Compare commits

..

4 Commits

2762 changed files with 77703 additions and 252224 deletions

3
.github/CODEOWNERS vendored
View File

@ -71,10 +71,7 @@ src/EXTRA-COMMAND/group_ndx.* @akohlmey
src/EXTRA-COMMAND/ndx_group.* @akohlmey
src/EXTRA-COMPUTE/compute_stress_mop*.* @RomainVermorel
src/EXTRA-COMPUTE/compute_born_matrix.* @Bibobu @athomps
src/EXTRA-DUMP/dump_extxyz.* @fxcoudert
src/EXTRA-FIX/fix_deform_pressure.* @jtclemm
src/EXTRA-PAIR/pair_dispersion_d3.* @soniasolomoni @arthurfl
src/EXTRA-PAIR/d3_parameters.h @soniasolomoni @arthurfl
src/MISC/*_tracker.* @jtclemm
src/MC/fix_gcmc.* @athomps
src/MC/fix_sgcmc.* @athomps

View File

@ -1,54 +1,42 @@
# LAMMPS Release Steps
The following notes chronicle the current steps for preparing and
publishing LAMMPS releases. For definitions of LAMMPS versions and
releases, please refer to [the corresponding section in the LAMMPS
manual](https://docs.lammps.org/Manual_version.html).
The following notes chronicle the current steps for preparing and publishing LAMMPS releases. For
definitions of LAMMPS versions and releases mean, please refer to [the corresponding section in the
LAMMPS manual](https://docs.lammps.org/Manual_version.html).
## LAMMPS Feature Release
A LAMMPS feature release is currently prepared after about 500 to 750
commits to the 'develop' branch or after a period of four weeks up to
two months. This is not a fixed rule, though, since external
circumstances can cause delays in preparing a release, or pull requests
that are desired to be merged for the release are not yet completed.
A LAMMPS feature release is currently prepared after about 500 to 750 commits to the 'develop'
branch or after a period of four weeks up to two months. This is not a fixed rule, though, since
external circumstances can cause delays in preparing a release, or pull requests that are desired to
be merged for the release are not yet completed.
### Preparing a 'next\_release' branch
Create a 'next\_release' branch off 'develop' and make the following changes:
- set the LAMMPS\_VERSION define to the planned release date in
src/version.h in the format "D Mmm YYYY" or "DD Mmm YYYY"
- set the LAMMPS\_VERSION define to the planned release date in src/version.h in the format
"D Mmm YYYY" or "DD Mmm YYYY"
- remove the LAMMPS\_UPDATE define in src/version.h
- update the release date in doc/lammps.1
- update all TBD arguments for ..versionadded::, ..versionchanged::
..deprecated:: to the planned release date in the format "DMmmYYYY" or
"DDMmmYYYY"
- check release notes for merged new features and check if
..versionadded:: or ..versionchanged:: are missing and need to be
added
- update all TBD arguments for ..versionadded::, ..versionchanged:: ..deprecated:: to the
planned release date in the format "DMmmYYYY" or "DDMmmYYYY"
- check release notes for merged new features and check if ..versionadded:: or ..versionchanged::
are missing and need to be added
Submit this pull request, rebase if needed. This is the last pull request merged for the release
and should not contain any other changes. (Exceptions: this document, last minute trivial(!) changes).
Submit this pull request. This is the last pull request merged for the
release and should not contain any other changes. (Exceptions: this
document, last minute trivial(!) changes).
This PR shall not be merged before **all** pending tests have completed
and cleared. We currently use a mix of automated tests running on
either Temple's Jenkins cluster or GitHub workflows. Those include time
consuming tests not run on pull requests. If needed, a bug-fix pull
request should be created and merged to clear all tests.
This PR shall not be merged before **all** pending tests have completed and cleared. If needed, a
bugfix pull request should be created and merged to clear all tests.
### Create release on GitHub
When all pending pull requests for the release are merged and have
cleared testing, the 'next\_release' branch is merged into 'develop'.
When all pending pull requests for the release are merged and have cleared testing, the
'next\_release' branch is merged into 'develop'.
Check out or update the 'develop' branch locally, pull the latest
changes, merge them into 'release' with a fast forward(!) merge, and
apply a suitable release tag (for historical reasons the tag starts with
"patch_" followed by the date, and finally push everything back to
GitHub. There should be no commits made to 'release' but only
fast forward merges. Example:
Check out 'develop' locally, pull the latest changes, merge them into 'release', apply a suitable
release tag (for historical reasons the tag starts with "patch_" followed by the date, and finally
push everything back to GitHub. Example:
```
git checkout develop
@ -56,315 +44,65 @@ git pull
git checkout release
git pull
git merge --ff-only develop
git tag -s -m "LAMMPS feature release 4 February 2025" patch_4Feb2025
git tag -s -m "LAMMPS feature release 19 November 2024" patch_19Nov2024
git push git@github.com:lammps/lammps.git --tags develop release
```
Applying this tag will trigger two actions on the Temple Jenkins cluster:
- The online manual at https://docs.lammps.org/ will be updated to the
state of the 'release' branch. Merges to the 'develop' branch will
trigger updating https://docs.lammps.org/latest/ so by reviewing the
version of the manual under the "latest" URL, it is possible to preview
what the updated release documentation will look like.
- A downloadable tar archive of the LAMMPS distribution that includes the
html format documentation and a PDF of the manual will be created and
uploaded to the download server at https://download.lammps.org/tars
Note that the file is added, but the `index.html` file is not updated,
so it is not yet publicly visible.
Go to https://github.com/lammps/lammps/releases and create a new (draft)
release page with a summary of all the changes included and references
to the pull requests they were merged from or check the existing draft
for any necessary changes from pull requests that were merged but are
not listed. Then select the applied tag for the release in the "Choose
a tag" drop-down list. Go to the bottom of the list and select the "Set
as pre-release" checkbox. The "Set as the latest release" button is
Go to https://github.com/lammps/lammps/releases and create a new (draft) release page or check the
existing draft for any necessary changes from pull requests that were merged but are not listed.
Then select the applied tag for the release in the "Choose a tag" dropdown list. Go to the bottom of
the list and select the "Set as pre-release" checkbox. The "Set as the latest release" button is
reserved for stable releases and updates to them.
If everything is in order, you can click on the "Publish release"
button. Otherwise, click on "Save draft" and finish pending tasks until
you can return to edit the release page and publish it.
If everything is in order, you can click on the "Publish release" button. Otherwise, click on "Save
draft" and finish pending tasks until you can return to edit the release page and publish it.
### Prepare pre-compiled packages, update packages to GitHub
### Update download website, prepare pre-compiled packages, update packages to GitHub
A suitable build environment is provided with the
https://download.lammps.org/static/fedora41_musl_mingw.sif container
image. The corresponding container build definition file is maintained
in the tools/singularity folder of the LAMMPS source distribution.
Publishing the release on GitHub will trigger the Temple Jenkins cluster to update
the https://docs.lammps.org/ website with the documentation for the new feature release
and it will create a tarball for download (which contains the translated manual).
#### Fully portable static Linux x86_64 non-MPI binaries
The following commands use the Fedora container to build a fully static
LAMMPS installation using a musl-libc cross-compiler, install it into a
`lammps-static` folder, and create a tarball called
`lammps-linux-x86_64-4Feb2025.tar.gz` (or using a corresponding date
with a future release) from the `lammps-static` folder.
``` sh
rm -rf release-packages
mkdir release-packages
cd release-packages
wget https://download.lammps.org/static/fedora41_musl_mingw.sif
apptainer shell fedora41_musl_mingw.sif
git clone -b release --depth 10 https://github.com/lammps/lammps.git lammps-release
cmake -S lammps-release/cmake -B build-release -G Ninja -D CMAKE_INSTALL_PREFIX=$PWD/lammps-static -D CMAKE_TOOLCHAIN_FILE=/usr/musl/share/cmake/linux-musl.cmake -C lammps-release/cmake/presets/most.cmake -C lammps-release/cmake/presets/kokkos-openmp.cmake -D DOWNLOAD_POTENTIALS=OFF -D BUILD_MPI=OFF -D BUILD_TESTING=OFF -D CMAKE_BUILD_TYPE=Release -D PKG_ATC=ON -D PKG_AWPMD=ON -D PKG_MANIFOLD=ON -D PKG_MESONT=ON -D PKG_MGPT=ON -D PKG_ML-PACE=ON -D PKG_ML-RANN=ON -D PKG_MOLFILE=ON -D PKG_PTM=ON -D PKG_QTB=ON -D PKG_SMTBQ=ON
cmake --build build-release --target all
cmake --build build-release --target install
/usr/musl/bin/x86_64-linux-musl-strip lammps-static/bin/*
tar -czvvf ../lammps-linux-x86_64-4Feb2025.tar.gz lammps-static
exit # fedora 41 container
cd ..
```
The resulting tar archive can be uploaded to the GitHub release page with:
``` sh
gh release upload patch_4Feb2025 lammps-linux-x86_64-4Feb2025.tar.gz
```
#### Linux x86_64 Flatpak bundle with GUI included
Make sure you have the `flatpak` and `flatpak-builder` packages
installed locally (they require binaries that run with elevated
privileges and thus cannot be used from the container) and build a
LAMMPS and LAMMPS-GUI flatpak bundle in the `release-packages` folder
Build a fully static LAMMPS installation using a musl-libc cross-compiler, install into a
lammps-static folder, and create a tarball called lammps-linux-x86_64-19Nov2024.tar.gz (or using a
corresponding date with a future release) from the lammps-static folder and upload it to GitHub
with:
``` sh
cd release-packages
flatpak --user remote-add --if-not-exists flathub https://dl.flathub.org/repo/flathub.flatpakrepo
flatpak-builder --force-clean --verbose --repo=$PWD/flatpak-repo --install-deps-from=flathub --state-dir=$PWD --user --ccache --default-branch=release flatpak-build lammps-release/tools/lammps-gui/org.lammps.lammps-gui.yml
flatpak build-bundle --runtime-repo=https://flathub.org/repo/flathub.flatpakrepo --verbose $PWD/flatpak-repo ../LAMMPS-Linux-x86_64-GUI-4Feb2025.flatpak org.lammps.lammps-gui release
cd ..
```
gh release upload patch_19Nov2024 ~/Downloads/lammps-linux-x86_64-19Nov2024.tar.gz
```
The resulting flatpak bundle file can be uploaded to the GitHub release page with:
``` sh
gh release upload patch_4Feb2025 LAMMPS-Linux-x86_64-GUI-4Feb2025.flatpak
```
#### LAMMPS Source tarball
The container for the static binary can also be used to prepare the source
tarball including the HTML and PDF manual (this is currently done automatically
when the releases is created and the tarball uploaded to https://download.lammps.org/tars/).
The steps are as follows:
``` sh
cd release-packages
apptainer shell fedora41_musl_mingw.sif
cd lammps-release
rm -f ../release.tar*
git archive --output=../release.tar --prefix=lammps-4Feb2025/ HEAD
cd doc
make clean-all
make html pdf
tar -rf ../../release.tar --transform 's,^,lammps-4Feb2025/doc/,' html Manual.pdf
gzip -9v ../../release.tar
mv ../../release.tar.gz ../../lammps-src-4Feb2025.tar.gz
exit # fedora41 container
cd ..
```
The resulting source tarball can be uploaded to the GitHub release page with:
``` sh
gh release upload patch_4Feb2025 lammps-src-4Feb2025.tar.gz
```
#### Build Windows Installer Packages with MinGW Linux-to-Windows Cross-compiler
The various Windows installer packages can also be built with
apptainer container image.
``` sh
cd release-packages
apptainer shell fedora41_musl_mingw.sif
git clone --depth 10 https://github.com/lammps/lammps-packages.git lammps-packages
cd lammps-packages/mingw-cross
ln -sf ../../lammps-release lammps
./buildall.sh release >& mk.log & less +F mk.log
```
The installer with the GUI included can be uploaded to the GitHub release page with:
``` sh
ln -sf LAMMPS-64bit-GUI-4Feb2025.exe LAMMPS-Win10-64bit-GUI-4Feb2025.exe
gh release upload patch_4Feb2025 LAMMPS-Win10-64bit-GUI-4Feb2025.exe
```
The symbolic link is used to have a consistent naming scheme for the packages
attached to the GitHub release page.
#### Clean up:
``` sh
cd ..
rm -r release-packages
```
#### Build Multi-arch App-bundle with GUI for macOS
Building app-bundles for macOS is not as easily automated and portable
as some of the other steps. It requires a machine actually running
macOS. In that machine the Xcode compiler package needs to be
installed. This also includes tools for building and manipulating disk
images. This compiler supports building executables for both, the
x86_64 and the arm64 architectures. This requires building with CMake
and using the CMake settings:
``` sh
-D CMAKE_OSX_ARCHITECTURES=arm64;x86_64
-D CMAKE_OSX_DEPLOYMENT_TARGET=11.0
```
This will add the compiler flags `-arch arm64 -arch x86_64
-mmacosx-version-min=11.0` and thus produce object for both
architectures and support for macOS versions back to version 11 (aka Big
Sur). With these settings the following libraries should be compiled
and installed (e.g. to `$HOME/.local`) as static libraries only:
- libomp taken from the LLVM/Clang source distribution (to support OpenMP)
- jpeg
- zlib
- png
- Qt (for LAMMPS-GUI)
When configuring LAMMPS the `cmake/presets/clang.cmake` should be used
and as many packages as possible enabled. For LAMMPS-GUI, MPI should be
disabled with `-D BUILD_MPI=OFF` and LAMMPS-GUI enabled with
`-D BUILD_LAMMPS_GUI=ON`. If the CMake configuration is successful,
settings for building a macOS app-bundle are enabled and with `cmake
--build build --target dmg` extra steps will be executed that will build
a macOS application installer image under the name
`LAMMPS_GUI-macOS-multiarch-4Feb2025.dmg`
The application image can be uploaded to the GitHub release page with:
``` sh
ln -sf LAMMPS_GUI-macOS-multiarch-4Feb2025.dmg LAMMPS-macOS-multiarch-GUI-4Feb2025.dmg
gh release upload patch_4Feb2025 LAMMPS-macOS-multiarch-GUI-4Feb2025.dmg
```
The symbolic link is used to have a consistent naming scheme for the packages
attached to the GitHub release page.
We are currently building the application images on macOS 12 (aka Monterey).
#### Build Linux x86_64 binary tarball with GUI on Ubuntu 20.04LTS
While the flatpak Linux version uses portable runtime libraries provided
by the flatpak environment, we also build regular Linux executables that
use a wrapper script and matching shared libraries in a tarball. To be
compatible with many Linux distributions, one has to build this on a
very old Linux distribution, since most Linux system libraries are
usually backward compatible but not forward compatible. This is
currently done on an Ubuntu 20.04LTS system. Once LAMMPS moves to
require CMake 3.20 and C++17, we will have to move to Ubuntu 22.04LTS.
This installation (either on a real or a virtual machine) should have
the packages installed that are indicated in
`tools/singularity/ubuntu20.04.def` plus Qt version 5.x with development
headers, so that LAMMPS-GUI can be compiled.
Also the building of the binary tarball and setup of the bundled
libraries and wrapper scripts is automated and can executed with `cmake
--build build --target tgz`. This should produce a file
`LAMMPS_GUI-Linux-amd64-4Feb2025.tar.gz` which can be uploaded to the
GitHub release page with:
``` sh
ln -sf LAMMPS_GUI-Linux-amd64-4Feb2025.tar.gz LAMMPS-Linux-x86_64-GUI-4Feb2025.tar.gz
gh release upload patch_4Feb2025 LAMMPS-Linux-x86_64-GUI-4Feb2025.tar.gz
```
### Update download page on LAMMPS website
Check out the LAMMPS website repo
https://github.com/lammps/lammps-website.git and edit the file
`src/download.txt` for the new release. Test translation with `make
html` and review `html/download.html` Then add and commit to git and
push the changes to GitHub. The Temple Jenkis cluster will
automatically update https://www.lammps.org/download.html accordingly.
Also notify Steve of the release so he can update `src/bug.txt` on the
website from the available release notes.
## LAMMPS Stable Release
A LAMMPS stable release is prepared about once per year in the months
July, August, or September. One (or two, if needed) feature releases
before the stable release shall contain only bug fixes or minor feature
updates in optional packages. Also substantial changes to the core of
the code shall be applied rather toward the beginning of a development
cycle between two stable releases than toward the end. The intention is
to stablilize significant change to the core and have outside users and
developers try them out during the development cycle; the sooner the
changes are included, the better chances for spotting peripheral bugs
and issues.
A LAMMPS stable release is prepared about once per year in the months July, August, or September.
One (or two, if needed) feature releases before the stable release shall contain only bug fixes
or minor feature updates in optional packages. Also substantial changes to the core of the code
shall be applied rather toward the beginning of a development cycle between two stable releases
than toward the end. The intention is to stablilize significant change to the core and have
outside users and developers try them out during the development cycle; the sooner the changes
are included, the better chances for spotting peripheral bugs and issues.
### Prerequesites
Before making a stable release all remaining backported bugfixes shall
be released as a (final) stable update release (see below).
Before making a stable release all remaining backported bugfixes shall be released as a (final)
stable update release (see below).
A LAMMPS stable release process starts like a feature release (see
above), only that this feature release is called a "Stable Release
Candidate" and no assets are uploaded to GitHub.
A LAMMPS stable release process starts like a feature release (see above), only that this feature
release is called a "Stable Release Candidate" and no assets are uploaded to GitHub.
### Synchronize 'maintenance' branch with 'release'
The state of the 'release' branch is then transferred to the
'maintenance' branch (which will have diverged significantly from
'release' due to the selectively backported bug fixes).
The state of the 'release' branch is then transferred to the 'maintenance' branch (which will
have diverged significantly from 'release' due to the selectively backported bug fixes).
### Fast-forward merge of 'maintenance' into 'stable' and apply tag
At this point it should be possible to do a fast-forward merge of
'maintenance' to 'stable' and then apply the stable\_DMmmYYYY tag.
At this point it should be possible to do a fast-forward merge of 'maintenance' to 'stable'
and then apply the stable\_DMmmYYYY tag.
### Push branches and tags
## LAMMPS Stable Update Release
After making a stable release, bugfixes from the 'develop' branch
are selectively backported to the 'maintenance' branch. This is
done with "git cherry-pick \<commit hash\>' wherever possible.
The LAMMPS\_UPDATE define in "src/version.h" is set to "Maintenance".
### Prerequesites
When a sufficient number of bugfixes has accumulated or an urgent
or important bugfix needs to be distributed a new stable update
release is made. To make this publicly visible a pull request
is submitted that will merge 'maintenance' into 'stable'. Before
merging, set LAMMPS\_UPDATE in "src/version.h" to "Update #" with
"#" indicating the update count (1, 2, and so on).
Also draft suitable release notes under https://github.com/lammps/lammps/releases
### Fast-forward merge of 'maintenance' into 'stable', apply tag, and publish
Do a fast-forward merge of 'maintenance' to 'stable' and then
apply the stable\_DMmmYYYY\_update# tag and push branch and tag
to GitHub. The corresponding pull request will be automatically
closed. Example:
```
git checkout maintenance
git pull
git checkout stable
git pull
git merge --ff-only maintenance
git tag -s -m 'Update 2 for Stable LAMMPS version 29 August 2024' stable_29Aug2024_update2
git push git@github.com:lammps/lammps.git --tags maintenance stable
```
Associate draft release notes with new tag and publish as "latest release".
On https://ci.lammps.org/ go to "dev", "stable" and manually execute
the "update\_release" task. This will update https://docs.lammps.org/stable
and prepare a stable tarball.
### Build and upload binary packages and source tarball to GitHub
The build procedure is the same as for the feature releases, only
that packages are built from the 'stable' branch.

