Compare commits

..

61 Commits

Author SHA1 Message Date
7586adbb6a Merge pull request #3029 from akohlmey/maintenance-2021-09-29
Second round of maintenance fixes for the stable release
2022-01-06 19:58:51 -05:00
69d6ddccc5 create missing de,df table elements from linear extrapolation 2022-01-05 15:34:30 -05:00
5ae496dcef backport array dimension bugfix for NETCDF package in simplified form 2022-01-03 19:55:23 -05:00
bc5d742623 explain that the computed force in python pair is force/r same as in Pair:single() 2022-01-03 10:12:38 -05:00
882e699163 Incorporate bugfixes from issue #3074, a few additional cleanups 2022-01-03 10:11:18 -05:00
9c725d79d6 correct code example for current code 2022-01-01 16:42:28 -05:00
79fbf437a3 correct format string for Error::one() 2021-12-29 16:19:10 -05:00
d130aa4289 address segfault issue with fix nve/gpu when group is not "all" 2021-12-29 14:06:52 -05:00
5d8b83a251 backport GPU package build system updates from upstream 2021-12-27 20:30:43 -05:00
5a2548a83d have internal fix/compute ids include the fix id for fix reaxff/species
this allows using the fix multiple times
also remove code and warning that checks for multiple fix instances

# Conflicts:
#	src/REAXFF/fix_reaxff_species.cpp
2021-12-23 11:36:28 -05:00
a85b310e1f add missing fclose() 2021-12-23 11:28:24 -05:00
e51fd40547 correct names of the pack/unpack routines for forward communication 2021-12-09 18:33:13 -05:00
62f271658b correct setting forward/reverse buffer size info 2021-12-08 13:58:12 -05:00
0aa742934f correct docs for pair style local/density 2021-12-08 00:51:52 -05:00
a26a709a7b correct handling of data packing for forward and reverse communication 2021-12-08 00:51:52 -05:00
027293d285 whitespace 2021-11-24 15:47:05 -05:00
f7d049ac2d generate atom tags for newly created atoms, if tags are enabled. triclinic support. 2021-11-24 15:36:16 -05:00
ea0ff1c8f7 Update CMake utility function get_lammps_version()
With the introduction of LAMMPS_UPDATE, version.h is no longer a single line
file. With this change the CMake utility will only process the LAMMPS_VERSION
line. Fixes issue #3038
2021-11-23 10:44:40 -05:00
5c1bb5f13a Write dump header after sort to fix incorrect atom count for multiproc 2021-11-22 15:52:27 -05:00
24d9b4b611 Update lebedeva potential file and docs based on email on mailing list
https://matsci.org/t/lammps-users-webpage-and-parameter-file-for-the-lebedeva-potential/39059
2021-11-17 08:45:55 -05:00
a0e75c9006 correct unit description of eta_n0 parameters. fixes #3016 2021-11-17 08:38:09 -05:00
2435b953e1 increment update counter 2021-11-17 07:04:44 -05:00
c042e12323 clarifications and corrections for the discussion of the main git branches 2021-11-17 07:04:13 -05:00
e9efe46db9 update branch names 2021-11-17 07:03:56 -05:00
ecc14b7308 update documentation to refer to the new branch names (develop, release) 2021-11-17 07:03:27 -05:00
0152fe5cdf fix segfault when using atom style smd as part of a hybrid style
also remove redundant for clearing
2021-11-16 21:49:56 -05:00
892d17af22 plug memory leaks 2021-11-16 21:49:41 -05:00
2cca00203e Avoid file name collisions in dump unit tests
# Conflicts:
#	unittest/formats/test_dump_atom.cpp
2021-11-16 15:08:27 -05:00
9f4626a62a correct uninitialized data access bug due to shadowing of a base class member 2021-11-16 10:51:46 -05:00
e890a0b45e Merge pull request #2999 from akohlmey/maintenance-2021-09-29
Maintenance fixes for the stable release
2021-11-09 15:11:19 -05:00
68223f0385 mention that dump sorting is limited to less than 2 billion atoms 2021-11-07 08:31:15 -05:00
1291a88bff skip MPI tests if they would be oversubscribing the available processors 2021-11-07 08:30:19 -05:00
d9b687450a account for increased floating point errors when summing numbers to zero 2021-11-07 08:30:04 -05:00
bd950b37d7 change git:// protocol for accessing github to https:// protocol
https://github.blog/2021-09-01-improving-git-protocol-security-github/
2021-11-02 15:30:27 -04:00
21fcdf8c56 Fix bug in Kokkos neighborlist where stencil wasn't updated for occasional list 2021-11-02 13:17:28 -04:00
6b400fb4bf fix indexing bug 2021-10-31 16:19:17 -04:00
d982298ab2 update new LAMMPS paper citation info 2021-10-28 10:09:01 -04:00
765fd7f763 Use correct sizeof in memset 2021-10-27 17:46:37 -04:00
0325047c01 update a few GPU kernels so they can be compiled on GPUs without double precisions support 2021-10-21 07:34:05 -04:00
2dce8923ee more direct version of clearing out loaded plugins 2021-10-19 08:28:19 -04:00
8d1ba074be wipe out all loaded plugins before destroying the LAMMPS instance 2021-10-18 18:06:09 -04:00
4675a3b560 Only check for GPU double precision support if a GPU is present 2021-10-18 13:44:37 -04:00
8999b1f69f add a LAMMPS_UPDATE string define to signal updates to stable releases 2021-10-17 18:06:04 -04:00
6c2b19c11b Add support for an "Update #" appendix to the version string
This is for informative output only, so that any code depending
on the LAMMPS_VERSION define will not have to be changed and no
warnings will be printed etc.
2021-10-17 18:05:29 -04:00
a425334928 port dump vtk to correctly support custom per-atom arrays and fix some bugs 2021-10-17 11:00:33 -04:00
db2faf2789 fix bugs related to custom per-atom properties in dump style custom 2021-10-17 11:00:21 -04:00
fdbb7d0da4 Report only compatible GPU, i.e. no GPU if mixed/double precision is requested by the hardware does not support it 2021-10-15 20:26:47 -04:00
52cd99918f pppm kspace styles also require -DFFT_SINGLE when using GPUs in single precision 2021-10-15 20:24:47 -04:00
a3e6a95ffb allow single precision FFT introspection 2021-10-15 20:24:47 -04:00
5b65169997 correct expansion of fix/compute/variable arguments to avoid bogus thermo outpu 2021-10-15 20:23:57 -04:00
5f3bf69e30 plug memory leaks 2021-10-15 17:00:46 -04:00
507c02b9af must set define to "see" the lammps_open() library function 2021-10-09 10:21:31 -04:00
b7fe47ba48 Fix bugs and compilation issues in KOKKOS 2021-10-08 09:39:53 -04:00
7dfd11da4b re-freeze Sphinx and other pip installed packages for doc build
The change relative to the stable release fixes a bug with python 3.10 support
2021-10-05 10:52:34 -04:00
97ba95f30e fix a couple more bugs like in 5246cedda6 2021-10-05 10:39:03 -04:00
c1945b4ec9 Fix misplaced MPI calls bug in pair style drip 2021-10-04 07:12:50 -04:00
c4291a4b8e unfreeze versions of python packages used to build the documentation 2021-10-02 23:57:23 -04:00
5b5dfa86c5 also update eigen download for traditional build 2021-10-02 23:56:28 -04:00
3ca3f6959f update eigen3 to the latest release and move download to our own server 2021-10-02 22:55:06 -04:00
f7b7bfa406 Avoid assertions in PythonCapabilities check when using external KOKKOS 2021-10-01 12:05:59 -04:00
3d2f29c92d fix memory allocation bug causing memory corruption on 32-bit arches 2021-10-01 01:16:45 -04:00
1439 changed files with 25835 additions and 68519 deletions

2
.github/CODEOWNERS vendored
View File

@ -83,7 +83,7 @@ src/library.* @sjplimp
src/main.cpp @sjplimp
src/min_*.* @sjplimp
src/memory.* @sjplimp
src/modify.* @sjplimp @stanmoore1
src/modify.* @sjplimp
src/molecule.* @sjplimp
src/my_page.h @sjplimp
src/my_pool_chunk.h @sjplimp

View File

@ -3,7 +3,7 @@ name: "CodeQL Code Analysis"
on:
push:
branches: [develop]
branches: [master]
jobs:
analyze:

View File

@ -1,33 +0,0 @@
# GitHub action to build LAMMPS on Windows with Visual C++
name: "Native Windows Compilation"
on:
push:
branches: [develop]
jobs:
build:
name: Windows Compilation Test
if: ${{ github.repository == 'lammps/lammps' }}
runs-on: windows-latest
steps:
- name: Checkout repository
uses: actions/checkout@v2
with:
fetch-depth: 2
- name: Building LAMMPS via CMake
shell: bash
run: |
cmake -C cmake/presets/windows.cmake \
-S cmake -B build \
-D BUILD_SHARED_LIBS=on \
-D LAMMPS_EXCEPTIONS=on
cmake --build build --config Release
- name: Run LAMMPS executable
shell: bash
run: |
./build/Release/lmp.exe -h
./build/Release/lmp.exe -in bench/in.lj

View File

@ -3,7 +3,7 @@ name: "Unittest for MacOS"
on:
push:
branches: [develop]
branches: [master]
jobs:
build:

7
.gitignore vendored
View File

@ -37,8 +37,8 @@ vgcore.*
.Trashes
ehthumbs.db
Thumbs.db
.clang-format
.lammps_history
.vs
#cmake
/build*
@ -49,8 +49,3 @@ Thumbs.db
/Testing
/cmake_install.cmake
/lmp
out/Debug
out/RelWithDebInfo
out/Release
out/x86
out/x64

View File

@ -23,10 +23,6 @@ either a user mistake or a bug in the code. Bugs can be reported in
the LAMMPS project
[issue tracker on GitHub](https://github.com/lammps/lammps/issues).
To mitigate issues with using homoglyphs or bidirectional reordering in
unicode, which have been demonstrated as a vector to obfuscate and hide
malicious changes to the source code, all LAMMPS submissions are checked
for unicode characters and only all-ASCII source code is accepted.
# Version Updates

View File

@ -81,40 +81,22 @@ check_for_autogen_files(${LAMMPS_SOURCE_DIR})
include(CheckIncludeFileCXX)
# set required compiler flags and compiler/CPU arch specific optimizations
if(CMAKE_CXX_COMPILER_ID STREQUAL "Intel")
if(CMAKE_SYSTEM_NAME STREQUAL "Windows")
if(CMAKE_CXX_COMPILER_ID STREQUAL "Intel")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /Qrestrict")
endif()
if(CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 17.3 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 17.4)
set(CMAKE_TUNE_DEFAULT "/QxCOMMON-AVX512")
else()
set(CMAKE_TUNE_DEFAULT "/QxHost")
endif()
if((CMAKE_CXX_COMPILER_ID STREQUAL "Intel") OR (CMAKE_CXX_COMPILER_ID STREQUAL "IntelLLVM"))
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -restrict")
if(CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 17.3 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 17.4)
set(CMAKE_TUNE_DEFAULT "-xCOMMON-AVX512")
else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -restrict")
if(CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 17.3 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 17.4)
set(CMAKE_TUNE_DEFAULT "-xCOMMON-AVX512")
else()
set(CMAKE_TUNE_DEFAULT "-xHost")
endif()
set(CMAKE_TUNE_DEFAULT "-xHost")
endif()
endif()
# we require C++11 without extensions. Kokkos requires at least C++14 (currently)
# we require C++11 without extensions
set(CMAKE_CXX_STANDARD 11)
if(PKG_KOKKOS AND (CMAKE_CXX_STANDARD LESS 14))
set(CMAKE_CXX_STANDARD 14)
endif()
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF CACHE BOOL "Use compiler extensions")
# ugly hacks for MSVC which by default always reports an old C++ standard in the __cplusplus macro
# and prints lots of pointless warnings about "unsafe" functions
# ugly hack for MSVC which by default always reports an old C++ standard in the __cplusplus macro
if(MSVC)
add_compile_options(/Zc:__cplusplus)
add_compile_options(/wd4244)
add_compile_options(/wd4267)
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
endif()
# export all symbols when building a .dll file on windows
@ -133,7 +115,10 @@ endif()
set(LAMMPS_BINARY lmp${LAMMPS_MACHINE})
option(BUILD_SHARED_LIBS "Build shared library" OFF)
option(CMAKE_POSITION_INDEPENDENT_CODE "Create object compatible with shared libraries" ON)
if(BUILD_SHARED_LIBS) # for all pkg libs, mpi_stubs and linalg
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
endif()
option(BUILD_TOOLS "Build and install LAMMPS tools (msi2lmp, binary2txt, chain)" OFF)
option(BUILD_LAMMPS_SHELL "Build and install the LAMMPS shell" OFF)
@ -296,16 +281,9 @@ else()
target_include_directories(mpi_stubs PUBLIC $<BUILD_INTERFACE:${LAMMPS_SOURCE_DIR}/STUBS>)
if(BUILD_SHARED_LIBS)
target_link_libraries(lammps PRIVATE mpi_stubs)
if(MSVC)
target_link_libraries(lmp PRIVATE mpi_stubs)
target_include_directories(lmp INTERFACE $<BUILD_INTERFACE:${LAMMPS_SOURCE_DIR}/STUBS>)
target_compile_definitions(lmp INTERFACE $<INSTALL_INTERFACE:LAMMPS_LIB_NO_MPI>)
endif()
target_include_directories(lammps INTERFACE $<BUILD_INTERFACE:${LAMMPS_SOURCE_DIR}/STUBS>)
target_compile_definitions(lammps INTERFACE $<INSTALL_INTERFACE:LAMMPS_LIB_NO_MPI>)
else()
target_include_directories(lammps INTERFACE $<BUILD_INTERFACE:${LAMMPS_SOURCE_DIR}/STUBS>)
target_compile_definitions(lammps INTERFACE $<INSTALL_INTERFACE:LAMMPS_LIB_NO_MPI>)
target_link_libraries(lammps PUBLIC mpi_stubs)
endif()
add_library(MPI::MPI_CXX ALIAS mpi_stubs)
@ -339,6 +317,7 @@ pkg_depends(ML-IAP ML-SNAP)
pkg_depends(MPIIO MPI)
pkg_depends(ATC MANYBODY)
pkg_depends(LATBOLTZ MPI)
pkg_depends(PHONON KSPACE)
pkg_depends(SCAFACOS MPI)
pkg_depends(DIELECTRIC KSPACE)
pkg_depends(DIELECTRIC EXTRA-PAIR)
@ -489,12 +468,9 @@ foreach(HEADER cmath)
endif(NOT FOUND_${HEADER})
endforeach(HEADER)
# make the standard math library overrideable and autodetected (for systems that don't have it)
find_library(STANDARD_MATH_LIB m DOC "Standard Math library")
mark_as_advanced(STANDARD_MATH_LIB)
if(STANDARD_MATH_LIB)
target_link_libraries(lammps PRIVATE ${STANDARD_MATH_LIB})
endif()
set(MATH_LIBRARIES "m" CACHE STRING "math library")
mark_as_advanced( MATH_LIBRARIES )
target_link_libraries(lammps PRIVATE ${MATH_LIBRARIES})
######################################
# Generate Basic Style files
@ -608,19 +584,22 @@ endif()
# packages which selectively include variants based on enabled styles
# e.g. accelerator packages
######################################################################
foreach(PKG_WITH_INCL CORESHELL DPD-SMOOTH PHONON QEQ OPENMP KOKKOS OPT INTEL GPU)
foreach(PKG_WITH_INCL CORESHELL QEQ OPENMP DPD-SMOOTH KOKKOS OPT INTEL GPU)
if(PKG_${PKG_WITH_INCL})
include(Packages/${PKG_WITH_INCL})
endif()
endforeach()
if(PKG_PLUGIN)
target_compile_definitions(lammps PRIVATE -DLMP_PLUGIN)
endif()
# link with -ldl or equivalent for plugin loading; except on Windows
if(NOT ${CMAKE_SYSTEM_NAME} STREQUAL "Windows")
target_link_libraries(lammps PRIVATE ${CMAKE_DL_LIBS})
if(BUILD_SHARED_LIBS)
target_compile_definitions(lammps PRIVATE -DLMP_PLUGIN)
else()
message(WARNING "Plugin loading will not work unless BUILD_SHARED_LIBS is enabled")
endif()
# link with -ldl or equivalent for plugin loading; except on Windows
if(NOT ${CMAKE_SYSTEM_NAME} STREQUAL "Windows")
target_link_libraries(lammps PRIVATE ${CMAKE_DL_LIBS})
endif()
endif()
######################################################################
@ -629,7 +608,7 @@ endif()
# and after everything else that is compiled locally
######################################################################
if(CMAKE_SYSTEM_NAME STREQUAL "Windows")
target_link_libraries(lammps PRIVATE "wsock32;psapi")
target_link_libraries(lammps PRIVATE -lwsock32 -lpsapi)
endif()
######################################################
@ -807,17 +786,11 @@ if(ClangFormat_FOUND)
endif()
get_target_property(DEFINES lammps COMPILE_DEFINITIONS)
get_property(BUILD_IS_MULTI_CONFIG GLOBAL PROPERTY GENERATOR_IS_MULTI_CONFIG)
if(BUILD_IS_MULTI_CONFIG)
set(LAMMPS_BUILD_TYPE "Multi-Config")
else()
set(LAMMPS_BUILD_TYPE ${CMAKE_BUILD_TYPE})
endif()
include(FeatureSummary)
feature_summary(DESCRIPTION "The following tools and libraries have been found and configured:" WHAT PACKAGES_FOUND)
message(STATUS "<<< Build configuration >>>
Operating System: ${CMAKE_SYSTEM_NAME} ${CMAKE_LINUX_DISTRO} ${CMAKE_DISTRO_VERSION}
Build type: ${LAMMPS_BUILD_TYPE}
Build type: ${CMAKE_BUILD_TYPE}
Install path: ${CMAKE_INSTALL_PREFIX}
Generator: ${CMAKE_GENERATOR} using ${CMAKE_MAKE_PROGRAM}")
###############################################################################

View File

@ -1,111 +0,0 @@
{
"configurations": [
{
"name": "x64-Debug-MSVC",
"generator": "Ninja",
"configurationType": "Debug",
"buildRoot": "${workspaceRoot}\\build\\${name}",
"installRoot": "${workspaceRoot}\\install\\${name}",
"cmakeCommandArgs": "-S ${workspaceRoot}\\cmake -C ${workspaceRoot}\\cmake\\presets\\windows.cmake -DENABLE_TESTING=on",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": [ "msvc_x64_x64" ],
"variables": [
{
"name": "BUILD_SHARED_LIBS",
"value": "True",
"type": "BOOL"
},
{
"name": "BUILD_TOOLS",
"value": "True",
"type": "BOOL"
},
{
"name": "LAMMPS_EXCEPTIONS",
"value": "True",
"type": "BOOL"
}
]
},
{
"name": "x64-Debug-Clang",
"generator": "Ninja",
"configurationType": "Debug",
"buildRoot": "${workspaceRoot}\\build\\${name}",
"installRoot": "${workspaceRoot}\\install\\${name}",
"cmakeCommandArgs": "-S ${workspaceRoot}\\cmake -C ${workspaceRoot}\\cmake\\presets\\windows.cmake -DENABLE_TESTING=on",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": [ "clang_cl_x64" ],
"variables": [
{
"name": "BUILD_TOOLS",
"value": "True",
"type": "BOOL"
},
{
"name": "LAMMPS_EXCEPTIONS",
"value": "True",
"type": "BOOL"
}
]
},
{
"name": "x64-Debug-OneAPI",
"generator": "Ninja",
"configurationType": "Debug",
"buildRoot": "${workspaceRoot}\\build\\${name}",
"installRoot": "${workspaceRoot}\\install\\${name}",
"cmakeCommandArgs": "-S ${workspaceRoot}\\cmake -C ${workspaceRoot}\\cmake\\presets\\windows.cmake -DENABLE_TESTING=on -DCMAKE_CXX_COMPILER=icx -DCMAKE_C_COMPILER=icx -DBUILD_MPI=off",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": [ "msvc_x64_x64" ],
"variables": [
{
"name": "BUILD_SHARED_LIBS",
"value": "True",
"type": "BOOL"
},
{
"name": "BUILD_TOOLS",
"value": "True",
"type": "BOOL"
},
{
"name": "LAMMPS_EXCEPTIONS",
"value": "True",
"type": "BOOL"
}
]
},
{
"name": "x64-Debug-Intel",
"generator": "Ninja",
"configurationType": "Debug",
"buildRoot": "${workspaceRoot}\\build\\${name}",
"installRoot": "${workspaceRoot}\\install\\${name}",
"cmakeCommandArgs": "-S ${workspaceRoot}\\cmake -C ${workspaceRoot}\\cmake\\presets\\windows.cmake -DENABLE_TESTING=off -DCMAKE_CXX_COMPILER=icl -DCMAKE_C_COMPILER=icl -DCMAKE_Fortran_COMPILER=ifort -DBUILD_MPI=off",
"buildCommandArgs": "",
"ctestCommandArgs": "",
"inheritEnvironments": [ "msvc_x64_x64" ],
"variables": [
{
"name": "BUILD_SHARED_LIBS",
"value": "True",
"type": "BOOL"
},
{
"name": "BUILD_TOOLS",
"value": "True",
"type": "BOOL"
},
{
"name": "LAMMPS_EXCEPTIONS",
"value": "True",
"type": "BOOL"
}
]
}
]
}

View File

@ -1,33 +0,0 @@
# Build a CMake based external library as subdirectory.
# The sources will be unpacked to ${CMAKE_BINARY_DIR}/_deps/${target}-src
# The binaries will be built in ${CMAKE_BINARY_DIR}/_deps/${target}-build
#
function(ExternalCMakeProject target url hash basedir cmakedir cmakefile)
# change settings locally
set(BUILD_SHARED_LIBS OFF)
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
get_filename_component(archive ${url} NAME)
file(MAKE_DIRECTORY ${CMAKE_BINARY_DIR}/_deps/src)
message(STATUS "Downloading ${url}")
file(DOWNLOAD ${url} ${CMAKE_BINARY_DIR}/_deps/${archive} EXPECTED_HASH MD5=${hash} SHOW_PROGRESS)
message(STATUS "Unpacking and configuring ${archive}")
execute_process(COMMAND ${CMAKE_COMMAND} -E tar xzf ${CMAKE_BINARY_DIR}/_deps/${archive}
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/_deps/src)
file(GLOB TARGET_SOURCE "${CMAKE_BINARY_DIR}/_deps/src/${basedir}*")
list(LENGTH TARGET_SOURCE _num)
if(_num GREATER 1)
message(FATAL_ERROR "Inconsistent ${target} library sources. "
"Please delete ${CMAKE_BINARY_DIR}/_deps/src and re-run cmake")
endif()
file(REMOVE_RECURSE ${CMAKE_BINARY_DIR}/_deps/${target}-src)
file(RENAME ${TARGET_SOURCE} ${CMAKE_BINARY_DIR}/_deps/${target}-src)
if(NOT (cmakefile STREQUAL ""))
file(COPY ${cmakefile} DESTINATION ${CMAKE_BINARY_DIR}/_deps/${target}-src/${cmakedir}/)
get_filename_component(_cmakefile ${cmakefile} NAME)
file(RENAME "${CMAKE_BINARY_DIR}/_deps/${target}-src/${cmakedir}/${_cmakefile}"
"${CMAKE_BINARY_DIR}/_deps/${target}-src/${cmakedir}/CMakeLists.txt")
endif()
add_subdirectory("${CMAKE_BINARY_DIR}/_deps/${target}-src/${cmakedir}"
"${CMAKE_BINARY_DIR}/_deps/${target}-build")
endfunction(ExternalCMakeProject)

81
cmake/Modules/GTest.cmake Normal file
View File

@ -0,0 +1,81 @@
message(STATUS "Downloading and building Google Test library")
if(CMAKE_BUILD_TYPE STREQUAL "Debug")
set(GTEST_LIB_POSTFIX d)
else()
set(GTEST_LIB_POSTFIX)
endif()
include(ExternalProject)
set(GTEST_URL "https://github.com/google/googletest/archive/release-1.10.0.tar.gz" CACHE STRING "URL for GTest tarball")
set(GTEST_MD5 "ecd1fa65e7de707cd5c00bdac56022cd" CACHE STRING "MD5 checksum of GTest tarball")
mark_as_advanced(GTEST_URL)
mark_as_advanced(GTEST_MD5)
ExternalProject_Add(googletest
URL ${GTEST_URL}
URL_MD5 ${GTEST_MD5}
SOURCE_DIR "${CMAKE_BINARY_DIR}/gtest-src"
BINARY_DIR "${CMAKE_BINARY_DIR}/gtest-build"
CMAKE_ARGS ${CMAKE_REQUEST_PIC} ${CMAKE_EXTRA_GTEST_OPTS}
-DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_INSTALL_PREFIX=<INSTALL_DIR>
-DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
-DCMAKE_MAKE_PROGRAM=${CMAKE_MAKE_PROGRAM}
-DCMAKE_TOOLCHAIN_FILE=${CMAKE_TOOLCHAIN_FILE}
BUILD_BYPRODUCTS <BINARY_DIR>/lib/libgtest${GTEST_LIB_POSTFIX}${CMAKE_STATIC_LIBRARY_SUFFIX}
<BINARY_DIR>/lib/libgmock${GTEST_LIB_POSTFIX}${CMAKE_STATIC_LIBRARY_SUFFIX}
<BINARY_DIR>/lib/libgtest_main${GTEST_LIB_POSTFIX}${CMAKE_STATIC_LIBRARY_SUFFIX}
<BINARY_DIR>/lib/libgmock_main${GTEST_LIB_POSTFIX}${CMAKE_STATIC_LIBRARY_SUFFIX}
LOG_DOWNLOAD ON
LOG_CONFIGURE ON
LOG_BUILD ON
INSTALL_COMMAND ""
TEST_COMMAND "")
ExternalProject_Get_Property(googletest SOURCE_DIR)
set(GTEST_INCLUDE_DIR ${SOURCE_DIR}/googletest/include)
set(GMOCK_INCLUDE_DIR ${SOURCE_DIR}/googlemock/include)
# workaround for CMake 3.10 on ubuntu 18.04
file(MAKE_DIRECTORY ${GTEST_INCLUDE_DIR})
file(MAKE_DIRECTORY ${GMOCK_INCLUDE_DIR})
ExternalProject_Get_Property(googletest BINARY_DIR)
set(GTEST_LIBRARY_PATH ${BINARY_DIR}/lib/libgtest${GTEST_LIB_POSTFIX}${CMAKE_STATIC_LIBRARY_SUFFIX})
set(GMOCK_LIBRARY_PATH ${BINARY_DIR}/lib/libgmock${GTEST_LIB_POSTFIX}${CMAKE_STATIC_LIBRARY_SUFFIX})
set(GTEST_MAIN_LIBRARY_PATH ${BINARY_DIR}/lib/libgtest_main${GTEST_LIB_POSTFIX}${CMAKE_STATIC_LIBRARY_SUFFIX})
set(GMOCK_MAIN_LIBRARY_PATH ${BINARY_DIR}/lib/libgmock_main${GTEST_LIB_POSTFIX}${CMAKE_STATIC_LIBRARY_SUFFIX})
# Prevent GoogleTest from overriding our compiler/linker options
# when building with Visual Studio
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
find_package(Threads QUIET)
add_library(GTest::GTest UNKNOWN IMPORTED)
set_target_properties(GTest::GTest PROPERTIES
IMPORTED_LOCATION ${GTEST_LIBRARY_PATH}
INTERFACE_INCLUDE_DIRECTORIES ${GTEST_INCLUDE_DIR}
INTERFACE_LINK_LIBRARIES "${CMAKE_THREAD_LIBS_INIT}")
add_dependencies(GTest::GTest googletest)
add_library(GTest::GMock UNKNOWN IMPORTED)
set_target_properties(GTest::GMock PROPERTIES
IMPORTED_LOCATION ${GMOCK_LIBRARY_PATH}
INTERFACE_INCLUDE_DIRECTORIES ${GMOCK_INCLUDE_DIR}
INTERFACE_LINK_LIBRARIES "${CMAKE_THREAD_LIBS_INIT}")
add_dependencies(GTest::GMock googletest)
add_library(GTest::GTestMain UNKNOWN IMPORTED)
set_target_properties(GTest::GTestMain PROPERTIES
IMPORTED_LOCATION ${GTEST_MAIN_LIBRARY_PATH}
INTERFACE_INCLUDE_DIRECTORIES ${GTEST_INCLUDE_DIR}
INTERFACE_LINK_LIBRARIES "${CMAKE_THREAD_LIBS_INIT}")
add_dependencies(GTest::GTestMain googletest)
add_library(GTest::GMockMain UNKNOWN IMPORTED)
set_target_properties(GTest::GMockMain PROPERTIES
IMPORTED_LOCATION ${GMOCK_MAIN_LIBRARY_PATH}
INTERFACE_INCLUDE_DIRECTORIES ${GMOCK_INCLUDE_DIR}
INTERFACE_LINK_LIBRARIES "${CMAKE_THREAD_LIBS_INIT}")
add_dependencies(GTest::GMockMain googletest)

View File

@ -85,7 +85,7 @@ endfunction(GenerateBinaryHeader)
# fetch missing potential files
function(FetchPotentials pkgfolder potfolder)
if(EXISTS "${pkgfolder}/potentials.txt")
if (EXISTS "${pkgfolder}/potentials.txt")
file(STRINGS "${pkgfolder}/potentials.txt" linelist REGEX "^[^#].")
foreach(line ${linelist})
string(FIND ${line} " " blank)

