**
* src/LATTE: filenames -> commands
* src/LATTE/README
* lib/latte/README
* :doc:`fix latte <fix_latte>`
* examples/latte
* `LAMMPS-LATTE tutorial <https://github.com/lanl/LATTE/wiki/Using-LATTE-through-LAMMPS>`_
----------
.. _PKG-LEPTON:
LEPTON package

View File

@ -233,6 +233,11 @@ whether an extra library is needed to build and use the package:
- :doc:`fix lb/fluid <fix_lb_fluid>`
- PACKAGES/latboltz
- no
* - :ref:`LATTE <PKG-LATTE>`
- quantum DFTB forces via LATTE
- :doc:`fix latte <fix_latte>`
- latte
- ext
* - :ref:`LEPTON <PKG-LEPTON>`
- evaluate strings as potential function
- :doc:`pair_style lepton <pair_lepton>`

View File

@ -53,7 +53,6 @@ against invalid accesses.
* :py:meth:`version() <lammps.lammps.version()>`: return the numerical version id, e.g. LAMMPS 2 Sep 2015 -> 20150902
* :py:meth:`get_thermo() <lammps.lammps.get_thermo()>`: return current value of a thermo keyword
* :py:meth:`last_thermo() <lammps.lammps.last_thermo()>`: return a dictionary of the last thermodynamic output
* :py:meth:`get_natoms() <lammps.lammps.get_natoms()>`: total # of atoms as int
* :py:meth:`reset_box() <lammps.lammps.reset_box()>`: reset the simulation box size
* :py:meth:`extract_setting() <lammps.lammps.extract_setting()>`: return a global setting
@ -61,10 +60,6 @@ against invalid accesses.
* :py:meth:`extract_box() <lammps.lammps.extract_box()>`: extract box info
* :py:meth:`create_atoms() <lammps.lammps.create_atoms()>`: create N atoms with IDs, types, x, v, and image flags
**Properties**:
* :py:attr:`last_thermo_step <lammps.lammps.last_thermo_step>`: the last timestep thermodynamic output was computed
.. tab:: PyLammps/IPyLammps API
In addition to the functions provided by :py:class:`lammps <lammps.lammps>`, :py:class:`PyLammps <lammps.PyLammps>` objects

Some files were not shown because too many files have changed in this diff Show More