View File

@ -1,4 +1,4 @@
# GitHub action to build LAMMPS on Linux with gcc or clang and C++23
# GitHub action to build LAMMPS on Linux with gcc and C++23
name: "Check for C++23 Compatibility"
on:
@ -11,19 +11,11 @@ on:
workflow_dispatch:
concurrency:
group: ${{ github.event_name }}-${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: ${{github.event_name == 'pull_request'}}
jobs:
build:
name: Build with C++23 support enabled
if: ${{ github.repository == 'lammps/lammps' }}
runs-on: ubuntu-latest
strategy:
max-parallel: 2
matrix:
idx: [ gcc, clang ]
env:
CCACHE_DIR: ${{ github.workspace }}/.ccache
@ -37,11 +29,8 @@ jobs:
run: |
sudo apt-get update
sudo apt-get install -y ccache \
clang \
libcurl4-openssl-dev \
libeigen3-dev \
libfftw3-dev \
libomp-dev \
libcurl4-openssl-dev \
mold \
mpi-default-bin \
mpi-default-dev \
@ -69,14 +58,14 @@ jobs:
cmake -S cmake -B build \
-C cmake/presets/most.cmake \
-C cmake/presets/kokkos-openmp.cmake \
-C cmake/presets/${{ matrix.idx }}.cmake \
-D CMAKE_CXX_STANDARD=23 \
-D CMAKE_CXX_COMPILER=g++ \
-D CMAKE_C_COMPILER=gcc \
-D CMAKE_CXX_COMPILER_LAUNCHER=ccache \
-D CMAKE_C_COMPILER_LAUNCHER=ccache \
-D CMAKE_BUILD_TYPE=Debug \
-D CMAKE_CXX_FLAGS_DEBUG="-Og -g" \
-D DOWNLOAD_POTENTIALS=off \
-D FFT=KISS \
-D BUILD_MPI=on \
-D BUILD_SHARED_LIBS=on \
-D BUILD_TOOLS=off \

View File

@ -77,7 +77,7 @@ jobs:
-D PKG_MDI=on \
-D PKG_MANIFOLD=on \
-D PKG_ML-PACE=on \
-D PKG_ML-RANN=on \
-D PKG_ML-RANN=off \
-D PKG_MOLFILE=on \
-D PKG_RHEO=on \
-D PKG_PTM=on \

View File

@ -67,6 +67,7 @@ jobs:
-D PKG_MANIFOLD=on \
-D PKG_MDI=on \
-D PKG_MGPT=on \
-D PKG_ML-PACE=on \
-D PKG_ML-RANN=on \
-D PKG_MOLFILE=on \
-D PKG_NETCDF=on \

View File

@ -1,53 +0,0 @@
# GitHub action to build LAMMPS-GUI as a flatpak bundle
name: "Build LAMMPS-GUI as flatpak bundle"
on:
push:
branches:
- develop
workflow_dispatch:
concurrency:
group: ${{ github.event_name }}-${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: ${{github.event_name == 'pull_request'}}
jobs:
build:
name: LAMMPS-GUI flatpak build
if: ${{ github.repository == 'lammps/lammps' }}
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Install extra packages
run: |
sudo apt-get update
sudo apt-get install -y ccache \
libeigen3-dev \
libcurl4-openssl-dev \
mold \
ninja-build \
python3-dev \
flatpak \
flatpak-builder
- name: Set up access to flatpak repo
run: flatpak --user remote-add --if-not-exists flathub https://dl.flathub.org/repo/flathub.flatpakrepo
- name: Build flatpak
run: |
mkdir flatpack-state
sed -i -e 's/branch:.*/branch: develop/' tools/lammps-gui/org.lammps.lammps-gui.yml
flatpak-builder --force-clean --verbose --repo=flatpak-repo \
--install-deps-from=flathub --state-dir=flatpak-state \
--user --ccache --default-branch=${{ github.ref_name }} \
flatpak-build tools/lammps-gui/org.lammps.lammps-gui.yml
flatpak build-bundle --runtime-repo=https://flathub.org/repo/flathub.flatpakrepo \
--verbose flatpak-repo LAMMPS-Linux-x86_64-GUI.flatpak \
org.lammps.lammps-gui ${{ github.ref_name }}
flatpak install -y -v --user LAMMPS-Linux-x86_64-GUI.flatpak

View File

@ -35,4 +35,3 @@ jobs:
make check-permissions
make check-homepage
make check-errordocs
make check-fmtlib

View File

@ -1,81 +0,0 @@
# GitHub action to build LAMMPS on Linux with ARM64 and run standard unit tests
name: "Unittest for Linux on ARM64"
on:
push:
branches: [develop]
workflow_dispatch:
concurrency:
group: ${{ github.event_name }}-${{ github.workflow }}-${{ github.ref }}
cancel-in-progress: ${{github.event_name == 'pull_request'}}
jobs:
build:
name: Linux ARM64 Unit Test
if: ${{ github.repository == 'lammps/lammps' }}
runs-on: ubuntu-22.04-arm
env:
CCACHE_DIR: ${{ github.workspace }}/.ccache
steps:
- name: Checkout repository
uses: actions/checkout@v4
with:
fetch-depth: 2
- name: Install extra packages
run: |
sudo apt-get update
sudo apt-get install -y ccache \
libeigen3-dev \
libcurl4-openssl-dev \
mold \
ninja-build \
python3-dev
- name: Create Build Environment
run: mkdir build
- name: Set up ccache
uses: actions/cache@v4
with:
path: ${{ env.CCACHE_DIR }}
key: linux-unit-ccache-${{ github.sha }}
restore-keys: linux-unit-ccache-
- name: Building LAMMPS via CMake
shell: bash
run: |
ccache -z
python3 -m venv linuxenv
source linuxenv/bin/activate
python3 -m pip install numpy
python3 -m pip install pyyaml
cmake -S cmake -B build \
-C cmake/presets/gcc.cmake \
-C cmake/presets/most.cmake \
-D CMAKE_CXX_COMPILER_LAUNCHER=ccache \
-D CMAKE_C_COMPILER_LAUNCHER=ccache \
-D BUILD_SHARED_LIBS=on \
-D DOWNLOAD_POTENTIALS=off \
-D ENABLE_TESTING=on \
-D MLIAP_ENABLE_ACE=on \
-D MLIAP_ENABLE_PYTHON=off \
-D PKG_MANIFOLD=on \
-D PKG_ML-PACE=on \
-D PKG_ML-RANN=on \
-D PKG_RHEO=on \
-D PKG_PTM=on \
-D PKG_PYTHON=on \
-D PKG_QTB=on \
-D PKG_SMTBQ=on \
-G Ninja
cmake --build build
ccache -s
- name: Run Tests
working-directory: build
shell: bash
run: ctest -V -LE unstable

16
README
View File

@ -23,21 +23,17 @@ more information about the code and its uses.
The LAMMPS distribution includes the following files and directories:
README this file
LICENSE the GNU General Public License (GPLv2)
CITATION.cff Citation information for LAMMPS in CFF format
bench benchmark inputs
LICENSE the GNU General Public License (GPL)
bench benchmark problems
cmake CMake build files
doc documentation
examples example inputs for many LAMMPS commands
fortran Fortran 2003 module for LAMMPS
examples simple test problems
fortran Fortran wrapper for LAMMPS
lib additional provided or external libraries
potentials interatomic potential files
python Python module for LAMMPS
python Python wrappers for LAMMPS
src source files
third_party Copies of thirdparty software bundled with LAMMPS
tools pre- and post-processing tools
unittest test programs for use with CTest
.github Git and GitHub related files and tools
Point your browser at any of these files to get started:
@ -46,8 +42,6 @@ https://docs.lammps.org/Intro.html hi-level introduction
https://docs.lammps.org/Build.html how to build LAMMPS
https://docs.lammps.org/Run_head.html how to run LAMMPS
https://docs.lammps.org/Commands_all.html Table of available commands
https://docs.lammps.org/Howto.html Short tutorials and HowTo discussions
https://docs.lammps.org/Errors.html How to interpret and debug errors
https://docs.lammps.org/Library.html LAMMPS library interfaces
https://docs.lammps.org/Modify.html how to modify and extend LAMMPS
https://docs.lammps.org/Developer.html LAMMPS developer info

View File

@ -3,14 +3,7 @@
# CMake build system
# This file is part of LAMMPS
cmake_minimum_required(VERSION 3.16)
if(CMAKE_VERSION VERSION_LESS 3.20)
message(WARNING "LAMMPS is planning to require at least CMake version 3.20 by Summer 2025. Please upgrade!")
endif()
########################################
# initialize version variables with project command
if(POLICY CMP0048)
cmake_policy(SET CMP0048 NEW)
endif()
# set policy to silence warnings about ignoring <PackageName>_ROOT but use it
if(POLICY CMP0074)
cmake_policy(SET CMP0074 NEW)
@ -31,10 +24,7 @@ endif()
########################################
project(lammps
DESCRIPTION "The LAMMPS Molecular Dynamics Simulator"
HOMEPAGE_URL "https://www.lammps.org"
LANGUAGES CXX C)
project(lammps CXX)
set(SOVERSION 0)
get_property(BUILD_IS_MULTI_CONFIG GLOBAL PROPERTY GENERATOR_IS_MULTI_CONFIG)
@ -51,7 +41,6 @@ set(LAMMPS_DOC_DIR ${LAMMPS_DIR}/doc)
set(LAMMPS_TOOLS_DIR ${LAMMPS_DIR}/tools)
set(LAMMPS_PYTHON_DIR ${LAMMPS_DIR}/python)
set(LAMMPS_POTENTIALS_DIR ${LAMMPS_DIR}/potentials)
set(LAMMPS_THIRDPARTY_DIR ${LAMMPS_DIR}/third_party)
set(LAMMPS_DOWNLOADS_URL "https://download.lammps.org" CACHE STRING "Base URL for LAMMPS downloads")
set(LAMMPS_POTENTIALS_URL "${LAMMPS_DOWNLOADS_URL}/potentials")
@ -113,59 +102,58 @@ if(CMAKE_CXX_COMPILER_ID STREQUAL "Intel")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /Qrestrict")
endif()
if(CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 17.3 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 17.4)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /QxCOMMON-AVX512")
set(CMAKE_TUNE_DEFAULT "/QxCOMMON-AVX512")
else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} /QxHost")
set(CMAKE_TUNE_DEFAULT "/QxHost")
endif()
else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -restrict")
if(CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 17.3 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 17.4)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -xCOMMON-AVX512")
set(CMAKE_TUNE_DEFAULT "-xCOMMON-AVX512")
else()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -xHost -fp-model fast=2 -no-prec-div -qoverride-limits -diag-disable=10441 -diag-disable=11074 -diag-disable=11076 -diag-disable=2196")
set(CMAKE_TUNE_DEFAULT "-xHost -fp-model fast=2 -no-prec-div -qoverride-limits -diag-disable=10441 -diag-disable=11074 -diag-disable=11076 -diag-disable=2196")
endif()
endif()
endif()
# silence excessive warnings for new Intel Compilers
if(CMAKE_CXX_COMPILER_ID STREQUAL "IntelLLVM")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -fp-model precise -Wno-tautological-constant-compare -Wno-unused-command-line-argument")
set(CMAKE_TUNE_DEFAULT "-fp-model precise -Wno-tautological-constant-compare -Wno-unused-command-line-argument")
endif()
# silence excessive warnings for PGI/NVHPC compilers
if((CMAKE_CXX_COMPILER_ID STREQUAL "NVHPC") OR (CMAKE_CXX_COMPILER_ID STREQUAL "PGI"))
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Minform=severe")
set(CMAKE_TUNE_DEFAULT "-Minform=severe")
endif()
# this hack is required to compile fmt lib with CrayClang version 15.0.2
# CrayClang is only directly recognized by version 3.28 and later
if(CMAKE_VERSION VERSION_LESS 3.28)
get_filename_component(_exe "${CMAKE_CXX_COMPILER}" NAME)
if((CMAKE_CXX_COMPILER_ID STREQUAL "Clang") AND (_exe STREQUAL "crayCC"))
set(CMAKE_TUNE_DEFAULT "-DFMT_STATIC_THOUSANDS_SEPARATOR")
endif()
else()
if(CMAKE_CXX_COMPILER_ID STREQUAL "CrayClang")
set(CMAKE_TUNE_DEFAULT "-DFMT_STATIC_THOUSANDS_SEPARATOR")
endif()
endif()
# silence nvcc warnings
if((PKG_KOKKOS) AND (Kokkos_ENABLE_CUDA) AND NOT
((CMAKE_CXX_COMPILER_ID STREQUAL "Clang") OR (CMAKE_CXX_COMPILER_ID STREQUAL "IntelLLVM")
OR (CMAKE_CXX_COMPILER_ID STREQUAL "XLClang") OR (CMAKE_CXX_COMPILER_ID STREQUAL "CrayClang")))
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Xcudafe --diag_suppress=unrecognized_pragma,--diag_suppress=128")
if((PKG_KOKKOS) AND (Kokkos_ENABLE_CUDA) AND NOT (CMAKE_CXX_COMPILER_ID STREQUAL "Clang"))
set(CMAKE_TUNE_DEFAULT "${CMAKE_TUNE_DEFAULT}" "-Xcudafe --diag_suppress=unrecognized_pragma,--diag_suppress=128")
endif()
# we *require* C++11 without extensions but prefer C++17.
# Kokkos requires at least C++17 (currently)
# we require C++11 without extensions. Kokkos requires at least C++17 (currently)
if(NOT CMAKE_CXX_STANDARD)
if(cxx_std_17 IN_LIST CMAKE_CXX_COMPILE_FEATURES)
set(CMAKE_CXX_STANDARD 17)
else()
set(CMAKE_CXX_STANDARD 11)
endif()
set(CMAKE_CXX_STANDARD 11)
endif()
if(CMAKE_CXX_STANDARD LESS 11)
message(FATAL_ERROR "C++ standard must be set to at least 11")
endif()
if(CMAKE_CXX_STANDARD LESS 17)
message(WARNING "Selecting C++17 standard is preferred over C++${CMAKE_CXX_STANDARD}")
endif()
if(PKG_KOKKOS AND (CMAKE_CXX_STANDARD LESS 17))
set(CMAKE_CXX_STANDARD 17)
endif()
# turn off C++17 check in lmptype.h
if(LAMMPS_CXX11)
add_compile_definitions(LAMMPS_CXX11)
endif()
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF CACHE BOOL "Use compiler extensions")
# ugly hacks for MSVC which by default always reports an old C++ standard in the __cplusplus macro
@ -203,14 +191,10 @@ if((CMAKE_SYSTEM_NAME STREQUAL "Windows") AND BUILD_SHARED_LIBS)
set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)
endif()
# do not include the (obsolete) MPI C++ bindings which makes for leaner object files
# and avoids namespace conflicts. Put this early to increase its visbility.
set(MPI_CXX_SKIP_MPICXX TRUE CACHE BOOL "Skip MPI C++ Bindings" FORCE)
########################################################################
# User input options #
########################################################################
# backward compatibility with older LAMMPS documentation
# backward compatibility with CMake before 3.12 and older LAMMPS documentation
if (PYTHON_EXECUTABLE)
set(Python_EXECUTABLE "${PYTHON_EXECUTABLE}")
endif()
@ -226,12 +210,6 @@ if(DEFINED ENV{VIRTUAL_ENV} AND NOT Python_EXECUTABLE)
" Setting Python interpreter to: ${Python_EXECUTABLE}")
endif()
find_package(Python COMPONENTS Interpreter QUIET)
# NOTE: RHEL 8.0 and Ubuntu 18.04LTS ship with Python 3.6, Python 3.8 was EOL in 2024
if(Python_VERSION VERSION_LESS 3.6)
message(FATAL_ERROR "LAMMPS requires Python 3.6 or later")
endif()
set(LAMMPS_MACHINE "" CACHE STRING "Suffix to append to lmp binary (WON'T enable any features automatically")
mark_as_advanced(LAMMPS_MACHINE)
if(LAMMPS_MACHINE)
@ -369,27 +347,16 @@ foreach(PKG ${STANDARD_PACKAGES} ${SUFFIX_PACKAGES})
option(PKG_${PKG} "Build ${PKG} Package" OFF)
endforeach()
set(DEPRECATED_PACKAGES AWPMD ATC POEMS)
foreach(PKG ${DEPRECATED_PACKAGES})
if(PKG_${PKG})
message(WARNING
"The ${PKG} package will be removed from LAMMPS in Summer 2025 due to lack of "
"maintenance and use of code constructs that conflict with modern C++ compilers "
"and standards. Please contact developers@lammps.org if you have any concerns "
"about this step.")
endif()
endforeach()
######################################################
# packages with special compiler needs or external libs
######################################################
target_include_directories(lammps PUBLIC $<BUILD_INTERFACE:${LAMMPS_SOURCE_DIR}>)
target_include_directories(lammps PUBLIC $<BUILD_INTERFACE:${LAMMPS_THIRDPARTY_DIR}>)
if(PKG_ADIOS)
# The search for ADIOS2 must come before MPI because
# it includes its own MPI search with the latest FindMPI.cmake
# script that defines the MPI::MPI_C target
enable_language(C)
find_package(ADIOS2 REQUIRED)
if(BUILD_MPI)
if(NOT ADIOS2_HAVE_MPI)
@ -404,18 +371,21 @@ if(PKG_ADIOS)
endif()
if(NOT CMAKE_CROSSCOMPILING)
find_package(MPI QUIET COMPONENTS CXX)
find_package(MPI QUIET)
option(BUILD_MPI "Build MPI version" ${MPI_FOUND})
else()
option(BUILD_MPI "Build MPI version" OFF)
endif()
if(BUILD_MPI)
# do not include the (obsolete) MPI C++ bindings which makes
# for leaner object files and avoids namespace conflicts
set(MPI_CXX_SKIP_MPICXX TRUE)
# We use a non-standard procedure to cross-compile with MPI on Windows
if((CMAKE_SYSTEM_NAME STREQUAL "Windows") AND CMAKE_CROSSCOMPILING)
include(MPI4WIN)
else()
find_package(MPI REQUIRED COMPONENTS CXX)
find_package(MPI REQUIRED)
option(LAMMPS_LONGLONG_TO_LONG "Workaround if your system or MPI version does not recognize 'long long' data types" OFF)
if(LAMMPS_LONGLONG_TO_LONG)
target_compile_definitions(lammps PRIVATE -DLAMMPS_LONGLONG_TO_LONG)
@ -429,8 +399,8 @@ else()
target_link_libraries(lammps PUBLIC mpi_stubs)
endif()
set(LAMMPS_SIZES "smallbig" CACHE STRING "LAMMPS integer sizes (smallbig: 64-bit #atoms #timesteps, bigbig: also 64-bit imageint, 64-bit atom ids)")
set(LAMMPS_SIZES_VALUES smallbig bigbig)
set(LAMMPS_SIZES "smallbig" CACHE STRING "LAMMPS integer sizes (smallsmall: all 32-bit, smallbig: 64-bit #atoms #timesteps, bigbig: also 64-bit imageint, 64-bit atom ids)")
set(LAMMPS_SIZES_VALUES smallbig bigbig smallsmall)
set_property(CACHE LAMMPS_SIZES PROPERTY STRINGS ${LAMMPS_SIZES_VALUES})
validate_option(LAMMPS_SIZES LAMMPS_SIZES_VALUES)
string(TOUPPER ${LAMMPS_SIZES} LAMMPS_SIZES)
@ -448,19 +418,6 @@ if(NOT ${LAMMPS_MEMALIGN} STREQUAL "0")
target_compile_definitions(lammps PRIVATE -DLAMMPS_MEMALIGN=${LAMMPS_MEMALIGN})
endif()
# this hack is required to compile fmt lib with CrayClang version 15.0.2
# CrayClang is only directly recognized by CMake version 3.28 and later
if(CMAKE_VERSION VERSION_LESS 3.28)
get_filename_component(_exe "${CMAKE_CXX_COMPILER}" NAME)
if((CMAKE_CXX_COMPILER_ID STREQUAL "Clang") AND (_exe STREQUAL "crayCC"))
target_compile_definitions(lammps PRIVATE -DFMT_STATIC_THOUSANDS_SEPARATOR)
endif()
else()
if(CMAKE_CXX_COMPILER_ID STREQUAL "CrayClang")
target_compile_definitions(lammps PRIVATE -DFMT_STATIC_THOUSANDS_SEPARATOR)
endif()
endif()
# "hard" dependencies between packages resulting
# in an error instead of skipping over files
pkg_depends(ML-IAP ML-SNAP)
@ -518,13 +475,13 @@ if(BUILD_OMP)
if(CMAKE_VERSION VERSION_LESS 3.28)
get_filename_component(_exe "${CMAKE_CXX_COMPILER}" NAME)
if((CMAKE_CXX_COMPILER_ID STREQUAL "Clang") AND (_exe STREQUAL "crayCC"))
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -fopenmp")
set(CMAKE_STATIC_LINKER_FLAGS "${CMAKE_STATIC_LINKER_FLAGS} -fopenmp")
set(CMAKE_SHARED_LINKER_FLAGS_${BTYPE} "${CMAKE_SHARED_LINKER_FLAGS_${BTYPE}} -fopenmp")
set(CMAKE_STATIC_LINKER_FLAGS_${BTYPE} "${CMAKE_STATIC_LINKER_FLAGS_${BTYPE}} -fopenmp")
endif()
else()
if(CMAKE_CXX_COMPILER_ID STREQUAL "CrayClang")
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -fopenmp")
set(CMAKE_STATIC_LINKER_FLAGS "${CMAKE_STATIC_LINKER_FLAGS} -fopenmp")
set(CMAKE_SHARED_LINKER_FLAGS_${BTYPE} "${CMAKE_SHARED_LINKER_FLAGS_${BTYPE}} -fopenmp")
set(CMAKE_STATIC_LINKER_FLAGS_${BTYPE} "${CMAKE_STATIC_LINKER_FLAGS_${BTYPE}} -fopenmp")
endif()
endif()
endif()
@ -542,6 +499,7 @@ if((CMAKE_CXX_COMPILER_ID STREQUAL "Intel") AND (CMAKE_CXX_STANDARD GREATER_EQUA
endif()
if(PKG_ATC OR PKG_AWPMD OR PKG_ML-QUIP OR PKG_ML-POD OR PKG_ELECTRODE OR PKG_RHEO OR BUILD_TOOLS)
enable_language(C)
if (NOT USE_INTERNAL_LINALG)
find_package(LAPACK)
find_package(BLAS)
@ -621,16 +579,6 @@ foreach(PKG_WITH_INCL KSPACE PYTHON ML-IAP VORONOI COLVARS ML-HDNNP MDI MOLFILE
endif()
endforeach()
# settings for misc packages and styles
if(PKG_MISC)
option(LAMMPS_ASYNC_IMD "Asynchronous IMD processing" OFF)
mark_as_advanced(LAMMPS_ASYNC_IMD)
if(LAMMPS_ASYNC_IMD)
target_compile_definitions(lammps PRIVATE -DLAMMPS_ASYNC_IMD)
message(STATUS "Using IMD in asynchronous mode")
endif()
endif()
# optionally enable building script wrappers using swig
option(WITH_SWIG "Build scripting language wrappers with SWIG" OFF)
if(WITH_SWIG)
@ -638,6 +586,10 @@ if(WITH_SWIG)
add_subdirectory(${LAMMPS_SWIG_DIR} swig)
endif()
set(CMAKE_TUNE_FLAGS "${CMAKE_TUNE_DEFAULT}" CACHE STRING "Compiler and machine specific optimization flags (compilation only)")
separate_arguments(CMAKE_TUNE_FLAGS)
target_compile_options(lammps PRIVATE ${CMAKE_TUNE_FLAGS})
target_compile_options(lmp PRIVATE ${CMAKE_TUNE_FLAGS})
########################################################################
# Basic system tests (standard libraries, headers, functions, types) #
########################################################################
@ -942,7 +894,7 @@ endif()
include(Testing)
include(CodeCoverage)
include(CodingStandard)
find_package(ClangFormat 11.0 QUIET)
find_package(ClangFormat 11.0)
if(ClangFormat_FOUND)
add_custom_target(format-src
@ -1126,15 +1078,12 @@ if(BUILD_TOOLS)
message(STATUS "<<< Building Tools >>>")
endif()
if(BUILD_LAMMPS_GUI)
message(STATUS "<<< Building LAMMPS-GUI >>>")
message(STATUS "<<< Building LAMMPS GUI >>>")
if(LAMMPS_GUI_USE_PLUGIN)
message(STATUS "Loading LAMMPS library as plugin at run time")
else()
message(STATUS "Linking LAMMPS library at compile time")
endif()
if(BUILD_WHAM)
message(STATUS "<<< Building WHAM >>>")
endif()
endif()
if(ENABLE_TESTING)
message(STATUS "<<< Building Unit Tests >>>")

View File

@ -7,76 +7,76 @@
# For Python coverage the coverage package needs to be installed
###############################################################################
if(ENABLE_COVERAGE)
find_program(GCOVR_BINARY gcovr)
find_package_handle_standard_args(GCOVR DEFAULT_MSG GCOVR_BINARY)
find_program(GCOVR_BINARY gcovr)
find_package_handle_standard_args(GCOVR DEFAULT_MSG GCOVR_BINARY)
find_program(COVERAGE_BINARY coverage)
find_package_handle_standard_args(COVERAGE DEFAULT_MSG COVERAGE_BINARY)
find_program(COVERAGE_BINARY coverage)
find_package_handle_standard_args(COVERAGE DEFAULT_MSG COVERAGE_BINARY)
if(GCOVR_FOUND)
get_filename_component(ABSOLUTE_LAMMPS_SOURCE_DIR ${LAMMPS_SOURCE_DIR} ABSOLUTE)
if(GCOVR_FOUND)
get_filename_component(ABSOLUTE_LAMMPS_SOURCE_DIR ${LAMMPS_SOURCE_DIR} ABSOLUTE)
add_custom_target(
gen_coverage_xml
COMMAND ${GCOVR_BINARY} -s -x -r ${ABSOLUTE_LAMMPS_SOURCE_DIR} --object-directory=${CMAKE_BINARY_DIR} -o coverage.xml
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
COMMENT "Generating XML coverage report..."