View File

@ -1,7 +1,7 @@
########################################################################
# As of version 3.3.0 Kokkos requires C++14
if(CMAKE_CXX_STANDARD LESS 14)
message(FATAL_ERROR "The KOKKOS package requires the C++ standard to be set to at least C++14")
set(CMAKE_CXX_STANDARD 14)
endif()
########################################################################
# consistency checks and Kokkos options/settings required by LAMMPS
@ -39,8 +39,8 @@ if(DOWNLOAD_KOKKOS)
list(APPEND KOKKOS_LIB_BUILD_ARGS "-DCMAKE_CXX_EXTENSIONS=${CMAKE_CXX_EXTENSIONS}")
list(APPEND KOKKOS_LIB_BUILD_ARGS "-DCMAKE_TOOLCHAIN_FILE=${CMAKE_TOOLCHAIN_FILE}")
include(ExternalProject)
set(KOKKOS_URL "https://github.com/kokkos/kokkos/archive/3.5.00.tar.gz" CACHE STRING "URL for KOKKOS tarball")
set(KOKKOS_MD5 "079323d973ae0e1c38c0a54a150c674e" CACHE STRING "MD5 checksum of KOKKOS tarball")
set(KOKKOS_URL "https://github.com/kokkos/kokkos/archive/3.4.01.tar.gz" CACHE STRING "URL for KOKKOS tarball")
set(KOKKOS_MD5 "4c84698917c93a18985b311bb6caf84f" CACHE STRING "MD5 checksum of KOKKOS tarball")
mark_as_advanced(KOKKOS_URL)
mark_as_advanced(KOKKOS_MD5)
ExternalProject_Add(kokkos_build
@ -60,7 +60,7 @@ if(DOWNLOAD_KOKKOS)
target_link_libraries(lmp PRIVATE LAMMPS::KOKKOS)
add_dependencies(LAMMPS::KOKKOS kokkos_build)
elseif(EXTERNAL_KOKKOS)
find_package(Kokkos 3.5.00 REQUIRED CONFIG)
find_package(Kokkos 3.4.01 REQUIRED CONFIG)
target_link_libraries(lammps PRIVATE Kokkos::kokkos)
target_link_libraries(lmp PRIVATE Kokkos::kokkos)
else()

View File

@ -8,7 +8,7 @@ option(DOWNLOAD_EIGEN3 "Download Eigen3 instead of using an already installed on
if(DOWNLOAD_EIGEN3)
message(STATUS "Eigen3 download requested - we will build our own")
set(EIGEN3_URL "${LAMMPS_THIRDPARTY_URL}/eigen-3.4.0.tar.gz" CACHE STRING "URL for Eigen3 tarball")
set(EIGEN3_URL "https://download.lammps.org/thirdparty/eigen-3.4.0.tar.gz" CACHE STRING "URL for Eigen3 tarball")
set(EIGEN3_MD5 "4c527a9171d71a72a9d4186e65bea559" CACHE STRING "MD5 checksum of Eigen3 tarball")
mark_as_advanced(EIGEN3_URL)
mark_as_advanced(EIGEN3_MD5)

View File

@ -1,11 +1,11 @@
set(PACELIB_URL "https://github.com/ICAMS/lammps-user-pace/archive/refs/tags/v.2021.10.25.tar.gz" CACHE STRING "URL for PACE evaluator library sources")
set(PACELIB_MD5 "a2ac3315c41a1a4a5c912bcb1bc9c5cc" CACHE STRING "MD5 checksum of PACE evaluator library tarball")
set(PACELIB_URL "https://github.com/ICAMS/lammps-user-pace/archive/refs/tags/v.2021.4.9.tar.gz" CACHE STRING "URL for PACE evaluator library sources")
set(PACELIB_MD5 "4db54962fbd6adcf8c18d46e1798ceb5" CACHE STRING "MD5 checksum of PACE evaluator library tarball")
mark_as_advanced(PACELIB_URL)
mark_as_advanced(PACELIB_MD5)
# download library sources to build folder
file(DOWNLOAD ${PACELIB_URL} ${CMAKE_BINARY_DIR}/libpace.tar.gz EXPECTED_HASH MD5=${PACELIB_MD5}) #SHOW_PROGRESS
file(DOWNLOAD ${PACELIB_URL} ${CMAKE_BINARY_DIR}/libpace.tar.gz SHOW_PROGRESS EXPECTED_HASH MD5=${PACELIB_MD5})
# uncompress downloaded sources
execute_process(
@ -14,19 +14,12 @@ execute_process(
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
)
file(GLOB lib-pace ${CMAKE_BINARY_DIR}/lammps-user-pace-*)
add_subdirectory(${lib-pace}/yaml-cpp build-yaml-cpp)
set(YAML_CPP_INCLUDE_DIR ${lib-pace}/yaml-cpp/include)
file(GLOB PACE_EVALUATOR_INCLUDE_DIR ${lib-pace}/ML-PACE)
file(GLOB PACE_EVALUATOR_SOURCES ${lib-pace}/ML-PACE/*.cpp)
file(GLOB PACE_EVALUATOR_INCLUDE_DIR ${CMAKE_BINARY_DIR}/lammps-user-pace-*/USER-PACE)
file(GLOB PACE_EVALUATOR_SOURCES ${CMAKE_BINARY_DIR}/lammps-user-pace-*/USER-PACE/*.cpp)
list(FILTER PACE_EVALUATOR_SOURCES EXCLUDE REGEX pair_pace.cpp)
add_library(pace STATIC ${PACE_EVALUATOR_SOURCES})
set_target_properties(pace PROPERTIES CXX_EXTENSIONS ON OUTPUT_NAME lammps_pace${LAMMPS_MACHINE})
target_include_directories(pace PUBLIC ${PACE_EVALUATOR_INCLUDE_DIR} ${YAML_CPP_INCLUDE_DIR})
target_link_libraries(pace PRIVATE yaml-cpp-pace)
target_include_directories(pace PUBLIC ${PACE_EVALUATOR_INCLUDE_DIR})
target_link_libraries(lammps PRIVATE pace)

View File

@ -32,8 +32,7 @@ if(DOWNLOAD_QUIP)
foreach(flag ${LAPACK_LIBRARIES})
set(temp "${temp} ${flag}")
endforeach()
# Fix cmake crashing when MATH_LINKOPTS not set, required for e.g. recent Cray Programming Environment
set(temp "${temp} -L/_DUMMY_PATH_\n")
set(temp "${temp}\n")
set(temp "${temp}PYTHON=python\nPIP=pip\nEXTRA_LINKOPTS=\n")
set(temp "${temp}HAVE_CP2K=0\nHAVE_VASP=0\nHAVE_TB=0\nHAVE_PRECON=1\nHAVE_LOTF=0\nHAVE_ONIOM=0\n")
set(temp "${temp}HAVE_LOCAL_E_MIX=0\nHAVE_QC=0\nHAVE_GAP=1\nHAVE_DESCRIPTORS_NONCOMMERCIAL=1\n")

View File

@ -12,12 +12,41 @@ if(DOWNLOAD_MSCG)
mark_as_advanced(MSCG_URL)
mark_as_advanced(MSCG_MD5)
include(ExternalCMakeProject)
ExternalCMakeProject(mscg ${MSCG_URL} ${MSCG_MD5} MSCG-release src/CMake "")
# CMake cannot pass BLAS or LAPACK library variable to external project if they are a list
list(LENGTH BLAS_LIBRARIES} NUM_BLAS)
list(LENGTH LAPACK_LIBRARIES NUM_LAPACK)
if((NUM_BLAS GREATER 1) OR (NUM_LAPACK GREATER 1))
message(FATAL_ERROR "Cannot compile downloaded MSCG library due to a technical limitation")
endif()
# set include and link library
target_include_directories(lammps PRIVATE "${CMAKE_BINARY_DIR}/_deps/mscg-src/src")
target_link_libraries(lammps PRIVATE mscg)
include(ExternalProject)
ExternalProject_Add(mscg_build
URL ${MSCG_URL}
URL_MD5 ${MSCG_MD5}
SOURCE_SUBDIR src/CMake
CMAKE_ARGS ${CMAKE_REQUEST_PIC} ${EXTRA_MSCG_OPTS}
-DCMAKE_C_COMPILER=${CMAKE_C_COMPILER}
-DCMAKE_CXX_COMPILER=${CMAKE_CXX_COMPILER}
-DCMAKE_Fortran_COMPILER=${CMAKE_Fortran_COMPILER}
-DBLAS_LIBRARIES=${BLAS_LIBRARIES} -DLAPACK_LIBRARIES=${LAPACK_LIBRARIES}
-DCMAKE_INSTALL_PREFIX=<INSTALL_DIR>
-DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE}
-DCMAKE_MAKE_PROGRAM=${CMAKE_MAKE_PROGRAM}
-DCMAKE_TOOLCHAIN_FILE=${CMAKE_TOOLCHAIN_FILE}
BUILD_COMMAND ${CMAKE_COMMAND} --build . --target mscg
INSTALL_COMMAND ""
BUILD_BYPRODUCTS <BINARY_DIR>/libmscg.a
)
ExternalProject_get_property(mscg_build BINARY_DIR)
ExternalProject_get_property(mscg_build SOURCE_DIR)
file(MAKE_DIRECTORY ${SOURCE_DIR}/src)
add_library(LAMMPS::MSCG UNKNOWN IMPORTED)
set_target_properties(LAMMPS::MSCG PROPERTIES
IMPORTED_LOCATION "${BINARY_DIR}/libmscg.a"
INTERFACE_INCLUDE_DIRECTORIES "${SOURCE_DIR}/src"
INTERFACE_LINK_LIBRARIES "${LAPACK_LIBRARIES}")
target_link_libraries(lammps PRIVATE LAMMPS::MSCG)
add_dependencies(LAMMPS::MSCG mscg_build)
else()
find_package(MSCG)
if(NOT MSCG_FOUND)

View File

@ -1,9 +0,0 @@
# fix phonon may only be installed if also the FFT wrappers from KSPACE are installed
if(NOT PKG_KSPACE)
get_property(LAMMPS_FIX_HEADERS GLOBAL PROPERTY FIX)
list(REMOVE_ITEM LAMMPS_FIX_HEADERS ${LAMMPS_SOURCE_DIR}/PHONON/fix_phonon.h)
set_property(GLOBAL PROPERTY FIX "${LAMMPS_FIX_HEADERS}")
get_target_property(LAMMPS_SOURCES lammps SOURCES)
list(REMOVE_ITEM LAMMPS_SOURCES ${LAMMPS_SOURCE_DIR}/PHONON/fix_phonon.cpp)
set_property(TARGET lammps PROPERTY SOURCES "${LAMMPS_SOURCES}")
endif()

View File

@ -54,8 +54,8 @@ if(DOWNLOAD_PLUMED)
set(PLUMED_BUILD_BYPRODUCTS "<INSTALL_DIR>/lib/libplumedWrapper.a")
endif()
set(PLUMED_URL "https://github.com/plumed/plumed2/releases/download/v2.7.3/plumed-src-2.7.3.tgz" CACHE STRING "URL for PLUMED tarball")
set(PLUMED_MD5 "f00cc82edfefe6bb3df934911dbe32fb" CACHE STRING "MD5 checksum of PLUMED tarball")
set(PLUMED_URL "https://github.com/plumed/plumed2/releases/download/v2.7.2/plumed-src-2.7.2.tgz" CACHE STRING "URL for PLUMED tarball")
set(PLUMED_MD5 "cfa0b4dd90a81c25d3302e8d97bfeaea" CACHE STRING "MD5 checksum of PLUMED tarball")
mark_as_advanced(PLUMED_URL)
mark_as_advanced(PLUMED_MD5)

View File

@ -25,9 +25,7 @@ if(BUILD_TOOLS)
get_filename_component(MSI2LMP_SOURCE_DIR ${LAMMPS_TOOLS_DIR}/msi2lmp/src ABSOLUTE)
file(GLOB MSI2LMP_SOURCES ${MSI2LMP_SOURCE_DIR}/[^.]*.c)
add_executable(msi2lmp ${MSI2LMP_SOURCES})
if(STANDARD_MATH_LIB)
target_link_libraries(msi2lmp PRIVATE ${STANDARD_MATH_LIB})
endif()
target_link_libraries(msi2lmp PRIVATE ${MATH_LIBRARIES})
install(TARGETS msi2lmp DESTINATION ${CMAKE_INSTALL_BINDIR})
install(FILES ${LAMMPS_DOC_DIR}/msi2lmp.1 DESTINATION ${CMAKE_INSTALL_MANDIR}/man1)
endif()

47
cmake/Modules/YAML.cmake Normal file
View File

@ -0,0 +1,47 @@
message(STATUS "Downloading and building YAML library")
include(ExternalProject)
set(YAML_URL "https://pyyaml.org/download/libyaml/yaml-0.2.5.tar.gz" CACHE STRING "URL for libyaml tarball")
set(YAML_MD5 "bb15429d8fb787e7d3f1c83ae129a999" CACHE STRING "MD5 checksum of libyaml tarball")
mark_as_advanced(YAML_URL)
mark_as_advanced(YAML_MD5)
# support cross-compilation to windows
if(CMAKE_CROSSCOMPILING AND (CMAKE_SYSTEM_NAME STREQUAL "Windows"))
if(CMAKE_SYSTEM_PROCESSOR STREQUAL "x86")
set(YAML_CROSS_HOST --host=i686-mingw64)
elseif(CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64")
set(YAML_CROSS_HOST --host=x86_64-mingw64)
else()
message(FATAL_ERROR "Unsupported cross-compilation "
" for ${CMAKE_SYSTEM_NAME}/${CMAKE_SYSTEM_PROCESSOR}"
" on ${CMAKE_HOST_SYSTEM}/${CMAKE_HOST_SYSTEM_PROCESSOR}")
endif()
endif()
ExternalProject_Add(libyaml
URL ${YAML_URL}
URL_MD5 ${YAML_MD5}
SOURCE_DIR "${CMAKE_BINARY_DIR}/yaml-src"
BINARY_DIR "${CMAKE_BINARY_DIR}/yaml-build"
CONFIGURE_COMMAND <SOURCE_DIR>/configure ${CONFIGURE_REQUEST_PIC}
CXX=${CMAKE_CXX_COMPILER} CC=${CMAKE_C_COMPILER}
--prefix=<INSTALL_DIR> --disable-shared ${YAML_CROSS_HOST}
BUILD_BYPRODUCTS <INSTALL_DIR>/lib/libyaml${CMAKE_STATIC_LIBRARY_SUFFIX}
TEST_COMMAND "")
ExternalProject_Get_Property(libyaml INSTALL_DIR)
set(YAML_INCLUDE_DIR ${INSTALL_DIR}/include)
set(YAML_LIBRARY_DIR ${INSTALL_DIR}/lib)
# workaround for CMake 3.10 on ubuntu 18.04
file(MAKE_DIRECTORY ${YAML_INCLUDE_DIR})
file(MAKE_DIRECTORY ${YAML_LIBRARY_DIR})
set(YAML_LIBRARY_PATH ${INSTALL_DIR}/lib/libyaml${CMAKE_STATIC_LIBRARY_SUFFIX})
add_library(Yaml::Yaml UNKNOWN IMPORTED)
set_target_properties(Yaml::Yaml PROPERTIES
IMPORTED_LOCATION ${YAML_LIBRARY_PATH}
INTERFACE_INCLUDE_DIRECTORIES ${YAML_INCLUDE_DIR})
add_dependencies(Yaml::Yaml libyaml)

View File

@ -48,6 +48,7 @@ set(ALL_PACKAGES
PHONON
PLUGIN
POEMS
PYTHON
QEQ
REACTION
REAXFF

View File

@ -1,64 +0,0 @@
set(WIN_PACKAGES
ASPHERE
BOCS
BODY
BROWNIAN
CG-DNA
CG-SDK
CLASS2
COLLOID
COLVARS
CORESHELL
DIELECTRIC
DIFFRACTION
DIPOLE
DPD-BASIC
DPD-MESO
DPD-REACT
DPD-SMOOTH
DRUDE
EFF
EXTRA-COMPUTE
EXTRA-DUMP
EXTRA-FIX
EXTRA-MOLECULE
EXTRA-PAIR
FEP
GRANULAR
INTERLAYER
KSPACE
MANIFOLD
MANYBODY
MC
MEAM
MISC
ML-IAP
ML-SNAP
MOFFF
MOLECULE
MOLFILE
OPENMP
ORIENT
PERI
PHONON
POEMS
PTM
QEQ
QTB
REACTION
REAXFF
REPLICA
RIGID
SHOCK
SMTBQ
SPH
SPIN
SRD
TALLY
UEF
YAFF)
foreach(PKG ${WIN_PACKAGES})
set(PKG_${PKG} ON CACHE BOOL "" FORCE)
endforeach()

View File

@ -435,8 +435,6 @@ INPUT = @LAMMPS_SOURCE_DIR@/utils.cpp \
@LAMMPS_SOURCE_DIR@/my_pool_chunk.cpp \
@LAMMPS_SOURCE_DIR@/my_pool_chunk.h \
@LAMMPS_SOURCE_DIR@/math_eigen.h \
@LAMMPS_SOURCE_DIR@/platform.h \
@LAMMPS_SOURCE_DIR@/platform.cpp \
# The EXCLUDE_SYMLINKS tag can be used to select whether or not files or
# directories that are symbolic links (a Unix file system feature) are excluded

View File

@ -1,4 +1,4 @@
.TH LAMMPS "1" "7 January 2022" "2022-1-7"
.TH LAMMPS "29 September 2021" "2021-09-29"
.SH NAME
.B LAMMPS
\- Molecular Dynamics Simulator.

View File

@ -1,4 +1,4 @@
.TH MSI2LMP "1" "v3.9.9" "2018-11-05"
.TH MSI2LMP "v3.9.9" "2018-11-05"
.SH NAME
.B MSI2LMP
\- Converter for Materials Studio files to LAMMPS

View File

@ -1123,12 +1123,9 @@ Bibliography
**(Sun)**
Sun, J. Phys. Chem. B, 102, 7338-7364 (1998).
**(Surblys2019)**
**(Surblys)**
Surblys, Matsubara, Kikugawa, Ohara, Phys Rev E, 99, 051301(R) (2019).
**(Surblys2021)**
Surblys, Matsubara, Kikugawa, Ohara, J Appl Phys 130, 215104 (2021).
**(Sutmann)**
Sutmann, Arnold, Fahrenberger, et. al., Physical review / E 88(6), 063308 (2013)

View File

@ -150,42 +150,6 @@ for IDEs like Eclipse, CodeBlocks, or Kate can be selected using the *-G*
command line flag. A list of available generator settings for your
specific CMake version is given when running ``cmake --help``.
.. _cmake_multiconfig:
Multi-configuration build systems
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Throughout this manual it is mostly assumed that LAMMPS is being built
on a Unix-like operating system with "make" as the underlying "builder",
since this is the most common case. In this case the build "configuration"
is chose using ``-D CMAKE_BUILD_TYPE=<configuration>`` with ``<configuration>``
being one of "Release", "Debug", "RelWithDebInfo", or "MinSizeRel".
Some build tools, however, can also use or even require to have a so-called
multi-configuration build system setup. For those the built type (or
configuration) is chosen at compile time using the same build files. E.g.
with:
.. code-block:: bash
cmake --build build-multi --config Release
In that case the resulting binaries are not in the build folder directly
but in sub-directories corresponding to the build type (i.e. Release in
the example from above). Similarly, for running unit tests the
configuration is selected with the *-C* flag:
.. code-block:: bash
ctest -C Debug
The CMake scripts in LAMMPS have basic support for being compiled using a
multi-config build system, but not all of it has been ported. This is in
particular applicable to compiling packages that require additional libraries
that would be downloaded and compiled by CMake. The "windows" preset file
tries to keep track of which packages can be compiled natively with the
MSVC compilers out-of-the box. Not all of those external libraries are
portable to Windows either.
Installing CMake
^^^^^^^^^^^^^^^^

View File

@ -185,10 +185,6 @@ The ``ctest`` command has many options, the most important ones are:
- run subset of tests matching the regular expression <regex>
* - -E <regex>
- exclude subset of tests matching the regular expression <regex>
* - -L <regex>
- run subset of tests with a label matching the regular expression <regex>
* - -LE <regex>
- exclude subset of tests with a label matching the regular expression <regex>
* - -N
- dry-run: display list of tests without running them
* - -T memcheck
@ -303,12 +299,6 @@ will destroy the original file, if the generation run does not complete,
so using *-g* is recommended unless the YAML file is fully tested
and working.
Some of the force style tests are rather slow to run and some are very
sensitive to small differences like CPU architecture, compiler
toolchain, compiler optimization. Those tests are flagged with a "slow"
and/or "unstable" label, and thus those tests can be selectively
excluded with the ``-LE`` flag or selected with the ``-L`` flag.
.. admonition:: Recommendations and notes for YAML files
:class: note

View File

@ -341,18 +341,6 @@ minutes to hours) to build. Of course you only need to do that once.)
$ make lib-kim args="-p /usr/local" # use an existing KIM API installation at the provided location
$ make lib-kim args="-p /usr/local -a EAM_Dynamo_Ackland_W__MO_141627196590_002" # ditto but add one model or driver
When using the "-b " option, the KIM library is built using its native
cmake build system. The ``lib/kim/Install.py`` script supports a
``CMAKE`` environment variable if the cmake executable is named other
than ``cmake`` on your system. Additional environment variables may be
provided on the command line for use by cmake. For example, to use the
``cmake3`` executable and tell it to use the gnu version 11 compilers
to build KIM, one could use the following command line.
.. code-block:: bash
$ CMAKE=cmake3 CXX=g++-11 CC=gcc-11 FC=gfortran-11 make lib-kim args="-b " # (re-)install KIM API lib using cmake3 and gnu v11 compilers with only example models
Settings for debugging OpenKIM web queries discussed below need to
be applied by adding them to the ``LMP_INC`` variable through
editing the ``Makefile.machine`` you are using. For example:
@ -572,26 +560,11 @@ They must be specified in uppercase.
* - VEGA908
- GPU
- AMD GPU MI100 GFX908
* - VEGA90A
* - INTEL_GEN
- GPU
- AMD GPU
* - INTEL_DG1
- GPU
- Intel Iris XeMAX GPU
* - INTEL_GEN9
- GPU
- Intel GPU Gen9
* - INTEL_GEN11
- GPU
- Intel GPU Gen11
* - INTEL_GEN12LP
- GPU
- Intel GPU Gen12LP
* - INTEL_XEHP
- GPU
- Intel GPUs Xe-HP
- Intel GPUs Gen9+
This list was last updated for version 3.5.0 of the Kokkos library.
This list was last updated for version 3.4.1 of the Kokkos library.
.. tabs::

View File

@ -321,7 +321,9 @@ following settings:
.. code-block:: make
LMP_INC = -DLAMMPS_JPEG -DLAMMPS_PNG -DLAMMPS_FFMPEG <other LMP_INC settings>
LMP_INC = -DLAMMPS_JPEG
LMP_INC = -DLAMMPS_PNG
LMP_INC = -DLAMMPS_FFMPEG
JPG_INC = -I/usr/local/include # path to jpeglib.h, png.h, zlib.h header files if make cannot find them
JPG_PATH = -L/usr/lib # paths to libjpeg.a, libpng.a, libz.a (.so) files if make cannot find them
@ -352,10 +354,8 @@ Read or write compressed files
-----------------------------------------
If this option is enabled, large files can be read or written with
compression by ``gzip`` or similar tools by several LAMMPS commands,
including :doc:`read_data <read_data>`, :doc:`rerun <rerun>`, and
:doc:`dump <dump>`. Currently supported compression tools are:
``gzip``, ``bzip2``, ``zstd``, and ``lzma``.
gzip compression by several LAMMPS commands, including
:doc:`read_data <read_data>`, :doc:`rerun <rerun>`, and :doc:`dump <dump>`.
.. tabs::
@ -364,23 +364,23 @@ including :doc:`read_data <read_data>`, :doc:`rerun <rerun>`, and
.. code-block:: bash
-D WITH_GZIP=value # yes or no
# default is yes if CMake can find the gzip program, else no
# default is yes if CMake can find gzip, else no
-D GZIP_EXECUTABLE=path # path to gzip executable if CMake cannot find it
.. tab:: Traditional make
.. code-block:: make
LMP_INC = -DLAMMPS_GZIP <other LMP_INC settings>
LMP_INC = -DLAMMPS_GZIP
This option requires that your operating system fully supports the
"popen()" function in the standard runtime library and that a ``gzip``
or other executable can be found by LAMMPS in the standard search path
during a run.
This option requires that your operating system fully supports the "popen()"
function in the standard runtime library and that a ``gzip`` executable can be
found by LAMMPS during a run.
.. note::
On clusters with high-speed networks, using the "fork()" library call
(required by "popen()") can interfere with the fast communication
On some clusters with high-speed networks, using the "fork()" library
call (required by "popen()") can interfere with the fast communication
library and lead to simulations using compressed output or input to
hang or crash. For selected operations, compressed file I/O is also
available using a compression library instead, which is what the
@ -452,7 +452,7 @@ those systems:
.. code-block:: make
LMP_INC = -DLAMMPS_LONGLONG_TO_LONG <other LMP_INC settings>
LMP_INC = -DLAMMPS_LONGLONG_TO_LONG
----------
@ -479,7 +479,7 @@ e.g. to Python. Of course, the calling code has to be set up to
.. code-block:: make
LMP_INC = -DLAMMPS_EXCEPTIONS <other LMP_INC settings>
LMP_INC = -DLAMMPS_EXCEPTIONS
.. note::
@ -520,7 +520,7 @@ executable, not the library.
.. code-block:: make
LMP_INC = -DLAMMPS_TRAP_FPE <other LMP_INC settings>
LMP_INC = -DLAMMPS_TRAP_FPE
After compilation with this flag set, the LAMMPS executable will stop
and produce a core dump when a division by zero, overflow, illegal math

View File

@ -4,7 +4,6 @@ Notes for building LAMMPS on Windows
* :ref:`General remarks <generic>`
* :ref:`Running Linux on Windows <linux>`
* :ref:`Using GNU GCC ported to Windows <gnu>`
* :ref:`Using Visual Studio <msvc>`
* :ref:`Using a cross-compiler <cross>`
----------
@ -32,13 +31,13 @@ pre-compiled Windows binary packages are sufficient for your needs. If
it is necessary for you to compile LAMMPS on a Windows machine
(e.g. because it is your main desktop), please also consider using a
virtual machine software and compile and run LAMMPS in a Linux virtual
machine, or - if you have a sufficiently up-to-date Windows 10 or
Windows 11 installation - consider using the Windows subsystem for
Linux. This optional Windows feature allows you to run the bash shell
from Ubuntu from within Windows and from there on, you can pretty much
use that shell like you are running on an Ubuntu Linux machine
(e.g. installing software via apt-get and more). For more details on
that, please see :doc:`this tutorial <Howto_wsl>`.
machine, or - if you have a sufficiently up-to-date Windows 10
installation - consider using the Windows subsystem for Linux. This
optional Windows feature allows you to run the bash shell from Ubuntu
from within Windows and from there on, you can pretty much use that
shell like you are running on an Ubuntu Linux machine (e.g. installing
software via apt-get and more). For more details on that, please see
:doc:`this tutorial <Howto_wsl>`.
.. _gnu:
@ -68,40 +67,6 @@ requiring changes to the LAMMPS source code, or figure out corrections
yourself, please report them on the lammps-users mailing list, or file
them as an issue or pull request on the LAMMPS GitHub project.
.. _msvc:
Using Microsoft Visual Studio
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Following the integration of the :doc:`platform namespace
<Developer_platform>` into the LAMMPS code base, portability of LAMMPS
to be compiled on Windows using Visual Studio has been significantly
improved. This has been tested with Visual Studio 2019 (aka version
16). Not all features and packages in LAMMPS are currently supported
out of the box, but a preset ``cmake/presets/windows.cmake`` is provided
that contains the packages that have been compiled successfully. You
must use the CMake based build procedure, and either use the integrated
CMake support of Visual Studio or use an external CMake installation to
create build files for the Visual Studio build system. Please note that
on launching Visual Studio it will scan the directory tree and likely
miss the correct master ``CMakeLists.txt``. Try to open the
``cmake/CMakeSettings.json`` and use those CMake configurations as a
starting point. It is also possible to configure and compile LAMMPS
from the command line with a CMake binary from `cmake.org <https://cmake.org>`_.
Please note, that for either approach CMake will create a so-called
:ref:`"multi-configuration" build environment <cmake_multiconfig>`, and
the command lines for building and testing LAMMPS must be adjusted
accordingly.
To support running in parallel you can compile with OpenMP enabled using
the OPENMP package or install Microsoft MPI (including the SDK) and compile
LAMMPS with MPI enabled.
This is work in progress and you should contact the LAMMPS developers
via GitHub, the forum, or the mailing list, if you have questions or
LAMMPS specific problems.
.. _cross:
Using a cross-compiler

View File

@ -35,7 +35,6 @@ OPT.
* :doc:`class2 (ko) <bond_class2>`
* :doc:`fene (iko) <bond_fene>`
* :doc:`fene/expand (o) <bond_fene_expand>`
* :doc:`fene/nm <bond_fene>`
* :doc:`gaussian <bond_gaussian>`
* :doc:`gromos (o) <bond_gromos>`
* :doc:`harmonic (iko) <bond_harmonic>`

View File

@ -28,7 +28,6 @@ KOKKOS, o = OPENMP, t = OPT.
* :doc:`angle <compute_angle>`
* :doc:`angle/local <compute_angle_local>`
* :doc:`angmom/chunk <compute_angmom_chunk>`
* :doc:`ave/sphere/atom (k) <compute_ave_sphere_atom>`
* :doc:`basal/atom <compute_basal_atom>`
* :doc:`body/local <compute_body_local>`
* :doc:`bond <compute_bond>`

View File

@ -23,7 +23,6 @@ OPT.
:columns: 5
* :doc:`accelerate/cos <fix_accelerate_cos>`
* :doc:`acks2/reaxff (k) <fix_acks2_reaxff>`
* :doc:`adapt <fix_adapt>`
* :doc:`adapt/fep <fix_adapt_fep>`
* :doc:`addforce <fix_addforce>`
@ -104,7 +103,6 @@ OPT.
* :doc:`manifoldforce <fix_manifoldforce>`
* :doc:`mdi/engine <fix_mdi_engine>`
* :doc:`meso/move <fix_meso_move>`
* :doc:`mol/swap <fix_mol_swap>`
* :doc:`momentum (k) <fix_momentum>`
* :doc:`momentum/chunk <fix_momentum>`
* :doc:`move <fix_move>`