)
add_custom_target(
gen_coverage_xml
COMMAND ${GCOVR_BINARY} -s -x -r ${ABSOLUTE_LAMMPS_SOURCE_DIR} --object-directory=${CMAKE_BINARY_DIR} -o coverage.xml
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
COMMENT "Generating XML coverage report..."
)
set(COVERAGE_HTML_DIR ${CMAKE_BINARY_DIR}/coverage_html)
set(COVERAGE_HTML_DIR ${CMAKE_BINARY_DIR}/coverage_html)
add_custom_target(coverage_html_folder
COMMAND ${CMAKE_COMMAND} -E make_directory ${COVERAGE_HTML_DIR})
add_custom_target(coverage_html_folder
COMMAND ${CMAKE_COMMAND} -E make_directory ${COVERAGE_HTML_DIR})
add_custom_target(
gen_coverage_html
COMMAND ${GCOVR_BINARY} -s --html --html-details -r ${ABSOLUTE_LAMMPS_SOURCE_DIR} --object-directory=${CMAKE_BINARY_DIR} -o ${COVERAGE_HTML_DIR}/index.html
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
COMMENT "Generating HTML coverage report..."
)
add_dependencies(gen_coverage_html coverage_html_folder)
add_custom_target(
gen_coverage_html
COMMAND ${GCOVR_BINARY} -s --html --html-details -r ${ABSOLUTE_LAMMPS_SOURCE_DIR} --object-directory=${CMAKE_BINARY_DIR} -o ${COVERAGE_HTML_DIR}/index.html
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
COMMENT "Generating HTML coverage report..."
)
add_dependencies(gen_coverage_html coverage_html_folder)
add_custom_target(clean_coverage_html
${CMAKE_COMMAND} -E remove_directory ${COVERAGE_HTML_DIR}
COMMENT "Deleting HTML coverage report..."
)
add_custom_target(clean_coverage_html
${CMAKE_COMMAND} -E remove_directory ${COVERAGE_HTML_DIR}
COMMENT "Deleting HTML coverage report..."
)
add_custom_target(reset_coverage
${CMAKE_COMMAND} -E remove -f */*.gcda */*/*.gcda */*/*/*.gcda
*/*/*/*/*.gcda */*/*/*/*/*.gcda */*/*/*/*/*/*.gcda
*/*/*/*/*/*/*/*.gcda */*/*/*/*/*/*/*/*.gcda
*/*/*/*/*/*/*/*/*/*.gcda */*/*/*/*/*/*/*/*/*/*.gcda
WORKIND_DIRECTORY ${CMAKE_BINARY_DIR}
COMMENT "Deleting coverage data files..."
)
add_dependencies(reset_coverage clean_coverage_html)
endif()
add_custom_target(reset_coverage
${CMAKE_COMMAND} -E remove -f */*.gcda */*/*.gcda */*/*/*.gcda
*/*/*/*/*.gcda */*/*/*/*/*.gcda */*/*/*/*/*/*.gcda
*/*/*/*/*/*/*/*.gcda */*/*/*/*/*/*/*/*.gcda
*/*/*/*/*/*/*/*/*/*.gcda */*/*/*/*/*/*/*/*/*/*.gcda
WORKIND_DIRECTORY ${CMAKE_BINARY_DIR}
COMMENT "Deleting coverage data files..."
)
add_dependencies(reset_coverage clean_coverage_html)
endif()
if(COVERAGE_FOUND)
set(PYTHON_COVERAGE_HTML_DIR ${CMAKE_BINARY_DIR}/python_coverage_html)
configure_file(.coveragerc.in ${CMAKE_BINARY_DIR}/.coveragerc @ONLY)
if(COVERAGE_FOUND)
set(PYTHON_COVERAGE_HTML_DIR ${CMAKE_BINARY_DIR}/python_coverage_html)
configure_file(.coveragerc.in ${CMAKE_BINARY_DIR}/.coveragerc @ONLY)
add_custom_command(
OUTPUT ${CMAKE_BINARY_DIR}/unittest/python/.coverage
COMMAND ${COVERAGE_BINARY} combine
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/unittest/python
COMMENT "Combine Python coverage files..."
)
add_custom_command(
OUTPUT ${CMAKE_BINARY_DIR}/unittest/python/.coverage
COMMAND ${COVERAGE_BINARY} combine
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/unittest/python
COMMENT "Combine Python coverage files..."
)
add_custom_target(
gen_python_coverage_html
COMMAND ${COVERAGE_BINARY} html --rcfile=${CMAKE_BINARY_DIR}/.coveragerc -d ${PYTHON_COVERAGE_HTML_DIR}
DEPENDS ${CMAKE_BINARY_DIR}/unittest/python/.coverage ${CMAKE_BINARY_DIR}/.coveragerc
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/unittest/python
COMMENT "Generating HTML Python coverage report..."
)
add_custom_target(
gen_python_coverage_html
COMMAND ${COVERAGE_BINARY} html --rcfile=${CMAKE_BINARY_DIR}/.coveragerc -d ${PYTHON_COVERAGE_HTML_DIR}
DEPENDS ${CMAKE_BINARY_DIR}/unittest/python/.coverage ${CMAKE_BINARY_DIR}/.coveragerc
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/unittest/python
COMMENT "Generating HTML Python coverage report..."
)
add_custom_target(
gen_python_coverage_xml
COMMAND ${COVERAGE_BINARY} xml --rcfile=${CMAKE_BINARY_DIR}/.coveragerc -o ${CMAKE_BINARY_DIR}/python_coverage.xml
DEPENDS ${CMAKE_BINARY_DIR}/unittest/python/.coverage ${CMAKE_BINARY_DIR}/.coveragerc
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/unittest/python
COMMENT "Generating XML Python coverage report..."
)
endif()
add_custom_target(
gen_python_coverage_xml
COMMAND ${COVERAGE_BINARY} xml --rcfile=${CMAKE_BINARY_DIR}/.coveragerc -o ${CMAKE_BINARY_DIR}/python_coverage.xml
DEPENDS ${CMAKE_BINARY_DIR}/unittest/python/.coverage ${CMAKE_BINARY_DIR}/.coveragerc
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}/unittest/python
COMMENT "Generating XML Python coverage report..."
)
endif()
endif()

View File

@ -1,39 +1,40 @@
# use default (or custom) Python executable.
# Python version check is in main CMakeLists.txt file
if(Python_EXECUTABLE)
# use default (or custom) Python executable, if version is sufficient
if(Python_VERSION VERSION_GREATER_EQUAL 3.6)
set(Python3_EXECUTABLE ${Python_EXECUTABLE})
endif()
find_package(Python3 COMPONENTS Interpreter)
if(Python3_EXECUTABLE)
add_custom_target(
check-whitespace
${Python3_EXECUTABLE} ${LAMMPS_TOOLS_DIR}/coding_standard/whitespace.py .
WORKING_DIRECTORY ${LAMMPS_DIR}
COMMENT "Check for whitespace errors")
add_custom_target(
check-homepage
${Python3_EXECUTABLE} ${LAMMPS_TOOLS_DIR}/coding_standard/homepage.py .
WORKING_DIRECTORY ${LAMMPS_DIR}
COMMENT "Check for homepage URL errors")
add_custom_target(
check-permissions
${Python3_EXECUTABLE} ${LAMMPS_TOOLS_DIR}/coding_standard/permissions.py .
WORKING_DIRECTORY ${LAMMPS_DIR}
COMMENT "Check for permission errors")
add_custom_target(
fix-whitespace
${Python3_EXECUTABLE} ${LAMMPS_TOOLS_DIR}/coding_standard/whitespace.py -f .
WORKING_DIRECTORY ${LAMMPS_DIR}
COMMENT "Fix whitespace errors")
add_custom_target(
fix-homepage
${Python3_EXECUTABLE} ${LAMMPS_TOOLS_DIR}/coding_standard/homepage.py -f .
WORKING_DIRECTORY ${LAMMPS_DIR}
COMMENT "Fix homepage URL errors")
add_custom_target(
fix-permissions
${Python3_EXECUTABLE} ${LAMMPS_TOOLS_DIR}/coding_standard/permissions.py -f .
WORKING_DIRECTORY ${LAMMPS_DIR}
COMMENT "Fix permission errors")
if(Python3_VERSION VERSION_GREATER_EQUAL 3.6)
add_custom_target(
check-whitespace
${Python3_EXECUTABLE} ${LAMMPS_TOOLS_DIR}/coding_standard/whitespace.py .
WORKING_DIRECTORY ${LAMMPS_DIR}
COMMENT "Check for whitespace errors")
add_custom_target(
check-homepage
${Python3_EXECUTABLE} ${LAMMPS_TOOLS_DIR}/coding_standard/homepage.py .
WORKING_DIRECTORY ${LAMMPS_DIR}
COMMENT "Check for homepage URL errors")
add_custom_target(
check-permissions
${Python3_EXECUTABLE} ${LAMMPS_TOOLS_DIR}/coding_standard/permissions.py .
WORKING_DIRECTORY ${LAMMPS_DIR}
COMMENT "Check for permission errors")
add_custom_target(
fix-whitespace
${Python3_EXECUTABLE} ${LAMMPS_TOOLS_DIR}/coding_standard/whitespace.py -f .
WORKING_DIRECTORY ${LAMMPS_DIR}
COMMENT "Fix whitespace errors")
add_custom_target(
fix-homepage
${Python3_EXECUTABLE} ${LAMMPS_TOOLS_DIR}/coding_standard/homepage.py -f .
WORKING_DIRECTORY ${LAMMPS_DIR}
COMMENT "Fix homepage URL errors")
add_custom_target(
fix-permissions
${Python3_EXECUTABLE} ${LAMMPS_TOOLS_DIR}/coding_standard/permissions.py -f .
WORKING_DIRECTORY ${LAMMPS_DIR}
COMMENT "Fix permission errors")
endif()
endif()

View File

@ -13,7 +13,7 @@ if(BUILD_DOC)
endif()
find_package(Python3 REQUIRED COMPONENTS Interpreter)
if(Python3_VERSION VERSION_LESS 3.8)
message(FATAL_ERROR "Python 3.8 and up is required to build the LAMMPS HTML documentation")
message(FATAL_ERROR "Python 3.8 and up is required to build the HTML documentation")
endif()
set(VIRTUALENV ${Python3_EXECUTABLE} -m venv)
@ -65,8 +65,8 @@ if(BUILD_DOC)
find_package(Sphinx)
endif()
set(MATHJAX_URL "https://github.com/mathjax/MathJax/archive/3.2.2.tar.gz" CACHE STRING "URL for MathJax tarball")
set(MATHJAX_MD5 "08dd6ef33ca08870220d9aade2a62845" CACHE STRING "MD5 checksum of MathJax tarball")
set(MATHJAX_URL "https://github.com/mathjax/MathJax/archive/3.1.3.tar.gz" CACHE STRING "URL for MathJax tarball")
set(MATHJAX_MD5 "b81661c6e6ba06278e6ae37b30b0c492" CACHE STRING "MD5 checksum of MathJax tarball")
mark_as_advanced(MATHJAX_URL)
GetFallbackURL(MATHJAX_URL MATHJAX_FALLBACK)

View File

@ -34,26 +34,8 @@ if(MSVC)
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
endif()
if(NOT CMAKE_CXX_STANDARD)
if(cxx_std_17 IN_LIST CMAKE_CXX_COMPILE_FEATURES)
set(CMAKE_CXX_STANDARD 17)
else()
set(CMAKE_CXX_STANDARD 11)
endif()
endif()
if(CMAKE_CXX_STANDARD LESS 11)
message(FATAL_ERROR "C++ standard must be set to at least 11")
endif()
if(CMAKE_CXX_STANDARD LESS 17)
message(WARNING "Selecting C++17 standard is preferred over C++${CMAKE_CXX_STANDARD}")
endif()
if(PKG_KOKKOS AND (CMAKE_CXX_STANDARD LESS 17))
set(CMAKE_CXX_STANDARD 17)
endif()
# turn off C++17 check in lmptype.h
if(LAMMPS_CXX11)
add_compile_definitions(LAMMPS_CXX11)
endif()
# C++11 is required
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
# Need -restrict with Intel compilers
@ -62,9 +44,6 @@ if(CMAKE_CXX_COMPILER_ID STREQUAL "Intel")
endif()
set(CMAKE_POSITION_INDEPENDENT_CODE TRUE)
# skip over obsolete MPI-2 C++ bindings
set(MPI_CXX_SKIP_MPICXX TRUE)
#######
# helper functions from LAMMPSUtils.cmake
function(validate_option name values)
@ -131,7 +110,8 @@ endif()
################################################################################
# MPI configuration
if(NOT CMAKE_CROSSCOMPILING)
find_package(MPI QUIET COMPONENTS CXX)
set(MPI_CXX_SKIP_MPICXX TRUE)
find_package(MPI QUIET)
option(BUILD_MPI "Build MPI version" ${MPI_FOUND})
else()
option(BUILD_MPI "Build MPI version" OFF)
@ -143,38 +123,78 @@ if(BUILD_MPI)
set(MPI_CXX_SKIP_MPICXX TRUE)
# We use a non-standard procedure to cross-compile with MPI on Windows
if((CMAKE_SYSTEM_NAME STREQUAL "Windows") AND CMAKE_CROSSCOMPILING)
message(STATUS "Downloading and configuring MS-MPI 10.1 for Windows cross-compilation")
set(MPICH2_WIN64_DEVEL_URL "${LAMMPS_THIRDPARTY_URL}/msmpi-win64-devel.tar.gz" CACHE STRING "URL for MS-MPI (win64) tarball")
set(MPICH2_WIN64_DEVEL_MD5 "86314daf1bffb809f1fcbefb8a547490" CACHE STRING "MD5 checksum of MS-MPI (win64) tarball")
mark_as_advanced(MPICH2_WIN64_DEVEL_URL)
mark_as_advanced(MPICH2_WIN64_DEVEL_MD5)
# Download and configure MinGW compatible MPICH development files for Windows
option(USE_MSMPI "Use Microsoft's MS-MPI SDK instead of MPICH2-1.4.1" OFF)
if(USE_MSMPI)
message(STATUS "Downloading and configuring MS-MPI 10.1 for Windows cross-compilation")
set(MPICH2_WIN64_DEVEL_URL "${LAMMPS_THIRDPARTY_URL}/msmpi-win64-devel.tar.gz" CACHE STRING "URL for MS-MPI (win64) tarball")
set(MPICH2_WIN64_DEVEL_MD5 "86314daf1bffb809f1fcbefb8a547490" CACHE STRING "MD5 checksum of MS-MPI (win64) tarball")
mark_as_advanced(MPICH2_WIN64_DEVEL_URL)
mark_as_advanced(MPICH2_WIN64_DEVEL_MD5)
include(ExternalProject)
if(CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64")
ExternalProject_Add(mpi4win_build
URL ${MPICH2_WIN64_DEVEL_URL}
URL_MD5 ${MPICH2_WIN64_DEVEL_MD5}
CONFIGURE_COMMAND "" BUILD_COMMAND "" INSTALL_COMMAND ""
BUILD_BYPRODUCTS <SOURCE_DIR>/lib/libmsmpi.a)
include(ExternalProject)
if(CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64")
ExternalProject_Add(mpi4win_build
URL ${MPICH2_WIN64_DEVEL_URL}
URL_MD5 ${MPICH2_WIN64_DEVEL_MD5}
CONFIGURE_COMMAND "" BUILD_COMMAND "" INSTALL_COMMAND ""
BUILD_BYPRODUCTS <SOURCE_DIR>/lib/libmsmpi.a)
else()
message(FATAL_ERROR "Only x86 64-bit builds are supported with MS-MPI")
endif()
ExternalProject_get_property(mpi4win_build SOURCE_DIR)
file(MAKE_DIRECTORY "${SOURCE_DIR}/include")
add_library(MPI::MPI_CXX UNKNOWN IMPORTED)
set_target_properties(MPI::MPI_CXX PROPERTIES
IMPORTED_LOCATION "${SOURCE_DIR}/lib/libmsmpi.a"
INTERFACE_INCLUDE_DIRECTORIES "${SOURCE_DIR}/include"
INTERFACE_COMPILE_DEFINITIONS "MPICH_SKIP_MPICXX")
add_dependencies(MPI::MPI_CXX mpi4win_build)
# set variables for status reporting at the end of CMake run
set(MPI_CXX_INCLUDE_PATH "${SOURCE_DIR}/include")
set(MPI_CXX_COMPILE_DEFINITIONS "MPICH_SKIP_MPICXX")
set(MPI_CXX_LIBRARIES "${SOURCE_DIR}/lib/libmsmpi.a")
else()
message(FATAL_ERROR "Only x86 64-bit builds are supported with MS-MPI")
# Download and configure custom MPICH files for Windows
message(STATUS "Downloading and configuring MPICH-1.4.1 for Windows")
set(MPICH2_WIN64_DEVEL_URL "${LAMMPS_THIRDPARTY_URL}/mpich2-win64-devel.tar.gz" CACHE STRING "URL for MPICH2 (win64) tarball")
set(MPICH2_WIN64_DEVEL_MD5 "4939fdb59d13182fd5dd65211e469f14" CACHE STRING "MD5 checksum of MPICH2 (win64) tarball")
mark_as_advanced(MPICH2_WIN64_DEVEL_URL)
mark_as_advanced(MPICH2_WIN64_DEVEL_MD5)
include(ExternalProject)
if(CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64")
ExternalProject_Add(mpi4win_build
URL ${MPICH2_WIN64_DEVEL_URL}
URL_MD5 ${MPICH2_WIN64_DEVEL_MD5}
CONFIGURE_COMMAND "" BUILD_COMMAND "" INSTALL_COMMAND ""
BUILD_BYPRODUCTS <SOURCE_DIR>/lib/libmpi.a)
else()
ExternalProject_Add(mpi4win_build
URL ${MPICH2_WIN32_DEVEL_URL}
URL_MD5 ${MPICH2_WIN32_DEVEL_MD5}
CONFIGURE_COMMAND "" BUILD_COMMAND "" INSTALL_COMMAND ""
BUILD_BYPRODUCTS <SOURCE_DIR>/lib/libmpi.a)
endif()
ExternalProject_get_property(mpi4win_build SOURCE_DIR)
file(MAKE_DIRECTORY "${SOURCE_DIR}/include")
add_library(MPI::MPI_CXX UNKNOWN IMPORTED)
set_target_properties(MPI::MPI_CXX PROPERTIES
IMPORTED_LOCATION "${SOURCE_DIR}/lib/libmpi.a"
INTERFACE_INCLUDE_DIRECTORIES "${SOURCE_DIR}/include"
INTERFACE_COMPILE_DEFINITIONS "MPICH_SKIP_MPICXX")
add_dependencies(MPI::MPI_CXX mpi4win_build)
# set variables for status reporting at the end of CMake run
set(MPI_CXX_INCLUDE_PATH "${SOURCE_DIR}/include")
set(MPI_CXX_COMPILE_DEFINITIONS "MPICH_SKIP_MPICXX")
set(MPI_CXX_LIBRARIES "${SOURCE_DIR}/lib/libmpi.a")
endif()
ExternalProject_get_property(mpi4win_build SOURCE_DIR)
file(MAKE_DIRECTORY "${SOURCE_DIR}/include")
add_library(MPI::MPI_CXX UNKNOWN IMPORTED)
set_target_properties(MPI::MPI_CXX PROPERTIES
IMPORTED_LOCATION "${SOURCE_DIR}/lib/libmsmpi.a"
INTERFACE_INCLUDE_DIRECTORIES "${SOURCE_DIR}/include"
INTERFACE_COMPILE_DEFINITIONS "MPICH_SKIP_MPICXX=1")
add_dependencies(MPI::MPI_CXX mpi4win_build)
# set variables for status reporting at the end of CMake run
set(MPI_CXX_INCLUDE_PATH "${SOURCE_DIR}/include")
set(MPI_CXX_COMPILE_DEFINITIONS "MPICH_SKIP_MPICXX=1")
set(MPI_CXX_LIBRARIES "${SOURCE_DIR}/lib/libmsmpi.a")
else()
find_package(MPI REQUIRED COMPONENTS CXX)
find_package(MPI REQUIRED)
option(LAMMPS_LONGLONG_TO_LONG "Workaround if your system or MPI version does not recognize 'long long' data types" OFF)
if(LAMMPS_LONGLONG_TO_LONG)
target_compile_definitions(lammps INTERFACE -DLAMMPS_LONGLONG_TO_LONG)
@ -222,8 +242,8 @@ endif()
################
# integer size selection
set(LAMMPS_SIZES "smallbig" CACHE STRING "LAMMPS integer sizes (smallbig: 64-bit #atoms #timesteps, bigbig: also 64-bit imageint, 64-bit atom ids)")
set(LAMMPS_SIZES_VALUES smallbig bigbig)
set(LAMMPS_SIZES "smallbig" CACHE STRING "LAMMPS integer sizes (smallsmall: all 32-bit, smallbig: 64-bit #atoms #timesteps, bigbig: also 64-bit imageint, 64-bit atom ids)")
set(LAMMPS_SIZES_VALUES smallbig bigbig smallsmall)
set_property(CACHE LAMMPS_SIZES PROPERTY STRINGS ${LAMMPS_SIZES_VALUES})
validate_option(LAMMPS_SIZES LAMMPS_SIZES_VALUES)
string(TOUPPER ${LAMMPS_SIZES} LAMMPS_SIZES)

View File

@ -30,7 +30,7 @@ function(check_omp_h_include)
if(OpenMP_CXX_FOUND)
set(CMAKE_REQUIRED_FLAGS ${OpenMP_CXX_FLAGS})
set(CMAKE_REQUIRED_INCLUDES ${OpenMP_CXX_INCLUDE_DIRS})
separate_arguments(CMAKE_REQUIRED_LINK_OPTIONS NATIVE_COMMAND ${OpenMP_CXX_FLAGS}) # needs to be a list
set(CMAKE_REQUIRED_LINK_OPTIONS ${OpenMP_CXX_FLAGS})
set(CMAKE_REQUIRED_LIBRARIES ${OpenMP_CXX_LIBRARIES})