View File

@ -210,7 +210,6 @@ OPT.
* :doc:`nm/cut (o) <pair_nm>`
* :doc:`nm/cut/coul/cut (o) <pair_nm>`
* :doc:`nm/cut/coul/long (o) <pair_nm>`
* :doc:`nm/cut/split <pair_nm>`
* :doc:`oxdna/coaxstk <pair_oxdna>`
* :doc:`oxdna/excv <pair_oxdna>`
* :doc:`oxdna/hbond <pair_oxdna>`
@ -263,7 +262,6 @@ OPT.
* :doc:`spin/neel <pair_spin_neel>`
* :doc:`srp <pair_srp>`
* :doc:`sw (giko) <pair_sw>`
* :doc:`sw/mod (o) <pair_sw>`
* :doc:`table (gko) <pair_table>`
* :doc:`table/rx (k) <pair_table_rx>`
* :doc:`tdpd <pair_mesodpd>`

View File

@ -18,5 +18,4 @@ of time and requests from the LAMMPS user community.
Developer_plugins
Developer_unittest
Classes
Developer_platform
Developer_utils

View File

@ -1,155 +0,0 @@
Platform abstraction functions
------------------------------
The ``platform`` sub-namespace inside the ``LAMMPS_NS`` namespace
provides a collection of wrapper and convenience functions and utilities
that perform common tasks for which platform specific code would be
required or for which a more high-level abstraction would be convenient
and reduce duplicated code. This reduces redundant implementations and
encourages consistent behavior and thus has some overlap with the
:doc:`"utils" sub-namespace <Developer_utils>`.
Time functions
^^^^^^^^^^^^^^
.. doxygenfunction:: cputime
:project: progguide
.. doxygenfunction:: walltime
:project: progguide
.. doxygenfunction:: usleep
:project: progguide
Platform information functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. doxygenfunction:: os_info
:project: progguide
.. doxygenfunction:: compiler_info
:project: progguide
.. doxygenfunction:: cxx_standard
:project: progguide
.. doxygenfunction:: openmp_standard
:project: progguide
.. doxygenfunction:: mpi_vendor
:project: progguide
.. doxygenfunction:: mpi_info
:project: progguide
.. doxygenfunction:: compress_info
:project: progguide
File and path functions and global constants
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. doxygenvariable:: filepathsep
:project: progguide
.. doxygenvariable:: pathvarsep
:project: progguide
.. doxygenfunction:: guesspath
:project: progguide
.. doxygenfunction:: path_basename
:project: progguide
.. doxygenfunction:: path_join
:project: progguide
.. doxygenfunction:: file_is_readable
:project: progguide
.. doxygenfunction:: is_console
:project: progguide
.. doxygenfunction:: path_is_directory
:project: progguide
.. doxygenfunction:: current_directory
:project: progguide
.. doxygenfunction:: list_directory
:project: progguide
.. doxygenfunction:: chdir
:project: progguide
.. doxygenfunction:: mkdir
:project: progguide
.. doxygenfunction:: rmdir
:project: progguide
.. doxygenfunction:: unlink
:project: progguide
Standard I/O function wrappers
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. doxygenvariable:: END_OF_FILE
:project: progguide
.. doxygenfunction:: ftell
:project: progguide
.. doxygenfunction:: fseek
:project: progguide
.. doxygenfunction:: ftruncate
:project: progguide
.. doxygenfunction:: popen
:project: progguide
.. doxygenfunction:: pclose
:project: progguide
Environment variable functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. doxygenfunction:: putenv
:project: progguide
.. doxygenfunction:: unsetenv
:project: progguide
.. doxygenfunction:: list_pathenv
:project: progguide
.. doxygenfunction:: find_exe_path
:project: progguide
Dynamically loaded object or library functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. doxygenfunction:: dlopen
:project: progguide
.. doxygenfunction:: dlclose
:project: progguide
.. doxygenfunction:: dlsym
:project: progguide
.. doxygenfunction:: dlerror
:project: progguide
Compressed file I/O functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. doxygenfunction:: has_compress_extension
:project: progguide
.. doxygenfunction:: compressed_read
:project: progguide
.. doxygenfunction:: compressed_write
:project: progguide

View File

@ -7,9 +7,7 @@ a collection of convenience functions and utilities that perform common
tasks that are required repeatedly throughout the LAMMPS code like
reading or writing to files with error checking or translation of
strings into specific types of numbers with checking for validity. This
reduces redundant implementations and encourages consistent behavior and
thus has some overlap with the :doc:`"platform" sub-namespace
<Developer_platform>`.
reduces redundant implementations and encourages consistent behavior.
I/O with status check and similar functions
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@ -56,14 +54,11 @@ String to number conversions with validity check
These functions should be used to convert strings to numbers. They are
are strongly preferred over C library calls like ``atoi()`` or
``atof()`` since they check if the **entire** string is a valid
``atof()`` since they check if the **entire** provided string is a valid
(floating-point or integer) number, and will error out instead of
silently returning the result of a partial conversion or zero in cases
where the string is not a valid number. This behavior improves
detecting typos or issues when processing input files.
Similarly the :cpp:func:`logical() <LAMMPS_NS::utils::logical>` function
will convert a string into a boolean and will only accept certain words.
where the string is not a valid number. This behavior allows to more
easily detect typos or issues when processing input files.
The *do_abort* flag should be set to ``true`` in case this function
is called only on a single MPI rank, as that will then trigger the
@ -76,34 +71,16 @@ strings for compliance without conversion.
----------
.. doxygenfunction:: numeric(const char *file, int line, const std::string &str, bool do_abort, LAMMPS *lmp)
.. doxygenfunction:: numeric
:project: progguide
.. doxygenfunction:: numeric(const char *file, int line, const char *str, bool do_abort, LAMMPS *lmp)
.. doxygenfunction:: inumeric
:project: progguide
.. doxygenfunction:: inumeric(const char *file, int line, const std::string &str, bool do_abort, LAMMPS *lmp)
.. doxygenfunction:: bnumeric
:project: progguide
.. doxygenfunction:: inumeric(const char *file, int line, const char *str, bool do_abort, LAMMPS *lmp)
:project: progguide
.. doxygenfunction:: bnumeric(const char *file, int line, const std::string &str, bool do_abort, LAMMPS *lmp)
:project: progguide
.. doxygenfunction:: bnumeric(const char *file, int line, const char *str, bool do_abort, LAMMPS *lmp)
:project: progguide
.. doxygenfunction:: tnumeric(const char *file, int line, const std::string &str, bool do_abort, LAMMPS *lmp)
:project: progguide
.. doxygenfunction:: tnumeric(const char *file, int line, const char *str, bool do_abort, LAMMPS *lmp)
:project: progguide
.. doxygenfunction:: logical(const char *file, int line, const std::string &str, bool do_abort, LAMMPS *lmp)
:project: progguide
.. doxygenfunction:: logical(const char *file, int line, const char *str, bool do_abort, LAMMPS *lmp)
.. doxygenfunction:: tnumeric
:project: progguide
@ -118,12 +95,6 @@ and parsing files or arguments.
.. doxygenfunction:: strdup
:project: progguide
.. doxygenfunction:: lowercase
:project: progguide
.. doxygenfunction:: uppercase
:project: progguide
.. doxygenfunction:: trim
:project: progguide
@ -166,6 +137,21 @@ and parsing files or arguments.
.. doxygenfunction:: is_double
:project: progguide
File and path functions
^^^^^^^^^^^^^^^^^^^^^^^^^
.. doxygenfunction:: guesspath
:project: progguide
.. doxygenfunction:: path_basename
:project: progguide
.. doxygenfunction:: path_join
:project: progguide
.. doxygenfunction:: file_is_readable
:project: progguide
Potential file functions
^^^^^^^^^^^^^^^^^^^^^^^^

View File

@ -29,9 +29,7 @@ of code in the header before include guards:
.. code-block:: c
#ifdef FIX_CLASS
// clang-format off
FixStyle(print/vel,FixPrintVel);
// clang-format on
FixStyle(print/vel,FixPrintVel)
#else
/* the definition of the FixPrintVel class comes here */
...

View File

@ -7772,6 +7772,9 @@ keyword to allow for additional bonds to be formed
The system size must fit in a 32-bit integer to use this dump
style.
*Too many atoms to dump sort*
Cannot sort when running with more than 2\^31 atoms.
*Too many elements extracted from MEAM library.*
Increase 'maxelt' in meam.h and recompile.

View File

@ -80,7 +80,7 @@ Lowercase directories
+-------------+------------------------------------------------------------------+
| friction | frictional contact of spherical asperities between 2d surfaces |
+-------------+------------------------------------------------------------------+
| mc | Monte Carlo features via fix gcmc, widom and other commands |
| gcmc | Grand Canonical Monte Carlo (GCMC) via the fix gcmc command |
+-------------+------------------------------------------------------------------+
| granregion | use of fix wall/region/gran as boundary on granular particles |
+-------------+------------------------------------------------------------------+
@ -205,7 +205,7 @@ Uppercase directories
+------------+--------------------------------------------------------------------------------------------------+
| KAPPA | compute thermal conductivity via several methods |
+------------+--------------------------------------------------------------------------------------------------+
| MC-LOOP | using LAMMPS in a Monte Carlo mode to relax the energy of a system in a input script loop |
| MC | using LAMMPS in a Monte Carlo mode to relax the energy of a system |
+------------+--------------------------------------------------------------------------------------------------+
| PACKAGES | examples for specific packages and contributed commands |
+------------+--------------------------------------------------------------------------------------------------+

View File

@ -491,6 +491,11 @@ NPT ensemble using Nose-Hoover thermostat:
**(Schroeder)** Schroeder and Steinhauser, J Chem Phys, 133,
154511 (2010).
.. _Jiang2:
**(Jiang)** Jiang, Hardy, Phillips, MacKerell, Schulten, and Roux,
J Phys Chem Lett, 2, 87-92 (2011).
.. _Thole2:
**(Thole)** Chem Phys, 59, 341 (1981).

View File

@ -2,8 +2,8 @@ Thermostats
===========
Thermostatting means controlling the temperature of particles in an MD
simulation. :doc:`Barostatting <Howto_barostat>` means controlling
the pressure. Since the pressure includes a kinetic component due to
simulation. :doc:`Barostatting <Howto_barostat>` means controlling the
pressure. Since the pressure includes a kinetic component due to
particle velocities, both these operations require calculation of the
temperature. Typically a target temperature (T) and/or pressure (P)
is specified by the user, and the thermostat or barostat attempts to
@ -26,13 +26,11 @@ can be invoked via the *dpd/tstat* pair style:
* :doc:`pair_style dpd/tstat <pair_dpd>`
:doc:`Fix nvt <fix_nh>` only thermostats the translational velocity of
particles. :doc:`Fix nvt/sllod <fix_nvt_sllod>` also does this,
except that it subtracts out a velocity bias due to a deforming box
and integrates the SLLOD equations of motion. See the :doc:`Howto
nemd <Howto_nemd>` page for further details. :doc:`Fix nvt/sphere
<fix_nvt_sphere>` and :doc:`fix nvt/asphere <fix_nvt_asphere>`
thermostat not only translation velocities but also rotational
velocities for spherical and aspherical particles.
particles. :doc:`Fix nvt/sllod <fix_nvt_sllod>` also does this, except
that it subtracts out a velocity bias due to a deforming box and
integrates the SLLOD equations of motion. See the :doc:`Howto nemd <Howto_nemd>` page for further details. :doc:`Fix nvt/sphere <fix_nvt_sphere>` and :doc:`fix nvt/asphere <fix_nvt_asphere>` thermostat not only translation
velocities but also rotational velocities for spherical and aspherical
particles.
.. note::
@ -42,31 +40,25 @@ velocities for spherical and aspherical particles.
e.g. molecular systems. The latter can be tricky to do correctly.
DPD thermostatting alters pairwise interactions in a manner analogous
to the per-particle thermostatting of :doc:`fix langevin
<fix_langevin>`.
to the per-particle thermostatting of :doc:`fix langevin <fix_langevin>`.
Any of the thermostatting fixes can be instructed to use custom
temperature computes that remove bias which has two effects: first,
the current calculated temperature, which is compared to the requested
target temperature, is calculated with the velocity bias removed;
second, the thermostat adjusts only the thermal temperature component
of the particle's velocities, which are the velocities with the bias
removed. The removed bias is then added back to the adjusted
velocities. See the doc pages for the individual fixes and for the
:doc:`fix_modify <fix_modify>` command for instructions on how to
assign a temperature compute to a thermostatting fix.
Any of the thermostatting fixes can be instructed to use custom temperature
computes that remove bias which has two effects: first, the current
calculated temperature, which is compared to the requested target temperature,
is calculated with the velocity bias removed; second, the thermostat adjusts
only the thermal temperature component of the particle's velocities, which are
the velocities with the bias removed. The removed bias is then added back
to the adjusted velocities. See the doc pages for the individual
fixes and for the :doc:`fix_modify <fix_modify>` command for
instructions on how to assign a temperature compute to a
thermostatting fix. For example, you can apply a thermostat to only
the x and z components of velocity by using it in conjunction with
:doc:`compute temp/partial <compute_temp_partial>`. Of you could
thermostat only the thermal temperature of a streaming flow of
particles without affecting the streaming velocity, by using
:doc:`compute temp/profile <compute_temp_profile>`.
For example, you can apply a thermostat only to atoms in a spatial
region by using it in conjunction with :doc:`compute temp/region
<compute_temp_region>`. Or you can apply a thermostat to only the x
and z components of velocity by using it with :doc:`compute
temp/partial <compute_temp_partial>`. Of you could thermostat only
the thermal temperature of a streaming flow of particles without
affecting the streaming velocity, by using :doc:`compute temp/profile
<compute_temp_profile>`.
Below is a list of custom temperature computes that can be used like
that:
Below is a list of some custom temperature computes that can be used like that:
* :doc:`compute_temp_asphere`
* :doc:`compute_temp_body`
@ -80,6 +72,8 @@ that:
* :doc:`compute_temp_rotate`
* :doc:`compute_temp_sphere`
.. note::
Only the nvt fixes perform time integration, meaning they update
@ -92,17 +86,17 @@ that:
* :doc:`fix nve/sphere <fix_nve_sphere>`
* :doc:`fix nve/asphere <fix_nve_asphere>`
Thermodynamic output, which can be setup via the :doc:`thermo_style
<thermo_style>` command, often includes temperature values. As
explained on the page for the :doc:`thermo_style <thermo_style>`
command, the default temperature is setup by the thermo command
itself. It is NOT the temperature associated with any thermostatting
fix you have defined or with any compute you have defined that
calculates a temperature. The doc pages for the thermostatting fixes
explain the ID of the temperature compute they create. Thus if you
want to view these temperatures, you need to specify them explicitly
via the :doc:`thermo_style custom <thermo_style>` command. Or you can
use the :doc:`thermo_modify <thermo_modify>` command to re-define what
Thermodynamic output, which can be setup via the
:doc:`thermo_style <thermo_style>` command, often includes temperature
values. As explained on the page for the
:doc:`thermo_style <thermo_style>` command, the default temperature is
setup by the thermo command itself. It is NOT the temperature
associated with any thermostatting fix you have defined or with any
compute you have defined that calculates a temperature. The doc pages
for the thermostatting fixes explain the ID of the temperature compute
they create. Thus if you want to view these temperatures, you need to
specify them explicitly via the :doc:`thermo_style custom <thermo_style>` command. Or you can use the
:doc:`thermo_modify <thermo_modify>` command to re-define what
temperature compute is used for default thermodynamic output.
----------

View File

@ -1880,12 +1880,6 @@ MPIIO library. It adds :doc:`dump styles <dump>` with a "mpiio" in
their style name. Restart files with an ".mpiio" suffix are also
written and read in parallel.
.. warning::
The MPIIO package is currently unmaintained and has become
unreliable. Use with caution.
**Install:**
The MPIIO package requires that LAMMPS is build in :ref:`MPI parallel mode <serial>`.

View File

@ -14,7 +14,7 @@ Intel Xeon Phi co-processors.
The `Benchmark page <https://www.lammps.org/bench.html>`_ of the LAMMPS
website gives performance results for the various accelerator
packages discussed on the :doc:`Accelerator packages <Speed_packages>`
packages discussed on the :doc:`Speed packages <Speed_packages>` doc
page, for several of the standard LAMMPS benchmark problems, as a
function of problem size and number of compute nodes, on different
hardware platforms.

View File

@ -1,7 +1,7 @@
Styles with a *gpu*, *intel*, *kk*, *omp*, or *opt* suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed on the :doc:`Accelerator packages <Speed_packages>`
hardware, as discussed on the :doc:`Speed packages <Speed_packages>` doc
page. The accelerated styles take the same arguments and should
produce the same results, except for round-off and precision issues.
@ -13,5 +13,5 @@ You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the :doc:`-suffix command-line switch <Run_options>` when you invoke LAMMPS, or you can use the
:doc:`suffix <suffix>` command in your input script.
See the :doc:`Accelerator packages <Speed_packages>` page for more
See the :doc:`Speed packages <Speed_packages>` page for more
instructions on how to use the accelerated styles effectively.

View File

@ -56,7 +56,23 @@ radian\^2.
----------
.. include:: accel_styles.rst
Styles with a *gpu*, *intel*, *kk*, *omp*, or *opt* suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed on the :doc:`Speed packages <Speed_packages>` doc
page. The accelerated styles take the same arguments and should
produce the same results, except for round-off and precision issues.
These accelerated styles are part of the GPU, INTEL, KOKKOS,
OPENMP and OPT packages, respectively. They are only enabled if
LAMMPS was built with those packages. See the :doc:`Build package <Build_package>` page for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the :doc:`-suffix command-line switch <Run_options>` when you invoke LAMMPS, or you can use the
:doc:`suffix <suffix>` command in your input script.
See :doc:`Speed packages <Speed_packages>` page for more
instructions on how to use the accelerated styles effectively.
----------

View File

@ -64,44 +64,34 @@ These are the 4 coefficients for the :math:`E_a` formula:
radians internally; hence the various :math:`K` are effectively energy
per radian\^2 or radian\^3 or radian\^4.
For the :math:`E_{bb}` formula, each line in a :doc:`angle_coeff
<angle_coeff>` command in the input script lists 4 coefficients, the
first of which is "bb" to indicate they are BondBond coefficients. In
a data file, these coefficients should be listed under a "BondBond
Coeffs" heading and you must leave out the "bb", i.e. only list 3
coefficients after the angle type.
For the :math:`E_{bb}` formula, each line in a :doc:`angle_coeff <angle_coeff>`
command in the input script lists 4 coefficients, the first of which
is "bb" to indicate they are BondBond coefficients. In a data file,
these coefficients should be listed under a "BondBond Coeffs" heading
and you must leave out the "bb", i.e. only list 3 coefficients after
the angle type.
* bb
* :math:`M` (energy/distance\^2)
* :math:`r_1` (distance)
* :math:`r_2` (distance)
For the :math:`E_{ba}` formula, each line in a :doc:`angle_coeff
<angle_coeff>` command in the input script lists 5 coefficients, the
first of which is "ba" to indicate they are BondAngle coefficients.
In a data file, these coefficients should be listed under a "BondAngle
Coeffs" heading and you must leave out the "ba", i.e. only list 4
coefficients after the angle type.
For the :math:`E_{ba}` formula, each line in a :doc:`angle_coeff <angle_coeff>`
command in the input script lists 5 coefficients, the first of which
is "ba" to indicate they are BondAngle coefficients. In a data file,
these coefficients should be listed under a "BondAngle Coeffs" heading
and you must leave out the "ba", i.e. only list 4 coefficients after
the angle type.
* ba
* :math:`N_1` (energy/distance)
* :math:`N_2` (energy/distance)
* :math:`N_1` (energy/distance\^2)
* :math:`N_2` (energy/distance\^2)
* :math:`r_1` (distance)
* :math:`r_2` (distance)
The :math:`\theta_0` value in the :math:`E_{ba}` formula is not specified,
since it is the same value from the :math:`E_a` formula.
.. note::
It is important that the order of the I,J,K atoms in each angle
listed in the Angles section of the data file read by the
:doc:`read_data <read_data>` command be consistent with the order
of the :math:`r_1` and :math:`r_2` BondBond and BondAngle
coefficients. This is because the terms in the formulas for
:math:`E_{bb}` and :math:`E_{ba}` will use the I,J atoms to compute
:math:`r_{ij}` and the J,K atoms to compute :math:`r_{jk}`.
----------
.. include:: accel_styles.rst

View File

@ -319,9 +319,28 @@ styles; see the :doc:`Modify <Modify>` doc page.
----------
.. include:: accel_styles.rst
Styles with a *kk* suffix are functionally the same as the
corresponding style without the suffix. They have been optimized to
run faster, depending on your available hardware, as discussed in on
the :doc:`Speed packages <Speed_packages>` doc page. The accelerated
styles take the same arguments and should produce the same results,
except for round-off and precision issues.
----------
Note that other acceleration packages in LAMMPS, specifically the GPU,
INTEL, OPENMP, and OPT packages do not use accelerated atom
styles.
The accelerated styles are part of the KOKKOS package. They are only
enabled if LAMMPS was built with those packages. See the :doc:`Build
package <Build_package>` page for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the :doc:`-suffix command-line
switch <Run_options>` when you invoke LAMMPS, or you can use the
:doc:`suffix <suffix>` command in your input script.
See the :doc:`Speed packages <Speed_packages>` page for more
instructions on how to use the accelerated styles effectively.
Restrictions
""""""""""""

View File

@ -1,5 +1,4 @@
.. index:: bond_style fene
.. index:: bond_style fene/nm
.. index:: bond_style fene/intel
.. index:: bond_style fene/kk
.. index:: bond_style fene/omp
@ -9,16 +8,12 @@ bond_style fene command
Accelerator Variants: *fene/intel*, *fene/kk*, *fene/omp*
bond_style fene/nm command
==========================
Syntax
""""""
.. code-block:: LAMMPS
bond_style fene
bond_style fene/nm
Examples
""""""""
@ -28,9 +23,6 @@ Examples
bond_style fene
bond_coeff 1 30.0 1.5 1.0 1.0
bond_style fene/nm
bond_coeff 1 2.25344 1.5 1.0 1.12246 2 6
Description
"""""""""""
@ -46,36 +38,16 @@ term is attractive, the second Lennard-Jones term is repulsive. The
first term extends to :math:`R_0`, the maximum extent of the bond. The second
term is cutoff at :math:`2^\frac{1}{6} \sigma`, the minimum of the LJ potential.
The *fene/nm* bond style substitutes the standard LJ potential with the generalized LJ potential
in the same form as in pair style :doc:`nm/cut <pair_nm>`. The bond energy is then given by
.. math::
E = -0.5 K r_0^2 \ln \left[ 1 - \left(\frac{r}{R_0}\right)^2\right] + \frac{E_0}{(n-m)} \left[ m \left(\frac{r_0}{r}\right)^n - n \left(\frac{r_0}{r}\right)^m \right]
Similar to the *fene* style, the generalized Lennard-Jones is cut off at
the potential minimum, :math:`r_0`, to be repulsive only. The following
coefficients must be defined for each bond type via the :doc:`bond_coeff
<bond_coeff>` command as in the example above, or in the data file or
restart files read by the :doc:`read_data <read_data>` or
:doc:`read_restart <read_restart>` commands:
The following coefficients must be defined for each bond type via the
:doc:`bond_coeff <bond_coeff>` command as in the example above, or in
the data file or restart files read by the :doc:`read_data <read_data>`
or :doc:`read_restart <read_restart>` commands:
* :math:`K` (energy/distance\^2)
* :math:`R_0` (distance)
* :math:`\epsilon` (energy)
* :math:`\sigma` (distance)
For the *fene/nm* style, the following coefficients are used. Please
note, that the standard LJ potential and thus the regular FENE potential
is recovered for (n=12 m=6) and :math:`r_0 = 2^\frac{1}{6} \sigma`.
* :math:`K` (energy/distance\^2)
* :math:`R_0` (distance)
* :math:`E_0` (energy)
* :math:`r_0` (distance)
* :math:`n` (unitless)
* :math:`m` (unitless)
----------
.. include:: accel_styles.rst
@ -85,10 +57,9 @@ is recovered for (n=12 m=6) and :math:`r_0 = 2^\frac{1}{6} \sigma`.
Restrictions
""""""""""""
The *fene* bond style can only be used if LAMMPS was built with the MOLECULE
package; the *fene/nm* bond style can only be used if LAMMPS was built
with the EXTRA-MOLECULE package. See the :doc:`Build package <Build_package>`
page for more info.
This bond style can only be used if LAMMPS was built with the MOLECULE
package. See the :doc:`Build package <Build_package>` page for more
info.
You typically should specify :doc:`special_bonds fene <special_bonds>`
or :doc:`special_bonds lj/coul 0 1 1 <special_bonds>` to use this bond
@ -97,8 +68,7 @@ style. LAMMPS will issue a warning it that's not the case.
Related commands
""""""""""""""""
:doc:`bond_coeff <bond_coeff>`, :doc:`delete_bonds <delete_bonds>`,
:doc:`pair style lj/cut <pair_lj>`, :doc:`pair style nm/cut <pair_nm>`.
:doc:`bond_coeff <bond_coeff>`, :doc:`delete_bonds <delete_bonds>`
Default
"""""""

View File

@ -87,7 +87,6 @@ accelerated styles exist.
* :doc:`class2 <bond_class2>` - COMPASS (class 2) bond
* :doc:`fene <bond_fene>` - FENE (finite-extensible non-linear elastic) bond
* :doc:`fene/expand <bond_fene_expand>` - FENE bonds with variable size particles
* :doc:`fene/nm <bond_fene>` - FENE bonds with a generalized Lennard-Jones potential
* :doc:`gaussian <bond_gaussian>` - multicentered Gaussian-based bond potential
* :doc:`gromos <bond_gromos>` - GROMOS force field bond
* :doc:`harmonic <bond_harmonic>` - harmonic bond

View File

@ -174,7 +174,6 @@ The individual style names on the :doc:`Commands compute <Commands_compute>` pag
* :doc:`angle <compute_angle>` - energy of each angle sub-style
* :doc:`angle/local <compute_angle_local>` - theta and energy of each angle
* :doc:`angmom/chunk <compute_angmom_chunk>` - angular momentum for each chunk
* :doc:`ave/sphere/atom <compute_ave_sphere_atom>` - compute local density and temperature around each atom
* :doc:`basal/atom <compute_basal_atom>` - calculates the hexagonal close-packed "c" lattice vector of each atom
* :doc:`body/local <compute_body_local>` - attributes of body sub-particles
* :doc:`bond <compute_bond>` - energy of each bond sub-style

View File

@ -1,101 +0,0 @@
.. index:: compute ave/sphere/atom
.. index:: compute ave/sphere/atom/kk
compute ave/sphere/atom command
================================
Accelerator Variants: *ave/sphere/atom/kk*
Syntax
""""""
.. parsed-literal::
compute ID group-ID ave/sphere/atom keyword values ...
* ID, group-ID are documented in :doc:`compute <compute>` command
* ave/sphere/atom = style name of this compute command
* one or more keyword/value pairs may be appended
.. parsed-literal::
keyword = *cutoff*
*cutoff* value = distance cutoff
Examples
""""""""
.. code-block:: LAMMPS
compute 1 all ave/sphere/atom
compute 1 all ave/sphere/atom cutoff 5.0
comm_modify cutoff 5.0
Description
"""""""""""
Define a computation that calculates the local density and temperature
for each atom and neighbors inside a spherical cutoff.
The optional keyword *cutoff* defines the distance cutoff
used when searching for neighbors. The default value is the cutoff
specified by the pair style. If no pair style is defined, then a cutoff
must be defined using this keyword. If the specified cutoff is larger than
that of the pair_style plus neighbor skin (or no pair style is defined),
the *comm_modify cutoff* option must also be set to match that of the
*cutoff* keyword.
The neighbor list needed to compute this quantity is constructed each
time the calculation is performed (i.e. each time a snapshot of atoms
is dumped). Thus it can be inefficient to compute/dump this quantity
too frequently.
.. note::
If you have a bonded system, then the settings of
:doc:`special_bonds <special_bonds>` command can remove pairwise
interactions between atoms in the same bond, angle, or dihedral. This
is the default setting for the :doc:`special_bonds <special_bonds>`
command, and means those pairwise interactions do not appear in the
neighbor list. Because this fix uses the neighbor list, it also means
those pairs will not be included in the order parameter. This
difficulty can be circumvented by writing a dump file, and using the
:doc:`rerun <rerun>` command to compute the order parameter for
snapshots in the dump file. The rerun script can use a
:doc:`special_bonds <special_bonds>` command that includes all pairs in
the neighbor list.
----------
.. include:: accel_styles.rst
----------
Output info
"""""""""""
This compute calculates a per-atom array with two columns: density and temperature.
These values can be accessed by any command that uses per-atom values
from a compute as input. See the :doc:`Howto output <Howto_output>` doc
page for an overview of LAMMPS output options.
Restrictions
""""""""""""
This compute is part of the EXTRA-COMPUTE package. It is only enabled if
LAMMPS was built with that package. See the :doc:`Build package <Build_package>` page for more info.
Related commands
""""""""""""""""
:doc:`comm_modify <comm_modify>`
Default
"""""""
The option defaults are *cutoff* = pair style cutoff

View File

@ -13,7 +13,7 @@ Syntax
* ID, group-ID are documented in :doc:`compute <compute>` command
* bond/local = style name of this compute command
* one or more values may be appended
* value = *dist* or *dx* or *dy* or *dz* or *engpot* or *force* or *fx* or *fy* or *fz* or *engvib* or *engrot* or *engtrans* or *omega* or *velvib* or *v_name*
* value = *dist* or *engpot* or *force* or *fx* or *fy* or *fz* or *engvib* or *engrot* or *engtrans* or *omega* or *velvib* or *v_name*
.. parsed-literal::
@ -21,7 +21,6 @@ Syntax
*engpot* = bond potential energy
*force* = bond force
*dx*,\ *dy*,\ *dz* = components of pairwise distance
*fx*,\ *fy*,\ *fz* = components of bond force
*engvib* = bond kinetic energy of vibration
*engrot* = bond kinetic energy of rotation
@ -64,9 +63,6 @@ whether the 2 atoms represent a simple diatomic molecule, or are part
of some larger molecule.
The value *dist* is the current length of the bond.
The values *dx*, *dy*, and *dz* are the xyz components of the
*distance* between the pair of atoms. This value is always the
distance from the atom of lower to the one with the higher id.
The value *engpot* is the potential energy for the bond,
based on the current separation of the pair of atoms in the bond.

View File

@ -89,20 +89,13 @@ included in the calculation.
.. warning::
The compute *heat/flux* has been reported to produce unphysical
values for angle, dihedral, improper and constraint force contributions
values for angle, dihedral and improper contributions
when used with :doc:`compute stress/atom <compute_stress_atom>`,
as discussed in :ref:`(Surblys2019) <Surblys3>`, :ref:`(Boone) <Boone>`
and :ref:`(Surblys2021) <Surblys4>`. You are strongly advised to
as discussed in :ref:`(Surblys) <Surblys2>` and :ref:`(Boone) <Boone>`.
You are strongly advised to
use :doc:`compute centroid/stress/atom <compute_stress_atom>`,
which has been implemented specifically for such cases.
.. warning::
Due to an implementation detail, the :math:`y` and :math:`z`
components of heat flux from :doc:`fix rigid <fix_rigid>`
contribution when computed via :doc:`compute stress/atom <compute_stress_atom>`
are highly unphysical and should not be used.
The Green-Kubo formulas relate the ensemble average of the
auto-correlation of the heat flux :math:`\mathbf{J}`
to the thermal conductivity :math:`\kappa`:
@ -239,14 +232,10 @@ none
----------
.. _Surblys3:
.. _Surblys2:
**(Surblys2019)** Surblys, Matsubara, Kikugawa, Ohara, Phys Rev E, 99, 051301(R) (2019).
**(Surblys)** Surblys, Matsubara, Kikugawa, Ohara, Phys Rev E, 99, 051301(R) (2019).
.. _Boone:
**(Boone)** Boone, Babaei, Wilmer, J Chem Theory Comput, 15, 5579--5587 (2019).
.. _Surblys4:
**(Surblys2021)** Surblys, Matsubara, Kikugawa, Ohara, J Appl Phys 130, 215104 (2021).

View File

@ -13,12 +13,11 @@ Syntax
* ID, group-ID are documented in :doc:`compute <compute>` command
* pair/local = style name of this compute command
* one or more values may be appended
* value = *dist* or *dx* or *dy* or *dz* or *eng* or *force* or *fx* or *fy* or *fz* or *pN*
* value = *dist* or *eng* or *force* or *fx* or *fy* or *fz* or *pN*
.. parsed-literal::
*dist* = pairwise distance
*dx*,\ *dy*,\ *dz* = components of pairwise distance
*eng* = pairwise energy
*force* = pairwise force
*fx*,\ *fy*,\ *fz* = components of pairwise force
@ -57,9 +56,6 @@ force cutoff distance for that interaction, as defined by the
commands.
The value *dist* is the distance between the pair of atoms.
The values *dx*, *dy*, and *dz* are the xyz components of the
*distance* between the pair of atoms. This value is always the
distance from the atom of lower to the one with the higher id.
The value *eng* is the interaction energy for the pair of atoms.
@ -93,10 +89,10 @@ from the second of the two sub-styles. If the referenced *pN*
is not computed for the specific pairwise interaction (based on
atom types), then the output will be 0.0.
The value *dist*, *dx*, *dy* and *dz* will be in distance :doc:`units <units>`.
The value *eng* will be in energy :doc:`units <units>`.
The values *force*, *fx*, *fy*, and *fz* will be in force :doc:`units <units>`.
The values *pN* will be in whatever units the pair style defines.
The value *dist* will be in distance :doc:`units <units>`. The value
*eng* will be in energy :doc:`units <units>`. The values *force*, *fx*,
*fy*, and *fz* will be in force :doc:`units <units>`. The values *pN*
will be in whatever units the pair style defines.
The optional *cutoff* keyword determines how the force cutoff distance
for an interaction is determined. For the default setting of *type*,

View File

@ -87,10 +87,6 @@ Tersoff 3-body interaction) is assigned in equal portions to each atom
in the set. E.g. 1/4 of the dihedral virial to each of the 4 atoms,
or 1/3 of the fix virial due to SHAKE constraints applied to atoms in
a water molecule via the :doc:`fix shake <fix_shake>` command.
As an exception, the virial contribution from
constraint forces in :doc:`fix rigid <fix_rigid>` on each atom
is computed from the constraint force acting on the corresponding atom
and its position, i.e. the total virial is not equally distributed.
In case of compute *centroid/stress/atom*, the virial contribution is:
@ -107,25 +103,13 @@ atom :math:`I` due to the interaction and the relative position
:math:`\mathbf{r}_{I0}` of the atom :math:`I` to the geometric center
of the interacting atoms, i.e. centroid, is used. As the geometric
center is different for each interaction, the :math:`\mathbf{r}_{I0}`
also differs. The sixth term, Kspace contribution,
is computed identically to compute *stress/atom*.
The seventh term is handed differently depending on
if the constraint forces are due to :doc:`fix shake <fix_shake>`
or :doc:`fix rigid <fix_rigid>`.
In case of SHAKE constraints, each distance constraint is
handed as a pairwise interaction.
E.g. in case of a water molecule, two OH and one HH distance
constraints are treated as three pairwise interactions.
In case of :doc:`fix rigid <fix_rigid>`,
all constraint forces in the molecule are treated
as a single many-body interaction with a single centroid position.
In case of water molecule, the formula expression would become
identical to that of the three-body angle interaction.
Although the total system virial is the same as
also differs. The sixth and seventh terms, Kspace and :doc:`fix
<fix>` contribution respectively, are computed identical to compute
*stress/atom*. Although the total system virial is the same as
compute *stress/atom*, compute *centroid/stress/atom* is know to
result in more consistent heat flux values for angle, dihedrals,
improper and constraint force contributions
when computed via :doc:`compute heat/flux <compute_heat_flux>`.
result in more consistent heat flux values for angle, dihedrals and
improper contributions when computed via :doc:`compute heat/flux
<compute_heat_flux>`.
If no extra keywords are listed, the kinetic contribution all of the
virial contribution terms are included in the per-atom stress tensor.
@ -150,8 +134,7 @@ contribution for the cluster interaction is divided evenly among those
atoms.
Details of how compute *centroid/stress/atom* obtains the virial for
individual atoms are given in :ref:`(Surblys2019) <Surblys1>` and
:ref:`(Surblys2021) <Surblys2>`, where the
individual atoms is given in :ref:`(Surblys) <Surblys1>`, where the
idea is that the virial of the atom :math:`I` is the result of only
the force :math:`\mathbf{F}_I` on the atom due to the interaction and
its positional vector :math:`\mathbf{r}_{I0}`, relative to the
@ -252,10 +235,10 @@ between the pair of particles. All bond styles are supported. All
angle, dihedral, improper styles are supported with the exception of
INTEL and KOKKOS variants of specific styles. It also does not
support models with long-range Coulombic or dispersion forces,
i.e. the kspace_style command in LAMMPS. It also does not implement the
following fixes which add rigid-body constraints:
:doc:`fix rigid/* <fix_rigid>` and the OpenMP accelerated version of :doc:`fix rigid/small <fix_rigid>`,
while all other :doc:`fix rigid/*/small <fix_rigid>` are implemented.
i.e. the kspace_style command in LAMMPS. It also does not support the
following fixes which add rigid-body constraints: :doc:`fix shake
<fix_shake>`, :doc:`fix rattle <fix_shake>`, :doc:`fix rigid
<fix_rigid>`, :doc:`fix rigid/small <fix_rigid>`.
LAMMPS will generate an error if one of these options is included in
your model. Extension of centroid stress calculations to these force
@ -287,8 +270,4 @@ none
.. _Surblys1:
**(Surblys2019)** Surblys, Matsubara, Kikugawa, Ohara, Phys Rev E, 99, 051301(R) (2019).
.. _Surblys2:
**(Surblys2021)** Surblys, Matsubara, Kikugawa, Ohara, J Appl Phys 130, 215104 (2021).
**(Surblys)** Surblys, Matsubara, Kikugawa, Ohara, Phys Rev E, 99, 051301(R) (2019).

View File

@ -20,10 +20,8 @@ Syntax
cutoff = delete one atom from pairs of atoms within the cutoff (distance units)
group1-ID = one atom in pair must be in this group
group2-ID = other atom in pair must be in this group
*porosity* args = group-ID region-ID fraction seed
group-ID = group within which to perform deletions
*porosity* args = region-ID fraction seed
region-ID = region within which to perform deletions
or NULL to only impose the group criterion
fraction = delete this fraction of atoms
seed = random number seed (positive integer)
@ -45,8 +43,7 @@ Examples
delete_atoms region sphere compress no
delete_atoms overlap 0.3 all all
delete_atoms overlap 0.5 solvent colloid
delete_atoms porosity all cube 0.1 482793 bond yes
delete_atoms porosity polymer cube 0.1 482793 bond yes
delete_atoms porosity cube 0.1 482793 bond yes
Description
"""""""""""
@ -79,17 +76,12 @@ have occurred that no atom pairs within the cutoff will remain
minimum number of atoms will be deleted, or that the same atoms will
be deleted when running on different numbers of processors.
For style *porosity* a specified *fraction* of atoms are deleted which
are both in the specified group and within the specified region. The
region-ID can be specified as NULL to only impose the group criterion.
Likewise, specifying the group-ID as *all* will only impose the region
criterion.
For example, if fraction is 0.1, then 10% of the eligible atoms will
be deleted. The atoms to delete are chosen randomly. There is no
guarantee that the exact fraction of atoms will be deleted, or that
the same atoms will be deleted when running on different numbers of
processors.
For style *porosity* a specified *fraction* of atoms are deleted
within the specified region. For example, if fraction is 0.1, then
10% of the atoms will be deleted. The atoms to delete are chosen
randomly. There is no guarantee that the exact fraction of atoms will
be deleted, or that the same atoms will be deleted when running on
different numbers of processors.
If the *compress* keyword is set to *yes*, then after atoms are
deleted, then atom IDs are re-assigned so that they run from 1 to the
@ -97,8 +89,8 @@ number of atoms in the system. Note that this is not done for
molecular systems (see the :doc:`atom_style <atom_style>` command),
regardless of the *compress* setting, since it would foul up the bond
connectivity that has already been assigned. However, the
:doc:`reset_atom_ids <reset_atom_ids>` command can be used after this
command to accomplish the same thing.
:doc:`reset_atom_ids <reset_atom_ids>` command can be used after this command to
accomplish the same thing.
Note that the re-assignment of IDs is not really a compression, where
gaps in atom IDs are removed by decrementing atom IDs that are larger.
@ -108,15 +100,15 @@ the :doc:`create_atoms <create_atoms>` command explains.
A molecular system with fixed bonds, angles, dihedrals, or improper
interactions, is one where the topology of the interactions is
typically defined in the data file read by the :doc:`read_data
<read_data>` command, and where the interactions themselves are
defined with the :doc:`bond_style <bond_style>`, :doc:`angle_style
<angle_style>`, etc commands. If you delete atoms from such a system,
you must be careful not to end up with bonded interactions that are
stored by remaining atoms but which include deleted atoms. This will
cause LAMMPS to generate a "missing atoms" error when the bonded
interaction is computed. The *bond* and *mol* keywords offer two ways
to do that.
typically defined in the data file read by the
:doc:`read_data <read_data>` command, and where the interactions
themselves are defined with the :doc:`bond_style <bond_style>`,
:doc:`angle_style <angle_style>`, etc commands. If you delete atoms
from such a system, you must be careful not to end up with bonded
interactions that are stored by remaining atoms but which include
deleted atoms. This will cause LAMMPS to generate a "missing atoms"
error when the bonded interaction is computed. The *bond* and *mol*
keywords offer two ways to do that.
It the *bond* keyword is set to *yes* then any bond or angle or
dihedral or improper interaction that includes a deleted atom is also

View File

@ -137,7 +137,7 @@ Examples
dump myDump all atom/gz 100 dump.atom.gz
dump myDump all atom/zstd 100 dump.atom.zst
dump 2 subgroup atom 50 dump.run.bin
dump 2 subgroup atom/mpiio 50 dump.run.mpiio.bin
dump 2 subgroup atom 50 dump.run.mpiio.bin
dump 4a all custom 100 dump.myforce.* id type x y vx fx
dump 4b flow custom 100 dump.%.myforce id type c_myF[3] v_ke
dump 4b flow custom 100 dump.%.myforce id type c_myF[*] v_ke
@ -169,12 +169,11 @@ or multiple smaller files).
.. note::
Because periodic boundary conditions are enforced only on timesteps
when neighbor lists are rebuilt, the coordinates of an atom written
to a dump file may be slightly outside the simulation box.
Re-neighbor timesteps will not typically coincide with the
timesteps dump snapshots are written. See the :doc:`dump_modify
pbc <dump_modify>` command if you with to force coordinates to be
Because periodic boundary conditions are enforced only on
timesteps when neighbor lists are rebuilt, the coordinates of an atom
written to a dump file may be slightly outside the simulation box.
Re-neighbor timesteps will not typically coincide with the timesteps
dump snapshots are written. See the :doc:`dump_modify pbc <dump_modify>` command if you with to force coordinates to be
strictly inside the simulation box.
.. note::
@ -190,21 +189,20 @@ or multiple smaller files).
multiple processors, each of which owns a subset of the atoms.
For the *atom*, *custom*, *cfg*, and *local* styles, sorting is off by
default. For the *dcd*, *xtc*, *xyz*, and *molfile* styles, sorting
by atom ID is on by default. See the :doc:`dump_modify <dump_modify>`
doc page for details.
default. For the *dcd*, *xtc*, *xyz*, and *molfile* styles, sorting by
atom ID is on by default. See the :doc:`dump_modify <dump_modify>` doc
page for details.
The *atom/gz*, *cfg/gz*, *custom/gz*, *local/gz*, and *xyz/gz* styles
are identical in command syntax to the corresponding styles without
"gz", however, they generate compressed files using the zlib
library. Thus the filename suffix ".gz" is mandatory. This is an
alternative approach to writing compressed files via a pipe, as done
by the regular dump styles, which may be required on clusters where
the interface to the high-speed network disallows using the fork()
library call (which is needed for a pipe). For the remainder of this
doc page, you should thus consider the *atom* and *atom/gz* styles
(etc) to be inter-changeable, with the exception of the required
filename suffix.
The *atom/gz*, *cfg/gz*, *custom/gz*, *local/gz*, and *xyz/gz* styles are identical
in command syntax to the corresponding styles without "gz", however,
they generate compressed files using the zlib library. Thus the filename
suffix ".gz" is mandatory. This is an alternative approach to writing
compressed files via a pipe, as done by the regular dump styles, which
may be required on clusters where the interface to the high-speed network
disallows using the fork() library call (which is needed for a pipe).
For the remainder of this doc page, you should thus consider the *atom*
and *atom/gz* styles (etc) to be inter-changeable, with the exception
of the required filename suffix.
Similarly, the *atom/zstd*, *cfg/zstd*, *custom/zstd*, *local/zstd*,
and *xyz/zstd* styles are identical to the gz styles, but use the Zstd
@ -221,11 +219,6 @@ you should thus consider the *atom* and *atom/mpiio* styles (etc) to
be inter-changeable. The one exception is how the filename is
specified for the MPI-IO styles, as explained below.
.. warning::
The MPIIO package is currently unmaintained and has become
unreliable. Use with caution.
The precision of values output to text-based dump files can be
controlled by the :doc:`dump_modify format <dump_modify>` command and
its options.
@ -282,11 +275,10 @@ This bounding box is convenient for many visualization programs. The
meaning of the 6 character flags for "xx yy zz" is the same as above.
Note that the first two numbers on each line are now xlo_bound instead
of xlo, etc, since they represent a bounding box. See the :doc:`Howto
triclinic <Howto_triclinic>` page for a geometric description of
triclinic boxes, as defined by LAMMPS, simple formulas for how the 6
bounding box extents (xlo_bound,xhi_bound,etc) are calculated from the
triclinic parameters, and how to transform those parameters to and
of xlo, etc, since they represent a bounding box. See the :doc:`Howto triclinic <Howto_triclinic>` page for a geometric description
of triclinic boxes, as defined by LAMMPS, simple formulas for how the
6 bounding box extents (xlo_bound,xhi_bound,etc) are calculated from
the triclinic parameters, and how to transform those parameters to and
from other commonly used triclinic representations.
The "ITEM: ATOMS" line in each snapshot lists column descriptors for
@ -318,24 +310,23 @@ written to the dump file. This local data is typically calculated by
each processor based on the atoms it owns, but there may be zero or
more entities per atom, e.g. a list of bond distances. An explanation
of the possible dump local attributes is given below. Note that by
using input from the :doc:`compute property/local
<compute_property_local>` command with dump local, it is possible to
generate information on bonds, angles, etc that can be cut and pasted
directly into a data file read by the :doc:`read_data <read_data>`
command.
using input from the :doc:`compute property/local <compute_property_local>` command with dump local,
it is possible to generate information on bonds, angles, etc that can
be cut and pasted directly into a data file read by the
:doc:`read_data <read_data>` command.
Style *cfg* has the same command syntax as style *custom* and writes
extended CFG format files, as used by the `AtomEye
<http://li.mit.edu/Archive/Graphics/A/>`_ visualization package.
Since the extended CFG format uses a single snapshot of the system per
file, a wildcard "\*" must be included in the filename, as discussed
below. The list of atom attributes for style *cfg* must begin with
either "mass type xs ys zs" or "mass type xsu ysu zsu" since these
quantities are needed to write the CFG files in the appropriate format
(though the "mass" and "type" fields do not appear explicitly in the
file). Any remaining attributes will be stored as "auxiliary
properties" in the CFG files. Note that you will typically want to
use the :doc:`dump_modify element <dump_modify>` command with
extended CFG format files, as used by the
`AtomEye <http://li.mit.edu/Archive/Graphics/A/>`_ visualization
package. Since the extended CFG format uses a single snapshot of the
system per file, a wildcard "\*" must be included in the filename, as
discussed below. The list of atom attributes for style *cfg* must
begin with either "mass type xs ys zs" or "mass type xsu ysu zsu"
since these quantities are needed to write the CFG files in the
appropriate format (though the "mass" and "type" fields do not appear
explicitly in the file). Any remaining attributes will be stored as
"auxiliary properties" in the CFG files. Note that you will typically
want to use the :doc:`dump_modify element <dump_modify>` command with
CFG-formatted files, to associate element names with atom types, so
that AtomEye can render atoms appropriately. When unwrapped
coordinates *xsu*, *ysu*, and *zsu* are requested, the nominal AtomEye
@ -461,11 +452,6 @@ use the :doc:`read_dump <read_dump>` command or perform other
post-processing, just as if the dump file was not written using
MPI-IO.
.. warning::
The MPIIO package is currently unmaintained and has become
unreliable. Use with caution.
Note that MPI-IO dump files are one large file which all processors
write to. You thus cannot use the "%" wildcard character described
above in the filename since that specifies generation of multiple
@ -722,9 +708,8 @@ are part of the MPIIO package. They are only enabled if LAMMPS was
built with that package. See the :doc:`Build package <Build_package>`
doc page for more info.
The *xtc* and *dcd* styles are part of the EXTRA-DUMP package. They
are only enabled if LAMMPS was built with that package. See the
:doc:`Build package <Build_package>` page for more info.
The *xtc* style is part of the MISC package. It is only enabled if
LAMMPS was built with that package. See the :doc:`Build package <Build_package>` page for more info.
Related commands
""""""""""""""""