# there are all kinds of problems with finding omp.h
# for Clang and derived compilers so we pretend it is there.
@ -75,25 +75,13 @@ function(get_lammps_version version_header variable)
list(FIND MONTHS "${month}" month)
string(LENGTH ${day} day_length)
string(LENGTH ${month} month_length)
# no leading zero needed for new version string with dots
# if(day_length EQUAL 1)
# set(day "0${day}")
# endif()
# if(month_length EQUAL 1)
# set(month "0${month}")
#endif()
file(STRINGS ${version_header} line REGEX LAMMPS_UPDATE)
string(REGEX REPLACE "#define LAMMPS_UPDATE \"Update ([0-9]+)\"" "\\1" tweak "${line}")
if (line MATCHES "#define LAMMPS_UPDATE \"(Maintenance|Development)\"")
set(tweak "99")
if(day_length EQUAL 1)
set(day "0${day}")
endif()
if(NOT tweak)
set(tweak "0")
if(month_length EQUAL 1)
set(month "0${month}")
endif()
# new version string with dots
set(${variable} "${year}.${month}.${day}.${tweak}" PARENT_SCOPE)
# old version string without dots
# set(${variable} "${year}${month}${day}" PARENT_SCOPE)
set(${variable} "${year}${month}${day}" PARENT_SCOPE)
endfunction()
function(check_for_autogen_files source_dir)

View File

@ -1,31 +1,74 @@
# set-up MS-MPI library for Windows with MinGW compatibility
message(STATUS "Downloading and configuring MS-MPI 10.1 for Windows cross-compilation")
set(MPICH2_WIN64_DEVEL_URL "${LAMMPS_THIRDPARTY_URL}/msmpi-win64-devel.tar.gz" CACHE STRING "URL for MS-MPI (win64) tarball")
set(MPICH2_WIN64_DEVEL_MD5 "86314daf1bffb809f1fcbefb8a547490" CACHE STRING "MD5 checksum of MS-MPI (win64) tarball")
mark_as_advanced(MPICH2_WIN64_DEVEL_URL)
mark_as_advanced(MPICH2_WIN64_DEVEL_MD5)
# Download and configure MinGW compatible MPICH development files for Windows
option(USE_MSMPI "Use Microsoft's MS-MPI SDK instead of MPICH2-1.4.1" OFF)
include(ExternalProject)
if(CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64")
ExternalProject_Add(mpi4win_build
URL ${MPICH2_WIN64_DEVEL_URL}
URL_MD5 ${MPICH2_WIN64_DEVEL_MD5}
CONFIGURE_COMMAND "" BUILD_COMMAND "" INSTALL_COMMAND ""
BUILD_BYPRODUCTS <SOURCE_DIR>/lib/libmsmpi.a)
if(USE_MSMPI)
message(STATUS "Downloading and configuring MS-MPI 10.1 for Windows cross-compilation")
set(MPICH2_WIN64_DEVEL_URL "${LAMMPS_THIRDPARTY_URL}/msmpi-win64-devel.tar.gz" CACHE STRING "URL for MS-MPI (win64) tarball")
set(MPICH2_WIN64_DEVEL_MD5 "86314daf1bffb809f1fcbefb8a547490" CACHE STRING "MD5 checksum of MS-MPI (win64) tarball")
mark_as_advanced(MPICH2_WIN64_DEVEL_URL)
mark_as_advanced(MPICH2_WIN64_DEVEL_MD5)
include(ExternalProject)
if(CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64")
ExternalProject_Add(mpi4win_build
URL ${MPICH2_WIN64_DEVEL_URL}
URL_MD5 ${MPICH2_WIN64_DEVEL_MD5}
CONFIGURE_COMMAND "" BUILD_COMMAND "" INSTALL_COMMAND ""
BUILD_BYPRODUCTS <SOURCE_DIR>/lib/libmsmpi.a)
else()
message(FATAL_ERROR "Only x86 64-bit builds are supported with MS-MPI")
endif()
ExternalProject_get_property(mpi4win_build SOURCE_DIR)
file(MAKE_DIRECTORY "${SOURCE_DIR}/include")
add_library(MPI::MPI_CXX UNKNOWN IMPORTED)
set_target_properties(MPI::MPI_CXX PROPERTIES
IMPORTED_LOCATION "${SOURCE_DIR}/lib/libmsmpi.a"
INTERFACE_INCLUDE_DIRECTORIES "${SOURCE_DIR}/include"
INTERFACE_COMPILE_DEFINITIONS "MPICH_SKIP_MPICXX")
add_dependencies(MPI::MPI_CXX mpi4win_build)
# set variables for status reporting at the end of CMake run
set(MPI_CXX_INCLUDE_PATH "${SOURCE_DIR}/include")
set(MPI_CXX_COMPILE_DEFINITIONS "MPICH_SKIP_MPICXX")
set(MPI_CXX_LIBRARIES "${SOURCE_DIR}/lib/libmsmpi.a")
else()
message(FATAL_ERROR "Only x86 64-bit builds are supported with MS-MPI")
message(STATUS "Downloading and configuring MPICH2-1.4.1 for Windows cross-compilation")
set(MPICH2_WIN64_DEVEL_URL "${LAMMPS_THIRDPARTY_URL}/mpich2-win64-devel.tar.gz" CACHE STRING "URL for MPICH2 (win64) tarball")
set(MPICH2_WIN32_DEVEL_URL "${LAMMPS_THIRDPARTY_URL}/mpich2-win32-devel.tar.gz" CACHE STRING "URL for MPICH2 (win32) tarball")
set(MPICH2_WIN64_DEVEL_MD5 "4939fdb59d13182fd5dd65211e469f14" CACHE STRING "MD5 checksum of MPICH2 (win64) tarball")
set(MPICH2_WIN32_DEVEL_MD5 "a61d153500dce44e21b755ee7257e031" CACHE STRING "MD5 checksum of MPICH2 (win32) tarball")
mark_as_advanced(MPICH2_WIN64_DEVEL_URL)
mark_as_advanced(MPICH2_WIN32_DEVEL_URL)
mark_as_advanced(MPICH2_WIN64_DEVEL_MD5)
mark_as_advanced(MPICH2_WIN32_DEVEL_MD5)
include(ExternalProject)
if(CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64")
ExternalProject_Add(mpi4win_build
URL ${MPICH2_WIN64_DEVEL_URL}
URL_MD5 ${MPICH2_WIN64_DEVEL_MD5}
CONFIGURE_COMMAND "" BUILD_COMMAND "" INSTALL_COMMAND ""
BUILD_BYPRODUCTS <SOURCE_DIR>/lib/libmpi.a)
else()
ExternalProject_Add(mpi4win_build
URL ${MPICH2_WIN32_DEVEL_URL}
URL_MD5 ${MPICH2_WIN32_DEVEL_MD5}
CONFIGURE_COMMAND "" BUILD_COMMAND "" INSTALL_COMMAND ""
BUILD_BYPRODUCTS <SOURCE_DIR>/lib/libmpi.a)
endif()
ExternalProject_get_property(mpi4win_build SOURCE_DIR)
file(MAKE_DIRECTORY "${SOURCE_DIR}/include")
add_library(MPI::MPI_CXX UNKNOWN IMPORTED)
set_target_properties(MPI::MPI_CXX PROPERTIES
IMPORTED_LOCATION "${SOURCE_DIR}/lib/libmpi.a"
INTERFACE_INCLUDE_DIRECTORIES "${SOURCE_DIR}/include"
INTERFACE_COMPILE_DEFINITIONS "MPICH_SKIP_MPICXX")
add_dependencies(MPI::MPI_CXX mpi4win_build)
# set variables for status reporting at the end of CMake run
set(MPI_CXX_INCLUDE_PATH "${SOURCE_DIR}/include")
set(MPI_CXX_COMPILE_DEFINITIONS "MPICH_SKIP_MPICXX")
set(MPI_CXX_LIBRARIES "${SOURCE_DIR}/lib/libmpi.a")
endif()
ExternalProject_get_property(mpi4win_build SOURCE_DIR)
file(MAKE_DIRECTORY "${SOURCE_DIR}/include")
add_library(MPI::MPI_CXX UNKNOWN IMPORTED)
set_target_properties(MPI::MPI_CXX PROPERTIES
IMPORTED_LOCATION "${SOURCE_DIR}/lib/libmsmpi.a"
INTERFACE_INCLUDE_DIRECTORIES "${SOURCE_DIR}/include"
INTERFACE_COMPILE_DEFINITIONS "MPICH_SKIP_MPICXX=1")
add_dependencies(MPI::MPI_CXX mpi4win_build)
# set variables for status reporting at the end of CMake run
set(MPI_CXX_INCLUDE_PATH "${SOURCE_DIR}/include")
set(MPI_CXX_COMPILE_DEFINITIONS "MPICH_SKIP_MPICXX=1")
set(MPI_CXX_LIBRARIES "${SOURCE_DIR}/lib/libmsmpi.a")

View File

@ -14,6 +14,10 @@ endif()
add_library(colvars STATIC ${COLVARS_SOURCES})
target_compile_definitions(colvars PRIVATE -DCOLVARS_LAMMPS)
separate_arguments(CMAKE_TUNE_FLAGS)
foreach(_FLAG ${CMAKE_TUNE_FLAGS})
target_compile_options(colvars PRIVATE ${_FLAG})
endforeach()
set_target_properties(colvars PROPERTIES OUTPUT_NAME lammps_colvars${LAMMPS_MACHINE})
target_include_directories(colvars PUBLIC ${LAMMPS_LIB_SOURCE_DIR}/colvars)
# The line below is needed to locate math_eigen_impl.h
@ -26,10 +30,6 @@ if(BUILD_OMP)
target_link_libraries(colvars PRIVATE OpenMP::OpenMP_CXX)
endif()
if(BUILD_MPI)
target_link_libraries(colvars PUBLIC MPI::MPI_CXX)
endif()
if(COLVARS_DEBUG)
# Need to export the define publicly to be valid in interface code
target_compile_definitions(colvars PUBLIC -DCOLVARS_DEBUG)

View File

@ -1,18 +1,10 @@
# the geturl command needs libcurl
find_package(CURL QUIET)
find_package(CURL QUIET COMPONENTS HTTP HTTPS)
option(WITH_CURL "Enable libcurl support" ${CURL_FOUND})
if(WITH_CURL)
find_package(CURL REQUIRED COMPONENTS HTTP HTTPS)
target_compile_definitions(lammps PRIVATE -DLAMMPS_CURL)
# need to use pkgconfig for fully static bins to find custom static libs
if (CMAKE_SYSTEM_NAME STREQUAL "LinuxMUSL")
include(FindPkgConfig)
pkg_check_modules(CURL IMPORTED_TARGET libcurl libssl libcrypto)
target_link_libraries(lammps PUBLIC PkgConfig::CURL)
else()
find_package(CURL REQUIRED)
target_link_libraries(lammps PRIVATE CURL::libcurl)
endif()
target_link_libraries(lammps PRIVATE CURL::libcurl)
endif()

View File

@ -189,7 +189,7 @@ if(GPU_API STREQUAL "CUDA")
endif()
add_executable(nvc_get_devices ${LAMMPS_LIB_SOURCE_DIR}/gpu/geryon/ucl_get_devices.cpp)
target_compile_definitions(nvc_get_devices PRIVATE -DUCL_CUDADR -DLAMMPS_${LAMMPS_SIZES})
target_compile_definitions(nvc_get_devices PRIVATE -DUCL_CUDADR)
target_link_libraries(nvc_get_devices PRIVATE ${CUDA_LIBRARIES} ${CUDA_CUDA_LIBRARY})
target_include_directories(nvc_get_devices PRIVATE ${CUDA_INCLUDE_DIRS})
@ -489,7 +489,7 @@ else()
target_link_libraries(gpu PRIVATE mpi_stubs)
endif()
set_target_properties(gpu PROPERTIES OUTPUT_NAME lammps_gpu${LAMMPS_MACHINE})
target_compile_definitions(gpu PRIVATE -DLAMMPS_${LAMMPS_SIZES})
set_target_properties(gpu PROPERTIES OUTPUT_NAME lammps_gpu${LAMMPS_MACHINE})
target_sources(lammps PRIVATE ${GPU_SOURCES})
target_include_directories(lammps PRIVATE ${GPU_SOURCES_DIR})

View File

@ -72,10 +72,6 @@ if(INTEL_ARCH STREQUAL "KNL")
if(NOT CMAKE_CXX_COMPILER_ID STREQUAL "Intel")
message(FATAL_ERROR "Must use Intel compiler with INTEL for KNL architecture")
endif()
message(WARNING, "Support for Intel Xeon Phi accelerators and Knight's Landing CPUs "
"will be removed from LAMMPS in Summer 2025 due to lack of available machines "
"in labs and HPC centers and removed support in recent compilers "
"Please contact developers@lammps.org if you have any concerns about this step.")
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -xHost -qopenmp -qoffload")
set(MIC_OPTIONS "-qoffload-option,mic,compiler,\"-fp-model fast=2 -mGLOB_default_function_attrs=\\\"gather_scatter_loop_unroll=4\\\"\"")
target_compile_options(lammps PRIVATE -xMIC-AVX512 -qoffload -fno-alias -ansi-alias -restrict -qoverride-limits ${MIC_OPTIONS})

View File

@ -7,13 +7,26 @@ endif()
########################################################################
# consistency checks and Kokkos options/settings required by LAMMPS
if(Kokkos_ENABLE_CUDA)
option(Kokkos_ENABLE_IMPL_CUDA_MALLOC_ASYNC "CUDA asynchronous malloc support" OFF)
mark_as_advanced(Kokkos_ENABLE_IMPL_CUDA_MALLOC_ASYNC)
if(Kokkos_ENABLE_IMPL_CUDA_MALLOC_ASYNC)
message(STATUS "KOKKOS: CUDA malloc async support enabled")
else()
message(STATUS "KOKKOS: CUDA malloc async support disabled")
endif()
endif()
if(Kokkos_ENABLE_HIP)
option(Kokkos_ENABLE_HIP_MULTIPLE_KERNEL_INSTANTIATIONS "Enable multiple kernel instantiations with HIP" ON)
mark_as_advanced(Kokkos_ENABLE_HIP_MULTIPLE_KERNEL_INSTANTIATIONS)
option(Kokkos_ENABLE_ROCTHRUST "Use RoCThrust library" ON)
mark_as_advanced(Kokkos_ENABLE_ROCTHRUST)
endif()
if(Kokkos_ARCH_AMD_GFX942 OR Kokkos_ARCH_AMD_GFX940)
option(Kokkos_ENABLE_IMPL_HIP_UNIFIED_MEMORY "Enable unified memory with HIP" ON)
mark_as_advanced(Kokkos_ENABLE_IMPL_HIP_UNIFIED_MEMORY)
endif()
endif()