View File

@ -6,8 +6,6 @@ dump image command
dump movie command
==================
(see below for :ref:`dump_modify options <dump_modify_image>` specific to dump image/movie)
Syntax
""""""
@ -17,7 +15,7 @@ Syntax
* ID = user-assigned name for the dump
* group-ID = ID of the group of atoms to be imaged
* style = *image* or *movie* = style of dump command (other styles such as *atom* or *cfg* or *dcd* or *xtc* or *xyz* or *local* or *custom* are discussed on the :doc:`dump <dump>` doc page)
* style = *image* or *movie* = style of dump command (other styles *atom* or *cfg* or *dcd* or *xtc* or *xyz* or *local* or *custom* are discussed on the :doc:`dump <dump>` doc page)
* N = dump every this many timesteps
* file = name of file to write image to
* color = atom attribute that determines color of each atom
@ -81,69 +79,6 @@ Syntax
seed = random # seed (positive integer)
dfactor = strength of shading from 0.0 to 1.0
.. _dump_modify_image:
dump_modify options for dump image/movie
========================================
Syntax
""""""
.. parsed-literal::
dump_modify dump-ID keyword values ...
* these keywords apply only to the *image* and *movie* styles and are documented on this page
* keyword = *acolor* or *adiam* or *amap* or *backcolor* or *bcolor* or *bdiam* or *boxcolor* or *color* or *bitrate* or *framerate*
* see the :doc:`dump modify <dump_modify>` doc page for more general keywords
.. parsed-literal::
*acolor* args = type color
type = atom type or range of types (see below)
color = name of color or color1/color2/...
*adiam* args = type diam
type = atom type or range of types (see below)
diam = diameter of atoms of that type (distance units)
*amap* args = lo hi style delta N entry1 entry2 ... entryN
lo = number or *min* = lower bound of range of color map
hi = number or *max* = upper bound of range of color map
style = 2 letters = "c" or "d" or "s" plus "a" or "f"
"c" for continuous
"d" for discrete
"s" for sequential
"a" for absolute
"f" for fractional
delta = binsize (only used for style "s", otherwise ignored)
binsize = range is divided into bins of this width
N = # of subsequent entries
entry = value color (for continuous style)
value = number or *min* or *max* = single value within range
color = name of color used for that value
entry = lo hi color (for discrete style)
lo/hi = number or *min* or *max* = lower/upper bound of subset of range
color = name of color used for that subset of values
entry = color (for sequential style)
color = name of color used for a bin of values
*backcolor* arg = color
color = name of color for background
*bcolor* args = type color
type = bond type or range of types (see below)
color = name of color or color1/color2/...
*bdiam* args = type diam
type = bond type or range of types (see below)
diam = diameter of bonds of that type (distance units)
*boxcolor* arg = color
color = name of color for simulation box lines and processor sub-domain lines
*color* args = name R G B
name = name of color
R,G,B = red/green/blue numeric values from 0.0 to 1.0
*bitrate* arg = rate
rate = target bitrate for movie in kbps
*framerate* arg = fps
fps = frames per second for movie
Examples
""""""""
@ -156,8 +91,6 @@ Examples
dump m1 all movie 1000 movie.avi type type size 640 480
dump m2 all movie 100 movie.m4v type type zoom 1.8 adiam v_value size 1280 720
dump_modify 1 amap min max cf 0.0 3 min green 0.5 yellow max blue boxcolor red
Description
"""""""""""
@ -212,10 +145,10 @@ is used.
Similarly, the format of the resulting movie is chosen with the
*movie* dump style. This is handled by the underlying FFmpeg converter
and thus details have to be looked up in the `FFmpeg documentation
<http://ffmpeg.org/ffmpeg.html>`_. Typical examples are: .avi, .mpg,
.m4v, .mp4, .mkv, .flv, .mov, .gif Additional settings of the movie
compression like bitrate and framerate can be set using the
dump_modify command as described below.
<http://ffmpeg.org/ffmpeg.html>`_.
Typical examples are: .avi, .mpg, .m4v, .mp4, .mkv, .flv, .mov, .gif
Additional settings of the movie compression like bitrate and
framerate can be set using the :doc:`dump_modify <dump_modify>` command.
To write out JPEG and PNG format files, you must build LAMMPS with
support for the corresponding JPEG or PNG library. To convert images
@ -277,20 +210,19 @@ to colors is as follows:
* type 6 = cyan
and repeats itself for types > 6. This mapping can be changed by the
"dump_modify acolor" command, as described below.
:doc:`dump_modify acolor <dump_modify>` command.
If *type* is specified for the *diameter* setting then the diameter of
each atom is determined by its atom type. By default all types have
diameter 1.0. This mapping can be changed by the "dump_modify adiam"
command, as described below.
diameter 1.0. This mapping can be changed by the :doc:`dump_modify adiam <dump_modify>` command.
If *element* is specified for the *color* and/or *diameter* setting,
then the color and/or diameter of each atom is determined by which
element it is, which in turn is specified by the element-to-type
mapping specified by the "dump_modify element" command, as described
below. By default every atom type is C (carbon). Every element has a
color and diameter associated with it, which is the same as the colors
and sizes used by the `AtomEye <atomeye_>`_ visualization package.
mapping specified by the "dump_modify element" command. By default
every atom type is C (carbon). Every element has a color and diameter
associated with it, which is the same as the colors and sizes used by
the `AtomEye <atomeye_>`_ visualization package.
.. _atomeye: http://li.mit.edu/Archive/Graphics/A/
@ -300,13 +232,13 @@ settings, they are interpreted in the following way.
If "vx", for example, is used as the *color* setting, then the color
of the atom will depend on the x-component of its velocity. The
association of a per-atom value with a specific color is determined by
a "color map", which can be specified via the dump_modify command, as
described below. The basic idea is that the atom-attribute will be
within a range of values, and every value within the range is mapped
to a specific color. Depending on how the color map is defined, that
mapping can take place via interpolation so that a value of -3.2 is
halfway between "red" and "blue", or discretely so that the value of
-3.2 is "orange".
a "color map", which can be specified via the
:doc:`dump_modify <dump_modify>` command. The basic idea is that the
atom-attribute will be within a range of values, and every value
within the range is mapped to a specific color. Depending on how the
color map is defined, that mapping can take place via interpolation so
that a value of -3.2 is halfway between "red" and "blue", or
discretely so that the value of -3.2 is "orange".
If "vx", for example, is used as the *diameter* setting, then the atom
will be rendered using the x-component of its velocity as the
@ -319,10 +251,9 @@ diameter, which can be used as the *diameter* setting.
The various keywords listed above control how the image is rendered.
As listed below, all of the keywords have defaults, most of which you
will likely not need to change. As described below, the dump modify
command also has options specific to the dump image style,
particularly for assigning colors to atoms, bonds, and other image
features.
will likely not need to change. The :doc:`dump modify <dump_modify>`
also has options specific to the dump image style, particularly for
assigning colors to atoms, bonds, and other image features.
----------
@ -364,7 +295,7 @@ types to colors is as follows:
* type 6 = cyan
and repeats itself for bond types > 6. This mapping can be changed by
the "dump_modify bcolor" command, as described below.
the :doc:`dump_modify bcolor <dump_modify>` command.
The bond *width* value can be a numeric value or *atom* or *type* (or
*none* as indicated above).
@ -379,8 +310,7 @@ of the 2 atoms in the bond.
If *type* is specified for the *width* value then the diameter of each
bond is determined by its bond type. By default all types have
diameter 0.5. This mapping can be changed by the "dump_modify bdiam" command,
as described below.
diameter 0.5. This mapping can be changed by the :doc:`dump_modify bdiam <dump_modify>` command.
----------
@ -400,7 +330,7 @@ mapping of types to colors is as follows:
* type 6 = cyan
and repeats itself for types > 6. There is not yet an option to
change this via the dump_modify command.
change this via the :doc:`dump_modify <dump_modify>` command.
The line *width* can only be a numeric value, which specifies that all
lines will be drawn as cylinders with that diameter, e.g. 1.0, which
@ -427,7 +357,7 @@ default the mapping of types to colors is as follows:
* type 6 = cyan
and repeats itself for types > 6. There is not yet an option to
change this via the dump_modify command.
change this via the :doc:`dump_modify <dump_modify>` command.
----------
@ -460,7 +390,7 @@ particle. By default the mapping of types to colors is as follows:
* type 6 = cyan
and repeats itself for types > 6. There is not yet an option to
change this via the dump_modify command.
change this via the :doc:`dump_modify <dump_modify>` command.
----------
@ -484,7 +414,7 @@ the mapping of types to colors is as follows:
* type 6 = cyan
and repeats itself for types > 6. There is not yet an option to
change this via the dump_modify command.
change this via the :doc:`dump_modify <dump_modify>` command.
----------
@ -558,8 +488,7 @@ are rendered as thin cylinders in the image. If *no* is set, then the
box boundaries are not drawn and the *diam* setting is ignored. If
*yes* is set, the 12 edges of the box are drawn, with a diameter that
is a fraction of the shortest box length in x,y,z (for 3d) or x,y (for
2d). The color of the box boundaries can be set with the "dump_modify
boxcolor" command.
2d). The color of the box boundaries can be set with the :doc:`dump_modify boxcolor <dump_modify>` command.
The *axes* keyword determines if and how the coordinate axes are
rendered as thin cylinders in the image. If *no* is set, then the
@ -578,8 +507,7 @@ set (default), then the sub-domain boundaries are not drawn and the
*diam* setting is ignored. If *yes* is set, the 12 edges of each
processor sub-domain are drawn, with a diameter that is a fraction of
the shortest box length in x,y,z (for 3d) or x,y (for 2d). The color
of the sub-domain boundaries can be set with the "dump_modify
boxcolor" command.
of the sub-domain boundaries can be set with the :doc:`dump_modify boxcolor <dump_modify>` command.
----------
@ -679,272 +607,9 @@ Play the movie:
----------
Dump_modify keywords for dump image and dump movie
""""""""""""""""""""""""""""""""""""""""""""""""""
The following dump_modify keywords apply only to the dump image and
dump movie styles. Any keyword that works with dump image also works
with dump movie, since the movie is simply a collection of images.
Some of the keywords only affect the dump movie style. The
descriptions give details.
----------
The *acolor* keyword can be used with the dump image command, when its
atom color setting is *type*, to set the color that atoms of each type
will be drawn in the image.
The specified *type* should be an integer from 1 to Ntypes = the
number of atom types. A wildcard asterisk can be used in place of or
in conjunction with the *type* argument to specify a range of atom
types. This takes the form "\*" or "\*n" or "n\*" or "m\*n". If N =
the number of atom types, then an asterisk with no numeric values
means all types from 1 to N. A leading asterisk means all types from
1 to n (inclusive). A trailing asterisk means all types from n to N
(inclusive). A middle asterisk means all types from m to n
(inclusive).
The specified *color* can be a single color which is any of the 140
pre-defined colors (see below) or a color name defined by the
"dump_modify color" command, as described below. Or it can be two or
more colors separated by a "/" character, e.g. red/green/blue. In the
former case, that color is assigned to all the specified atom types.
In the latter case, the list of colors are assigned in a round-robin
fashion to each of the specified atom types.
----------
The *adiam* keyword can be used with the dump image command, when its
atom diameter setting is *type*, to set the size that atoms of each
type will be drawn in the image. The specified *type* should be an
integer from 1 to Ntypes. As with the *acolor* keyword, a wildcard
asterisk can be used as part of the *type* argument to specify a range
of atom types. The specified *diam* is the size in whatever distance
:doc:`units <units>` the input script is using, e.g. Angstroms.
----------
The *amap* keyword can be used with the dump image command, with its
*atom* keyword, when its atom setting is an atom-attribute, to setup a
color map. The color map is used to assign a specific RGB
(red/green/blue) color value to an individual atom when it is drawn,
based on the atom's attribute, which is a numeric value, e.g. its
x-component of velocity if the atom-attribute "vx" was specified.
The basic idea of a color map is that the atom-attribute will be
within a range of values, and that range is associated with a series
of colors (e.g. red, blue, green). An atom's specific value (vx =
-3.2) can then mapped to the series of colors (e.g. halfway between
red and blue), and a specific color is determined via an interpolation
procedure.
There are many possible options for the color map, enabled by the
*amap* keyword. Here are the details.
The *lo* and *hi* settings determine the range of values allowed for
the atom attribute. If numeric values are used for *lo* and/or *hi*,
then values that are lower/higher than that value are set to the
value. I.e. the range is static. If *lo* is specified as *min* or
*hi* as *max* then the range is dynamic, and the lower and/or
upper bound will be calculated each time an image is drawn, based
on the set of atoms being visualized.
The *style* setting is two letters, such as "ca". The first letter is
either "c" for continuous, "d" for discrete, or "s" for sequential.
The second letter is either "a" for absolute, or "f" for fractional.
A continuous color map is one in which the color changes continuously
from value to value within the range. A discrete color map is one in
which discrete colors are assigned to sub-ranges of values within the
range. A sequential color map is one in which discrete colors are
assigned to a sequence of sub-ranges of values covering the entire
range.
An absolute color map is one in which the values to which colors are
assigned are specified explicitly as values within the range. A
fractional color map is one in which the values to which colors are
assigned are specified as a fractional portion of the range. For
example if the range is from -10.0 to 10.0, and the color red is to be
assigned to atoms with a value of 5.0, then for an absolute color map
the number 5.0 would be used. But for a fractional map, the number
0.75 would be used since 5.0 is 3/4 of the way from -10.0 to 10.0.
The *delta* setting must be specified for all styles, but is only used
for the sequential style; otherwise the value is ignored. It
specifies the bin size to use within the range for assigning
consecutive colors to. For example, if the range is from -10.0 to
10.0 and a *delta* of 1.0 is used, then 20 colors will be assigned to
the range. The first will be from -10.0 <= color1 < -9.0, then second
from -9.0 <= color2 < -8.0, etc.
The *N* setting is how many entries follow. The format of the entries
depends on whether the color map style is continuous, discrete or
sequential. In all cases the *color* setting can be any of the 140
pre-defined colors (see below) or a color name defined by the
dump_modify color option.
For continuous color maps, each entry has a *value* and a *color*\ .
The *value* is either a number within the range of values or *min* or
*max*\ . The *value* of the first entry must be *min* and the *value*
of the last entry must be *max*\ . Any entries in between must have
increasing values. Note that numeric values can be specified either
as absolute numbers or as fractions (0.0 to 1.0) of the range,
depending on the "a" or "f" in the style setting for the color map.
Here is how the entries are used to determine the color of an
individual atom, given the value X of its atom attribute. X will fall
between 2 of the entry values. The color of the atom is linearly
interpolated (in each of the RGB values) between the 2 colors
associated with those entries. For example, if X = -5.0 and the 2
surrounding entries are "red" at -10.0 and "blue" at 0.0, then the
atom's color will be halfway between "red" and "blue", which happens
to be "purple".
For discrete color maps, each entry has a *lo* and *hi* value and a
*color*\ . The *lo* and *hi* settings are either numbers within the
range of values or *lo* can be *min* or *hi* can be *max*\ . The *lo*
and *hi* settings of the last entry must be *min* and *max*\ . Other
entries can have any *lo* and *hi* values and the sub-ranges of
different values can overlap. Note that numeric *lo* and *hi* values
can be specified either as absolute numbers or as fractions (0.0 to
1.0) of the range, depending on the "a" or "f" in the style setting
for the color map.
Here is how the entries are used to determine the color of an
individual atom, given the value X of its atom attribute. The entries
are scanned from first to last. The first time that *lo* <= X <=
*hi*, X is assigned the color associated with that entry. You can
think of the last entry as assigning a default color (since it will
always be matched by X), and the earlier entries as colors that
override the default. Also note that no interpolation of a color RGB
is done. All atoms will be drawn with one of the colors in the list
of entries.
For sequential color maps, each entry has only a *color*\ . Here is how
the entries are used to determine the color of an individual atom,
given the value X of its atom attribute. The range is partitioned
into N bins of width *binsize*\ . Thus X will fall in a specific bin
from 1 to N, say the Mth bin. If it falls on a boundary between 2
bins, it is considered to be in the higher of the 2 bins. Each bin is
assigned a color from the E entries. If E < N, then the colors are
repeated. For example if 2 entries with colors red and green are
specified, then the odd numbered bins will be red and the even bins
green. The color of the atom is the color of its bin. Note that the
sequential color map is really a shorthand way of defining a discrete
color map without having to specify where all the bin boundaries are.
Here is an example of using a sequential color map to color all the
atoms in individual molecules with a different color. See the
examples/pour/in.pour.2d.molecule input script for an example of how
this is used.
.. code-block:: LAMMPS
variable colors string &
"red green blue yellow white &
purple pink orange lime gray"
variable mol atom mol%10
dump 1 all image 250 image.*.jpg v_mol type &
zoom 1.6 adiam 1.5
dump_modify 1 pad 5 amap 0 10 sa 1 10 ${colors}
In this case, 10 colors are defined, and molecule IDs are
mapped to one of the colors, even if there are 1000s of molecules.
----------
The *backcolor* sets the background color of the images. The color
name can be any of the 140 pre-defined colors (see below) or a color
name defined by the dump_modify color option.
----------
The *bcolor* keyword can be used with the dump image command, with its
*bond* keyword, when its color setting is *type*, to set the color
that bonds of each type will be drawn in the image.
The specified *type* should be an integer from 1 to Nbondtypes = the
number of bond types. A wildcard asterisk can be used in place of or
in conjunction with the *type* argument to specify a range of bond
types. This takes the form "\*" or "\*n" or "n\*" or "m\*n". If N =
the number of bond types, then an asterisk with no numeric values
means all types from 1 to N. A leading asterisk means all types from
1 to n (inclusive). A trailing asterisk means all types from n to N
(inclusive). A middle asterisk means all types from m to n
(inclusive).
The specified *color* can be a single color which is any of the 140
pre-defined colors (see below) or a color name defined by the
dump_modify color option. Or it can be two or more colors separated
by a "/" character, e.g. red/green/blue. In the former case, that
color is assigned to all the specified bond types. In the latter
case, the list of colors are assigned in a round-robin fashion to each
of the specified bond types.
----------
The *bdiam* keyword can be used with the dump image command, with its
*bond* keyword, when its diam setting is *type*, to set the diameter
that bonds of each type will be drawn in the image. The specified
*type* should be an integer from 1 to Nbondtypes. As with the
*bcolor* keyword, a wildcard asterisk can be used as part of the
*type* argument to specify a range of bond types. The specified
*diam* is the size in whatever distance :doc:`units <units>` you are
using, e.g. Angstroms.
----------
The *bitrate* keyword can be used with the :doc:`dump movie
<dump_image>` command to define the size of the resulting movie file
and its quality via setting how many kbits per second are to be used
for the movie file. Higher bitrates require less compression and will
result in higher quality movies. The quality is also determined by
the compression format and encoder. The default setting is 2000
kbit/s, which will result in average quality with older compression
formats.
.. note::
Not all movie file formats supported by dump movie allow the
bitrate to be set. If not, the setting is silently ignored.
----------
The *boxcolor* keyword sets the color of the simulation box drawn
around the atoms in each image as well as the color of processor
sub-domain boundaries. See the "dump image box" command for how to
specify that a box be drawn via the *box* keyword, and the sub-domain
boundaries via the *subbox* keyword. The color name can be any of the
140 pre-defined colors (see below) or a color name defined by the
dump_modify color option.
----------
The *color* keyword allows definition of a new color name, in addition
to the 140-predefined colors (see below), and associates 3
red/green/blue RGB values with that color name. The color name can
then be used with any other dump_modify keyword that takes a color
name as a value. The RGB values should each be floating point values
between 0.0 and 1.0 inclusive.
When a color name is converted to RGB values, the user-defined color
names are searched first, then the 140 pre-defined color names. This
means you can also use the *color* keyword to overwrite one of the
pre-defined color names with new RBG values.
----------
The *framerate* keyword can be used with the :doc:`dump movie
<dump_image>` command to define the duration of the resulting movie
file. Movie files written by the dump *movie* command have a default
frame rate of 24 frames per second and the images generated will be
converted at that rate. Thus a sequence of 1000 dump images will
result in a movie of about 42 seconds. To make a movie run longer you
can either generate images more frequently or lower the frame rate.
To speed a movie up, you can do the inverse. Using a frame rate
higher than 24 is not recommended, as it will result in simply
dropping the rendered images. It is more efficient to dump images less
frequently.
See the :doc:`Modify <Modify>` page for information on how to add
new compute and fix styles to LAMMPS to calculate per-atom quantities
which could then be output into dump files.
----------
@ -999,7 +664,7 @@ Related commands
Default
"""""""
The defaults for the dump image and dump movie keywords are as follows:
The defaults for the keywords are as follows:
* adiam = not specified (use diameter setting)
* atom = yes
@ -1017,101 +682,3 @@ The defaults for the dump image and dump movie keywords are as follows:
* subbox no 0.0
* shiny = 1.0
* ssao = no
----------
The defaults for the dump_modify keywords specific to dump image and dump movie are as follows:
* acolor = \* red/green/blue/yellow/aqua/cyan
* adiam = \* 1.0
* amap = min max cf 0.0 2 min blue max red
* backcolor = black
* bcolor = \* red/green/blue/yellow/aqua/cyan
* bdiam = \* 0.5
* bitrate = 2000
* boxcolor = yellow
* color = 140 color names are pre-defined as listed below
* framerate = 24
----------
These are the standard 109 element names that LAMMPS pre-defines for
use with the dump image and dump_modify commands.
* 1-10 = "H", "He", "Li", "Be", "B", "C", "N", "O", "F", "Ne"
* 11-20 = "Na", "Mg", "Al", "Si", "P", "S", "Cl", "Ar", "K", "Ca"
* 21-30 = "Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn"
* 31-40 = "Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", "Y", "Zr"
* 41-50 = "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn"
* 51-60 = "Sb", "Te", "I", "Xe", "Cs", "Ba", "La", "Ce", "Pr", "Nd"
* 61-70 = "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb"
* 71-80 = "Lu", "Hf", "Ta", "W", "Re", "Os", "Ir", "Pt", "Au", "Hg"
* 81-90 = "Tl", "Pb", "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th"
* 91-100 = "Pa", "U", "Np", "Pu", "Am", "Cm", "Bk", "Cf", "Es", "Fm"
* 101-109 = "Md", "No", "Lr", "Rf", "Db", "Sg", "Bh", "Hs", "Mt"
----------
These are the 140 colors that LAMMPS pre-defines for use with the dump
image and dump_modify commands. Additional colors can be defined with
the dump_modify color command. The 3 numbers listed for each name are
the RGB (red/green/blue) values. Divide each value by 255 to get the
equivalent 0.0 to 1.0 value.
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| aliceblue = 240, 248, 255 | antiquewhite = 250, 235, 215 | aqua = 0, 255, 255 | aquamarine = 127, 255, 212 | azure = 240, 255, 255 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| beige = 245, 245, 220 | bisque = 255, 228, 196 | black = 0, 0, 0 | blanchedalmond = 255, 255, 205 | blue = 0, 0, 255 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| blueviolet = 138, 43, 226 | brown = 165, 42, 42 | burlywood = 222, 184, 135 | cadetblue = 95, 158, 160 | chartreuse = 127, 255, 0 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| chocolate = 210, 105, 30 | coral = 255, 127, 80 | cornflowerblue = 100, 149, 237 | cornsilk = 255, 248, 220 | crimson = 220, 20, 60 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| cyan = 0, 255, 255 | darkblue = 0, 0, 139 | darkcyan = 0, 139, 139 | darkgoldenrod = 184, 134, 11 | darkgray = 169, 169, 169 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| darkgreen = 0, 100, 0 | darkkhaki = 189, 183, 107 | darkmagenta = 139, 0, 139 | darkolivegreen = 85, 107, 47 | darkorange = 255, 140, 0 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| darkorchid = 153, 50, 204 | darkred = 139, 0, 0 | darksalmon = 233, 150, 122 | darkseagreen = 143, 188, 143 | darkslateblue = 72, 61, 139 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| darkslategray = 47, 79, 79 | darkturquoise = 0, 206, 209 | darkviolet = 148, 0, 211 | deeppink = 255, 20, 147 | deepskyblue = 0, 191, 255 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| dimgray = 105, 105, 105 | dodgerblue = 30, 144, 255 | firebrick = 178, 34, 34 | floralwhite = 255, 250, 240 | forestgreen = 34, 139, 34 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| fuchsia = 255, 0, 255 | gainsboro = 220, 220, 220 | ghostwhite = 248, 248, 255 | gold = 255, 215, 0 | goldenrod = 218, 165, 32 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| gray = 128, 128, 128 | green = 0, 128, 0 | greenyellow = 173, 255, 47 | honeydew = 240, 255, 240 | hotpink = 255, 105, 180 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| indianred = 205, 92, 92 | indigo = 75, 0, 130 | ivory = 255, 240, 240 | khaki = 240, 230, 140 | lavender = 230, 230, 250 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| lavenderblush = 255, 240, 245 | lawngreen = 124, 252, 0 | lemonchiffon = 255, 250, 205 | lightblue = 173, 216, 230 | lightcoral = 240, 128, 128 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| lightcyan = 224, 255, 255 | lightgoldenrodyellow = 250, 250, 210 | lightgreen = 144, 238, 144 | lightgrey = 211, 211, 211 | lightpink = 255, 182, 193 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| lightsalmon = 255, 160, 122 | lightseagreen = 32, 178, 170 | lightskyblue = 135, 206, 250 | lightslategray = 119, 136, 153 | lightsteelblue = 176, 196, 222 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| lightyellow = 255, 255, 224 | lime = 0, 255, 0 | limegreen = 50, 205, 50 | linen = 250, 240, 230 | magenta = 255, 0, 255 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| maroon = 128, 0, 0 | mediumaquamarine = 102, 205, 170 | mediumblue = 0, 0, 205 | mediumorchid = 186, 85, 211 | mediumpurple = 147, 112, 219 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| mediumseagreen = 60, 179, 113 | mediumslateblue = 123, 104, 238 | mediumspringgreen = 0, 250, 154 | mediumturquoise = 72, 209, 204 | mediumvioletred = 199, 21, 133 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| midnightblue = 25, 25, 112 | mintcream = 245, 255, 250 | mistyrose = 255, 228, 225 | moccasin = 255, 228, 181 | navajowhite = 255, 222, 173 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| navy = 0, 0, 128 | oldlace = 253, 245, 230 | olive = 128, 128, 0 | olivedrab = 107, 142, 35 | orange = 255, 165, 0 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| orangered = 255, 69, 0 | orchid = 218, 112, 214 | palegoldenrod = 238, 232, 170 | palegreen = 152, 251, 152 | paleturquoise = 175, 238, 238 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| palevioletred = 219, 112, 147 | papayawhip = 255, 239, 213 | peachpuff = 255, 239, 213 | peru = 205, 133, 63 | pink = 255, 192, 203 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| plum = 221, 160, 221 | powderblue = 176, 224, 230 | purple = 128, 0, 128 | red = 255, 0, 0 | rosybrown = 188, 143, 143 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| royalblue = 65, 105, 225 | saddlebrown = 139, 69, 19 | salmon = 250, 128, 114 | sandybrown = 244, 164, 96 | seagreen = 46, 139, 87 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| seashell = 255, 245, 238 | sienna = 160, 82, 45 | silver = 192, 192, 192 | skyblue = 135, 206, 235 | slateblue = 106, 90, 205 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| slategray = 112, 128, 144 | snow = 255, 250, 250 | springgreen = 0, 255, 127 | steelblue = 70, 130, 180 | tan = 210, 180, 140 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| teal = 0, 128, 128 | thistle = 216, 191, 216 | tomato = 253, 99, 71 | turquoise = 64, 224, 208 | violet = 238, 130, 238 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| wheat = 245, 222, 179 | white = 255, 255, 255 | whitesmoke = 245, 245, 245 | yellow = 255, 255, 0 | yellowgreen = 154, 205, 50 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+

View File

@ -3,9 +3,6 @@
dump_modify command
===================
:doc:`dump_modify <dump_image>` command for image/movie options
===============================================================
Syntax
""""""
@ -15,9 +12,8 @@ Syntax
* dump-ID = ID of dump to modify
* one or more keyword/value pairs may be appended
* these keywords apply to various dump styles
* keyword = *append* or *at* or *buffer* or *delay* or *element* or *every* or *every/time* or *fileper* or *first* or *flush* or *format* or *header* or *image* or *label* or *maxfiles* or *nfile* or *pad* or *pbc* or *precision* or *region* or *refresh* or *scale* or *sfactor* or *sort* or *tfactor* or *thermo* or *thresh* or *time* or *units* or *unwrap*
* keyword = *append* or *at* or *buffer* or *delay* or *element* or *every* or *fileper* or *first* or *flush* or *format* or *image* or *label* or *maxfiles* or *nfile* or *pad* or *pbc* or *precision* or *region* or *refresh* or *scale* or *sfactor* or *sort* or *tfactor* or *thermo* or *thresh* or *time* or *units* or *unwrap*
.. parsed-literal::
@ -32,9 +28,6 @@ Syntax
*every* arg = N
N = dump every this many timesteps
N can be a variable (see below)
*every/time* arg = Delta
Delta = dump every this interval in simulation time (time units)
Delta can be a variable (see below)
*fileper* arg = Np
Np = write one file for every this many processors
*first* arg = *yes* or *no*
@ -42,9 +35,6 @@ Syntax
*format* args = *line* string, *int* string, *float* string, M string, or *none*
string = C-style format string
M = integer from 1 to N, where N = # of per-atom quantities being output
*header* arg = *yes* or *no*
*yes* to write the header
*no* to not write the header
*image* arg = *yes* or *no*
*label* arg = string
string = character string (e.g. BONDS) to use in header of dump local file
@ -76,11 +66,56 @@ Syntax
*unwrap* arg = *yes* or *no*
* these keywords apply only to the *image* and *movie* :doc:`styles <dump_image>`
* keyword = *acolor* or *adiam* or *amap* or *backcolor* or *bcolor* or *bdiam* or *boxcolor* or *color* or *bitrate* or *framerate*
* keyword = *acolor* or *adiam* or *amap* or *backcolor* or *bcolor* or *bdiam* or *boxcolor* or *color* or *bitrate* or *framerate* or *header*
.. parsed-literal::
see the :doc:`dump image <dump_image>` doc page for details
*acolor* args = type color
type = atom type or range of types (see below)
color = name of color or color1/color2/...
*adiam* args = type diam
type = atom type or range of types (see below)
diam = diameter of atoms of that type (distance units)
*amap* args = lo hi style delta N entry1 entry2 ... entryN
lo = number or *min* = lower bound of range of color map
hi = number or *max* = upper bound of range of color map
style = 2 letters = "c" or "d" or "s" plus "a" or "f"
"c" for continuous
"d" for discrete
"s" for sequential
"a" for absolute
"f" for fractional
delta = binsize (only used for style "s", otherwise ignored)
binsize = range is divided into bins of this width
N = # of subsequent entries
entry = value color (for continuous style)
value = number or *min* or *max* = single value within range
color = name of color used for that value
entry = lo hi color (for discrete style)
lo/hi = number or *min* or *max* = lower/upper bound of subset of range
color = name of color used for that subset of values
entry = color (for sequential style)
color = name of color used for a bin of values
*backcolor* arg = color
color = name of color for background
*bcolor* args = type color
type = bond type or range of types (see below)
color = name of color or color1/color2/...
*bdiam* args = type diam
type = bond type or range of types (see below)
diam = diameter of bonds of that type (distance units)
*boxcolor* arg = color
color = name of color for simulation box lines and processor sub-domain lines
*color* args = name R G B
name = name of color
R,G,B = red/green/blue numeric values from 0.0 to 1.0
*bitrate* arg = rate
rate = target bitrate for movie in kbps
*framerate* arg = fps
fps = frames per second for movie
*header* arg = *yes* or *no*
*yes* to write the header
*no* to not write the header
* these keywords apply only to the */gz* and */zstd* dump styles
* keyword = *compression_level*
@ -91,7 +126,7 @@ Syntax
level = integer specifying the compression level that should be used (see below for supported levels)
* these keywords apply only to the */zstd* dump styles
* keyword = *checksum*
* keyword = *compression_level*
.. parsed-literal::
@ -109,6 +144,7 @@ Examples
dump_modify xtcdump precision 10000 sfactor 0.1
dump_modify 1 every 1000 nfile 20
dump_modify 1 every v_myVar
dump_modify 1 amap min max cf 0.0 3 min green 0.5 yellow max blue boxcolor red
Description
"""""""""""
@ -127,9 +163,8 @@ which allow for use of MPI-IO.
----------
Unless otherwise noted, the following keywords apply to all the
various dump styles, including the :doc:`dump image <dump_image>` and
:doc:`dump movie <dump_image>` styles.
These keywords apply to various dump styles, including the :doc:`dump image <dump_image>` and :doc:`dump movie <dump_image>` styles. The
description gives details.
----------
@ -200,19 +235,11 @@ will be accepted.
----------
The *every* keyword can be used with any dump style except the *dcd*
and *xtc* styles. It does two things. It specifies that the interval
between dump snapshots will be set in timesteps, which is the default
if the *every* or *every/time* keywords are not used. See the
*every/time* keyword for how to specify the interval in simulation
time, i.e. in time units of the :doc:`units <units>` command. The
*every* keyword also sets the interval value, which overrides the dump
frequency originally specified by the :doc:`dump <dump>` command.
The *every* keyword can be specified in one of two ways. It can be a
numeric value in which case it must be > 0. Or it can be an
:doc:`equal-style variable <variable>`, which should be specified as
v_name, where name is the variable name.
The *every* keyword changes the dump frequency originally specified by
the :doc:`dump <dump>` command to a new value. The every keyword can be
specified in one of two ways. It can be a numeric value in which case
it must be > 0. Or it can be an :doc:`equal-style variable <variable>`,
which should be specified as v_name, where name is the variable name.
In this case, the variable is evaluated at the beginning of a run to
determine the next timestep at which a dump snapshot will be written
@ -221,12 +248,11 @@ determine the next timestep, etc. Thus the variable should return
timestep values. See the stagger() and logfreq() and stride() math
functions for :doc:`equal-style variables <variable>`, as examples of
useful functions to use in this context. Other similar math functions
could easily be added as options for :doc:`equal-style variables
<variable>`. Also see the next() function, which allows use of a
file-style variable which reads successive values from a file, each
time the variable is evaluated. Used with the *every* keyword, if the
file contains a list of ascending timesteps, you can output snapshots
whenever you wish.
could easily be added as options for :doc:`equal-style variables <variable>`. Also see the next() function, which allows
use of a file-style variable which reads successive values from a
file, each time the variable is evaluated. Used with the *every*
keyword, if the file contains a list of ascending timesteps, you can
output snapshots whenever you wish.
Note that when using the variable option with the *every* keyword, you
need to use the *first* option if you want an initial snapshot written
@ -267,103 +293,14 @@ in file tmp.times:
----------
The *every/time* keyword can be used with any dump style except the
*dcd* and *xtc* styles. It does two things. It specifies that the
interval between dump snapshots will be set in simulation time,
i.e. in time units of the :doc:`units <units>` command. This can be
useful when the timestep size varies during a simulation run, e.g. by
use of the :doc:`fix dt/reset <fix_dt_reset>` command. The default is
to specify the interval in timesteps; see the *every* keyword. The
*every/time* command also sets the interval value.
.. note::
If you wish dump styles *atom*, *custom*, *local*, or *xyz* to
include the simulation time as a field in the header portion of
each snapshot, you also need to use the dump_modify *time* keyword
with a setting of *yes*. See its documentation below.
Note that since snapshots are output on simulation steps, each
snapshot will be written on the first timestep whose associated
simulation time is >= the exact snapshot time value.
As with the *every* option, the *Delta* value can be specified in one
of two ways. It can be a numeric value in which case it must be >
0.0. Or it can be an :doc:`equal-style variable <variable>`, which
should be specified as v_name, where name is the variable name.
In this case, the variable is evaluated at the beginning of a run to
determine the next simulation time at which a dump snapshot will be
written out. On that timestep the variable will be evaluated again to
determine the next simulation time, etc. Thus the variable should
return values in time units. Note the current timestep or simulation
time can be used in an :doc:`equal-style variables <variable>` since
they are both thermodynamic keywords. Also see the next() function,
which allows use of a file-style variable which reads successive
values from a file, each time the variable is evaluated. Used with
the *every/time* keyword, if the file contains a list of ascending
simulation times, you can output snapshots whenever you wish.
Note that when using the variable option with the *every/time*
keyword, you need to use the *first* option if you want an initial
snapshot written to the dump file. The *every/time* keyword cannot be
used with the dump *dcd* style.
For example, the following commands will write snapshots at successive
simulation times which grow by a factor of 1.5 with each interval.
The dt value used in the variable is to avoid a zero result when the
initial simulation time is 0.0.
.. code-block:: LAMMPS
variable increase equal 1.5*(time+dt)
dump 1 all atom 100 tmp.dump
dump_modify 1 every/time v_increase first yes
The following commands would write snapshots at the times listed in
file tmp.times:
.. code-block:: LAMMPS
variable f file tmp.times
variable s equal next(f)
dump 1 all atom 100 tmp.dump
dump_modify 1 every/time v_s
.. note::
When using a file-style variable with the *every/time* keyword, the
file of timesteps must list a first time that is beyond the time
associated with the current timestep (e.g. it cannot be 0.0). And
it must list one or more times beyond the length of the run you
perform. This is because the dump command will generate an error
if the next time it reads from the file is not a value greater than
the current time. Thus if you wanted output at times 0,15,100 of a
run of length 100 in simulation time, the file should contain the
values 15,100,101 and you should also use the dump_modify first
command. Any final value > 100 could be used in place of 101.
----------
The *first* keyword determines whether a dump snapshot is written on
the very first timestep after the dump command is invoked. This will
always occur if the current timestep is a multiple of $N$, the
frequency specified in the :doc:`dump <dump>` command or
:doc:`dump_modify every <dump_modify>` command, including timestep 0.
It will also always occur if the current simulation time is a multiple
of *Delta*, the time interval specified in the doc:`dump_modify
every/time <dump_modify>` command.
But if this is not the case, a dump snapshot will only be written if
the setting of this keyword is *yes*\ . If it is *no*, which is the
always occur if the current timestep is a multiple of N, the frequency
specified in the :doc:`dump <dump>` command, including timestep 0. But
if this is not the case, a dump snapshot will only be written if the
setting of this keyword is *yes*\ . If it is *no*, which is the
default, then it will not be written.
Note that if the argument to the :doc:`dump_modify every
<dump_modify>` doc:`dump_modify every/time <dump_modify>` commands is
a variable and not a numeric value, then specifying *first yes* is the
only way to write a dump snapshot on the first timestep after the dump
command is invoked.
----------
The *flush* keyword determines whether a flush operation is invoked
@ -443,13 +380,6 @@ The *fileper* keyword is documented below with the *nfile* keyword.
----------
The *header* keyword toggles whether the dump file will include a
header. Excluding a header will reduce the size of the dump file for
fixes such as :doc:`fix pair/tracker <fix_pair_tracker>` which do not
require the information typically written to the header.
----------
The *image* keyword applies only to the dump *atom* style. If the
image value is *yes*, 3 flags are appended to each atom's coords which
are the absolute box image of the atom in each dimension. For
@ -662,9 +592,7 @@ The dump *local* style cannot be sorted by atom ID, since there are
typically multiple lines of output per atom. Some dump styles, such
as *dcd* and *xtc*, require sorting by atom ID to format the output
file correctly. If multiple processors are writing the dump file, via
the "%" wildcard in the dump filename and the *nfile* or *fileper*
keywords are set to non-default values (i.e. the number of dump file
pieces is not equal to the number of procs), then sorting cannot be
the "%" wildcard in the dump filename, then sorting cannot be
performed.
.. note::
@ -742,20 +670,16 @@ threshold criterion is met. Otherwise it is not met.
----------
The *time* keyword only applies to the dump *atom*, *custom*, *local*,
and *xyz* styles (and their COMPRESS package versions *atom/gz*,
*custom/gz* and *local/gz*\ ). For the first 3 styles, if set to
*yes*, each frame will will contain two extra lines before the "ITEM:
TIMESTEP" entry:
The *time* keyword only applies to the dump *atom*, *custom*, and
*local* styles (and their COMPRESS package versions *atom/gz*,
*custom/gz* and *local/gz*\ ). If set to *yes*, each frame will will
contain two extra lines before the "ITEM: TIMESTEP" entry:
.. parsed-literal::
ITEM: TIME
\<elapsed time\>
For the *xyz* style, the simulation time is included on the same line
as the timestep value.
This will output the current elapsed simulation time in current
time units equivalent to the :doc:`thermo keyword <thermo_style>` *time*\ .
This is to simplify post-processing of trajectories using a variable time
@ -791,35 +715,305 @@ box size stored with the snapshot.
----------
The COMPRESS package offers both GZ and Zstd compression variants of
styles atom, custom, local, cfg, and xyz. When using these styles the
compression level can be controlled by the :code:`compression_level`
keyword. File names with these styles have to end in either
:code:`.gz` or :code:`.zst`.
These keywords apply only to the :doc:`dump image <dump_image>` and
:doc:`dump movie <dump_image>` styles. Any keyword that affects an
image, also affects a movie, since the movie is simply a collection of
images. Some of the keywords only affect the :doc:`dump movie <dump_image>` style. The descriptions give details.
GZ supports compression levels from -1 (default), 0 (no compression),
and 1 to
9. 9 being the best compression. The COMPRESS :code:`/gz` styles use 9
as default compression level.
----------
The *acolor* keyword can be used with the :doc:`dump image <dump_image>`
command, when its atom color setting is *type*, to set the color that
atoms of each type will be drawn in the image.
The specified *type* should be an integer from 1 to Ntypes = the
number of atom types. A wildcard asterisk can be used in place of or
in conjunction with the *type* argument to specify a range of atom
types. This takes the form "\*" or "\*n" or "n\*" or "m\*n". If N = the
number of atom types, then an asterisk with no numeric values means
all types from 1 to N. A leading asterisk means all types from 1 to n
(inclusive). A trailing asterisk means all types from n to N
(inclusive). A middle asterisk means all types from m to n
(inclusive).
The specified *color* can be a single color which is any of the 140
pre-defined colors (see below) or a color name defined by the
dump_modify color option. Or it can be two or more colors separated
by a "/" character, e.g. red/green/blue. In the former case, that
color is assigned to all the specified atom types. In the latter
case, the list of colors are assigned in a round-robin fashion to each
of the specified atom types.
----------
The *adiam* keyword can be used with the :doc:`dump image <dump_image>`
command, when its atom diameter setting is *type*, to set the size
that atoms of each type will be drawn in the image. The specified
*type* should be an integer from 1 to Ntypes. As with the *acolor*
keyword, a wildcard asterisk can be used as part of the *type*
argument to specify a range of atom types. The specified *diam* is
the size in whatever distance :doc:`units <units>` the input script is
using, e.g. Angstroms.
----------
The *amap* keyword can be used with the :doc:`dump image <dump_image>`
command, with its *atom* keyword, when its atom setting is an
atom-attribute, to setup a color map. The color map is used to assign
a specific RGB (red/green/blue) color value to an individual atom when
it is drawn, based on the atom's attribute, which is a numeric value,
e.g. its x-component of velocity if the atom-attribute "vx" was
specified.
The basic idea of a color map is that the atom-attribute will be
within a range of values, and that range is associated with a series
of colors (e.g. red, blue, green). An atom's specific value (vx =
-3.2) can then mapped to the series of colors (e.g. halfway between
red and blue), and a specific color is determined via an interpolation
procedure.
There are many possible options for the color map, enabled by the
*amap* keyword. Here are the details.
The *lo* and *hi* settings determine the range of values allowed for
the atom attribute. If numeric values are used for *lo* and/or *hi*,
then values that are lower/higher than that value are set to the
value. I.e. the range is static. If *lo* is specified as *min* or
*hi* as *max* then the range is dynamic, and the lower and/or
upper bound will be calculated each time an image is drawn, based
on the set of atoms being visualized.
The *style* setting is two letters, such as "ca". The first letter is
either "c" for continuous, "d" for discrete, or "s" for sequential.
The second letter is either "a" for absolute, or "f" for fractional.
A continuous color map is one in which the color changes continuously
from value to value within the range. A discrete color map is one in
which discrete colors are assigned to sub-ranges of values within the
range. A sequential color map is one in which discrete colors are
assigned to a sequence of sub-ranges of values covering the entire
range.
An absolute color map is one in which the values to which colors are
assigned are specified explicitly as values within the range. A
fractional color map is one in which the values to which colors are
assigned are specified as a fractional portion of the range. For
example if the range is from -10.0 to 10.0, and the color red is to be
assigned to atoms with a value of 5.0, then for an absolute color map
the number 5.0 would be used. But for a fractional map, the number
0.75 would be used since 5.0 is 3/4 of the way from -10.0 to 10.0.
The *delta* setting must be specified for all styles, but is only used
for the sequential style; otherwise the value is ignored. It
specifies the bin size to use within the range for assigning
consecutive colors to. For example, if the range is from -10.0 to
10.0 and a *delta* of 1.0 is used, then 20 colors will be assigned to
the range. The first will be from -10.0 <= color1 < -9.0, then second
from -9.0 <= color2 < -8.0, etc.
The *N* setting is how many entries follow. The format of the entries
depends on whether the color map style is continuous, discrete or
sequential. In all cases the *color* setting can be any of the 140
pre-defined colors (see below) or a color name defined by the
dump_modify color option.
For continuous color maps, each entry has a *value* and a *color*\ .
The *value* is either a number within the range of values or *min* or
*max*\ . The *value* of the first entry must be *min* and the *value*
of the last entry must be *max*\ . Any entries in between must have
increasing values. Note that numeric values can be specified either
as absolute numbers or as fractions (0.0 to 1.0) of the range,
depending on the "a" or "f" in the style setting for the color map.
Here is how the entries are used to determine the color of an
individual atom, given the value X of its atom attribute. X will fall
between 2 of the entry values. The color of the atom is linearly
interpolated (in each of the RGB values) between the 2 colors
associated with those entries. For example, if X = -5.0 and the 2
surrounding entries are "red" at -10.0 and "blue" at 0.0, then the
atom's color will be halfway between "red" and "blue", which happens
to be "purple".
For discrete color maps, each entry has a *lo* and *hi* value and a
*color*\ . The *lo* and *hi* settings are either numbers within the
range of values or *lo* can be *min* or *hi* can be *max*\ . The *lo*
and *hi* settings of the last entry must be *min* and *max*\ . Other
entries can have any *lo* and *hi* values and the sub-ranges of
different values can overlap. Note that numeric *lo* and *hi* values
can be specified either as absolute numbers or as fractions (0.0 to
1.0) of the range, depending on the "a" or "f" in the style setting
for the color map.
Here is how the entries are used to determine the color of an
individual atom, given the value X of its atom attribute. The entries
are scanned from first to last. The first time that *lo* <= X <=
*hi*, X is assigned the color associated with that entry. You can
think of the last entry as assigning a default color (since it will
always be matched by X), and the earlier entries as colors that
override the default. Also note that no interpolation of a color RGB
is done. All atoms will be drawn with one of the colors in the list
of entries.
For sequential color maps, each entry has only a *color*\ . Here is how
the entries are used to determine the color of an individual atom,
given the value X of its atom attribute. The range is partitioned
into N bins of width *binsize*\ . Thus X will fall in a specific bin
from 1 to N, say the Mth bin. If it falls on a boundary between 2
bins, it is considered to be in the higher of the 2 bins. Each bin is
assigned a color from the E entries. If E < N, then the colors are
repeated. For example if 2 entries with colors red and green are
specified, then the odd numbered bins will be red and the even bins
green. The color of the atom is the color of its bin. Note that the
sequential color map is really a shorthand way of defining a discrete
color map without having to specify where all the bin boundaries are.
Here is an example of using a sequential color map to color all the
atoms in individual molecules with a different color. See the
examples/pour/in.pour.2d.molecule input script for an example of how
this is used.
.. code-block:: LAMMPS
variable colors string &
"red green blue yellow white &
purple pink orange lime gray"
variable mol atom mol%10
dump 1 all image 250 image.*.jpg v_mol type &
zoom 1.6 adiam 1.5
dump_modify 1 pad 5 amap 0 10 sa 1 10 ${colors}
In this case, 10 colors are defined, and molecule IDs are
mapped to one of the colors, even if there are 1000s of molecules.
----------
The *backcolor* sets the background color of the images. The color
name can be any of the 140 pre-defined colors (see below) or a color
name defined by the dump_modify color option.
----------
The *bcolor* keyword can be used with the :doc:`dump image <dump_image>`
command, with its *bond* keyword, when its color setting is *type*, to
set the color that bonds of each type will be drawn in the image.
The specified *type* should be an integer from 1 to Nbondtypes = the
number of bond types. A wildcard asterisk can be used in place of or
in conjunction with the *type* argument to specify a range of bond
types. This takes the form "\*" or "\*n" or "n\*" or "m\*n". If N = the
number of bond types, then an asterisk with no numeric values means
all types from 1 to N. A leading asterisk means all types from 1 to n
(inclusive). A trailing asterisk means all types from n to N
(inclusive). A middle asterisk means all types from m to n
(inclusive).
The specified *color* can be a single color which is any of the 140
pre-defined colors (see below) or a color name defined by the
dump_modify color option. Or it can be two or more colors separated
by a "/" character, e.g. red/green/blue. In the former case, that
color is assigned to all the specified bond types. In the latter
case, the list of colors are assigned in a round-robin fashion to each
of the specified bond types.
----------
The *bdiam* keyword can be used with the :doc:`dump image <dump_image>`
command, with its *bond* keyword, when its diam setting is *type*, to
set the diameter that bonds of each type will be drawn in the image.
The specified *type* should be an integer from 1 to Nbondtypes. As
with the *bcolor* keyword, a wildcard asterisk can be used as part of
the *type* argument to specify a range of bond types. The specified
*diam* is the size in whatever distance :doc:`units <units>` you are
using, e.g. Angstroms.
----------
The *bitrate* keyword can be used with the :doc:`dump movie <dump_image>` command to define the size of the resulting
movie file and its quality via setting how many kbits per second are
to be used for the movie file. Higher bitrates require less
compression and will result in higher quality movies. The quality is
also determined by the compression format and encoder. The default
setting is 2000 kbit/s, which will result in average quality with
older compression formats.
.. note::
Not all movie file formats supported by dump movie allow the
bitrate to be set. If not, the setting is silently ignored.
----------
The *boxcolor* keyword sets the color of the simulation box drawn
around the atoms in each image as well as the color of processor
sub-domain boundaries. See the "dump image box" command for how to
specify that a box be drawn via the *box* keyword, and the sub-domain
boundaries via the *subbox* keyword. The color name can be any of the
140 pre-defined colors (see below) or a color name defined by the
dump_modify color option.
----------
The *color* keyword allows definition of a new color name, in addition
to the 140-predefined colors (see below), and associates 3
red/green/blue RGB values with that color name. The color name can
then be used with any other dump_modify keyword that takes a color
name as a value. The RGB values should each be floating point values
between 0.0 and 1.0 inclusive.
When a color name is converted to RGB values, the user-defined color
names are searched first, then the 140 pre-defined color names. This
means you can also use the *color* keyword to overwrite one of the
pre-defined color names with new RBG values.
----------
The *framerate* keyword can be used with the :doc:`dump movie <dump_image>` command to define the duration of the resulting
movie file. Movie files written by the dump *movie* command have a
default frame rate of 24 frames per second and the images generated
will be converted at that rate. Thus a sequence of 1000 dump images
will result in a movie of about 42 seconds. To make a movie run
longer you can either generate images more frequently or lower the
frame rate. To speed a movie up, you can do the inverse. Using a
frame rate higher than 24 is not recommended, as it will result in
simply dropping the rendered images. It is more efficient to dump
images less frequently.
----------
The *header* keyword toggles whether the dump file will include a header.
Excluding a header will reduce the size of the dump file for fixes such as
:doc:`fix pair/tracker <fix_pair_tracker>` which do not require the information
typically written to the header.
----------
The COMPRESS package offers both GZ and Zstd compression variants of styles
atom, custom, local, cfg, and xyz. When using these styles the compression
level can be controlled by the :code:`compression_level` parameter. File names
with these styles have to end in either :code:`.gz` or :code:`.zst`.
GZ supports compression levels from -1 (default), 0 (no compression), and 1 to
9. 9 being the best compression. The COMPRESS :code:`/gz` styles use 9 as
default compression level.
Zstd offers a wider range of compression levels, including negative
levels that sacrifice compression for performance. 0 is the default,
positive levels are 1 to 22, with 22 being the most expensive
levels that sacrifice compression for performance. 0 is the
default, positive levels are 1 to 22, with 22 being the most expensive
compression. Zstd promises higher compression/decompression speeds for
similar compression ratios. For more details see
`http://facebook.github.io/zstd/`.
In addition, Zstd compressed files can include a checksum of the
entire contents. The Zstd enabled dump styles enable this feature by
default and it can be disabled with the :code:`checksum` keyword.
In addition, Zstd compressed files can have a checksum of the entire
contents. The Zstd enabled dump styles enable this feature by default and it
can be disabled with the :code:`checksum` parameter.
----------
Restrictions
""""""""""""
Not all *dump_modify* options can be applied to all dump styles.
Details are in the discussions of the individual options.
*dump_modify sort* is not supported for dumps of groups containing
more than 2 billion atoms.
Related commands
""""""""""""""""
@ -854,7 +1048,100 @@ The option defaults are
* units = no
* unwrap = no
* acolor = \* red/green/blue/yellow/aqua/cyan
* adiam = \* 1.0
* amap = min max cf 0.0 2 min blue max red
* backcolor = black
* bcolor = \* red/green/blue/yellow/aqua/cyan
* bdiam = \* 0.5
* bitrate = 2000
* boxcolor = yellow
* color = 140 color names are pre-defined as listed below
* framerate = 24
* compression_level = 9 (gz variants)
* compression_level = 0 (zstd variants)
* checksum = yes (zstd variants)
----------
These are the standard 109 element names that LAMMPS pre-defines for
use with the :doc:`dump image <dump_image>` and dump_modify commands.
* 1-10 = "H", "He", "Li", "Be", "B", "C", "N", "O", "F", "Ne"
* 11-20 = "Na", "Mg", "Al", "Si", "P", "S", "Cl", "Ar", "K", "Ca"
* 21-30 = "Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn"
* 31-40 = "Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", "Y", "Zr"
* 41-50 = "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn"
* 51-60 = "Sb", "Te", "I", "Xe", "Cs", "Ba", "La", "Ce", "Pr", "Nd"
* 61-70 = "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb"
* 71-80 = "Lu", "Hf", "Ta", "W", "Re", "Os", "Ir", "Pt", "Au", "Hg"
* 81-90 = "Tl", "Pb", "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th"
* 91-100 = "Pa", "U", "Np", "Pu", "Am", "Cm", "Bk", "Cf", "Es", "Fm"
* 101-109 = "Md", "No", "Lr", "Rf", "Db", "Sg", "Bh", "Hs", "Mt"
----------
These are the 140 colors that LAMMPS pre-defines for use with the
:doc:`dump image <dump_image>` and dump_modify commands. Additional
colors can be defined with the dump_modify color command. The 3
numbers listed for each name are the RGB (red/green/blue) values.
Divide each value by 255 to get the equivalent 0.0 to 1.0 value.
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| aliceblue = 240, 248, 255 | antiquewhite = 250, 235, 215 | aqua = 0, 255, 255 | aquamarine = 127, 255, 212 | azure = 240, 255, 255 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| beige = 245, 245, 220 | bisque = 255, 228, 196 | black = 0, 0, 0 | blanchedalmond = 255, 255, 205 | blue = 0, 0, 255 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| blueviolet = 138, 43, 226 | brown = 165, 42, 42 | burlywood = 222, 184, 135 | cadetblue = 95, 158, 160 | chartreuse = 127, 255, 0 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| chocolate = 210, 105, 30 | coral = 255, 127, 80 | cornflowerblue = 100, 149, 237 | cornsilk = 255, 248, 220 | crimson = 220, 20, 60 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| cyan = 0, 255, 255 | darkblue = 0, 0, 139 | darkcyan = 0, 139, 139 | darkgoldenrod = 184, 134, 11 | darkgray = 169, 169, 169 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| darkgreen = 0, 100, 0 | darkkhaki = 189, 183, 107 | darkmagenta = 139, 0, 139 | darkolivegreen = 85, 107, 47 | darkorange = 255, 140, 0 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| darkorchid = 153, 50, 204 | darkred = 139, 0, 0 | darksalmon = 233, 150, 122 | darkseagreen = 143, 188, 143 | darkslateblue = 72, 61, 139 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| darkslategray = 47, 79, 79 | darkturquoise = 0, 206, 209 | darkviolet = 148, 0, 211 | deeppink = 255, 20, 147 | deepskyblue = 0, 191, 255 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| dimgray = 105, 105, 105 | dodgerblue = 30, 144, 255 | firebrick = 178, 34, 34 | floralwhite = 255, 250, 240 | forestgreen = 34, 139, 34 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| fuchsia = 255, 0, 255 | gainsboro = 220, 220, 220 | ghostwhite = 248, 248, 255 | gold = 255, 215, 0 | goldenrod = 218, 165, 32 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| gray = 128, 128, 128 | green = 0, 128, 0 | greenyellow = 173, 255, 47 | honeydew = 240, 255, 240 | hotpink = 255, 105, 180 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| indianred = 205, 92, 92 | indigo = 75, 0, 130 | ivory = 255, 240, 240 | khaki = 240, 230, 140 | lavender = 230, 230, 250 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| lavenderblush = 255, 240, 245 | lawngreen = 124, 252, 0 | lemonchiffon = 255, 250, 205 | lightblue = 173, 216, 230 | lightcoral = 240, 128, 128 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| lightcyan = 224, 255, 255 | lightgoldenrodyellow = 250, 250, 210 | lightgreen = 144, 238, 144 | lightgrey = 211, 211, 211 | lightpink = 255, 182, 193 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| lightsalmon = 255, 160, 122 | lightseagreen = 32, 178, 170 | lightskyblue = 135, 206, 250 | lightslategray = 119, 136, 153 | lightsteelblue = 176, 196, 222 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| lightyellow = 255, 255, 224 | lime = 0, 255, 0 | limegreen = 50, 205, 50 | linen = 250, 240, 230 | magenta = 255, 0, 255 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| maroon = 128, 0, 0 | mediumaquamarine = 102, 205, 170 | mediumblue = 0, 0, 205 | mediumorchid = 186, 85, 211 | mediumpurple = 147, 112, 219 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| mediumseagreen = 60, 179, 113 | mediumslateblue = 123, 104, 238 | mediumspringgreen = 0, 250, 154 | mediumturquoise = 72, 209, 204 | mediumvioletred = 199, 21, 133 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| midnightblue = 25, 25, 112 | mintcream = 245, 255, 250 | mistyrose = 255, 228, 225 | moccasin = 255, 228, 181 | navajowhite = 255, 222, 173 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| navy = 0, 0, 128 | oldlace = 253, 245, 230 | olive = 128, 128, 0 | olivedrab = 107, 142, 35 | orange = 255, 165, 0 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| orangered = 255, 69, 0 | orchid = 218, 112, 214 | palegoldenrod = 238, 232, 170 | palegreen = 152, 251, 152 | paleturquoise = 175, 238, 238 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| palevioletred = 219, 112, 147 | papayawhip = 255, 239, 213 | peachpuff = 255, 239, 213 | peru = 205, 133, 63 | pink = 255, 192, 203 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| plum = 221, 160, 221 | powderblue = 176, 224, 230 | purple = 128, 0, 128 | red = 255, 0, 0 | rosybrown = 188, 143, 143 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| royalblue = 65, 105, 225 | saddlebrown = 139, 69, 19 | salmon = 250, 128, 114 | sandybrown = 244, 164, 96 | seagreen = 46, 139, 87 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| seashell = 255, 245, 238 | sienna = 160, 82, 45 | silver = 192, 192, 192 | skyblue = 135, 206, 235 | slateblue = 106, 90, 205 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| slategray = 112, 128, 144 | snow = 255, 250, 250 | springgreen = 0, 255, 127 | steelblue = 70, 130, 180 | tan = 210, 180, 140 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| teal = 0, 128, 128 | thistle = 216, 191, 216 | tomato = 253, 99, 71 | turquoise = 64, 224, 208 | violet = 238, 130, 238 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+
| wheat = 245, 222, 179 | white = 255, 255, 255 | whitesmoke = 245, 245, 245 | yellow = 255, 255, 0 | yellowgreen = 154, 205, 50 |
+-------------------------------+--------------------------------------+---------------------------------+--------------------------------+--------------------------------+

View File

@ -166,7 +166,6 @@ page are followed by one or more of (g,i,k,o,t) to indicate which
accelerated styles exist.
* :doc:`accelerate/cos <fix_accelerate_cos>` - apply cosine-shaped acceleration to atoms
* :doc:`acks2/reaxff <fix_acks2_reaxff>` - apply ACKS2 charge equilibration
* :doc:`adapt <fix_adapt>` - change a simulation parameter over time
* :doc:`adapt/fep <fix_adapt_fep>` - enhanced version of fix adapt
* :doc:`addforce <fix_addforce>` - add a force to each atom
@ -247,7 +246,6 @@ accelerated styles exist.
* :doc:`manifoldforce <fix_manifoldforce>` - restrain atoms to a manifold during minimization
* :doc:`mdi/engine <fix_mdi_engine>` - connect LAMMPS to external programs via the MolSSI Driver Interface (MDI)
* :doc:`meso/move <fix_meso_move>` - move mesoscopic SPH/SDPD particles in a prescribed fashion
* :doc:`mol/swap <fix_mol_swap>` - Monte Carlo atom type swapping with a molecule
* :doc:`momentum <fix_momentum>` - zero the linear and/or angular momentum of a group of atoms
* :doc:`momentum/chunk <fix_momentum>` - zero the linear and/or angular momentum of a chunk of atoms
* :doc:`move <fix_move>` - move atoms in a prescribed fashion

View File

@ -1,118 +0,0 @@
.. index:: fix acks2/reaxff
.. index:: fix acks2/reaxff/kk
fix acks2/reaxff command
========================
Accelerator Variants: *acks2/reaxff/kk*
Syntax
""""""
.. parsed-literal::
fix ID group-ID acks2/reaxff Nevery cutlo cuthi tolerance params args
* ID, group-ID are documented in :doc:`fix <fix>` command
* acks2/reaxff = style name of this fix command
* Nevery = perform ACKS2 every this many steps
* cutlo,cuthi = lo and hi cutoff for Taper radius
* tolerance = precision to which charges will be equilibrated
* params = reaxff or a filename
Examples
""""""""
.. code-block:: LAMMPS
fix 1 all acks2/reaxff 1 0.0 10.0 1.0e-6 reaxff
fix 1 all acks2/reaxff 1 0.0 10.0 1.0e-6 param.acks2
Description
"""""""""""
Perform the atom-condensed Kohn-Sham DFT to second order (ACKS2) charge
equilibration method as described in :ref:`(Verstraelen) <Verstraelen>`.
ACKS2 impedes unphysical long-range charge transfer sometimes seen with
QEq (e.g. for dissociation of molecules), at increased computational
cost. It is typically used in conjunction with the ReaxFF force field
model as implemented in the :doc:`pair_style reaxff <pair_reaxff>`
command, but it can be used with any potential in LAMMPS, so long as it
defines and uses charges on each atom. For more technical details about
the charge equilibration performed by fix acks2/reaxff, see the
:ref:`(O'Hearn) <O'Hearn>` paper.
The ACKS2 method minimizes the electrostatic energy of the system by
adjusting the partial charge on individual atoms based on interactions
with their neighbors. It requires some parameters for each atom type.
If the *params* setting above is the word "reaxff", then these are
extracted from the :doc:`pair_style reaxff <pair_reaxff>` command and
the ReaxFF force field file it reads in. If a file name is specified
for *params*\ , then the parameters are taken from the specified file
and the file must contain one line for each atom type. The latter form
must be used when performing QeQ with a non-ReaxFF potential. The lines
should be formatted as follows:
.. parsed-literal::
bond_softness
itype chi eta gamma bcut
where the first line is the global parameter *bond_softness*. The
remaining 1 to Ntypes lines include *itype*, the atom type from 1 to
Ntypes, *chi*, the electronegativity in eV, *eta*, the self-Coulomb
potential in eV, *gamma*, the valence orbital exponent, and *bcut*, the
bond cutoff distance. Note that these 4 quantities are also in the
ReaxFF potential file, except that eta is defined here as twice the eta
value in the ReaxFF file. Note that unlike the rest of LAMMPS, the units
of this fix are hard-coded to be A, eV, and electronic charge.
**Restart, fix_modify, output, run start/stop, minimize info:**
No information about this fix is written to :doc:`binary restart files
<restart>`. No global scalar or vector or per-atom quantities are
stored by this fix for access by various :doc:`output commands
<Howto_output>`. No parameter of this fix can be used with the
*start/stop* keywords of the :doc:`run <run>` command.
This fix is invoked during :doc:`energy minimization <minimize>`.
----------
.. include:: accel_styles.rst
----------
Restrictions
""""""""""""
This fix is part of the REAXFF package. It is only enabled if LAMMPS
was built with that package. See the :doc:`Build package
<Build_package>` doc page for more info.
This fix does not correctly handle interactions involving multiple
periodic images of the same atom. Hence, it should not be used for
periodic cell dimensions less than 10 angstroms.
This fix may be used in combination with :doc:`fix efield <fix_efield>`
and will apply the external electric field during charge equilibration,
but there may be only one fix efield instance used, it may only use a
constant electric field, and the electric field vector may only have
components in non-periodic directions.
Related commands
""""""""""""""""
:doc:`pair_style reaxff <pair_reaxff>`, :doc:`fix qeq/reaxff <fix_qeq_reaxff>`
**Default:** none
----------
.. _O'Hearn:
**(O'Hearn)** O'Hearn, Alperen, Aktulga, SIAM J. Sci. Comput., 42(1), C1-C22 (2020).
.. _Verstraelen:
**(Verstraelen)** Verstraelen, Ayers, Speybroeck, Waroquier, J. Chem. Phys. 138, 074108 (2013).

View File

@ -99,7 +99,7 @@ invoked by the :doc:`minimize <minimize>` command.
Restrictions
""""""""""""
This fix is part of the EXTRA-FIX package. It is only enabled if
This fix is part of the MISC package. It is only enabled if
LAMMPS was built with that package. See the :doc:`Build package
<Build_package>` page for more info.