# Adding OpenMP compiler flags without the checks done for
# BUILD_OMP can result in compile failures. Enforce consistency.
if(Kokkos_ENABLE_OPENMP)
@ -57,8 +70,8 @@ if(DOWNLOAD_KOKKOS)
list(APPEND KOKKOS_LIB_BUILD_ARGS "-DCMAKE_CXX_EXTENSIONS=${CMAKE_CXX_EXTENSIONS}")
list(APPEND KOKKOS_LIB_BUILD_ARGS "-DCMAKE_TOOLCHAIN_FILE=${CMAKE_TOOLCHAIN_FILE}")
include(ExternalProject)
set(KOKKOS_URL "https://github.com/kokkos/kokkos/archive/4.6.00.tar.gz" CACHE STRING "URL for KOKKOS tarball")
set(KOKKOS_MD5 "61b2b69ae50d83eedcc7d47a3fa3d6cb" CACHE STRING "MD5 checksum of KOKKOS tarball")
set(KOKKOS_URL "https://github.com/kokkos/kokkos/archive/4.4.01.tar.gz" CACHE STRING "URL for KOKKOS tarball")
set(KOKKOS_MD5 "de6ee80d00b6212b02bfb7f1e71a8392" CACHE STRING "MD5 checksum of KOKKOS tarball")
mark_as_advanced(KOKKOS_URL)
mark_as_advanced(KOKKOS_MD5)
GetFallbackURL(KOKKOS_URL KOKKOS_FALLBACK)
@ -83,7 +96,7 @@ if(DOWNLOAD_KOKKOS)
add_dependencies(LAMMPS::KOKKOSCORE kokkos_build)
add_dependencies(LAMMPS::KOKKOSCONTAINERS kokkos_build)
elseif(EXTERNAL_KOKKOS)
find_package(Kokkos 4.6.00 REQUIRED CONFIG)
find_package(Kokkos 4.4.01 REQUIRED CONFIG)
target_link_libraries(lammps PRIVATE Kokkos::kokkos)
else()
set(LAMMPS_LIB_KOKKOS_SRC_DIR ${LAMMPS_LIB_SOURCE_DIR}/kokkos)
@ -117,6 +130,7 @@ set(KOKKOS_PKG_SOURCES ${KOKKOS_PKG_SOURCES_DIR}/kokkos.cpp
${KOKKOS_PKG_SOURCES_DIR}/atom_vec_kokkos.cpp
${KOKKOS_PKG_SOURCES_DIR}/comm_kokkos.cpp
${KOKKOS_PKG_SOURCES_DIR}/comm_tiled_kokkos.cpp
${KOKKOS_PKG_SOURCES_DIR}/group_kokkos.cpp
${KOKKOS_PKG_SOURCES_DIR}/min_kokkos.cpp
${KOKKOS_PKG_SOURCES_DIR}/min_linesearch_kokkos.cpp
${KOKKOS_PKG_SOURCES_DIR}/neighbor_kokkos.cpp

View File

@ -7,13 +7,3 @@ if(NOT PKG_MANYBODY)
list(REMOVE_ITEM LAMMPS_SOURCES ${LAMMPS_SOURCE_DIR}/MC/fix_sgcmc.cpp)
set_property(TARGET lammps PROPERTY SOURCES "${LAMMPS_SOURCES}")
endif()
# fix neighbor/swap may only be installed if also the VORONOI package is installed
if(NOT PKG_VORONOI)
get_property(LAMMPS_FIX_HEADERS GLOBAL PROPERTY FIX)
list(REMOVE_ITEM LAMMPS_FIX_HEADERS ${LAMMPS_SOURCE_DIR}/MC/fix_neighbor_swap.h)
set_property(GLOBAL PROPERTY FIX "${LAMMPS_FIX_HEADERS}")
get_target_property(LAMMPS_SOURCES lammps SOURCES)
list(REMOVE_ITEM LAMMPS_SOURCES ${LAMMPS_SOURCE_DIR}/MC/fix_neighbor_swap.cpp)
set_property(TARGET lammps PROPERTY SOURCES "${LAMMPS_SOURCES}")
endif()

View File

@ -24,7 +24,9 @@ if(MLIAP_ENABLE_PYTHON)
if(NOT PKG_PYTHON)
message(FATAL_ERROR "Must enable PYTHON package for including Python support in ML-IAP")
endif()
# Python version check is in main CMakeLists.txt file
if(Python_VERSION VERSION_LESS 3.6)
message(FATAL_ERROR "Python support in ML-IAP requires Python 3.6 or later")
endif()
set(MLIAP_BINARY_DIR ${CMAKE_BINARY_DIR}/cython)
file(GLOB MLIAP_CYTHON_SRC CONFIGURE_DEPENDS ${LAMMPS_SOURCE_DIR}/ML-IAP/*.pyx)

View File

@ -1,62 +1,50 @@
# PACE library support for ML-PACE package
find_package(pace QUIET)
if(pace_FOUND)
find_package(pace)
target_link_libraries(lammps PRIVATE pace::pace)
else()
# set policy to silence warnings about timestamps of downloaded files. review occasionally if it may be set to NEW
if(POLICY CMP0135)
cmake_policy(SET CMP0135 OLD)
endif()
set(PACELIB_URL "https://github.com/ICAMS/lammps-user-pace/archive/refs/tags/v.2023.11.25.fix2.tar.gz" CACHE STRING "URL for PACE evaluator library sources")
set(PACELIB_MD5 "a53bd87cfee8b07d9f44bc17aad69c3f" CACHE STRING "MD5 checksum of PACE evaluator library tarball")
mark_as_advanced(PACELIB_URL)
mark_as_advanced(PACELIB_MD5)
GetFallbackURL(PACELIB_URL PACELIB_FALLBACK)
# LOCAL_ML-PACE points to top-level dir with local lammps-user-pace repo,
# to make it easier to check local build without going through the public github releases
if(LOCAL_ML-PACE)
set(lib-pace "${LOCAL_ML-PACE}")
else()
# download library sources to build folder
if(EXISTS ${CMAKE_BINARY_DIR}/libpace.tar.gz)
file(MD5 ${CMAKE_BINARY_DIR}/libpace.tar.gz DL_MD5)
endif()
if(NOT "${DL_MD5}" STREQUAL "${PACELIB_MD5}")
message(STATUS "Downloading ${PACELIB_URL}")
file(DOWNLOAD ${PACELIB_URL} ${CMAKE_BINARY_DIR}/libpace.tar.gz STATUS DL_STATUS SHOW_PROGRESS)
file(MD5 ${CMAKE_BINARY_DIR}/libpace.tar.gz DL_MD5)
if((NOT DL_STATUS EQUAL 0) OR (NOT "${DL_MD5}" STREQUAL "${PACELIB_MD5}"))
message(WARNING "Download from primary URL ${PACELIB_URL} failed\nTrying fallback URL ${PACELIB_FALLBACK}")
file(DOWNLOAD ${PACELIB_FALLBACK} ${CMAKE_BINARY_DIR}/libpace.tar.gz EXPECTED_HASH MD5=${PACELIB_MD5} SHOW_PROGRESS)
endif()
else()
message(STATUS "Using already downloaded archive ${CMAKE_BINARY_DIR}/libpace.tar.gz")
endif()
# uncompress downloaded sources
execute_process(
COMMAND ${CMAKE_COMMAND} -E remove_directory lammps-user-pace*
COMMAND ${CMAKE_COMMAND} -E tar xzf libpace.tar.gz
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
)
get_newest_file(${CMAKE_BINARY_DIR}/lammps-user-pace-* lib-pace)
endif()
# some preinstalled yaml-cpp versions don't provide a namespaced target
find_package(yaml-cpp QUIET)
if(TARGET yaml-cpp AND NOT TARGET yaml-cpp::yaml-cpp)
add_library(yaml-cpp::yaml-cpp ALIAS yaml-cpp)
endif()
add_subdirectory(${lib-pace} build-pace)
set_target_properties(pace PROPERTIES CXX_EXTENSIONS ON OUTPUT_NAME lammps_pace${LAMMPS_MACHINE})
if(CMAKE_PROJECT_NAME STREQUAL "lammps")
target_link_libraries(lammps PRIVATE pace)
endif()
# set policy to silence warnings about timestamps of downloaded files. review occasionally if it may be set to NEW
if(POLICY CMP0135)
cmake_policy(SET CMP0135 OLD)
endif()
set(PACELIB_URL "https://github.com/ICAMS/lammps-user-pace/archive/refs/tags/v.2023.11.25.fix.tar.gz" CACHE STRING "URL for PACE evaluator library sources")
set(PACELIB_MD5 "b45de9a633f42ed65422567e3ce56f9f" CACHE STRING "MD5 checksum of PACE evaluator library tarball")
mark_as_advanced(PACELIB_URL)
mark_as_advanced(PACELIB_MD5)
GetFallbackURL(PACELIB_URL PACELIB_FALLBACK)
# LOCAL_ML-PACE points to top-level dir with local lammps-user-pace repo,
# to make it easier to check local build without going through the public github releases
if(LOCAL_ML-PACE)
set(lib-pace "${LOCAL_ML-PACE}")
else()
# download library sources to build folder
if(EXISTS ${CMAKE_BINARY_DIR}/libpace.tar.gz)
file(MD5 ${CMAKE_BINARY_DIR}/libpace.tar.gz DL_MD5)
endif()
if(NOT "${DL_MD5}" STREQUAL "${PACELIB_MD5}")
message(STATUS "Downloading ${PACELIB_URL}")
file(DOWNLOAD ${PACELIB_URL} ${CMAKE_BINARY_DIR}/libpace.tar.gz STATUS DL_STATUS SHOW_PROGRESS)
file(MD5 ${CMAKE_BINARY_DIR}/libpace.tar.gz DL_MD5)
if((NOT DL_STATUS EQUAL 0) OR (NOT "${DL_MD5}" STREQUAL "${PACELIB_MD5}"))
message(WARNING "Download from primary URL ${PACELIB_URL} failed\nTrying fallback URL ${PACELIB_FALLBACK}")
file(DOWNLOAD ${PACELIB_FALLBACK} ${CMAKE_BINARY_DIR}/libpace.tar.gz EXPECTED_HASH MD5=${PACELIB_MD5} SHOW_PROGRESS)
endif()
else()
message(STATUS "Using already downloaded archive ${CMAKE_BINARY_DIR}/libpace.tar.gz")
endif()
# uncompress downloaded sources
execute_process(
COMMAND ${CMAKE_COMMAND} -E remove_directory lammps-user-pace*
COMMAND ${CMAKE_COMMAND} -E tar xzf libpace.tar.gz
WORKING_DIRECTORY ${CMAKE_BINARY_DIR}
)
get_newest_file(${CMAKE_BINARY_DIR}/lammps-user-pace-* lib-pace)
endif()
add_subdirectory(${lib-pace} build-pace)
set_target_properties(pace PROPERTIES CXX_EXTENSIONS ON OUTPUT_NAME lammps_pace${LAMMPS_MACHINE})
if(CMAKE_PROJECT_NAME STREQUAL "lammps")
target_link_libraries(lammps PRIVATE pace)
endif()

View File

@ -37,7 +37,7 @@ if(DOWNLOAD_QUIP)
endforeach()
# Fix cmake crashing when MATH_LINKOPTS not set, required for e.g. recent Cray Programming Environment
set(temp "${temp} -L/_DUMMY_PATH_\n")
set(temp "${temp}PYTHON=${Python_EXECUTABLE}\nPIP=pip\nEXTRA_LINKOPTS=\n")
set(temp "${temp}PYTHON=python\nPIP=pip\nEXTRA_LINKOPTS=\n")
set(temp "${temp}HAVE_CP2K=0\nHAVE_VASP=0\nHAVE_TB=0\nHAVE_PRECON=1\nHAVE_LOTF=0\nHAVE_ONIOM=0\n")
set(temp "${temp}HAVE_LOCAL_E_MIX=0\nHAVE_QC=0\nHAVE_GAP=1\nHAVE_DESCRIPTORS_NONCOMMERCIAL=1\n")
set(temp "${temp}HAVE_TURBOGAP=0\nHAVE_QR=1\nHAVE_THIRDPARTY=0\nHAVE_FX=0\nHAVE_SCME=0\nHAVE_MTP=0\n")

View File

@ -32,21 +32,14 @@ endif()
# Note: must also adjust check for supported API versions in
# fix_plumed.cpp when version changes from v2.n.x to v2.n+1.y
set(PLUMED_URL "https://github.com/plumed/plumed2/releases/download/v2.9.3/plumed-src-2.9.3.tgz"
set(PLUMED_URL "https://github.com/plumed/plumed2/releases/download/v2.9.2/plumed-src-2.9.2.tgz"
CACHE STRING "URL for PLUMED tarball")
set(PLUMED_MD5 "ee1249805fe94bccee17d10610d3f6f1" CACHE STRING "MD5 checksum of PLUMED tarball")
set(PLUMED_MD5 "04862602a372c1013bdfee2d6d03bace" CACHE STRING "MD5 checksum of PLUMED tarball")
mark_as_advanced(PLUMED_URL)
mark_as_advanced(PLUMED_MD5)
GetFallbackURL(PLUMED_URL PLUMED_FALLBACK)
# adjust C++ standard support for self-compiled Plumed2
if(CMAKE_CXX_STANDARD GREATER 11)
set(PLUMED_CXX_STANDARD 14)
else()
set(PLUMED_CXX_STANDARD 11)
endif()
if((CMAKE_SYSTEM_NAME STREQUAL "Windows") AND (CMAKE_CROSSCOMPILING))
if(CMAKE_SYSTEM_PROCESSOR STREQUAL "x86_64")
set(CROSS_CONFIGURE mingw64-configure)
@ -62,7 +55,7 @@ if((CMAKE_SYSTEM_NAME STREQUAL "Windows") AND (CMAKE_CROSSCOMPILING))
URL_MD5 ${PLUMED_MD5}
BUILD_IN_SOURCE 1
CONFIGURE_COMMAND ${CROSS_CONFIGURE} --disable-shared --disable-bsymbolic
--disable-python --enable-cxx=${PLUMED_CXX_STANDARD}
--disable-python --enable-cxx=11
--enable-modules=-adjmat:+crystallization:-dimred:+drr:+eds:-fisst:+funnel:+logmfd:+manyrestraints:+maze:+opes:+multicolvar:-pamm:-piv:+s2cm:-sasa:-ves
${PLUMED_CONFIG_OMP}
${PLUMED_CONFIG_MPI}
@ -149,7 +142,7 @@ else()
CONFIGURE_COMMAND <SOURCE_DIR>/configure --prefix=<INSTALL_DIR>
${CONFIGURE_REQUEST_PIC}
--enable-modules=all
--enable-cxx=${PLUMED_CXX_STANDARD}
--enable-cxx=11
--disable-python
${PLUMED_CONFIG_MPI}
${PLUMED_CONFIG_OMP}

View File

@ -1,6 +1,6 @@
if(NOT Python_INTERPRETER)
# backward compatibility with older LAMMPS documentation
# backward compatibility with CMake before 3.12 and older LAMMPS documentation
if(PYTHON_EXECUTABLE)
set(Python_EXECUTABLE ${PYTHON_EXECUTABLE})
endif()

View File

@ -14,16 +14,27 @@ endif()
option(DOWNLOAD_SCAFACOS "Download ScaFaCoS library instead of using an already installed one" ${DOWNLOAD_SCAFACOS_DEFAULT})
if(DOWNLOAD_SCAFACOS)
message(STATUS "ScaFaCoS download requested - we will build our own")
set(SCAFACOS_URL "https://github.com/scafacos/scafacos/releases/download/v1.0.4/scafacos-1.0.4.tar.gz" CACHE STRING "URL for SCAFACOS tarball")
set(SCAFACOS_MD5 "23867540ec32e63ce71d6ecc105278d2" CACHE STRING "MD5 checksum of SCAFACOS tarball")
set(SCAFACOS_URL "https://github.com/scafacos/scafacos/releases/download/v1.0.1/scafacos-1.0.1.tar.gz" CACHE STRING "URL for SCAFACOS tarball")
set(SCAFACOS_MD5 "bd46d74e3296bd8a444d731bb10c1738" CACHE STRING "MD5 checksum of SCAFACOS tarball")
mark_as_advanced(SCAFACOS_URL)
mark_as_advanced(SCAFACOS_MD5)
GetFallbackURL(SCAFACOS_URL SCAFACOS_FALLBACK)
# version 1.0.1 needs a patch to compile and linke cleanly with GCC 10 and later.
file(DOWNLOAD ${LAMMPS_THIRDPARTY_URL}/scafacos-1.0.1-fix.diff ${CMAKE_CURRENT_BINARY_DIR}/scafacos-1.0.1.fix.diff
EXPECTED_HASH MD5=4baa1333bb28fcce102d505e1992d032)
find_program(HAVE_PATCH patch)
if(NOT HAVE_PATCH)
message(FATAL_ERROR "The 'patch' program is required to build the ScaFaCoS library")
endif()
include(ExternalProject)
ExternalProject_Add(scafacos_build
URL ${SCAFACOS_URL} ${SCAFACOS_FALLBACK}
URL_MD5 ${SCAFACOS_MD5}
PATCH_COMMAND patch -p1 < ${CMAKE_CURRENT_BINARY_DIR}/scafacos-1.0.1.fix.diff
CONFIGURE_COMMAND <SOURCE_DIR>/configure --prefix=<INSTALL_DIR> --disable-doc
--enable-fcs-solvers=fmm,p2nfft,direct,ewald,p3m
--with-internal-fftw --with-internal-pfft

View File

@ -1,5 +1,3 @@
# FindVTK requires that C support is enabled when looking for MPI support
enable_language(C)
find_package(VTK REQUIRED NO_MODULE)
target_compile_definitions(lammps PRIVATE -DLAMMPS_VTK)
if (VTK_MAJOR_VERSION VERSION_LESS 9.0)

View File

@ -21,11 +21,11 @@ if(ENABLE_TESTING)
# also only verified with Fedora Linux > 30 and Ubuntu 18.04 or 22.04+(Ubuntu 20.04 fails)
if((CMAKE_SYSTEM_NAME STREQUAL "Linux")
AND ((CMAKE_CXX_COMPILER_ID STREQUAL "GNU") OR (CMAKE_CXX_COMPILER_ID STREQUAL "Clang")))
if(((CMAKE_LINUX_DISTRO STREQUAL "Ubuntu") AND (CMAKE_DISTRO_VERSION VERSION_GREATER_EQUAL 22.04))
if(((CMAKE_LINUX_DISTRO STREQUAL "Ubuntu") AND
((CMAKE_DISTRO_VERSION VERSION_LESS_EQUAL 18.04) OR (CMAKE_DISTRO_VERSION VERSION_GREATER_EQUAL 22.04)))
OR ((CMAKE_LINUX_DISTRO STREQUAL "Fedora") AND (CMAKE_DISTRO_VERSION VERSION_GREATER 30)))
include(CheckCXXCompilerFlag)
set(CMAKE_CUSTOM_LINKER_DEFAULT default)
check_cxx_compiler_flag(--ld-path=${CMAKE_LINKER} HAVE_LD_PATH_FLAG)
check_cxx_compiler_flag(-fuse-ld=mold HAVE_MOLD_LINKER_FLAG)
check_cxx_compiler_flag(-fuse-ld=lld HAVE_LLD_LINKER_FLAG)
check_cxx_compiler_flag(-fuse-ld=gold HAVE_GOLD_LINKER_FLAG)
@ -50,17 +50,6 @@ if(ENABLE_TESTING)
if(NOT "${CMAKE_CUSTOM_LINKER}" STREQUAL "default")
target_link_options(lammps PUBLIC -fuse-ld=${CMAKE_CUSTOM_LINKER})
endif()
if(HAVE_LD_PATH_FLAG)
if("${CMAKE_CUSTOM_LINKER}" STREQUAL "mold")
target_link_options(lammps PUBLIC --ld-path=${HAVE_MOLD_LINKER_BIN})
elseif("${CMAKE_CUSTOM_LINKER}" STREQUAL "lld")
target_link_options(lammps PUBLIC --ld-path=${HAVE_LLD_LINKER_BIN})
elseif("${CMAKE_CUSTOM_LINKER}" STREQUAL "gold")
target_link_options(lammps PUBLIC --ld-path=${HAVE_GOLD_LINKER_BIN})
elseif("${CMAKE_CUSTOM_LINKER}" STREQUAL "bfd")
target_link_options(lammps PUBLIC --ld-path=${HAVE_BFD_LINKER_BIN})
endif()
endif()
endif()
endif()

View File

@ -6,10 +6,6 @@ if(BUILD_TOOLS)
add_executable(stl_bin2txt ${LAMMPS_TOOLS_DIR}/stl_bin2txt.cpp)
install(TARGETS stl_bin2txt DESTINATION ${CMAKE_INSTALL_BINDIR})
add_executable(reformat-json ${LAMMPS_TOOLS_DIR}/json/reformat-json.cpp)
target_include_directories(reformat-json PRIVATE ${LAMMPS_SOURCE_DIR})
install(TARGETS reformat-json DESTINATION ${CMAKE_INSTALL_BINDIR})
include(CheckGeneratorSupport)
if(CMAKE_GENERATOR_SUPPORT_FORTRAN)
include(CheckLanguage)

View File

@ -19,19 +19,12 @@ set(CMAKE_C_FLAGS_RELEASE "-O3 -DNDEBUG" CACHE STRING "" FORCE)
set(MPI_CXX "hipcc" CACHE STRING "" FORCE)
set(MPI_CXX_COMPILER "mpicxx" CACHE STRING "" FORCE)
set(MPI_C "hipcc" CACHE STRING "" FORCE)
set(MPI_C_COMPILER "mpicc" CACHE STRING "" FORCE)
# change as needed. This is for Fedora Linux 41 and 42
set(_libomp_root "/usr/lib/clang/18")
# we need to explicitly specify the include dir, since hipcc will
# compile each file twice and doesn't find omp.h the second time
unset(HAVE_OMP_H_INCLUDE CACHE)
set(OpenMP_C "hipcc" CACHE STRING "" FORCE)
set(OpenMP_C_FLAGS "-fopenmp=libomp -I${_libomp_root}/include" CACHE STRING "" FORCE)
set(OpenMP_C_FLAGS "-fopenmp" CACHE STRING "" FORCE)
set(OpenMP_C_LIB_NAMES "omp" CACHE STRING "" FORCE)
set(OpenMP_CXX "hipcc" CACHE STRING "" FORCE)
set(OpenMP_CXX_FLAGS "-fopenmp=libomp -I${_libomp_root}/include" CACHE STRING "" FORCE)
set(OpenMP_CXX_FLAGS "-fopenmp" CACHE STRING "" FORCE)
set(OpenMP_CXX_LIB_NAMES "omp" CACHE STRING "" FORCE)
set(OpenMP_omp_LIBRARY "libomp.so" CACHE PATH "" FORCE)

View File

@ -1,8 +1,10 @@
# preset that enables KOKKOS and selects CUDA compilation with OpenMP
# enabled as well. The GPU architecture *must* match your hardware (If not manually set, Kokkos will try to autodetect it).
# enabled as well. This preselects CC 5.0 as default GPU arch, since
# that is compatible with all higher CC, but not the default CC 3.5
set(PKG_KOKKOS ON CACHE BOOL "" FORCE)
set(Kokkos_ENABLE_SERIAL ON CACHE BOOL "" FORCE)
set(Kokkos_ENABLE_CUDA ON CACHE BOOL "" FORCE)
set(Kokkos_ARCH_PASCAL60 ON CACHE BOOL "" FORCE)
set(BUILD_OMP ON CACHE BOOL "" FORCE)
get_filename_component(NVCC_WRAPPER_CMD ${CMAKE_CURRENT_SOURCE_DIR}/../lib/kokkos/bin/nvcc_wrapper ABSOLUTE)
set(CMAKE_CXX_COMPILER ${NVCC_WRAPPER_CMD} CACHE FILEPATH "" FORCE)

View File

@ -1,21 +1,22 @@
# preset that enables KOKKOS and selects HIP compilation withOUT OpenMP.
# Kokkos OpenMP is not compatible with the second pass of hipcc.
# preset that enables KOKKOS and selects HIP compilation with OpenMP
# enabled as well. Also sets some performance related compiler flags.
set(PKG_KOKKOS ON CACHE BOOL "" FORCE)
set(Kokkos_ENABLE_SERIAL ON CACHE BOOL "" FORCE)
set(Kokkos_ENABLE_OPENMP OFF CACHE BOOL "" FORCE)
set(Kokkos_ENABLE_OPENMP ON CACHE BOOL "" FORCE)
set(Kokkos_ENABLE_CUDA OFF CACHE BOOL "" FORCE)
set(Kokkos_ENABLE_HIP ON CACHE BOOL "" FORCE)
set(Kokkos_ARCH_VEGA90A on CACHE BOOL "" FORCE)
set(Kokkos_ENABLE_HIP_MULTIPLE_KERNEL_INSTANTIATIONS ON CACHE BOOL "" FORCE)
set(BUILD_OMP ON CACHE BOOL "" FORCE)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -munsafe-fp-atomics" CACHE STRING "" FORCE)
set(CMAKE_CXX_COMPILER hipcc CACHE STRING "" FORCE)
set(CMAKE_TUNE_FLAGS "-munsafe-fp-atomics" CACHE STRING "" FORCE)
# If KSPACE is also enabled, use HIPFFT for FFTs
# If KSPACE is also enabled, use CUFFT for FFTs
set(FFT_KOKKOS "HIPFFT" CACHE STRING "" FORCE)
# hide deprecation warnings temporarily for stable release
#set(Kokkos_ENABLE_DEPRECATION_WARNINGS OFF CACHE BOOL "" FORCE)
set(Kokkos_ENABLE_DEPRECATION_WARNINGS OFF CACHE BOOL "" FORCE)
# these flags are needed to build with Cray MPICH on OLCF Crusher
#-D CMAKE_CXX_FLAGS="-I/${MPICH_DIR}/include"

View File

@ -21,10 +21,9 @@ set(CMAKE_C_COMPILER icx CACHE STRING "" FORCE)
set(CMAKE_Fortran_COMPILER "" CACHE STRING "" FORCE)
set(MPI_CXX_COMPILER "mpicxx" CACHE STRING "" FORCE)
set(CMAKE_CXX_STANDARD 17 CACHE STRING "" FORCE)
# set(_intel_sycl_flags " -w -fsycl -flink-huge-device-code -fsycl-targets=spir64_gen "
set(_intel_sycl_flags " -w -fsycl -fsycl-device-code-split=per_kernel -fsycl-targets=spir64_gen ")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${_intel_sycl_flags}" CACHE STRING "" FORCE)
# Silence everything
set(CMAKE_CXX_FLAGS "-w" CACHE STRING "" FORCE)
#set(CMAKE_EXE_LINKER_FLAGS "-fsycl -flink-huge-device-code -fsycl-targets=spir64_gen " CACHE STRING "" FORCE)
set(CMAKE_EXE_LINKER_FLAGS "${CMAKE_EXE_LINKER_FLAGS} -fsycl -flink-huge-device-code " CACHE STRING "" FORCE)
#set(CMAKE_TUNE_FLAGS "-O3 -fsycl -fsycl-device-code-split=per_kernel -fsycl-targets=spir64_gen" CACHE STRING "" FORCE)
set(CMAKE_EXE_LINKER_FLAGS "-fsycl -flink-huge-device-code " CACHE STRING "" FORCE)
set(CMAKE_TUNE_FLAGS "-O3 -fsycl -fsycl-device-code-split=per_kernel " CACHE STRING "" FORCE)

View File

@ -14,7 +14,5 @@ set(Kokkos_ENABLE_DEPRECATION_WARNINGS OFF CACHE BOOL "" FORCE)
set(CMAKE_CXX_COMPILER clang++ CACHE STRING "" FORCE)
set(MPI_CXX_COMPILER "mpicxx" CACHE STRING "" FORCE)
set(CMAKE_CXX_STANDARD 17 CACHE STRING "" FORCE)
set(CMAKE_SHARED_LINKER_FLAGS "${CMAKE_SHARED_LINKER_FLAGS} -Xsycl-target-frontend -O3 " CACHE STRING "" FORCE)
set(_intel_sycl_flags "-fgpu-inline-threshold=100000 -Xsycl-target-frontend -O3 -Xsycl-target-frontend -ffp-contract=on -Wno-unknown-cuda-version")
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${_intel_sycl_flags}" CACHE STRING "" FORCE)
set(CMAKE_SHARED_LINKER_FLAGS "-Xsycl-target-frontend -O3" CACHE STRING "" FORCE)
set(CMAKE_TUNE_FLAGS "-fgpu-inline-threshold=100000 -Xsycl-target-frontend -O3 -Xsycl-target-frontend -ffp-contract=on -Wno-unknown-cuda-version" CACHE STRING "" FORCE)

View File

@ -91,7 +91,7 @@ endif()
set(DOWNLOAD_VORO ON CACHE BOOL "" FORCE)
set(DOWNLOAD_EIGEN3 ON CACHE BOOL "" FORCE)
set(LAMMPS_MEMALIGN "0" CACHE STRING "" FORCE)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-missing-include-dirs" CACHE STRING "" FORCE)
set(CMAKE_TUNE_FLAGS "-Wno-missing-include-dirs" CACHE STRING "" FORCE)
set(CMAKE_EXE_LINKER_FLAGS "-Wl,--enable-stdcall-fixup,--as-needed,-lssp" CACHE STRING "" FORCE)
set(CMAKE_SHARED_LINKER_FLAGS "-Wl,--enable-stdcall-fixup,--as-needed,-lssp" CACHE STRING "" FORCE)
set(BUILD_TOOLS ON CACHE BOOL "" FORCE)

View File

@ -5,4 +5,4 @@ set(CMAKE_C_COMPILER "icx" CACHE STRING "" FORCE)
set(CMAKE_Fortran_COMPILER "ifx" CACHE STRING "" FORCE)
set(INTEL_LRT_MODE "C++11" CACHE STRING "" FORCE)
unset(HAVE_OMP_H_INCLUDE CACHE)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-unused-command-line-argument" CACHE STRING "" FORCE)
set(CMAKE_TUNE_FLAGS -Wno-unused-command-line-argument)

View File

@ -17,11 +17,9 @@ MATHJAXTAG = 3.2.2
PYTHON = $(word 3,$(shell type python3))
DOXYGEN = $(word 3,$(shell type doxygen))
PANDOC = $(word 3,$(shell type pandoc))
HAS_PYTHON3 = NO
HAS_DOXYGEN = NO
HAS_PDFLATEX = NO
HAS_PANDOC = NO
ifeq ($(shell type python3 >/dev/null 2>&1; echo $$?), 0)
HAS_PYTHON3 = YES
@ -33,14 +31,10 @@ endif
ifeq ($(shell type pdflatex >/dev/null 2>&1; echo $$?), 0)
ifeq ($(shell type latexmk >/dev/null 2>&1; echo $$?), 0)
HAS_PDFLATEX = YES
HAS_PDFLATEX = YES
endif
endif
ifeq ($(shell type pandoc >/dev/null 2>&1; echo $$?), 0)
HAS_PANDOC = YES
endif
# override settings for PIP commands
# PIP_OPTIONS = --cert /etc/pki/ca-trust/extracted/openssl/ca-bundle.trust.crt --proxy http://proxy.mydomain.org
@ -51,9 +45,8 @@ SPHINXEXTRA = -j $(shell $(PYTHON) -c 'import multiprocessing;print(multiprocess