View File

@ -73,51 +73,51 @@ is the same after the swap as it was before the swap, even though the
atom masses have changed.
The *semi-grand* keyword can be set to *yes* to switch to the
semi-grand canonical ensemble as discussed in :ref:`(Sadigh)
<Sadigh>`. This means that the total number of each particle type does
not need to be conserved. The default is *no*, which means that the
only kind of swap allowed exchanges an atom of one type with an atom
of a different given type. In other words, the relative mole fractions
of the swapped atoms remains constant. Whereas in the semi-grand
canonical ensemble, the composition of the system can change. Note
that when using *semi-grand*, atoms in the fix group whose type is not
listed in the *types* keyword are ineligible for attempted
conversion. An attempt is made to switch the selected atom (if
eligible) to one of the other listed types with equal
probability. Acceptance of each attempt depends upon the Metropolis
criterion.
semi-grand canonical ensemble as discussed in :ref:`(Sadigh) <Sadigh>`. This
means that the total number of each particle type does not need to be
conserved. The default is *no*, which means that the only kind of swap
allowed exchanges an atom of one type with an atom of a different
given type. In other words, the relative mole fractions of the swapped
atoms remains constant. Whereas in the semi-grand canonical ensemble,
the composition of the system can change. Note that when using
*semi-grand*, atoms in the fix group whose type is not listed
in the *types* keyword are ineligible for attempted
conversion. An attempt is made to switch
the selected atom (if eligible) to one of the other listed types
with equal probability. Acceptance of each attempt depends upon the Metropolis criterion.
The *mu* keyword allows users to specify chemical potentials. This is
required and allowed only when using *semi-grand*\ . All chemical
potentials are absolute, so there is one for each swap type listed
following the *types* keyword. In semi-grand canonical ensemble
simulations the chemical composition of the system is controlled by
the difference in these values. So shifting all values by a constant
amount will have no effect on the simulation.
The *mu* keyword allows users to specify chemical
potentials. This is required and allowed only when using *semi-grand*\ .
All chemical potentials are absolute, so there is one for
each swap type listed following the *types* keyword.
In semi-grand canonical ensemble simulations the chemical composition
of the system is controlled by the difference in these values. So
shifting all values by a constant amount will have no effect
on the simulation.
This command may optionally use the *region* keyword to define swap
volume. The specified region must have been previously defined with a
:doc:`region <region>` command. It must be defined with side = *in*\
. Swap attempts occur only between atoms that are both within the
:doc:`region <region>` command. It must be defined with side = *in*\ .
Swap attempts occur only between atoms that are both within the
specified region. Swaps are not otherwise attempted.
You should ensure you do not swap atoms belonging to a molecule, or
LAMMPS will eventually generate an error when it tries to find those
atoms. LAMMPS will warn you if any of the atoms eligible for swapping
have a non-zero molecule ID, but does not check for this at the time of
LAMMPS will soon generate an error when it tries to find those atoms.
LAMMPS will warn you if any of the atoms eligible for swapping have a
non-zero molecule ID, but does not check for this at the time of
swapping.
If not using *semi-grand* this fix checks to ensure all atoms of the
given types have the same atomic charge. LAMMPS does not enforce this
in general, but it is needed for this fix to simplify the swapping
procedure. Successful swaps will swap the atom type and charge of the
swapped atoms. Conversely, when using *semi-grand*, it is assumed that
all the atom types involved in switches have the same
charge. Otherwise, charge would not be conserved. As a consequence, no
checks on atomic charges are performed, and successful switches update
the atom type but not the atom charge. While it is possible to use
*semi-grand* with groups of atoms that have different charges, these
charges will not be changed when the atom types change.
in general, but it is needed for this fix to simplify the
swapping procedure. Successful swaps will swap the atom type and charge
of the swapped atoms. Conversely, when using *semi-grand*, it is assumed that all the atom
types involved in switches have the same charge. Otherwise, charge
would not be conserved. As a consequence, no checks on atomic charges are
performed, and successful switches update the atom type but not the
atom charge. While it is possible to use *semi-grand* with groups of
atoms that have different charges, these charges will not be changed when the
atom types change.
Since this fix computes total potential energies before and after
proposed swaps, so even complicated potential energy calculations are
@ -133,24 +133,23 @@ OK, including the following:
Some fixes have an associated potential energy. Examples of such fixes
include: :doc:`efield <fix_efield>`, :doc:`gravity <fix_gravity>`,
:doc:`addforce <fix_addforce>`, :doc:`langevin <fix_langevin>`,
:doc:`restrain <fix_restrain>`, :doc:`temp/berendsen
<fix_temp_berendsen>`, :doc:`temp/rescale <fix_temp_rescale>`, and
:doc:`wall fixes <fix_wall>`. For that energy to be included in the
total potential energy of the system (the quantity used when
performing GCMC moves), you MUST enable the :doc:`fix_modify
<fix_modify>` *energy* option for that fix. The doc pages for
individual :doc:`fix <fix>` commands specify if this should be done.
:doc:`restrain <fix_restrain>`, :doc:`temp/berendsen <fix_temp_berendsen>`,
:doc:`temp/rescale <fix_temp_rescale>`, and :doc:`wall fixes <fix_wall>`.
For that energy to be included in the total potential energy of the
system (the quantity used when performing GCMC moves),
you MUST enable the :doc:`fix_modify <fix_modify>` *energy* option for
that fix. The doc pages for individual :doc:`fix <fix>` commands
specify if this should be done.
Restart, fix_modify, output, run start/stop, minimize info
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
This fix writes the state of the fix to :doc:`binary restart files
<restart>`. This includes information about the random number
generator seed, the next timestep for MC exchanges, the number of
exchange attempts and successes etc. See the :doc:`read_restart
<read_restart>` command for info on how to re-specify a fix in an
input script that reads a restart file, so that the operation of the
fix continues in an uninterrupted fashion.
This fix writes the state of the fix to :doc:`binary restart files <restart>`. This includes information about the random
number generator seed, the next timestep for MC exchanges, the number
of exchange attempts and successes etc. See
the :doc:`read_restart <read_restart>` command for info on how to
re-specify a fix in an input script that reads a restart file, so that
the operation of the fix continues in an uninterrupted fashion.
.. note::
@ -166,13 +165,12 @@ by various :doc:`output commands <Howto_output>`. The vector values are
the following global cumulative quantities:
* 1 = swap attempts
* 2 = swap accepts
* 2 = swap successes
The vector values calculated by this fix are "extensive".
No parameter of this fix can be used with the *start/stop* keywords of
the :doc:`run <run>` command. This fix is not invoked during
:doc:`energy minimization <minimize>`.
the :doc:`run <run>` command. This fix is not invoked during :doc:`energy minimization <minimize>`.
Restrictions
""""""""""""
@ -186,8 +184,7 @@ Related commands
:doc:`fix nvt <fix_nh>`, :doc:`neighbor <neighbor>`,
:doc:`fix deposit <fix_deposit>`, :doc:`fix evaporate <fix_evaporate>`,
:doc:`delete_atoms <delete_atoms>`, :doc:`fix gcmc <fix_gcmc>`,
:doc:`fix mol/swap <fix_mol_swap>`
:doc:`delete_atoms <delete_atoms>`, :doc:`fix gcmc <fix_gcmc>`
Default
"""""""

View File

@ -78,20 +78,13 @@ outer loop (largest) timestep, which is the same timestep that the
Note that the cumulative simulation time (in time units), which
accounts for changes in the timestep size as a simulation proceeds,
can be accessed by the :doc:`thermo_style time <thermo_style>`
keyword.
Also note that the :doc:`dump_modify every/time <dump_modify>` option
allows dump files to be written at intervals specified by simulation
time, rather than by timesteps. Simulation time is in time units;
see the :doc:`units <units>` doc page for details.
can be accessed by the :doc:`thermo_style time <thermo_style>` keyword.
Restart, fix_modify, output, run start/stop, minimize info
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
No information about this fix is written to :doc:`binary restart files
<restart>`. None of the :doc:`fix_modify <fix_modify>` options are
relevant to this fix.
No information about this fix is written to :doc:`binary restart files <restart>`. None of the :doc:`fix_modify <fix_modify>` options
are relevant to this fix.
This fix computes a global scalar which can be accessed by various
:doc:`output commands <Howto_output>`. The scalar stores the last
@ -100,8 +93,7 @@ timestep on which the timestep was reset to a new value.
The scalar value calculated by this fix is "intensive".
No parameter of this fix can be used with the *start/stop* keywords of
the :doc:`run <run>` command. This fix is not invoked during
:doc:`energy minimization <minimize>`.
the :doc:`run <run>` command. This fix is not invoked during :doc:`energy minimization <minimize>`.
Restrictions
""""""""""""
@ -110,7 +102,7 @@ Restrictions
Related commands
""""""""""""""""
:doc:`timestep <timestep>`, :doc:`dump_modify every/time <dump_modify>`
:doc:`timestep <timestep>`
Default
"""""""

View File

@ -138,18 +138,16 @@ temperature with optional time-dependence as well.
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
atom velocities. E.g. removing the center-of-mass velocity from a
group of atoms or removing the x-component of velocity from the
calculation. This is not done by default, but only if the
:doc:`fix_modify <fix_modify>` command is used to assign a temperature
compute to this fix that includes such a bias term. See the doc pages
for individual :doc:`compute commands <compute>` to determine which ones
include a bias. In this case, the thermostat works in the following
manner: bias is removed from each atom, thermostatting is performed on
the remaining thermal degrees of freedom, and the bias is added back
in.
The *damp* parameter is specified in time units and determines how
rapidly the temperature is relaxed. For example, a value of 100.0 means
@ -185,8 +183,7 @@ omega (which is derived from the angular momentum in the case of
aspherical particles).
The rotational temperature of the particles can be monitored by the
:doc:`compute temp/sphere <compute_temp_sphere>` and :doc:`compute
temp/asphere <compute_temp_asphere>` commands with their rotate
:doc:`compute temp/sphere <compute_temp_sphere>` and :doc:`compute temp/asphere <compute_temp_asphere>` commands with their rotate
options.
For the *omega* keyword there is also a scale factor of

View File

@ -40,7 +40,7 @@ Example input scripts available: examples/PACKAGES/drude
Description
"""""""""""
Apply two Langevin thermostats as described in :ref:`(Jiang1) <Jiang1>` for
Apply two Langevin thermostats as described in :ref:`(Jiang) <Jiang1>` for
thermalizing the reduced degrees of freedom of Drude oscillators.
This link describes how to use the :doc:`thermalized Drude oscillator model <Howto_drude>` in LAMMPS and polarizable models in LAMMPS
are discussed on the :doc:`Howto polarizable <Howto_polarizable>` doc
@ -167,20 +167,17 @@ functions, and include :doc:`thermo_style <thermo_style>` command
keywords for the simulation box parameters and timestep and elapsed
time. Thus it is easy to specify a time-dependent temperature.
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
Like other fixes that perform thermostatting, this fix can be used with
:doc:`compute commands <compute>` that remove a "bias" from the atom
velocities. E.g. removing the center-of-mass velocity from a group of
atoms. This is not done by default, but only if the
:doc:`fix_modify <fix_modify>` command is used to assign a temperature
compute to this fix that includes such a bias term. See the doc pages
for individual :doc:`compute commands <compute>` to determine which ones
include a bias. In this case, the thermostat works in the following
manner: bias is removed from each atom, thermostatting is performed on
the remaining thermal degrees of freedom, and the bias is added back
in. NOTE: this feature has not been tested.
Note: The temperature thermostatting the core-Drude particle pairs
should be chosen low enough, so as to mimic as closely as possible the
@ -300,5 +297,5 @@ The option defaults are zero = no.
.. _Jiang1:
**(Jiang1)** Jiang, Hardy, Phillips, MacKerell, Schulten, and Roux, J
**(Jiang)** Jiang, Hardy, Phillips, MacKerell, Schulten, and Roux, J
Phys Chem Lett, 2, 87-92 (2011).

View File

@ -1,170 +0,0 @@
.. index:: fix mol/swap
fix mol/swap command
=====================
Syntax
""""""
.. parsed-literal::
fix ID group-ID mol/swap N X itype jtype seed T keyword value ...
* ID, group-ID are documented in :doc:`fix <fix>` command
* atom/swap = style name of this fix command
* N = invoke this fix every N steps
* X = number of swaps to attempt every N steps
* itype,jtype = two atom types to swap with each other
* seed = random # seed (positive integer)
* T = scaling temperature of the MC swaps (temperature units)
* zero or more keyword/value pairs may be appended to args
* keyword = *ke*
.. parsed-literal::
*ke* value = *no* or *yes*
*no* = no conservation of kinetic energy after atom swaps
*yes* = kinetic energy is conserved after atom swaps
Examples
""""""""
.. code-block:: LAMMPS
fix 2 all mol/swap 100 1 2 3 29494 300.0 ke no
fix mySwap fluid mol/swap 500 10 1 2 482798 1.0
Description
"""""""""""
This fix performs Monte Carlo swaps of two specified atom types within
a randomly selected molecule. Two possible use cases are as follows.
First, consider a mixture of some molecules with atoms of itype and
other molecules with atoms of jtype. The fix will select a random
molecule and attempt to swap all the itype atoms to jtype for the
first kind of molecule, or all the jtype atoms to itype for the second
kind. Because the swap will only take place if it is energetically
favorable, the fix can be used to determine the miscibility of 2
different kinds of molecules much more quickly than just dynamics
would do it.
Second, consider diblock co-polymers with two types of monomers itype
and jtype. The fix will select a random molecule and attempt to do a
itype <--> jtype swap of all those monomers within the molecule. Thus
the fix can be used to find the energetically favorable fractions of
two flavors of diblock co-polymers.
Intra-molecular swaps of atom types are attempted every N timesteps. On
that timestep, X swaps are attempted. For each attempt a single
molecule ID is randomly selected. The range of possible molecule IDs
from loID to hiID is pre-computed before each run begins. The
loID/hiID is set for the molecule with the smallest/largest ID which
has any itype or jtype atoms in it. Note that if you define a system
with many molecule IDs between loID and hiID which have no itype or
jtype atoms, then the fix will be inefficient at performing swaps.
Also note that if atoms with molecule ID = 0 exist, they are not
considered molecules by this fix; they are assumed to be solvent atoms
or molecules.
Candidate atoms for swapping must also be in the fix group. Atoms
within the selected molecule which are not itype or jtype are ignored.
When an atom is swapped from itype to jtype (or vice versa), if
charges are defined, the charge values for itype versus jtype atoms
are also swapped. This requires that all itype atoms in the system
have the same charge value. Likewise all jtype atoms in the system
must have the same charge value. If this is not the case, LAMMPS
issues a warning that it cannot swap charge values.
If the *ke* keyword is set to yes, which is the default, and the
masses of itype and jtype atoms are different, then when a swap
occurs, the velocity of the swapped atom is rescaled by the sqrt of
the mass ratio, so as to conserve the kinetic energy of the atom.
----------
The potential energy of the entire system is computed before and after
each swap is performed within a single molecule. The specified
temperature T is used in the Metropolis criterion to accept or reject
the attempted swap. If the swap is rejected all swapped values are
reversed.
The potential energy calculations can include systems and models with
the following features:
* manybody pair styles, including EAM
* hybrid pair styles
* long-range electrostatics (kspace)
* triclinic systems
* potential energy contributions from other fixes
For the last bullet point, fixes can have an associated potential
energy. Examples of such fixes include: :doc:`efield <fix_efield>`,
:doc:`gravity <fix_gravity>`, :doc:`addforce <fix_addforce>`,
:doc:`langevin <fix_langevin>`, :doc:`restrain <fix_restrain>`,
:doc:`temp/berendsen <fix_temp_berendsen>`, :doc:`temp/rescale
<fix_temp_rescale>`, and :doc:`wall fixes <fix_wall>`. For that
energy to be included in the total potential energy of the system (the
quantity used for the swap accept/reject decision), you MUST enable
the :doc:`fix_modify <fix_modify>` *energy* option for that fix. The
doc pages for individual :doc:`fix <fix>` commands specify if this
should be done.
.. note::
One comment on computational efficiency. If the cutoff lengths
defined for the pair style are different for itype versus jtype
atoms (for any of their interactions with any other atom type), then
a new neighbor list needs to be generated for every attempted swap.
This is potentially expensive if N is small or X is large.
Restart, fix_modify, output, run start/stop, minimize info
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
This fix writes the state of the fix to :doc:`binary restart files
<restart>`. This includes information about the random number
generator seed, the next timestep for MC exchanges, the number of
exchange attempts and successes etc. See the :doc:`read_restart
<read_restart>` command for info on how to re-specify a fix in an
input script that reads a restart file, so that the operation of the
fix continues in an uninterrupted fashion.
.. note::
For this to work correctly, the timestep must **not** be changed
after reading the restart with :doc:`reset_timestep <reset_timestep>`.
The fix will try to detect it and stop with an error.
None of the :doc:`fix_modify <fix_modify>` options are relevant to this
fix.
This fix computes a global vector of length 2, which can be accessed
by various :doc:`output commands <Howto_output>`. The vector values are
the following global cumulative quantities:
* 1 = swap attempts
* 2 = swap accepts
The vector values calculated by this fix are "extensive".
No parameter of this fix can be used with the *start/stop* keywords of
the :doc:`run <run>` command. This fix is not invoked during
:doc:`energy minimization <minimize>`.
Restrictions
""""""""""""
This fix is part of the MC package. It is only enabled if LAMMPS was
built with that package. See the :doc:`Build package <Build_package>`
doc page for more info.
Related commands
""""""""""""""""
:doc:`fix atom/swap <fix_atom_swap>`, :doc:`fix gcmc <fix_gcmc>`
Default
"""""""
The option default is ke = yes.

View File

@ -486,20 +486,19 @@ temperature or pressure during thermodynamic output via the
compute-ID. It also means that changing attributes of *thermo_temp*
or *thermo_press* will have no effect on this fix.
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
Like other fixes that perform thermostatting, fix nvt and fix npt can
be used with :doc:`compute commands <compute>` that calculate a
temperature after removing a "bias" from the atom velocities.
E.g. removing the center-of-mass velocity from a group of atoms or
only calculating temperature on the x-component of velocity or only
calculating temperature for atoms in a geometric region. This is not
done by default, but only if the :doc:`fix_modify <fix_modify>` command
is used to assign a temperature compute to this fix that includes such
a bias term. See the doc pages for individual :doc:`compute commands <compute>` to determine which ones include a bias. In
this case, the thermostat works in the following manner: the current
temperature is calculated taking the bias into account, bias is
removed from each atom, thermostatting is performed on the remaining
thermal degrees of freedom, and the bias is added back in.
----------

View File

@ -48,9 +48,8 @@ can also have a bias velocity removed from them before thermostatting
takes place; see the description below.
Additional parameters affecting the thermostat and barostat are
specified by keywords and values documented with the :doc:`fix npt
<fix_nh>` command. See, for example, discussion of the *temp*, *iso*,
*aniso*, and *dilate* keywords.
specified by keywords and values documented with the :doc:`fix npt <fix_nh>` command. See, for example, discussion of the *temp*,
*iso*, *aniso*, and *dilate* keywords.
The particles in the fix group are the only ones whose velocities and
positions are updated by the velocity/position update portion of the
@ -90,19 +89,18 @@ It also means that changing attributes of *thermo_temp* or
*thermo_press* will have no effect on this fix.
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
with :doc:`compute commands <compute>` that calculate a temperature
after removing a "bias" from the atom velocities. E.g. removing the
center-of-mass velocity from a group of atoms or only calculating
temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by
default, but only if the :doc:`fix_modify <fix_modify>` command is used
to assign a temperature compute to this fix that includes such a bias
term. See the doc pages for individual :doc:`compute commands <compute>` to determine which ones include a bias. In
this case, the thermostat works in the following manner: the current
temperature is calculated taking the bias into account, bias is
removed from each atom, thermostatting is performed on the remaining
thermal degrees of freedom, and the bias is added back in.
----------

View File

@ -87,19 +87,18 @@ It also means that changing attributes of *thermo_temp* or
*thermo_press* will have no effect on this fix.
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
with :doc:`compute commands <compute>` that calculate a temperature
after removing a "bias" from the atom velocities. E.g. removing the
center-of-mass velocity from a group of atoms or only calculating
temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by
default, but only if the :doc:`fix_modify <fix_modify>` command is used
to assign a temperature compute to this fix that includes such a bias
term. See the doc pages for individual :doc:`compute commands <compute>` to determine which ones include a bias. In
this case, the thermostat works in the following manner: the current
temperature is calculated taking the bias into account, bias is
removed from each atom, thermostatting is performed on the remaining
thermal degrees of freedom, and the bias is added back in.
----------

View File

@ -400,20 +400,19 @@ temperature or pressure during thermodynamic output via the
compute-ID. It also means that changing attributes of *thermo_temp*
or *thermo_press* will have no effect on this fix.
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
Like other fixes that perform thermostatting, fix npt/cauchy can
be used with :doc:`compute commands <compute>` that calculate a
temperature after removing a "bias" from the atom velocities.
E.g. removing the center-of-mass velocity from a group of atoms or
only calculating temperature on the x-component of velocity or only
calculating temperature for atoms in a geometric region. This is not
done by default, but only if the :doc:`fix_modify <fix_modify>` command
is used to assign a temperature compute to this fix that includes such
a bias term. See the doc pages for individual :doc:`compute commands <compute>` to determine which ones include a bias. In
this case, the thermostat works in the following manner: the current
temperature is calculated taking the bias into account, bias is
removed from each atom, thermostatting is performed on the remaining
thermal degrees of freedom, and the bias is added back in.
----------

View File

@ -103,19 +103,18 @@ appropriate compute-ID. It also means that changing attributes of
*thermo_temp* or *thermo_press* will have no effect on this fix.
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
with :doc:`compute commands <compute>` that calculate a temperature
after removing a "bias" from the atom velocities. E.g. removing the
center-of-mass velocity from a group of atoms or only calculating
temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by
default, but only if the :doc:`fix_modify <fix_modify>` command is used
to assign a temperature compute to this fix that includes such a bias
term. See the doc pages for individual :doc:`compute commands <compute>` to determine which ones include a bias. In
this case, the thermostat works in the following manner: the current
temperature is calculated taking the bias into account, bias is
removed from each atom, thermostatting is performed on the remaining
thermal degrees of freedom, and the bias is added back in.
----------

View File

@ -72,19 +72,18 @@ It also means that changing attributes of *thermo_temp* will have no
effect on this fix.
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
with :doc:`compute commands <compute>` that calculate a temperature
after removing a "bias" from the atom velocities. E.g. removing the
center-of-mass velocity from a group of atoms or only calculating
temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by
default, but only if the :doc:`fix_modify <fix_modify>` command is used
to assign a temperature compute to this fix that includes such a bias
term. See the doc pages for individual :doc:`compute commands <compute>` to determine which ones include a bias. In
this case, the thermostat works in the following manner: the current
temperature is calculated taking the bias into account, bias is
removed from each atom, thermostatting is performed on the remaining
thermal degrees of freedom, and the bias is added back in.
----------

View File

@ -69,19 +69,18 @@ It also means that changing attributes of *thermo_temp* will have no
effect on this fix.
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
with :doc:`compute commands <compute>` that calculate a temperature
after removing a "bias" from the atom velocities. E.g. removing the
center-of-mass velocity from a group of atoms or only calculating
temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by
default, but only if the :doc:`fix_modify <fix_modify>` command is used
to assign a temperature compute to this fix that includes such a bias
term. See the doc pages for individual :doc:`compute commands <compute>` to determine which ones include a bias. In
this case, the thermostat works in the following manner: the current
temperature is calculated taking the bias into account, bias is
removed from each atom, thermostatting is performed on the remaining
thermal degrees of freedom, and the bias is added back in.
----------

View File

@ -37,16 +37,15 @@ trajectory consistent with the canonical ensemble.
This thermostat is used for a simulation box that is changing size
and/or shape, for example in a non-equilibrium MD (NEMD) simulation.
The size/shape change is induced by use of the :doc:`fix deform
<fix_deform>` command, so each point in the simulation box can be
thought of as having a "streaming" velocity. This position-dependent
streaming velocity is subtracted from each atom's actual velocity to
yield a thermal velocity which is used for temperature computation and
thermostatting. For example, if the box is being sheared in x,
relative to y, then points at the bottom of the box (low y) have a
small x velocity, while points at the top of the box (hi y) have a
large x velocity. These velocities do not contribute to the thermal
"temperature" of the atom.
The size/shape change is induced by use of the :doc:`fix deform <fix_deform>` command, so each point in the simulation box
can be thought of as having a "streaming" velocity. This
position-dependent streaming velocity is subtracted from each atom's
actual velocity to yield a thermal velocity which is used for
temperature computation and thermostatting. For example, if the box
is being sheared in x, relative to y, then points at the bottom of the
box (low y) have a small x velocity, while points at the top of the
box (hi y) have a large x velocity. These velocities do not
contribute to the thermal "temperature" of the atom.
.. note::
@ -61,15 +60,13 @@ large x velocity. These velocities do not contribute to the thermal
consistent.
The SLLOD equations of motion, originally proposed by Hoover and Ladd
(see :ref:`(Evans and Morriss) <Evans3>`), were proven to be
equivalent to Newton's equations of motion for shear flow by
:ref:`(Evans and Morriss) <Evans3>`. They were later shown to generate
the desired velocity gradient and the correct production of work by
stresses for all forms of homogeneous flow by :ref:`(Daivis and Todd)
<Daivis>`. As implemented in LAMMPS, they are coupled to a
Nose/Hoover chain thermostat in a velocity Verlet formulation, closely
following the implementation used for the :doc:`fix nvt <fix_nh>`
command.
(see :ref:`(Evans and Morriss) <Evans3>`), were proven to be equivalent to
Newton's equations of motion for shear flow by :ref:`(Evans and Morriss) <Evans3>`. They were later shown to generate the desired
velocity gradient and the correct production of work by stresses for
all forms of homogeneous flow by :ref:`(Daivis and Todd) <Daivis>`. As
implemented in LAMMPS, they are coupled to a Nose/Hoover chain
thermostat in a velocity Verlet formulation, closely following the
implementation used for the :doc:`fix nvt <fix_nh>` command.
.. note::
@ -97,28 +94,27 @@ underscore + "temp", and the group for the new compute is the same as
the fix group.
Note that this is NOT the compute used by thermodynamic output (see
the :doc:`thermo_style <thermo_style>` command) with ID =
*thermo_temp*. This means you can change the attributes of this fix's
temperature (e.g. its degrees-of-freedom) via the :doc:`compute_modify
<compute_modify>` command or print this temperature during
thermodynamic output via the :doc:`thermo_style custom <thermo_style>`
command using the appropriate compute-ID. It also means that changing
attributes of *thermo_temp* will have no effect on this fix.
the :doc:`thermo_style <thermo_style>` command) with ID = *thermo_temp*.
This means you can change the attributes of this fix's temperature
(e.g. its degrees-of-freedom) via the
:doc:`compute_modify <compute_modify>` command or print this temperature
during thermodynamic output via the :doc:`thermo_style custom <thermo_style>` command using the appropriate compute-ID.
It also means that changing attributes of *thermo_temp* will have no
effect on this fix.
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
with :doc:`compute commands <compute>` that calculate a temperature
after removing a "bias" from the atom velocities. E.g. removing the
center-of-mass velocity from a group of atoms or only calculating
temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by
default, but only if the :doc:`fix_modify <fix_modify>` command is used
to assign a temperature compute to this fix that includes such a bias
term. See the doc pages for individual :doc:`compute commands <compute>` to determine which ones include a bias. In
this case, the thermostat works in the following manner: the current
temperature is calculated taking the bias into account, bias is
removed from each atom, thermostatting is performed on the remaining
thermal degrees of freedom, and the bias is added back in.
----------

View File

@ -86,19 +86,18 @@ It also means that changing attributes of *thermo_temp* will have no
effect on this fix.
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
with :doc:`compute commands <compute>` that calculate a temperature
after removing a "bias" from the atom velocities. E.g. removing the
center-of-mass velocity from a group of atoms or only calculating
temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by
default, but only if the :doc:`fix_modify <fix_modify>` command is used
to assign a temperature compute to this fix that includes such a bias
term. See the doc pages for individual :doc:`compute commands <compute>` to determine which ones include a bias. In
this case, the thermostat works in the following manner: the current
temperature is calculated taking the bias into account, bias is
removed from each atom, thermostatting is performed on the remaining
thermal degrees of freedom, and the bias is added back in.
----------

View File

@ -51,7 +51,7 @@ the :doc:`run <run>` command. This fix is not invoked during :doc:`energy minim
Restrictions
""""""""""""
This fix is part of the EXTRA-FIX package. It is only enabled if LAMMPS
This fix is part of the MISC package. It is only enabled if LAMMPS
was built with that package. See the :doc:`Build package <Build_package>` page for more info.
Related commands

View File

@ -230,10 +230,7 @@ These fixes are part of the QEQ package. They are only enabled if
LAMMPS was built with that package. See the :doc:`Build package
<Build_package>` page for more info.
These qeq fixes are not compatible with the GPU and USER-INTEL packages.
These qeq fixes will ignore electric field contributions from
:doc:`fix efield <fix_efield>`.
The qeq fixes are not compatible with the GPU and USER-INTEL packages.
Related commands
""""""""""""""""

View File

@ -116,12 +116,6 @@ This fix does not correctly handle interactions involving multiple
periodic images of the same atom. Hence, it should not be used for
periodic cell dimensions less than 10 angstroms.
This fix may be used in combination with :doc:`fix efield <fix_efield>`
and will apply the external electric field during charge equilibration,
but there may be only one fix efield instance used, it may only use a
constant electric field, and the electric field vector may only have
components in non-periodic directions.
Related commands
""""""""""""""""

View File

@ -56,17 +56,6 @@ number of molecules of each species. In this context, "species" means
a unique molecule. The chemical formula of each species is given in
the first line.
.. warning::
In order to compute averaged data, it is required that there are no
neighbor list rebuilds between the *Nfreq* steps. For that reason, fix
*reaxff/species* may change your neighbor list settings. There will
be a warning message showing the new settings. Having an *Nfreq*
setting that is larger than what is required for correct computation
of the ReaxFF force field interactions can thus lead to incorrect
results. For typical ReaxFF calculations a value of 100 is already
quite large.
If the filename ends with ".gz", the output file is written in gzipped
format. A gzipped dump file will be about 3x smaller than the text version,
but will also take longer to write.

View File

@ -28,6 +28,7 @@ Syntax
Nstart = start averaging on this timestep
*file* arg = filename
filename = name of file to output time averages to
*overwrite* arg = none = overwrite output file with only latest output
Examples
""""""""
@ -160,6 +161,10 @@ the *file* keyword and this string is appended with _N.vtk where N is
an index (0,1,2...) to account for situations with multiple diffraction
intensity outputs.
The *overwrite* keyword will continuously overwrite the output file
with the latest output, so that it only contains one timestep worth of
output. This option can only be used with the *ave running* setting.
Restart, fix_modify, output, run start/stop, minimize info
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""

View File

@ -89,13 +89,26 @@ precession vectors instead of the forces.
----------
.. include:: accel_styles.rst
Styles with a *gpu*, *intel*, *kk*, *omp*, or *opt* suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed on the :doc:`Speed packages <Speed_packages>` doc
page. The accelerated styles take the same arguments and should
produce the same results, except for round-off and precision issues.
.. note::
The region keyword is also supported by Kokkos, but a Kokkos-enabled
region must be used. See the region :doc:`region <region>` command for
more information.
The region keyword is supported by Kokkos, but a Kokkos-enabled
region must be used. See the region :doc:`region <region>` command for
more information.
These accelerated styles are part of the r Kokkos package. They are
only enabled if LAMMPS was built with that package. See the :doc:`Build package <Build_package>` page for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the :doc:`-suffix command-line switch <Run_options>` when you invoke LAMMPS, or you can use the
:doc:`suffix <suffix>` command in your input script.
See the :doc:`Speed packages <Speed_packages>` page for more
instructions on how to use the accelerated styles effectively.
----------

View File

@ -144,7 +144,7 @@ the :doc:`run <run>` command. This fix is not invoked during
Restrictions
""""""""""""
This fix is part of the EXTRA-FIX package. It is only enabled if
This fix is part of the MISC package. It is only enabled if
LAMMPS was built with that package. See the :doc:`Build package <Build_package>` page for more info.
Related commands

View File

@ -102,19 +102,18 @@ It also means that changing attributes of *thermo_temp* will have no
effect on this fix.
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
with :doc:`compute commands <compute>` that calculate a temperature
after removing a "bias" from the atom velocities. E.g. removing the
center-of-mass velocity from a group of atoms or only calculating
temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by
default, but only if the :doc:`fix_modify <fix_modify>` command is used
to assign a temperature compute to this fix that includes such a bias
term. See the doc pages for individual :doc:`compute commands <compute>` to determine which ones include a bias. In
this case, the thermostat works in the following manner: the current
temperature is calculated taking the bias into account, bias is
removed from each atom, thermostatting is performed on the remaining
thermal degrees of freedom, and the bias is added back in.
----------

View File

@ -110,29 +110,28 @@ during thermodynamic output via the :doc:`thermo_style custom <thermo_style>` co
It also means that changing attributes of *thermo_temp* will have no
effect on this fix.
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
Like other fixes that perform thermostatting, these fixes can be used
with :doc:`compute commands <compute>` that calculate a temperature
after removing a "bias" from the atom velocities. E.g. removing the
center-of-mass velocity from a group of atoms or only calculating
temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by
default, but only if the :doc:`fix_modify <fix_modify>` command is used
to assign a temperature compute to this fix that includes such a bias
term. See the doc pages for individual :doc:`compute commands <compute>` to determine which ones include a bias. In
this case, the thermostat works in the following manner: the current
temperature is calculated taking the bias into account, bias is
removed from each atom, thermostatting is performed on the remaining
thermal degrees of freedom, and the bias is added back in.
An important feature of these thermostats is that they have an
associated effective energy that is a constant of motion. The
effective energy is the total energy (kinetic + potential) plus the
accumulated kinetic energy changes due to the thermostat. The latter
quantity is the global scalar computed by these fixes. This feature is
useful to check the integration of the equations of motion against
discretization errors. In other words, the conservation of the
effective energy can be used to choose an appropriate integration
associated effective energy that is a constant of motion.
The effective energy is the total energy (kinetic + potential) plus
the accumulated kinetic energy changes due to the thermostat. The
latter quantity is the global scalar computed by these fixes. This
feature is useful to check the integration of the equations of motion
against discretization errors. In other words, the conservation of
the effective energy can be used to choose an appropriate integration
:doc:`timestep <timestep>`. This is similar to the usual paradigm of
checking the conservation of the total energy in the microcanonical
ensemble.