# we only want to use explicitly listed files.
DOXYFILES = $(shell sed -n -e 's/\#.*$$//' -e '/^ *INPUT \+=/,/^[A-Z_]\+ \+=/p' doxygen/Doxyfile.in | sed -e 's/@LAMMPS_SOURCE_DIR@/..\/src/g' -e 's/\\//g' -e 's/ \+/ /' -e 's/[A-Z_]\+ \+= *\(YES\|NO\|\)//')
.PHONY: help clean-all clean clean-spelling epub mobi html pdf spelling anchor_check style_check char_check role_check xmlgen fasthtml fasthtml-init
.PHONY: help clean-all clean clean-spelling epub mobi html pdf spelling anchor_check style_check char_check role_check xmlgen fasthtml
FASTHTMLFILES = $(patsubst $(RSTDIR)/%.rst,fasthtml/%.html,$(wildcard $(RSTDIR)/*rst))
# ------------------------------------------
help:
@ -112,8 +105,6 @@ html: xmlgen globbed-tocs $(VENV) $(SPHINXCONFIG)/conf.py $(ANCHORCHECK) $(MATHJ
env LC_ALL=C grep -n ':\(ref\|doc\):[^`]' $(RSTDIR)/*.rst ;\
env LC_ALL=C grep -n '\(ref\|doc\)`[^`]' $(RSTDIR)/*.rst ;\
$(PYTHON) $(BUILDDIR)/utils/check-styles.py -s ../src -d src ;\
env LC_ALL=C grep -n -E '^ *\.\. [a-z0-9]+:(\s+.*|)$$' \
$(RSTDIR)/*.rst ../src/*.{cpp,h} ../src/*/*.{cpp,h} ;\
echo "############################################" ;\
deactivate ;\
)
@ -125,22 +116,24 @@ html: xmlgen globbed-tocs $(VENV) $(SPHINXCONFIG)/conf.py $(ANCHORCHECK) $(MATHJ
@rm -rf html/PDF/.[sg]*
@echo "Build finished. The HTML pages are in doc/html."
fasthtml: fasthtml-init $(FASTHTMLFILES)
@echo "Fast HTML build finished. The HTML pages are in doc/fasthtml."
fasthtml-init:
@mkdir -p fasthtml/JPG
@cp src/JPG/*.* fasthtml/JPG
@cp $(RSTDIR)/accel_styles.rst $(RSTDIR)/lepton_expression.rst fasthtml/
@cp $(BUILDDIR)/utils/pandoc.css fasthtml/
fasthtml/%.html: $(RSTDIR)/%.rst
@if [ "$(HAS_PANDOC)" == "NO" ] ; then echo "Make 'fasthtml' requires the 'pandoc' software" 1>&2; exit 1; fi
fasthtml: xmlgen globbed-tocs $(VENV) $(SPHINXCONFIG)/conf.py $(ANCHORCHECK) $(MATHJAX)
@if [ "$(HAS_BASH)" == "NO" ] ; then echo "bash was not found at $(OSHELL)! Please use: $(MAKE) SHELL=/path/to/bash" 1>&2; exit 1; fi
@$(MAKE) $(MFLAGS) -C graphviz all
@mkdir -p fasthtml
@echo converting $< to $@
@sed -e 's/\\AA/\\mathring{\\mathrm{A}}/g' $< > fasthtml/$*.temp.rst
@pandoc -s --mathml --css="pandoc.css" --template=$(BUILDDIR)/utils/pandoc.html --metadata title="$@" -o $@ fasthtml/$*.temp.rst
@rm -f fasthtml/$*.temp.rst
@(\
. $(VENV)/bin/activate ; env PYTHONWARNINGS= PYTHONDONTWRITEBYTECODE=1 \
sphinx-build $(SPHINXEXTRA) -b html -c $(SPHINXCONFIG) -d $(BUILDDIR)/fasthtml/doctrees $(RSTDIR) fasthtml ;\
touch $(RSTDIR)/Fortran.rst ; env PYTHONWARNINGS= PYTHONDONTWRITEBYTECODE=1 \
sphinx-build $(SPHINXEXTRA) -b html -c $(SPHINXCONFIG) -d $(BUILDDIR)/fasthtml/doctrees $(RSTDIR) fasthtml ;\
deactivate ;\
)
@rm -rf fasthtml/_sources
@rm -rf fasthtml/PDF
@rm -rf fasthtml/USER
@rm -rf fasthtml/JPG
@cp -r src/PDF fasthtml/PDF
@rm -rf fasthtml/PDF/.[sg]*
@echo "Fast HTML build finished. The HTML pages are in doc/fasthtml."
spelling: xmlgen globbed-tocs $(SPHINXCONFIG)/conf.py $(VENV) $(SPHINXCONFIG)/false_positives.txt
@if [ "$(HAS_BASH)" == "NO" ] ; then echo "bash was not found at $(OSHELL)! Please use: $(MAKE) SHELL=/path/to/bash" 1>&2; exit 1; fi
@ -195,8 +188,6 @@ pdf: xmlgen globbed-tocs $(VENV) $(SPHINXCONFIG)/conf.py $(ANCHORCHECK)
env LC_ALL=C grep -n ':\(ref\|doc\):[^`]' $(RSTDIR)/*.rst ;\
env LC_ALL=C grep -n '\(ref\|doc\)`[^`]' $(RSTDIR)/*.rst ;\
$(PYTHON) utils/check-styles.py -s ../src -d src ;\
env LC_ALL=C grep -n -E '^ *\.\. [a-z0-9]+:(\s+.*|)$$' \
$(RSTDIR)/*.rst ../src/*.{cpp,h} ../src/*/*.{cpp,h} ;\
echo "############################################" ;\
deactivate ;\
)
@ -246,8 +237,6 @@ role_check :
@( env LC_ALL=C grep -n ' `[^`]\+<[a-z][^`]\+`[^_]' $(RSTDIR)/*.rst && exit 1 || : )
@( env LC_ALL=C grep -n ':\(ref\|doc\):[^`]' $(RSTDIR)/*.rst && exit 1 || : )
@( env LC_ALL=C grep -n '\(ref\|doc\)`[^`]' $(RSTDIR)/*.rst && exit 1 || : )
@( env LC_ALL=C grep -n -E '^ *\.\. [a-z0-9]+:(\s+.*|)$$' \
$(RSTDIR)/*.rst ../src/*.{cpp,h} ../src/*/*.{cpp,h} && exit 1 || : )
link_check : $(VENV) html
@(\

View File

@ -22,12 +22,12 @@ doxygen-warn.log logfile with warnings from running doxygen
and:
github-development-workflow.md notes on the LAMMPS development workflow
include-file-conventions.md notes on LAMMPS' include file conventions
documentation_conventions.md notes on writing documentation for LAMMPS
If you downloaded a LAMMPS tarball from www.lammps.org, then the html
folder and the PDF manual should be included. If you downloaded LAMMPS
using GitHub then you either need to build them yourself or read the
online version at https://docs.lammps.org/
from GitHub then you either need to build them.
You can build the HTML and PDF files yourself, by typing "make html"
or by "make pdf", respectively. This requires various tools and files.
@ -39,10 +39,10 @@ environment and local folders.
Installing prerequisites for the documentation build
To run the HTML documention build toolchain, python 3.8 or later,
doxygen 1.8.10 or later, git, and the venv python module have to be
installed if not already available. Also internet access is initially
required to download external files and tools.
To run the HTML documention build toolchain, python 3.x, doxygen, git,
and the venv python module have to be installed if not already available.
Also internet access is initially required to download external files
and tools.
Building the PDF format manual requires in addition a compatible LaTeX
installation with support for PDFLaTeX and several add-on LaTeX packages
@ -52,24 +52,16 @@ installed. This includes:
- babel
- capt-of
- cmap
- dvipng
- ellipse
- fncychap
- fontawesom
- framed
- geometry
- gyre
- hyperref
- hypcap
- needspace
- pict2e
- times
- tabulary
- titlesec
- upquote
- wrapfig
- xindy
Also the latexmk script is required to run PDFLaTeX and related tools.
the required number of times to have self-consistent output and include
updated bibliography and indices.

View File

@ -2,7 +2,7 @@
DOXYFILE_ENCODING = UTF-8
PROJECT_NAME = "LAMMPS Programmer's Guide"
PROJECT_NUMBER = "19 November 2024"
PROJECT_NUMBER = "4 May 2022"
PROJECT_BRIEF = "Documentation of the LAMMPS library interface and Python wrapper"
PROJECT_LOGO = lammps-logo.png
CREATE_SUBDIRS = NO

View File

@ -5,13 +5,13 @@ digraph releases {
github -> develop [label="Merge commits"];
{
rank = "same";
work [shape="none" label="Development branches:" fontname="bold"]
work [shape="none" label="Development branches:"]
develop [label="'develop' branch" height=0.75];
maintenance [label="'maintenance' branch" height=0.75];
};
{
rank = "same";
upload [shape="none" label="Release branches:" fontname="bold"]
upload [shape="none" label="Release branches:"]
release [label="'release' branch" height=0.75];
stable [label="'stable' branch" height=0.75];
};
@ -22,7 +22,7 @@ digraph releases {
maintenance -> stable [label="Updates to stable release"];
{
rank = "same";
tag [shape="none" label="Applied tags:" fontname="bold"];
tag [shape="none" label="Applied tags:"];
patchtag [shape="box" label="patch_<date>"];
stabletag [shape="box" label="stable_<date>"];
updatetag [shape="box" label="stable_<date>_update<num>"];

View File

@ -1,7 +1,7 @@
.TH LAMMPS "1" "12 June 2025" "2025-06-12"
.TH LAMMPS "1" "19 November 2024" "2024-11-19"
.SH NAME
.B LAMMPS
\- Molecular Dynamics Simulator. Version 12 June 2025
\- Molecular Dynamics Simulator. Version 19 November 2024
.SH SYNOPSIS
.B lmp
@ -311,7 +311,7 @@ the chapter on errors in the
manual gives some additional information about error messages, if possible.
.SH COPYRIGHT
© 2003--2025 Sandia Corporation
© 2003--2024 Sandia Corporation
This package is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as

View File

@ -1,14 +1,10 @@
Build LAMMPS
============
LAMMPS is built as a library and an executable from source code using a
build environment generated by CMake (Unix Makefiles, Ninja, Xcode,
Visual Studio, KDevelop, CodeBlocks and more depending on the platform).
Using CMake is the preferred way to build LAMMPS. In addition, LAMMPS
can be compiled using the legacy build system based on traditional
makefiles for use with GNU make (which may require manual editing).
Support for the legacy build system is slowly being phased out and may
not be available for all optional features.
LAMMPS is built as a library and an executable from source code using
either traditional makefiles for use with GNU make (which may require
manual editing), or using a build environment generated by CMake (Unix
Makefiles, Ninja, Xcode, Visual Studio, KDevelop, CodeBlocks and more).
As an alternative, you can download a package with pre-built executables
or automated build trees, as described in the :doc:`Install <Install>`
@ -17,7 +13,6 @@ section of the manual.
.. toctree::
:maxdepth: 1
Build_prerequisites
Build_cmake
Build_make
Build_link

View File

@ -160,7 +160,7 @@ with the OpenMP 3.1 semantics used in LAMMPS for maximal compatibility
with compiler versions in use. If compilation with OpenMP enabled fails
because of your compiler requiring strict OpenMP 4.0 semantics, you can
change the behavior by adding ``-D LAMMPS_OMP_COMPAT=4`` to the
``LMP_INC`` variable in your makefile, or add it to the command-line flags
``LMP_INC`` variable in your makefile, or add it to the command line
while configuring with CMake. LAMMPS will auto-detect a suitable setting
for most GNU, Clang, and Intel compilers.
@ -196,23 +196,22 @@ LAMMPS.
.. tab:: CMake build
By default CMake will use the compiler it finds according to its
By default CMake will use the compiler it finds according to
internal preferences, and it will add optimization flags
appropriate to that compiler and any :doc:`accelerator packages
<Speed_packages>` you have included in the build. CMake will
check if the detected or selected compiler is compatible with the
C++ support requirements of LAMMPS and stop with an error, if this
is not the case. A C++11 compatible compiler is currently
required, but a transition to require C++17 is in progress and
planned to be completed in Summer 2025. Currently, setting
``-DLAMMPS_CXX11=yes`` is required when configuring with CMake while
using a C++11 compatible compiler that does not support C++17,
otherwise setting ``-DCMAKE_CXX_STANDARD=17`` is preferred.
is not the case.
You can tell CMake to look for a specific compiler with setting
CMake variables (listed below) during configuration. For a few
common choices, there are also presets in the ``cmake/presets``
folder. You may also specify the corresponding ``CMAKE_*_FLAGS``
folder. For convenience, there is a ``CMAKE_TUNE_FLAGS`` variable
that can be set to apply global compiler options (applied to
compilation only), to be used for adding compiler or host specific
optimization flags in addition to the "flags" variables listed
below. You may also specify the corresponding ``CMAKE_*_FLAGS``
variables individually, if you want to experiment with alternate
optimization flags. You should specify all 3 compilers, so that
the (few) LAMMPS source files written in C or Fortran are built
@ -224,8 +223,6 @@ LAMMPS.
-D CMAKE_C_COMPILER=name # name of C compiler
-D CMAKE_Fortran_COMPILER=name # name of Fortran compiler
-D CMAKE_CXX_STANDARD=17 # put compiler in C++17 mode
-D LAMMPS_CXX11=yes # enforce compilation in C++11 mode
-D CMAKE_CXX_FLAGS=string # flags to use with C++ compiler
-D CMAKE_C_FLAGS=string # flags to use with C compiler
-D CMAKE_Fortran_FLAGS=string # flags to use with Fortran compiler
@ -262,6 +259,10 @@ LAMMPS.
``-C ../cmake/presets/pgi.cmake`` will switch the compiler to the PGI compilers,
and ``-C ../cmake/presets/nvhpc.cmake`` will switch to the NVHPC compilers.
Furthermore, you can set ``CMAKE_TUNE_FLAGS`` to specifically add
compiler flags to tune for optimal performance on given hosts.
This variable is empty by default.
.. note::
When the cmake command completes, it prints a summary to the
@ -320,23 +321,15 @@ LAMMPS.
you would have to install a newer compiler that supports C++11;
either as a binary package or through compiling from source.
While a C++11 compatible compiler is currently sufficient to compile
LAMMPS, a transition to require C++17 is in progress and planned to
be completed in Summer 2025. Currently, setting ``-DLAMMPS_CXX11``
in the ``LMP_INC =`` line in the machine makefile is required when
using a C++11 compatible compiler that does not support C++17.
Otherwise, to enable C++17 support (if not enabled by default) using
a compiler flag like ``-std=c++17`` in CCFLAGS may needed.
If you build LAMMPS with any :doc:`Speed_packages` included,
there may be specific compiler or linker flags that are either
required or recommended to enable required features and to
achieve optimal performance. You need to include these in the
``CCFLAGS`` and ``LINKFLAGS`` settings above. For details, see the
documentation for the individual packages listed on the
:doc:`Speed_packages` page. Or examine these files in the
``src/MAKE/OPTIONS`` directory. They correspond to each of the 5
accelerator packages and their hardware variants:
If you build LAMMPS with any :doc:`Speed_packages` included,
there may be specific compiler or linker flags that are either
required or recommended to enable required features and to
achieve optimal performance. You need to include these in the
``CCFLAGS`` and ``LINKFLAGS`` settings above. For details, see the
documentation for the individual packages listed on the
:doc:`Speed_packages` page. Or examine these files in the
``src/MAKE/OPTIONS`` directory. They correspond to each of the 5
accelerator packages and their hardware variants:
.. code-block:: bash
@ -509,8 +502,6 @@ using CMake or Make.
# chain.x, micelle2d.x, msi2lmp, phana,
# stl_bin2txt
-D BUILD_LAMMPS_GUI=value # yes or no (default). Build LAMMPS-GUI
-D BUILD_WHAM=value # yes (default). Download and build WHAM;
# only available for BUILD_LAMMPS_GUI=yes
The generated binaries will also become part of the LAMMPS installation
(see below).

View File

@ -8,7 +8,7 @@ packages. Links to those pages on the :doc:`Build overview <Build>`
page.
The following text assumes some familiarity with CMake and focuses on
using the command-line tool ``cmake`` and what settings are supported
using the command line tool ``cmake`` and what settings are supported
for building LAMMPS. A more detailed tutorial on how to use CMake
itself, the text mode or graphical user interface, to change the
generated output files for different build tools and development
@ -16,7 +16,7 @@ environments is on a :doc:`separate page <Howto_cmake>`.
.. note::
LAMMPS currently requires that CMake version 3.20 or later is available.
LAMMPS currently requires that CMake version 3.16 or later is available.
.. warning::
@ -32,29 +32,29 @@ environments is on a :doc:`separate page <Howto_cmake>`.
Advantages of using CMake
^^^^^^^^^^^^^^^^^^^^^^^^^
CMake is the preferred way of compiling LAMMPS in contrast to the legacy
build system based on GNU make and through :doc:`(manually customized)
makefiles <Build_make>`. Using CMake has multiple advantages that are
specifically helpful for people with limited experience in compiling
software or for people that want to modify or extend LAMMPS.
CMake is an alternative to compiling LAMMPS in the traditional way
through :doc:`(manually customized) makefiles <Build_make>`. Using
CMake has multiple advantages that are specifically helpful for
people with limited experience in compiling software or for people
that want to modify or extend LAMMPS.
- CMake can detect available hardware, tools, features, and libraries
and adapt the LAMMPS default build configuration accordingly.
- CMake can generate files for different build tools and integrated
development environments (IDE).
- CMake supports customization of settings with a command-line, text
- CMake supports customization of settings with a command line, text
mode, or graphical user interface. No manual editing of files,
knowledge of file formats or complex command-line syntax is required.
knowledge of file formats or complex command line syntax is required.
- All enabled components are compiled in a single build operation.
- Automated dependency tracking for all files and configuration options.
- Support for true out-of-source compilation. Multiple configurations
- Support for true out-of-source compilation. Multiple configurations
and settings with different choices of LAMMPS packages, settings, or
compilers can be configured and built concurrently from the same
source tree.
- Simplified packaging of LAMMPS for Linux distributions, environment
modules, or automated build tools like `Spack <https://spack.io>`_
or `Homebrew <https://brew.sh/>`_.
- Integration of automated unit and regression testing.
modules, or automated build tools like `Homebrew <https://brew.sh/>`_.
- Integration of automated unit and regression testing (the LAMMPS side
of this is still under active development).
.. _cmake_build:
@ -68,7 +68,7 @@ that purpose you can use either the command-line utility ``cmake`` (or
graphical utility ``cmake-gui``, or use them interchangeably. The
second step is then the compilation and linking of all objects,
libraries, and executables using the selected build tool. Here is a
minimal example using the command-line version of CMake to build LAMMPS
minimal example using the command line version of CMake to build LAMMPS
with no add-on packages enabled and no customization:
.. code-block:: bash
@ -119,13 +119,6 @@ configured) and additional files like LAMMPS API headers, manpages,
potential and force field files. The location of the installation tree
defaults to ``${HOME}/.local``.
.. note::
If you have set `-D CMAKE_INSTALL_PREFIX` to install LAMMPS into a
system location on a Linux machine , you may also have to run (as
root) the `ldconfig` program to update the cache file for fast lookup
of system shared libraries.