View File

@ -109,19 +109,19 @@ command using the appropriate compute-ID. It also means that changing
attributes of *thermo_temp* will have no effect on this fix.
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
with :doc:`compute commands <compute>` that calculate a temperature
after removing a "bias" from the atom velocities. E.g. removing the
center-of-mass velocity from a group of atoms or only calculating
temperature on the x-component of velocity or only calculating
temperature for atoms in a geometric region. This is not done by
default, but only if the :doc:`fix_modify <fix_modify>` command is
used to assign a temperature compute to this fix that includes such a
bias term. See the doc pages for individual :doc:`compute commands
<compute>` to determine which ones include a bias. In this case, the
thermostat works in the following manner: the current temperature is
calculated taking the bias into account, bias is removed from each
atom, thermostatting is performed on the remaining thermal degrees of
freedom, and the bias is added back in.
----------

View File

@ -187,32 +187,26 @@ barostatting.
----------
Like other fixes that perform thermostatting, this fix can be used
with :doc:`compute commands <compute>` that remove a "bias" from the
atom velocities. E.g. to apply the thermostat only to atoms within a
spatial :doc:`region <region>`, or to remove the center-of-mass
velocity from a group of atoms, or to remove the x-component of
velocity from the calculation.
This is not done by default, but only if the :doc:`fix_modify
<fix_modify>` command is used to assign a temperature compute to this
fix that includes such a bias term. See the doc pages for individual
:doc:`compute temp commands <compute>` to determine which ones include
a bias. In this case, the thermostat works in the following manner:
bias is removed from each atom, thermostatting is performed on the
remaining thermal degrees of freedom, and the bias is added back in.
Like other fixes that perform thermostatting, these fixes can
be used with :doc:`compute commands <compute>` that calculate a
temperature after removing a "bias" from the atom velocities.
This is not done by default, but only if the :doc:`fix_modify <fix_modify>` command
is used to assign a temperature compute to this fix that includes such
a bias term. See the doc pages for individual :doc:`compute commands <compute>` to determine which ones include a bias. In
this case, the thermostat works in the following manner: the current
temperature is calculated taking the bias into account, bias is
removed from each atom, thermostatting is performed on the remaining
thermal DOF, and the bias is added back in.
.. note::
However, not all temperature compute commands are valid to be used
with these fixes. Precisely, only temperature compute that does
not modify the DOF of the group can be used. E.g. :doc:`compute
temp/ramp <compute_temp_ramp>` and :doc:`compute viscosity/cos
<compute_viscosity_cos>` compute the kinetic energy after remove a
velocity gradient without affecting the DOF of the group, then they
can be invoked in this way. In contrast, :doc:`compute
temp/partial <compute_temp_partial>` may remove the DOF at one or
more dimensions, therefore it cannot be used with these fixes.
However, not all temperature compute commands are valid to be used with these fixes.
Precisely, only temperature compute that does not modify the DOF of the group can be used.
E.g. :doc:`compute temp/ramp <compute_temp_ramp>` and :doc:`compute viscosity/cos <compute_viscosity_cos>`
compute the kinetic energy after remove a velocity gradient without affecting the DOF of the group,
then they can be invoked in this way.
In contrast, :doc:`compute temp/partial <compute_temp_partial>` may remove the DOF at one or more dimensions,
therefore it cannot be used with these fixes.
----------

View File

@ -64,7 +64,25 @@ radian\^2.
----------
.. include:: accel_styles.rst
Styles with a *gpu*, *intel*, *kk*, *omp*, or *opt* suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed on the :doc:`Speed packages <Speed_packages>` doc
page. The accelerated styles take the same arguments and should
produce the same results, except for round-off and precision issues.
These accelerated styles are part of the GPU, INTEL, KOKKOS,
OPENMP and OPT packages, respectively. They are only enabled if
LAMMPS was built with those packages. See the :doc:`Build package
<Build_package>` page for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the :doc:`-suffix
command-line switch <Run_options>` when you invoke LAMMPS, or you can
use the :doc:`suffix <suffix>` command in your input script.
See the :doc:`Speed packages <Speed_packages>` page for more
instructions on how to use the accelerated styles effectively.
----------

View File

@ -414,26 +414,33 @@ relative RMS error.
----------
.. include:: accel_styles.rst
Styles with a *gpu*, *intel*, *kk*, *omp*, or *opt* suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed on the :doc:`Speed packages <Speed_packages>` doc
page. The accelerated styles take the same arguments and should
produce the same results, except for round-off and precision issues.
.. note::
More specifically, the *pppm/gpu* style performs charge assignment and
force interpolation calculations on the GPU. These processes are
performed either in single or double precision, depending on whether
the -DFFT_SINGLE setting was specified in your low-level Makefile, as
discussed above. The FFTs themselves are still calculated on the CPU.
If *pppm/gpu* is used with a GPU-enabled pair style, part of the PPPM
calculation can be performed concurrently on the GPU while other
calculations for non-bonded and bonded force calculation are performed
on the CPU.
For the GPU package, the *pppm/gpu* style performs charge assignment
and force interpolation calculations on the GPU. These processes
are performed either in single or double precision, depending on
whether the -DFFT_SINGLE setting was specified in your low-level
Makefile, as discussed above. The FFTs themselves are still
calculated on the CPU. If *pppm/gpu* is used with a GPU-enabled
pair style, part of the PPPM calculation can be performed
concurrently on the GPU while other calculations for non-bonded and
bonded force calculation are performed on the CPU.
The *pppm/kk* style performs charge assignment and force interpolation
calculations, along with the FFTs themselves, on the GPU or (optionally) threaded
on the CPU when using OpenMP and FFTW3.
.. note::
These accelerated styles are part of the GPU, INTEL, KOKKOS,
OPENMP, and OPT packages respectively. They are only enabled if
LAMMPS was built with those packages. See the :doc:`Build package <Build_package>` page for more info.
For the KOKKOS package, the *pppm/kk* style performs charge
assignment and force interpolation calculations, along with the FFTs
themselves, on the GPU or (optionally) threaded on the CPU when
using OpenMP and FFTW3.
See the :doc:`Speed packages <Speed_packages>` page for more
instructions on how to use the accelerated styles effectively.
----------

View File

@ -166,7 +166,7 @@ intel", or "package omp" command with default settings.
set, either to default values or to specified settings. I.e. settings
from previous invocations do not persist across multiple invocations.
See the :doc:`Accelerator packages <Speed_packages>` page for more details
See the :doc:`Speed packages <Speed_packages>` page for more details
about using the various accelerator packages for speeding up LAMMPS
simulations.

View File

@ -67,7 +67,21 @@ and input files are provided in the examples/PACKAGES/agni directory.
----------
.. include:: accel_styles.rst
Styles with *omp* suffix is functionally the same as the corresponding
style without the suffix. They have been optimized to run faster,
depending on your available hardware, as discussed on the :doc:`Speed packages <Speed_packages>` doc page. The accelerated style takes
the same arguments and should produce the same results, except for
round-off and precision issues.
The accelerated style is part of the OPENMP. They are only enabled
if LAMMPS was built with those packages. See the :doc:`Build package <Build_package>` page for more info.
You can specify the accelerated style explicitly in your input script
by including their suffix, or you can use the :doc:`-suffix command-line switch <Run_options>` when you invoke LAMMPS, or you can use the
:doc:`suffix <suffix>` command in your input script.
See the :doc:`Speed packages <Speed_packages>` page for more
instructions on how to use the accelerated styles effectively.
----------

View File

@ -74,17 +74,14 @@ atoms interact with each other via an *eam* potential, the surface atoms
interact with each other via a *lj/cut* potential, and the metal/surface
interaction is also computed via a *lj/cut* potential. The
*hybrid/overlay* style could be used as in the second example above,
where multiple potentials are superimposed in an additive fashion to
where multiple potentials are superposed in an additive fashion to
compute the interaction between atoms. In this example, using *lj/cut*
and *coul/long* together gives the same result as if the
*lj/cut/coul/long* potential were used by itself. In this case, it
would be more efficient to use the single combined potential, but in
general any combination of pair potentials can be used together in to
produce an interaction that is not encoded in any single pair_style
file, e.g. adding Coulombic forces between granular particles. Another
limitation of using the *hybrid/overlay* variant, that it does not generate
*lj/cut* parameters for mixed atom types from a mixing rule due to
restrictions discussed below.
file, e.g. adding Coulombic forces between granular particles.
If the *hybrid/scaled* style is used instead of *hybrid/overlay*,
contributions from sub-styles are weighted by their scale factors, which
@ -153,14 +150,10 @@ with Tersoff, and the cross-interactions with Lennard-Jones:
pair_coeff * * tersoff 2 C.tersoff NULL C
pair_coeff 1 2 lj/cut 1.0 1.5
It is not recommended to read pair coefficients for a hybrid style from a "Pair Coeffs"
or "PairIJ Coeffs" section of a data file via the :doc:`read_data <read_data>` command,
since those sections expect a fixed number of lines, either one line per atom type or
one line pair pair of atom types, respectively. When reading from a data file, the
lines of the "Pair Coeffs" and "PairIJ Coeffs" are changed in the same way as the *pair_coeff*
command, i.e. the name of the pair style to which the parameters apply must follow the
atom type (or atom types), e.g.
If pair coefficients are specified in the data file read via the
:doc:`read_data <read_data>` command, then the same rule applies.
E.g. "eam/alloy" or "lj/cut" must be added after the atom type, for
each line in the "Pair Coeffs" section, e.g.
.. parsed-literal::
@ -169,11 +162,6 @@ atom type (or atom types), e.g.
1 lj/cut/coul/cut 1.0 1.0
...
PairIJ Coeffs
1 1 lj/cut/coul/cut 1.0 1.0
...
Note that the pair_coeff command for some potentials such as
:doc:`pair_style eam/alloy <pair_eam>` includes a mapping specification
of elements to all atom types, which in the hybrid case, can include
@ -220,22 +208,12 @@ examples above, or in the data file read by the :doc:`read_data
<read_data>`, or by mixing as described below. Also all sub-styles
must be used at least once in a :doc:`pair_coeff <pair_coeff>` command.
.. warning::
.. note::
With hybrid pair styles the use of mixing to generate pair
coefficients is significantly limited compared to the individual pair
styles. LAMMPS **never** performs mixing of parameters from
different sub-styles, **even** if they use the same type of
coefficients, e.g. contain a Lennard-Jones potential variant. Those
parameters must be provided explicitly. Also for *hybrid/overlay*
and *hybrid/scaled* mixing is **only** performed for pairs of atom
types for which only a single pair style is assigned.
Thus it is strongly recommended to provide all mixed terms
explicitly. For non-hybrid styles those could be generated and
written out using the :doc:`write_coeff command <write_coeff>` and
then edited as needed to comply with the requirements for hybrid
styles as explained above.
LAMMPS never performs mixing of parameters from different sub-styles,
**even** if they use the same type of coefficients, e.g. contain
a Lennard-Jones potential variant. Those parameters must be provided
explicitly.
If you want there to be no interactions between a particular pair of
atom types, you have 3 choices. You can assign the pair of atom types
@ -405,19 +383,30 @@ coefficients to 0.0.
----------
.. include:: accel_styles.rst
Styles with a *gpu*, *intel*, *kk*, *omp*, or *opt* suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed on the :doc:`Speed packages <Speed_packages>` doc
page. Pair style *hybrid/scaled* does (currently) not support the
*gpu*, *omp*, *kk*, or *intel* suffix.
.. note::
Since the *hybrid*, *hybrid/overlay*, *hybrid/scaled* styles delegate
computation to the individual sub-styles, the suffix versions of the
*hybrid* and *hybrid/overlay* styles are used to propagate the
corresponding suffix to all sub-styles, if those versions
exist. Otherwise the non-accelerated version will be used.
Since the *hybrid*, *hybrid/overlay*, *hybrid/scaled* styles
delegate computation to the individual sub-styles, the suffix
versions of the *hybrid* and *hybrid/overlay* styles are used to
propagate the corresponding suffix to all sub-styles, if those
versions exist. Otherwise the non-accelerated version will be used.
The individual accelerated sub-styles are part of the GPU, KOKKOS,
INTEL, OPENMP, and OPT packages, respectively. They are only
enabled if LAMMPS was built with those packages. See the
:doc:`Build package <Build_package>` page for more info.
The individual accelerated sub-styles are part of the GPU, KOKKOS,
INTEL, OPENMP, and OPT packages, respectively. They are only
enabled if LAMMPS was built with those packages. See the :doc:`Build
package <Build_package>` page for more info.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the :doc:`-suffix command-line switch <Run_options>` when you invoke LAMMPS, or you can use the
:doc:`suffix <suffix>` command in your input script.
See the :doc:`Speed packages <Speed_packages>` page for more
instructions on how to use the accelerated styles effectively.
----------

View File

@ -28,16 +28,16 @@ Description
as of November 2010; see description below of the mixture_ref_t
parameter
Pair style *meam* computes non-bonded interactions for a variety of materials
using the modified embedded-atom method (MEAM)
Style *meam* computes pairwise interactions for a variety of materials
using modified embedded-atom method (MEAM) potentials
:ref:`(Baskes) <Baskes>`. Conceptually, it is an extension to the original
:doc:`EAM method <pair_eam>` which adds angular forces. It is
:doc:`EAM potentials <pair_eam>` which adds angular forces. It is
thus suitable for modeling metals and alloys with fcc, bcc, hcp and
diamond cubic structures, as well as materials with covalent interactions
like silicon and carbon. This *meam* pair style is a translation of the
original Fortran version to C++. It is functionally equivalent but more
efficient and has additional features. The Fortran version of the *meam*
pair style has been removed from LAMMPS after the 12 December 2018 release.
diamond cubic structures, as well as covalently bonded materials like
silicon and carbon. Style *meam* is a translation of the (now obsolete)
*meam* code from Fortran to C++. It is functionally equivalent to *meam*
but more efficient, and thus *meam* has been removed from LAMMPS after
the 12 December 2018 release.
In the MEAM formulation, the total energy E of a system of atoms is
given by:

View File

@ -71,23 +71,21 @@ The *mix* keyword affects pair coefficients for interactions between
atoms of type I and J, when I != J and the coefficients are not
explicitly set in the input script. Note that coefficients for I = J
must be set explicitly, either in the input script via the
:doc:`pair_coeff <pair_coeff>` command or in the "Pair Coeffs" or "PairIJ Coeffs"
sections of the :doc:`data file <read_data>`. For some pair styles it is not
:doc:`pair_coeff <pair_coeff>` command or in the "Pair Coeffs" section of the
:doc:`data file <read_data>`. For some pair styles it is not
necessary to specify coefficients when I != J, since a "mixing" rule
will create them from the I,I and J,J settings. The pair_modify
*mix* value determines what formulas are used to compute the mixed
coefficients. In each case, the cutoff distance is mixed the same way
as sigma.
Note that not all pair styles support mixing and some mix options are
not available for certain pair styles. Also, there are additional
restrictions when using :doc:`pair style hybrid or hybrid/overlay
<pair_hybrid>`. See the page for individual pair styles for those
restrictions. Note also that the :doc:`pair_coeff <pair_coeff>` command
also can be used to directly set coefficients for a specific I != J
pairing, in which case no mixing is performed. If possible, LAMMPS will
print an informational message about how many of the mixed pair
coefficients were generated and which mixing rule was applied.
Note that not all pair styles support mixing and some mix options
are not available for certain pair styles. Also, there are additional
restrictions when using :doc:`pair style hybrid or hybrid/overlay <pair_hybrid>`.
See the page for individual pair styles for those restrictions. Note also that the
:doc:`pair_coeff <pair_coeff>` command also can be used to directly set
coefficients for a specific I != J pairing, in which case no mixing is
performed.
- mix *geometric*

View File

@ -1,5 +1,4 @@
.. index:: pair_style nm/cut
.. index:: pair_style nm/cut/split
.. index:: pair_style nm/cut/coul/cut
.. index:: pair_style nm/cut/coul/long
.. index:: pair_style nm/cut/omp
@ -11,9 +10,6 @@ pair_style nm/cut command
Accelerator Variants: *nm/cut/omp*
pair_style nm/cut/split command
===============================
pair_style nm/cut/coul/cut command
==================================
@ -31,15 +27,13 @@ Syntax
pair_style style args
* style = *nm/cut* or *nm/cut/split* or *nm/cut/coul/cut* or *nm/cut/coul/long*
* style = *nm/cut* or *nm/cut/coul/cut* or *nm/cut/coul/long*
* args = list of arguments for a particular style
.. parsed-literal::
*nm/cut* args = cutoff
cutoff = global cutoff for Pair interactions (distance units)
*nm/cut/split* args = cutoff
cutoff = global cutoff for Pair interactions (distance units)
*nm/cut/coul/cut* args = cutoff (cutoff2)
cutoff = global cutoff for Pair (and Coulombic if only 1 arg) (distance units)
cutoff2 = global cutoff for Coulombic (optional) (distance units)
@ -56,10 +50,6 @@ Examples
pair_coeff * * 0.01 5.4 8.0 7.0
pair_coeff 1 1 0.01 4.4 7.0 6.0
pair_style nm/cut/split 1.12246
pair_coeff 1 1 1.0 1.1246 12 6
pair_coeff * * 1.0 1.1246 11 6
pair_style nm/cut/coul/cut 12.0 15.0
pair_coeff * * 0.01 5.4 8.0 7.0
pair_coeff 1 1 0.01 4.4 7.0 6.0
@ -81,15 +71,7 @@ interaction has the following form:
E = \frac{E_0}{(n-m)} \left[ m \left(\frac{r_0}{r}\right)^n - n
\left(\frac{r_0}{r}\right)^m \right] \qquad r < r_c
where :math:`r_c` is the cutoff and :math:`r_0` is the minimum of the
potential. Please note that this differs from the convention used for
other Lennard-Jones potentials in LAMMPS where :math:`\sigma` represents
the location where the energy is zero.
Style *nm/cut/split* applies the standard LJ (12-6) potential above
:math:`r_0 = 2^\frac{1}{6}\sigma`. Style *nm/cut/split* is employed in
polymer equilibration protocols that combine core-softening approaches
with topology-changing moves :ref:`Dietz <Dietz>`.
where :math:`r_c` is the cutoff.
Style *nm/cut/coul/cut* adds a Coulombic pairwise interaction given by
@ -173,6 +155,7 @@ the :doc:`run_style respa <run_style>` command. They do not support the
Restrictions
""""""""""""
These pair styles are part of the EXTRA-PAIR package. They are only enabled if
LAMMPS was built with that package. See the
:doc:`Build package <Build_package>` page for more info.
@ -180,7 +163,7 @@ LAMMPS was built with that package. See the
Related commands
""""""""""""""""
:doc:`pair_coeff <pair_coeff>`, :doc:`pair style lj/cut <pair_lj>`, :doc:`bond style fene/nm <bond_fene>`
:doc:`pair_coeff <pair_coeff>`
Default
"""""""
@ -192,7 +175,3 @@ none
.. _Clarke:
**(Clarke)** Clarke and Smith, J Chem Phys, 84, 2290 (1986).
.. _Dietz:
**(Dietz)** Dietz and Hoy, J. Chem Phys, 156, 014103 (2022).

View File

@ -20,7 +20,7 @@ Syntax
.. parsed-literal::
keyword = *checkqeq* or *lgvdw* or *safezone* or *mincap* or *minhbonds*
*checkqeq* value = *yes* or *no* = whether or not to require qeq/reaxff or acks2/reaxff fix
*checkqeq* value = *yes* or *no* = whether or not to require qeq/reaxff fix
*enobonds* value = *yes* or *no* = whether or not to tally energy of atoms with no bonds
*lgvdw* value = *yes* or *no* = whether or not to use a low gradient vdW correction
*safezone* = factor used for array allocation
@ -119,8 +119,7 @@ The ReaxFF parameter files provided were created using a charge
equilibration (QEq) model for handling the electrostatic interactions.
Therefore, by default, LAMMPS requires that either the
:doc:`fix qeq/reaxff <fix_qeq_reaxff>` or the
:doc:`fix qeq/shielded <fix_qeq>` or :doc:`fix acks2/reaxff <fix_acks2_reaxff>`
command be used with
:doc:`fix qeq/shielded <fix_qeq>` command be used with
*pair_style reaxff* when simulating a ReaxFF model, to equilibrate
the charges each timestep.
@ -129,8 +128,7 @@ for the QEq fixes, allowing a simulation to be run without charge
equilibration. In this case, the static charges you assign to each
atom will be used for computing the electrostatic interactions in
the system. See the :doc:`fix qeq/reaxff <fix_qeq_reaxff>` or
:doc:`fix qeq/shielded <fix_qeq>` or :doc:`fix acks2/reaxff <fix_acks2_reaxff>`
command documentation for more details.
:doc:`fix qeq/shielded <fix_qeq>` command documentation for more details.
Using the optional keyword *lgvdw* with the value *yes* turns on the
low-gradient correction of ReaxFF for long-range London Dispersion,
@ -354,8 +352,7 @@ Related commands
""""""""""""""""
:doc:`pair_coeff <pair_coeff>`, :doc:`fix qeq/reaxff <fix_qeq_reaxff>`,
:doc:`fix acks2/reaxff <fix_acks2_reaxff>`, :doc:`fix reaxff/bonds <fix_reaxff_bonds>`,
:doc:`fix reaxff/species <fix_reaxff_species>`
:doc:`fix reaxff/bonds <fix_reaxff_bonds>`, :doc:`fix reaxff/species <fix_reaxff_species>`
Default
"""""""

View File

@ -274,7 +274,6 @@ accelerated styles exist.
* :doc:`nm/cut <pair_nm>` - N-M potential
* :doc:`nm/cut/coul/cut <pair_nm>` - N-M potential with cutoff Coulomb
* :doc:`nm/cut/coul/long <pair_nm>` - N-M potential with long-range Coulomb
* :doc:`nm/cut/split <pair_nm>` - Split 12-6 Lennard-Jones and N-M potential
* :doc:`oxdna/coaxstk <pair_oxdna>` -
* :doc:`oxdna/excv <pair_oxdna>` -
* :doc:`oxdna/hbond <pair_oxdna>` -
@ -328,7 +327,6 @@ accelerated styles exist.
* :doc:`spin/neel <pair_spin_neel>` -
* :doc:`srp <pair_srp>` -
* :doc:`sw <pair_sw>` - Stillinger-Weber 3-body potential
* :doc:`sw/mod <pair_sw>` - modified Stillinger-Weber 3-body potential
* :doc:`table <pair_table>` - tabulated pair potential
* :doc:`table/rx <pair_table_rx>` -
* :doc:`tdpd <pair_mesodpd>` - tDPD particle interactions

View File

@ -3,34 +3,18 @@
.. index:: pair_style sw/intel
.. index:: pair_style sw/kk
.. index:: pair_style sw/omp
.. index:: pair_style sw/mod
.. index:: pair_style sw/mod/omp
pair_style sw command
=====================
Accelerator Variants: *sw/gpu*, *sw/intel*, *sw/kk*, *sw/omp*
pair_style sw/mod command
=========================
Accelerator Variants: *sw/mod/omp*
Syntax
""""""
.. code-block:: LAMMPS
pair_style style keyword values
* style = *sw* or *sw/mod*
* keyword = *maxdelcs*
.. parsed-literal::
*maxdelcs* value = delta1 delta2 (optional)
delta1 = The minimum thershold for cosine of three-body angle
delta2 = The maximum threshold for cosine of three-body angle
pair_style sw
Examples
""""""""
@ -41,9 +25,6 @@ Examples
pair_coeff * * si.sw Si
pair_coeff * * GaN.sw Ga N Ga
pair_style sw/mod maxdelcs 0.25 0.35
pair_coeff * * tmd.sw.mod Mo S S
Description
"""""""""""
@ -67,52 +48,8 @@ where :math:`\phi_2` is a two-body term and :math:`\phi_3` is a
three-body term. The summations in the formula are over all neighbors J
and K of atom I within a cutoff distance :math:`a `\sigma`.
The *sw/mod* style is designed for simulations of materials when
distinguishing three-body angles are necessary, such as borophene
and transition metal dichalcogenide, which cannot be described
by the original code for the Stillinger-Weber potential.
For instance, there are several types of angles around each Mo atom in `MoS_2`,
and some unnecessary angle types should be excluded in the three-body interaction.
Such exclusion may be realized by selecting proper angle types directly.
The exclusion of unnecessary angles is achieved here by the cut-off function (`f_C(\delta)`),
which induces only minimum modifications for LAMMPS.
Validation, benchmark tests, and applications of the *sw/mod* style
can be found in :ref:`(Jiang2) <Jiang2>` and :ref:`(Jiang3) <Jiang3>`.
The *sw/mod* style computes the energy E of a system of atoms, whose potential
function is mostly the same as the Stillinger-Weber potential. The only modification
is in the three-body term, where the value of :math:`\delta = \cos \theta_{ijk} - \cos \theta_{0ijk}`
used in the original energy and force expression is scaled by a switching factor :math:`f_C(\delta)`:
.. math::
f_C(\delta) & = \left\{ \begin{array} {r@{\quad:\quad}l}
1 & \left| \delta \right| < \delta_1 \\
\frac{1}{2} + \frac{1}{2} \cos \left( \pi \frac{\left| \delta \right| - \delta_1}{\delta_2 - \delta_1} \right) &
\delta_1 < \left| \delta \right| < \delta_2 \\
0 & \left| \delta \right| > \delta_2
\end{array} \right. \\
This cut-off function decreases smoothly from 1 to 0 over the range :math:`[\delta_1, \delta_2]`.
This smoothly turns off the energy and force contributions for :math:`\left| \delta \right| > \delta_2`.
It is suggested that :math:`\delta 1` and :math:`\delta_2` to be the value around
:math:`0.5 \left| \cos \theta_1 - \cos \theta_2 \right|`, with
:math:`\theta_1` and :math:`\theta_2` as the different types of angles around an atom.
For borophene and transition metal dichalcogenide, :math:`\delta_1 = 0.25` and :math:`\delta_2 = 0.35`.
This value enables the cut-off function to exclude unnecessary angles in the three-body SW terms.
.. note::
The cut-off function is just to be used as a technique to exclude some unnecessary angles,
and it has no physical meaning. It should be noted that the force and potential are inconsistent
with each other in the decaying range of the cut-off function, as the angle dependence for the
cut-off function is not implemented in the force (first derivation of potential).
However, the angle variation is much smaller than the given threshold value for actual simulations,
so the inconsistency between potential and force can be neglected in actual simulations.
Only a single pair_coeff command is used with the *sw* and *sw/mod* styles
which specifies a Stillinger-Weber potential file with parameters for all
Only a single pair_coeff command is used with the *sw* style which
specifies a Stillinger-Weber potential file with parameters for all
needed elements. These are mapped to LAMMPS atom types by specifying
N additional arguments after the filename in the pair_coeff command,
where N is the number of LAMMPS atom types:
@ -222,14 +159,28 @@ taken from the ij and ik pairs (:math:`\sigma`, *a*, :math:`\gamma`)
----------
.. include:: accel_styles.rst
Styles with a *gpu*, *intel*, *kk*, *omp*, or *opt* suffix are
functionally the same as the corresponding style without the suffix.
They have been optimized to run faster, depending on your available
hardware, as discussed on the :doc:`Speed packages <Speed_packages>` doc
page. The accelerated styles take the same arguments and should
produce the same results, except for round-off and precision issues.
.. note::
These accelerated styles are part of the GPU, INTEL, KOKKOS,
OPENMP and OPT packages, respectively. They are only enabled if
LAMMPS was built with those packages. See the :doc:`Build package <Build_package>` page for more info.
When using the INTEL package with this style, there is an additional
5 to 10 percent performance improvement when the Stillinger-Weber
parameters p and q are set to 4 and 0 respectively. These
parameters are common for modeling silicon and water.
You can specify the accelerated styles explicitly in your input script
by including their suffix, or you can use the :doc:`-suffix command-line switch <Run_options>` when you invoke LAMMPS, or you can use the
:doc:`suffix <suffix>` command in your input script.
When using the INTEL package with this style, there is an
additional 5 to 10 percent performance improvement when the
Stillinger-Weber parameters p and q are set to 4 and 0 respectively.
These parameters are common for modeling silicon and water.
See the :doc:`Speed packages <Speed_packages>` page for more
instructions on how to use the accelerated styles effectively.
----------
@ -276,19 +227,10 @@ Related commands
Default
"""""""
The default values for the *maxdelcs* setting of the *sw/mod* pair
style are *delta1* = 0.25 and *delta2* = 0.35`.
none
----------
.. _Stillinger2:
**(Stillinger)** Stillinger and Weber, Phys Rev B, 31, 5262 (1985).
.. _Jiang2:
**(Jiang2)** J.-W. Jiang, Nanotechnology 26, 315706 (2015).
.. _Jiang3:
**(Jiang3)** J.-W. Jiang, Acta Mech. Solida. Sin 32, 17 (2019).

Some files were not shown because too many files have changed in this diff Show More