.. _cmake_options:
Configuration and build options
@ -138,7 +131,7 @@ file called ``CMakeLists.txt`` (for LAMMPS it is located in the
configuration step. The cache file contains all current CMake settings.
To modify settings, enable or disable features, you need to set
*variables* with either the ``-D`` command-line flag (``-D
*variables* with either the ``-D`` command line flag (``-D
VARIABLE1_NAME=value``) or change them in the text mode of the graphical
user interface. The ``-D`` flag can be used several times in one command.
@ -148,11 +141,11 @@ a different compiler tool chain. Those are loaded with the ``-C`` flag
(``-C ../cmake/presets/basic.cmake``). This step would only be needed
once, as the settings from the preset files are stored in the
``CMakeCache.txt`` file. It is also possible to customize the build
by adding one or more ``-D`` flags to the CMake command.
by adding one or more ``-D`` flags to the CMake command line.
Generating files for alternate build tools (e.g. Ninja) and project files
for IDEs like Eclipse, CodeBlocks, or Kate can be selected using the ``-G``
command-line flag. A list of available generator settings for your
command line flag. A list of available generator settings for your
specific CMake version is given when running ``cmake --help``.
.. _cmake_multiconfig:

View File

@ -263,9 +263,9 @@ will be skipped if prerequisite features are not available in LAMMPS.
time. Preference is given to parts of the code base that are easy to
test or commonly used.
Tests as shown by the ``ctest`` program are commands defined in the
Tests as shown by the ``ctest`` program are command lines defined in the
``CMakeLists.txt`` files in the ``unittest`` directory tree. A few
tests simply execute LAMMPS with specific command-line flags and check
tests simply execute LAMMPS with specific command line flags and check
the output to the screen for expected content. A large number of unit
tests are special tests programs using the `GoogleTest framework
<https://github.com/google/googletest/>`_ and linked to the LAMMPS
@ -420,7 +420,7 @@ during MD timestepping and manipulate per-atom properties like
positions, velocities, and forces. For those fix styles, testing can be
done in a very similar fashion as for force fields and thus there is a
test program `test_fix_timestep` that shares a lot of code, properties,
and command-line flags with the force field style testers described in
and command line flags with the force field style testers described in
the previous section.
This tester will set up a small molecular system run with verlet run
@ -642,10 +642,10 @@ The following target are available for both, GNU make and CMake:
.. _gh-cli:
GitHub command-line interface
GitHub command line interface
-----------------------------
GitHub has developed a `command-line tool <https://cli.github.com>`_
GitHub has developed a `command line tool <https://cli.github.com>`_
to interact with the GitHub website via a command called ``gh``.
This is extremely convenient when working with a Git repository hosted
on GitHub (like LAMMPS). It is thus highly recommended to install it

View File

@ -48,7 +48,6 @@ This is the list of packages that may require additional steps.
* :ref:`LEPTON <lepton>`
* :ref:`MACHDYN <machdyn>`
* :ref:`MDI <mdi>`
* :ref:`MISC <misc>`
* :ref:`ML-HDNNP <ml-hdnnp>`
* :ref:`ML-IAP <mliap>`
* :ref:`ML-PACE <ml-pace>`
@ -210,7 +209,7 @@ necessary for ``hipcc`` and the linker to work correctly.
Using the CHIP-SPV implementation of HIP is supported. It allows one to
run HIP code on Intel GPUs via the OpenCL or Level Zero back ends. To use
CHIP-SPV, you must set ``-DHIP_USE_DEVICE_SORT=OFF`` in your CMake
command-line as CHIP-SPV does not yet support hipCUB. As of Summer 2022,
command line as CHIP-SPV does not yet support hipCUB. As of Summer 2022,
the use of HIP for Intel GPUs is experimental. You should only use this
option in preparations to run on Aurora system at Argonne.
@ -233,7 +232,7 @@ option in preparations to run on Aurora system at Argonne.
.. code:: bash
# CUDA target (not recommended, use GPU_API=cuda)
# CUDA target (not recommended, use GPU_ARCH=cuda)
# !!! DO NOT set CMAKE_CXX_COMPILER !!!
export HIP_PLATFORM=nvcc
export HIP_PATH=/path/to/HIP/install
@ -255,10 +254,11 @@ Traditional make
Before building LAMMPS, you must build the GPU library in ``lib/gpu``\ .
You can do this manually if you prefer; follow the instructions in
``lib/gpu/README``. Note that the GPU library uses MPI calls, so you
must use the same MPI library (or the STUBS library) settings as the
main LAMMPS code. This also applies to the ``-DLAMMPS_BIGBIG`` or
``-DLAMMPS_SMALLBIG`` settings in whichever Makefile you use.
``lib/gpu/README``. Note that the GPU library uses MPI calls, so you must
use the same MPI library (or the STUBS library) settings as the main
LAMMPS code. This also applies to the ``-DLAMMPS_BIGBIG``\ ,
``-DLAMMPS_SMALLBIG``\ , or ``-DLAMMPS_SMALLSMALL`` settings in whichever
Makefile you use.
You can also build the library in one step from the ``lammps/src`` dir,
using a command like these, which simply invokes the ``lib/gpu/Install.py``
@ -421,10 +421,9 @@ minutes to hours) to build. Of course you only need to do that once.)
cmake build system. The ``lib/kim/Install.py`` script supports a
``CMAKE`` environment variable if the cmake executable is named other
than ``cmake`` on your system. Additional environment variables may be
set with the ``make`` command for use by cmake. For example, to use the
``cmake3`` executable and tell it to use the GNU version 11 compilers
called ``g++-11``, ``gcc-11`` and ``gfortran-11`` to build KIM, one
could use the following command.
provided on the command line for use by cmake. For example, to use the
``cmake3`` executable and tell it to use the gnu version 11 compilers
to build KIM, one could use the following command line.
.. code-block:: bash
@ -547,7 +546,16 @@ They must be specified in uppercase.
- Local machine
* - AMDAVX
- HOST
- AMD chip
- AMD 64-bit x86 CPU (AVX 1)
* - ZEN
- HOST
- AMD Zen class CPU (AVX 2)
* - ZEN2
- HOST
- AMD Zen2 class CPU (AVX 2)
* - ZEN3
- HOST
- AMD Zen3 class CPU (AVX 2)
* - ARMV80
- HOST
- ARMv8.0 Compatible CPU
@ -563,129 +571,105 @@ They must be specified in uppercase.
* - A64FX
- HOST
- ARMv8.2 with SVE Support
* - ARMV9_GRACE
- HOST
- ARMv9 NVIDIA Grace CPU
* - SNB
- HOST
- Intel Sandy/Ivy Bridge CPUs
- Intel Sandy/Ivy Bridge CPU (AVX 1)
* - HSW
- HOST
- Intel Haswell CPUs
- Intel Haswell CPU (AVX 2)
* - BDW
- HOST
- Intel Broadwell Xeon E-class CPUs
* - ICL
- HOST
- Intel Ice Lake Client CPUs (AVX512)
* - ICX
- HOST
- Intel Ice Lake Xeon Server CPUs (AVX512)
- Intel Broadwell Xeon E-class CPU (AVX 2 + transactional mem)
* - SKL
- HOST
- Intel Skylake Client CPUs
- Intel Skylake Client CPU
* - SKX
- HOST
- Intel Skylake Xeon Server CPUs (AVX512)
- Intel Skylake Xeon Server CPU (AVX512)
* - ICL
- HOST
- Intel Ice Lake Client CPU (AVX512)
* - ICX
- HOST
- Intel Ice Lake Xeon Server CPU (AVX512)
* - SPR
- HOST
- Intel Sapphire Rapids Xeon Server CPU (AVX512)
* - KNC
- HOST
- Intel Knights Corner Xeon Phi
* - KNL
- HOST
- Intel Knights Landing Xeon Phi
* - SPR
- HOST
- Intel Sapphire Rapids Xeon Server CPUs (AVX512)
* - POWER8
- HOST
- IBM POWER8 CPUs
- IBM POWER8 CPU
* - POWER9
- HOST
- IBM POWER9 CPUs
* - ZEN
- HOST
- AMD Zen architecture
* - ZEN2
- HOST
- AMD Zen2 architecture
* - ZEN3
- HOST
- AMD Zen3 architecture
* - ZEN4
- HOST
- AMD Zen4 architecture
- IBM POWER9 CPU
* - RISCV_SG2042
- HOST
- SG2042 (RISC-V) CPUs
* - RISCV_RVA22V
- HOST
- RVA22V (RISC-V) CPUs
- SG2042 (RISC-V) CPU
* - KEPLER30
- GPU
- NVIDIA Kepler generation CC 3.0
- NVIDIA Kepler generation CC 3.0 GPU
* - KEPLER32
- GPU
- NVIDIA Kepler generation CC 3.2
- NVIDIA Kepler generation CC 3.2 GPU
* - KEPLER35
- GPU
- NVIDIA Kepler generation CC 3.5
- NVIDIA Kepler generation CC 3.5 GPU
* - KEPLER37
- GPU
- NVIDIA Kepler generation CC 3.7
- NVIDIA Kepler generation CC 3.7 GPU
* - MAXWELL50
- GPU
- NVIDIA Maxwell generation CC 5.0
- NVIDIA Maxwell generation CC 5.0 GPU
* - MAXWELL52
- GPU
- NVIDIA Maxwell generation CC 5.2
- NVIDIA Maxwell generation CC 5.2 GPU
* - MAXWELL53
- GPU
- NVIDIA Maxwell generation CC 5.3
- NVIDIA Maxwell generation CC 5.3 GPU
* - PASCAL60
- GPU
- NVIDIA Pascal generation CC 6.0
- NVIDIA Pascal generation CC 6.0 GPU
* - PASCAL61
- GPU
- NVIDIA Pascal generation CC 6.1
- NVIDIA Pascal generation CC 6.1 GPU
* - VOLTA70
- GPU
- NVIDIA Volta generation CC 7.0
- NVIDIA Volta generation CC 7.0 GPU
* - VOLTA72
- GPU
- NVIDIA Volta generation CC 7.2
- NVIDIA Volta generation CC 7.2 GPU
* - TURING75
- GPU
- NVIDIA Turing generation CC 7.5
- NVIDIA Turing generation CC 7.5 GPU
* - AMPERE80
- GPU
- NVIDIA Ampere generation CC 8.0
- NVIDIA Ampere generation CC 8.0 GPU
* - AMPERE86
- GPU
- NVIDIA Ampere generation CC 8.6
- NVIDIA Ampere generation CC 8.6 GPU
* - ADA89
- GPU
- NVIDIA Ada generation CC 8.9
- NVIDIA Ada Lovelace generation CC 8.9 GPU
* - HOPPER90
- GPU
- NVIDIA Hopper generation CC 9.0
- NVIDIA Hopper generation CC 9.0 GPU
* - AMD_GFX906
- GPU
- AMD GPU MI50/60
- AMD GPU MI50/MI60
* - AMD_GFX908
- GPU
- AMD GPU MI100
* - AMD_GFX90A
- GPU
- AMD GPU MI200
* - AMD_GFX940
- GPU
- AMD GPU MI300
* - AMD_GFX942
- GPU
- AMD GPU MI300
* - AMD_GFX942_APU
- GPU
- AMD APU MI300A
* - AMD_GFX1030
- GPU
- AMD GPU V620/W6800
@ -694,7 +678,7 @@ They must be specified in uppercase.
- AMD GPU RX7900XTX
* - AMD_GFX1103
- GPU
- AMD APU Phoenix
- AMD Phoenix APU with Radeon 740M/760M/780M/880M/890M
* - INTEL_GEN
- GPU
- SPIR64-based devices, e.g. Intel GPUs, using JIT
@ -717,7 +701,7 @@ They must be specified in uppercase.
- GPU
- Intel GPU Ponte Vecchio
This list was last updated for version 4.6.0 of the Kokkos library.
This list was last updated for version 4.3.0 of the Kokkos library.
.. tabs::
@ -1141,10 +1125,11 @@ POEMS package
PYTHON package
---------------------------
Building with the PYTHON package requires you have a the Python
development headers and library available on your system, which
needs to be Python version 3.6 or later. See ``lib/python/README``
for additional details.
Building with the PYTHON package requires you have a the Python development
headers and library available on your system, which needs to be a Python 2.7
version or a Python 3.x version. Since support for Python 2.x has ended,
using Python 3.x is strongly recommended. See ``lib/python/README`` for
additional details.
.. tabs::
@ -1160,7 +1145,7 @@ for additional details.
set the Python_EXECUTABLE variable to specify which Python
interpreter should be used. Note note that you will also need to
have the development headers installed for this version,
e.g. python3-devel.
e.g. python2-devel.
.. tab:: Traditional make
@ -2033,7 +2018,7 @@ TBB and MKL.
.. _mdi:
MDI package
-----------
-----------------------------
.. tabs::
@ -2060,37 +2045,6 @@ MDI package
----------
.. _misc:
MISC package
------------
The :doc:`fix imd <fix_imd>` style in this package can be run either
synchronously (communication with IMD clients is done in the main
process) or asynchronously (the fix spawns a separate thread that can
communicate with IMD clients concurrently to the LAMMPS execution).
.. tabs::
.. tab:: CMake build
.. code-block:: bash
-D LAMMPS_ASYNC_IMD=value # Run IMD server asynchronously
# value = no (default) or yes
.. tab:: Traditional make
To enable asynchronous mode the ``-DLAMMPS_ASYNC_IMD`` define
needs to be added to the ``LMP_INC`` variable in the
``Makefile.machine`` you are using. For example:
.. code-block:: make
LMP_INC = -DLAMMPS_ASYNC_IMD -DLAMMPS_MEMALIGN=64
----------
.. _molfile:
MOLFILE package
@ -2237,7 +2191,7 @@ verified to work in February 2020 with Quantum Espresso versions 6.3 to
from the sources in the *lib* folder (including the essential
libqmmm.a) are not included in the static LAMMPS library and
(currently) not installed, while their code is included in the
shared LAMMPS library. Thus a typical command to configure
shared LAMMPS library. Thus a typical command line to configure
building LAMMPS for QMMM would be:
.. code-block:: bash

View File

@ -8,10 +8,6 @@ Building LAMMPS with traditional makefiles requires that you have a
for customizing your LAMMPS build with a number of global compilation
options and features.
This build system is slowly being phased out and may not support all
optional features and packages in LAMMPS. It is recommended to switch
to the :doc:`CMake based build system <Build_cmake>`.
Requirements
^^^^^^^^^^^^
@ -30,9 +26,9 @@ additional tools to be available and functioning.
* A Bourne shell compatible "Unix" shell program (frequently this is ``bash``)
* A few shell utilities: ``ls``, ``mv``, ``ln``, ``rm``, ``grep``, ``sed``, ``tr``, ``cat``, ``touch``, ``diff``, ``dirname``
* Python (optional, required for ``make lib-<pkg>`` in the ``src``
folder). Python scripts are currently tested with 3.6 to 3.11.
The procedure for :doc:`building the documentation <Build_manual>`
*requires* Python 3.8 or later.
folder). Python scripts are currently tested with python 2.7 and
3.6 to 3.11. The procedure for :doc:`building the documentation
<Build_manual>` *requires* Python 3.5 or later.
Getting started
^^^^^^^^^^^^^^^

View File

@ -78,7 +78,8 @@ folder. The following ``make`` commands are available:
make epub # generate LAMMPS.epub in ePUB format using Sphinx
make mobi # generate LAMMPS.mobi in MOBI format using ebook-convert
make fasthtml # generate approximate HTML in fasthtml dir using pandoc
make fasthtml # generate approximate HTML in fasthtml dir using Sphinx
# some Sphinx extensions do not work correctly with this
make clean # remove intermediate RST files created by HTML build
make clean-all # remove entire build folder and any cached data
@ -115,9 +116,9 @@ environment variable.
Prerequisites for HTML
----------------------
To run the HTML documentation build toolchain, Python 3.8 or later, git,
doxygen, and virtualenv have to be installed locally. Here are
instructions for common setups:
To run the HTML documentation build toolchain, python 3, git, doxygen,
and virtualenv have to be installed locally. Here are instructions for
common setups:
.. tabs::
@ -127,7 +128,13 @@ instructions for common setups:
sudo apt-get install git doxygen
.. tab:: Fedora or RHEL/AlmaLinux/RockyLinux (8.x or later)
.. tab:: RHEL or CentOS (Version 7.x)
.. code-block:: bash
sudo yum install git doxygen
.. tab:: Fedora or RHEL/CentOS (8.x or later)
.. code-block:: bash
@ -147,36 +154,7 @@ Prerequisites for PDF
In addition to the tools needed for building the HTML format manual,
a working LaTeX installation with support for PDFLaTeX and a selection
of LaTeX styles/packages are required. Apart from LaTeX packages that
are usually installed by default, the following packages are required:
.. table_from_list::
:columns: 11
- amsmath
- anysize
- babel
- capt-of
- cmap
- dvipng
- ellipse
- fncychap
- fontawesome
- framed
- geometry
- gyre
- hyperref
- hypcap
- needspace
- pict2e
- times
- tabulary
- titlesec
- upquote
- wrapfig
- xindy
To run the PDFLaTeX translation
of LaTeX styles/packages are required. To run the PDFLaTeX translation
the ``latexmk`` script needs to be installed as well.
Prerequisites for ePUB and MOBI
@ -204,42 +182,12 @@ documentation is required and either existing files in the ``src``
folder need to be updated or new files added. These files are written in
`reStructuredText <rst_>`_ markup for translation with the Sphinx tool.
Testing your contribution
^^^^^^^^^^^^^^^^^^^^^^^^^
Before contributing any documentation, please check that both the HTML
and the PDF format documentation can translate without errors and that
there are no spelling issues. This is done with ``make html``, ``make pdf``,
and ``make spelling``, respectively.
Fast and approximate translation to HTML
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Translating the full manual to HTML or PDF can take a long time. Thus
there is a fast and approximate way to translate the reStructuredText to
HTML as a quick-n-dirty way of checking your manual page.
This translation uses `Pandoc <https://pandoc.org>`_ instead of Sphinx
and thus all special Sphinx features (cross-references, advanced tables,
embedding of Python docstrings or doxygen documentation, and so on) will
not render correctly. Most embedded math should render correctly. This
is a **very fast** way to check the syntax and layout of a documentation
file translated to HTML while writing or updating it.
To translate **all** manual pages, you can type ``make fasthtml`` at the
command line. The translated HTML files are then in the ``fasthtml``
folder. All subsequent ``make fasthtml`` commands will only translate
``.rst`` files that have been changed. The ``make fasthtml`` command
can be parallelized with make using the `-j` flag. You can also
directly translate only individual pages: e.g. to translate only the
``doc/src/pair_lj.rst`` page type ``make fasthtml/pair_lj.html``
After writing the documentation is completed, you will still need
to verify with ``make html`` and ``make pdf`` that it translates
correctly in both formats.
Tests for consistency, completeness, and other known issues
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
and the PDF format documentation can translate without errors. During
testing the html translation, you may use the ``make fasthtml`` command
which does an approximate translation (i.e. not all Sphinx features and
extensions will work), but runs very fast because it will only translate
files that have been changed since the last ``make fasthtml`` command.
Please also check the output to the console for any warnings or problems. There will
be multiple tests run automatically:

View File

@ -49,7 +49,6 @@ packages:
* :ref:`LEPTON <lepton>`
* :ref:`MACHDYN <machdyn>`
* :ref:`MDI <mdi>`
* :ref:`MISC <misc>`
* :ref:`ML-HDNNP <ml-hdnnp>`
* :ref:`ML-IAP <mliap>`
* :ref:`ML-PACE <ml-pace>`

View File

@ -1,22 +0,0 @@
Prerequisites
-------------
Which software you need to compile and use LAMMPS strongly depends on
which :doc:`features and settings <Build_settings>` and which
:doc:`optional packages <Packages_list>` you are trying to include.
Common to all is that you need a C++ and C compiler, where the C++
compiler has to support at least the C++11 standard (note that some
compilers require command-line flag to activate C++11 support).
Furthermore, if you are building with CMake, you need at least CMake
version 3.20 and a compatible build tool (make or ninja-build); if you
are building the the legacy GNU make based build system you need GNU
make (other make variants are not going to work since the build system
uses features unique to GNU make) and a Unix-like build environment with
a Bourne shell, and shell tools like "sed", "grep", "touch", "test",
"tr", "cp", "mv", "rm", "ln", "diff" and so on. Parts of LAMMPS
interface with or use Python version 3.6 or later.
The LAMMPS developers aim to keep LAMMPS very portable and usable -
at least in parts - on most operating systems commonly used for
running MD simulations. Please see the :doc:`section on portablility
<Intro_portability>` for more details.

View File

@ -8,30 +8,29 @@ Optional build settings
LAMMPS can be built with several optional settings. Each subsection
explains how to do this for building both with CMake and make.
* `C++11 and C++17 standard compliance`_ when building all of LAMMPS
* `C++11 standard compliance`_ when building all of LAMMPS
* `FFT library`_ for use with the :doc:`kspace_style pppm <kspace_style>` command
* `Size of LAMMPS integer types and size limits`_
* `Read or write compressed files`_
* `Output of JPEG, PNG, and movie files`_ via the :doc:`dump image <dump_image>` or :doc:`dump movie <dump_image>` commands
* `Support for downloading files from the input`_
* `Prevent download of large potential files`_
* `Support for downloading files`_
* `Memory allocation alignment`_
* `Workaround for long long integers`_
* `Exception handling when using LAMMPS as a library`_ to capture errors
* `Trigger selected floating-point exceptions`_
----------
.. _cxx11:
C++11 and C++17 standard compliance
-----------------------------------
C++11 standard compliance
-------------------------
A C++11 standard compatible compiler is currently the minimum
requirement for compiling LAMMPS. LAMMPS version 3 March 2020 is the
last version compatible with the previous C++98 standard for the core
code and most packages. Most currently used C++ compilers are compatible
with C++11, but some older ones may need extra flags to enable C++11
compliance. Example for GNU c++ 4.8.x:
A C++11 standard compatible compiler is a requirement for compiling LAMMPS.
LAMMPS version 3 March 2020 is the last version compatible with the previous
C++98 standard for the core code and most packages. Most currently used
C++ compilers are compatible with C++11, but some older ones may need extra
flags to enable C++11 compliance. Example for GNU c++ 4.8.x:
.. code-block:: make
@ -41,17 +40,6 @@ Individual packages may require compliance with a later C++ standard
like C++14 or C++17. These requirements will be documented with the
:doc:`individual packages <Packages_details>`.
.. versionchanged:: 4Feb2025
Starting with LAMMPS version 4 February 2025 we are starting a
transition to require the C++17 standard. Most current compilers are
compatible and if the C++17 standard is available by default, LAMMPS
will enable C++17 and will compile normally. If the chosen compiler is
not compatible with C++17, but only supports C++11, then the define
-DLAMMPS_CXX11 is required to fall back to compiling with a C++11
compiler. After the next stable release of LAMMPS in summer 2025, the
LAMMPS development branch and future releases will require C++17.
----------
.. _fft:
@ -315,7 +303,7 @@ large counters can become before "rolling over". The default setting of
.. code-block:: bash
-D LAMMPS_SIZES=value # smallbig (default) or bigbig
-D LAMMPS_SIZES=value # smallbig (default) or bigbig or smallsmall
If the variable is not set explicitly, "smallbig" is used.
@ -326,7 +314,7 @@ large counters can become before "rolling over". The default setting of
.. code-block:: make
LMP_INC = -DLAMMPS_SMALLBIG # or -DLAMMPS_BIGBIG
LMP_INC = -DLAMMPS_SMALLBIG # or -DLAMMPS_BIGBIG or -DLAMMPS_SMALLSMALL
The default setting is ``-DLAMMPS_SMALLBIG`` if nothing is specified
@ -335,27 +323,34 @@ LAMMPS system size restrictions
.. list-table::
:header-rows: 1
:widths: 27 36 37
:widths: 18 27 28 27
:align: center
* -
- smallbig
- bigbig
- smallsmall
* - Total atom count
- :math:`2^{63}` atoms (= :math:`9.223 \cdot 10^{18}`)
- :math:`2^{63}` atoms (= :math:`9.223 \cdot 10^{18}`)
- :math:`2^{31}` atoms (= :math:`2.147 \cdot 10^9`)
* - Total timesteps
- :math:`2^{63}` steps (= :math:`9.223 \cdot 10^{18}`)
- :math:`2^{63}` steps (= :math:`9.223 \cdot 10^{18}`)
- :math:`2^{31}` steps (= :math:`2.147 \cdot 10^9`)
* - Atom ID values
- :math:`1 \le i \le 2^{31} (= 2.147 \cdot 10^9)`
- :math:`1 \le i \le 2^{63} (= 9.223 \cdot 10^{18})`
- :math:`1 \le i \le 2^{31} (= 2.147 \cdot 10^9)`
* - Image flag values
- :math:`-512 \le i \le 511`
- :math:`- 1\,048\,576 \le i \le 1\,048\,575`
- :math:`-512 \le i \le 511`
The "bigbig" setting increases the size of image flags and atom IDs over
the default "smallbig" setting.
"smallbig" and the "smallsmall" setting is only needed if your machine
does not support 64-bit integers or incurs performance penalties when
using them.
These are limits for the core of the LAMMPS code, specific features or
some styles may impose additional limits. The :ref:`ATC
@ -509,8 +504,8 @@ during a run.
.. _libcurl:
Support for downloading files from the input
--------------------------------------------
Support for downloading files
-----------------------------
.. versionadded:: 29Aug2024
@ -553,25 +548,6 @@ LAMMPS is compiled accordingly which needs the following settings:
----------
.. _download_pot:
Prevent download of large potential files
-----------------------------------------
.. versionadded:: 8Feb2023
LAMMPS bundles a selection of potential files in the ``potentials``
folder as examples of how those kinds of potential files look like and
for use with the provided input examples in the ``examples`` tree. To
keep the size of the distributed LAMMPS source package small, very large
potential files (> 5 MBytes) are not bundled, but only downloaded on
demand when the :doc:`corresponding package <Packages_list>` is
installed. This automatic download can be prevented when :doc:`building
LAMMPS with CMake <Build_cmake>` by adding the setting `-D
DOWNLOAD_POTENTIALS=off` when configuring.
----------
.. _align:
Memory allocation alignment
@ -658,3 +634,40 @@ code has to be set up to *catch* exceptions thrown from within LAMMPS.
throw an exception and thus other MPI ranks may get stuck waiting for
messages from the ones with errors.
----------
.. _trap_fpe:
Trigger selected floating-point exceptions
------------------------------------------
Many kinds of CPUs have the capability to detect when a calculation
results in an invalid math operation, like a division by zero or calling
the square root with a negative argument. The default behavior on
most operating systems is to continue and have values for ``NaN`` (= not
a number) or ``Inf`` (= infinity). This allows software to detect and
recover from such conditions. This behavior can be changed, however,
often through use of compiler flags. On Linux systems (or more general
on systems using the GNU C library), these so-called floating-point traps
can also be selectively enabled through library calls. LAMMPS supports
that by setting the ``-DLAMMPS_TRAP_FPE`` pre-processor define. As it is
done in the ``main()`` function, this applies only to the standalone
executable, not the library.
.. tabs::
.. tab:: CMake build
.. code-block:: bash
-D CMAKE_TUNE_FLAGS=-DLAMMPS_TRAP_FPE
.. tab:: Traditional make
.. code-block:: make
LMP_INC = -DLAMMPS_TRAP_FPE <other LMP_INC settings>
After compilation with this flag set, the LAMMPS executable will stop
and produce a core dump when a division by zero, overflow, illegal math
function argument or other invalid floating point operation is encountered.

View File

@ -100,9 +100,9 @@ procedure.
It is possible to use both the integrated CMake support of the Visual
Studio IDE or use an external CMake installation (e.g. downloaded from
cmake.org) to create build files and compile LAMMPS from the command-line.
cmake.org) to create build files and compile LAMMPS from the command line.
Compilation via command-line and unit tests are checked automatically
Compilation via command line and unit tests are checked automatically
for the LAMMPS development branch through
`GitHub Actions <https://github.com/lammps/lammps/actions/workflows/compile-msvc.yml>`_.
@ -115,7 +115,7 @@ for the LAMMPS development branch through
Please note, that for either approach CMake will create a so-called
:ref:`"multi-configuration" build environment <cmake_multiconfig>`, and
the commands for building and testing LAMMPS must be adjusted
the command lines for building and testing LAMMPS must be adjusted
accordingly.
The LAMMPS cmake folder contains a ``CMakeSettings.json`` file with

View File

@ -4,7 +4,7 @@ LAMMPS Class
The LAMMPS class is encapsulating an MD simulation state and thus it is
the class that needs to be created when starting a new simulation system
state. The LAMMPS executable essentially creates one instance of this
class and passes the command-line flags and tells it to process the
class and passes the command line flags and tells it to process the
provided input (a file or ``stdin``). It shuts the class down when
control is returned to it and then exits. When using LAMMPS as a
library from another code it is required to create an instance of this

View File

@ -140,7 +140,6 @@ additional letter in parenthesis: k = KOKKOS.
* :doc:`plugin <plugin>`
* :doc:`prd <prd>`
* :doc:`python <python>`
* :doc:`region2vmd <region2vmd>`
* :doc:`tad <tad>`
* :doc:`temper <temper>`
* :doc:`temper/grem <temper_grem>`

View File

@ -23,7 +23,6 @@ OPT.
*
* :doc:`bpm/rotational <bond_bpm_rotational>`
* :doc:`bpm/spring <bond_bpm_spring>`
* :doc:`bpm/spring/plastic <bond_bpm_spring_plastic>`
* :doc:`class2 (ko) <bond_class2>`
* :doc:`fene (iko) <bond_fene>`
* :doc:`fene/expand (o) <bond_fene_expand>`
@ -91,7 +90,6 @@ OPT.
* :doc:`lepton (o) <angle_lepton>`
* :doc:`mesocnt <angle_mesocnt>`
* :doc:`mm3 <angle_mm3>`
* :doc:`mwlc <angle_mwlc>`
* :doc:`quartic (o) <angle_quartic>`
* :doc:`spica (ko) <angle_spica>`
* :doc:`table (o) <angle_table>`
@ -128,7 +126,7 @@ OPT.
* :doc:`harmonic (iko) <dihedral_harmonic>`
* :doc:`helix (o) <dihedral_helix>`
* :doc:`lepton (o) <dihedral_lepton>`
* :doc:`multi/harmonic (ko) <dihedral_multi_harmonic>`
* :doc:`multi/harmonic (o) <dihedral_multi_harmonic>`
* :doc:`nharmonic (o) <dihedral_nharmonic>`
* :doc:`opls (iko) <dihedral_opls>`
* :doc:`quadratic (o) <dihedral_quadratic>`

View File

@ -178,7 +178,6 @@ KOKKOS, o = OPENMP, t = OPT.
* :doc:`ti <compute_ti>`
* :doc:`torque/chunk <compute_torque_chunk>`
* :doc:`vacf <compute_vacf>`
* :doc:`vacf/chunk <compute_vacf_chunk>`
* :doc:`vcm/chunk <compute_vcm_chunk>`
* :doc:`viscosity/cos <compute_viscosity_cos>`
* :doc:`voronoi/atom <compute_voronoi_atom>`

View File

@ -19,7 +19,6 @@ An alphabetic list of all LAMMPS :doc:`dump <dump>` commands.
* :doc:`custom/gz <dump>`
* :doc:`custom/zstd <dump>`
* :doc:`dcd <dump>`
* :doc:`extxyz <dump>`
* :doc:`grid <dump>`
* :doc:`grid/vtk <dump>`
* :doc:`h5md <dump_h5md>`

View File

@ -29,7 +29,6 @@ OPT.
* :doc:`ave/grid <fix_ave_grid>`
* :doc:`ave/histo <fix_ave_histo>`
* :doc:`ave/histo/weight <fix_ave_histo>`
* :doc:`ave/moments <fix_ave_moments>`
* :doc:`ave/time <fix_ave_time>`
* :doc:`aveforce <fix_aveforce>`
* :doc:`balance <fix_balance>`
@ -59,7 +58,6 @@ OPT.
* :doc:`dt/reset (k) <fix_dt_reset>`
* :doc:`edpd/source <fix_dpd_source>`
* :doc:`efield (k) <fix_efield>`
* :doc:`efield/lepton <fix_efield_lepton>`
* :doc:`efield/tip4p <fix_efield>`
* :doc:`ehex <fix_ehex>`
* :doc:`electrode/conp (i) <fix_electrode>`
@ -78,7 +76,6 @@ OPT.
* :doc:`flow/gauss <fix_flow_gauss>`
* :doc:`freeze (k) <fix_freeze>`
* :doc:`gcmc <fix_gcmc>`
* :doc:`gjf <fix_gjf>`
* :doc:`gld <fix_gld>`
* :doc:`gle <fix_gle>`
* :doc:`gravity (ko) <fix_gravity>`
@ -164,8 +161,6 @@ OPT.
* :doc:`phonon <fix_phonon>`
* :doc:`pimd/langevin <fix_pimd>`
* :doc:`pimd/nvt <fix_pimd>`
* :doc:`pimd/langevin/bosonic <fix_pimd>`
* :doc:`pimd/nvt/bosonic <fix_pimd>`
* :doc:`planeforce <fix_planeforce>`
* :doc:`plumed <fix_plumed>`
* :doc:`poems <fix_poems>`
@ -188,7 +183,6 @@ OPT.
* :doc:`qeq/fire <fix_qeq>`
* :doc:`qeq/point <fix_qeq>`
* :doc:`qeq/reaxff (ko) <fix_qeq_reaxff>`
* :doc:`qeq/rel/reaxff <fix_qeq_rel_reaxff>`
* :doc:`qeq/shielded <fix_qeq>`
* :doc:`qeq/slater <fix_qeq>`
* :doc:`qmmm <fix_qmmm>`
@ -218,7 +212,6 @@ OPT.
* :doc:`rigid/small (o) <fix_rigid>`
* :doc:`rx (k) <fix_rx>`
* :doc:`saed/vtk <fix_saed_vtk>`
* :doc:`set <fix_set>`
* :doc:`setforce (k) <fix_setforce>`
* :doc:`setforce/spin <fix_setforce>`
* :doc:`sgcmc <fix_sgcmc>`

View File

@ -69,7 +69,7 @@ WARNING message is printed. The :doc:`Errors <Errors>` page gives
more information on what errors mean. The documentation for each
command lists restrictions on how the command can be used.
You can use the :ref:`-skiprun <skiprun>` command-line flag
You can use the :ref:`-skiprun <skiprun>` command line flag
to have LAMMPS skip the execution of any ``run``, ``minimize``, or similar
commands to check the entire input for correct syntax to avoid crashes
on typos or syntax errors in long runs.

View File

@ -31,5 +31,3 @@ OPT.
* :doc:`pppm/dielectric <kspace_style>`
* :doc:`pppm/electrode (i) <kspace_style>`
* :doc:`scafacos <kspace_style>`
* :doc:`zero <kspace_style>`

View File

@ -80,7 +80,6 @@ OPT.
* :doc:`coul/tt <pair_coul_tt>`
* :doc:`coul/wolf (ko) <pair_coul>`
* :doc:`coul/wolf/cs <pair_cs>`
* :doc:`dispersion/d3 <pair_dispersion_d3>`
* :doc:`dpd (giko) <pair_dpd>`
* :doc:`dpd/coul/slater/long (g) <pair_dpd_coul_slater_long>`
* :doc:`dpd/ext (ko) <pair_dpd_ext>`
@ -115,9 +114,7 @@ OPT.
* :doc:`gw/zbl <pair_gw>`
* :doc:`harmonic/cut (o) <pair_harmonic_cut>`
* :doc:`hbond/dreiding/lj (o) <pair_hbond_dreiding>`
* :doc:`hbond/dreiding/lj/angleoffset (o) <pair_hbond_dreiding>`
* :doc:`hbond/dreiding/morse (o) <pair_hbond_dreiding>`
* :doc:`hbond/dreiding/morse/angleoffset (o) <pair_hbond_dreiding>`
* :doc:`hdnnp <pair_hdnnp>`
* :doc:`hippo (g) <pair_amoeba>`
* :doc:`ilp/graphene/hbn (t) <pair_ilp_graphene_hbn>`
@ -179,7 +176,6 @@ OPT.
* :doc:`lj/long/dipole/long <pair_dipole>`
* :doc:`lj/long/tip4p/long (o) <pair_lj_long>`
* :doc:`lj/mdf <pair_mdf>`
* :doc:`lj/pirani (o) <pair_lj_pirani>`
* :doc:`lj/relres (o) <pair_lj_relres>`
* :doc:`lj/spica (gko) <pair_spica>`
* :doc:`lj/spica/coul/long (gko) <pair_spica>`

View File

@ -1,10 +1,6 @@
Removed commands and packages
=============================
.. contents::
------
This page lists LAMMPS commands and packages that have been removed from
the distribution and provides suggestions for alternatives or
replacements. LAMMPS has special dummy styles implemented, that will
@ -12,106 +8,29 @@ stop LAMMPS and print a suitable error message in most cases, when a
style/command is used that has been removed or will replace the command
with the direct alternative (if available) and print a warning.
GJF formulation in fix langevin
-------------------------------
restart2data tool
-----------------
.. deprecated:: 12Jun2025
.. versionchanged:: 23Nov2013
The *gjf* keyword in fix langevin is deprecated and will be removed
soon. The GJF functionality has been moved to its own fix style
:doc:`fix gjf <fix_gjf>` and it is strongly recommended to use that
fix instead.
The functionality of the restart2data tool has been folded into the
LAMMPS executable directly instead of having a separate tool. A
combination of the commands :doc:`read_restart <read_restart>` and
:doc:`write_data <write_data>` can be used to the same effect. For
added convenience this conversion can also be triggered by
:doc:`command line flags <Run_options>`
Fix ave/spatial and fix ave/spatial/sphere
------------------------------------------
LAMMPS shell
------------
.. deprecated:: 11Dec2015
.. deprecated:: 29Aug2024
The LAMMPS shell has been removed from the LAMMPS distribution. Users
are encouraged to use the :ref:`LAMMPS-GUI <lammps_gui>` tool instead.
i-PI tool
---------
.. deprecated:: 27Jun2024
The i-PI tool has been removed from the LAMMPS distribution. Instead,
instructions to install i-PI from PyPI via pip are provided.
USER-REAXC package
------------------
.. deprecated:: 7Feb2024
The USER-REAXC package has been renamed to :ref:`REAXFF <PKG-REAXFF>`.
In the process also the pair style and related fixes were renamed to use
the "reaxff" string instead of "reax/c". For a while LAMMPS was maintaining
backward compatibility by providing aliases for the styles. These have
been removed, so using "reaxff" is now *required*.
MPIIO package
-------------
.. deprecated:: 21Nov2023
The MPIIO package has been removed from LAMMPS since it was unmaintained
for many years and thus not updated to incorporate required changes that
had been applied to the corresponding non-MPIIO commands. As a
consequence the MPIIO commands had become unreliable and sometimes
crashing LAMMPS or corrupting data. Similar functionality is available
through the :ref:`ADIOS package <PKG-ADIOS>` and the :ref:`NETCDF
package <PKG-NETCDF>`. Also, the :doc:`dump_modify nfile or dump_modify
fileper <dump_modify>` keywords may be used for an efficient way of
writing out dump files when running on large numbers of processors.
Similarly, the "nfile" and "fileper" keywords exist for restarts:
see :doc:`restart <restart>`, :doc:`read_restart <read_restart>`,
:doc:`write_restart <write_restart>`.
MSCG package
------------
.. deprecated:: 21Nov2023
The MSCG package has been removed from LAMMPS since it was unmaintained
for many years and instead superseded by the `OpenMSCG software
<https://software.rcc.uchicago.edu/mscg/>`_ of the Voth group at the
University of Chicago, which can be used independent from LAMMPS.
LATTE package
-------------
.. deprecated:: 15Jun2023
The LATTE package with the fix latte command was removed from LAMMPS.
This functionality has been superseded by :doc:`fix mdi/qm <fix_mdi_qm>`
and :doc:`fix mdi/qmmm <fix_mdi_qmmm>` from the :ref:`MDI package
<PKG-MDI>`. These fixes are compatible with several quantum software
packages, including LATTE. See the ``examples/QUANTUM`` dir and the
:doc:`MDI coupling HOWTO <Howto_mdi>` page. MDI supports running LAMMPS
with LATTE as a plugin library (similar to the way fix latte worked), as
well as on a different set of MPI processors.
Minimize style fire/old
-----------------------
.. deprecated:: 8Feb2023
Minimize style *fire/old* has been removed. Its functionality can be
reproduced with style *fire* with specific options. Please see the
:doc:`min_modify command <min_modify>` documentation for details.
Pair style mesont/tpm, compute style mesont, atom style mesont
--------------------------------------------------------------
.. deprecated:: 8Feb2023
Pair style *mesont/tpm*, compute style *mesont*, and atom style
*mesont* have been removed from the :ref:`MESONT package <PKG-MESONT>`.
The same functionality is available through
:doc:`pair style mesocnt <pair_mesocnt>`,
:doc:`bond style mesocnt <bond_mesocnt>` and
:doc:`angle style mesocnt <angle_mesocnt>`.
The fixes ave/spatial and ave/spatial/sphere have been removed from LAMMPS
since they were superseded by the more general and extensible "chunk
infrastructure". Here the system is partitioned in one of many possible
ways through the :doc:`compute chunk/atom <compute_chunk_atom>` command
and then averaging is done using :doc:`fix ave/chunk <fix_ave_chunk>`.
Please refer to the :doc:`chunk HOWTO <Howto_chunk>` section for an overview.
Box command
-----------
@ -131,34 +50,23 @@ been folded into the :doc:`reset_atoms <reset_atoms>` command. If
present, LAMMPS will replace the commands accordingly and print a
warning.
MESSAGE package
---------------
LATTE package
-------------
.. deprecated:: 4May2022
.. deprecated:: 15Jun2023
The MESSAGE package has been removed since it was superseded by the
:ref:`MDI package <PKG-MDI>`. MDI implements the same functionality
and in a more general way with direct support for more applications.
REAX package
------------
.. deprecated:: 4Jan2019
The REAX package has been removed since it was superseded by the
:ref:`REAXFF package <PKG-REAXFF>`. The REAXFF package has been tested
to yield equivalent results to the REAX package, offers better
performance, supports OpenMP multi-threading via OPENMP, and GPU and
threading parallelization through KOKKOS. The new pair styles are not
syntax compatible with the removed reax pair style, so input files will
have to be adapted. The REAXFF package was originally called
USER-REAXC.
The LATTE package with the fix latte command was removed from LAMMPS.
This functionality has been superseded by :doc:`fix mdi/qm <fix_mdi_qm>`
and :doc:`fix mdi/qmmm <fix_mdi_qmmm>` from the :ref:`MDI package
<PKG-MDI>`. These fixes are compatible with several quantum software
packages, including LATTE. See the ``examples/QUANTUM`` dir and the
:doc:`MDI coupling HOWTO <Howto_mdi>` page. MDI supports running LAMMPS
with LATTE as a plugin library (similar to the way fix latte worked), as
well as on a different set of MPI processors.
MEAM package
------------
.. deprecated:: 4Jan2019
The MEAM package in Fortran has been replaced by a C++ implementation.
The code in the :ref:`MEAM package <PKG-MEAM>` is a translation of the
Fortran code of MEAM into C++, which removes several restrictions
@ -168,11 +76,82 @@ for some optimizations leading to better performance. The pair style
period the C++ version of MEAM was called USER-MEAMC so it could
coexist with the Fortran version.
Minimize style fire/old
-----------------------
.. deprecated:: 8Feb2023
Minimize style *fire/old* has been removed. Its functionality can be
reproduced with *fire* with specific options. Please see the
:doc:`min_modify command <min_modify>` documentation for details.
Pair style mesont/tpm, compute style mesont, atom style mesont
--------------------------------------------------------------
.. deprecated:: 8Feb2023
Pair style *mesont/tpm*, compute style *mesont*, and atom style
*mesont* have been removed from the :ref:`MESONT package <PKG-MESONT>`.
The same functionality is available through
:doc:`pair style mesocnt <pair_mesocnt>`,
:doc:`bond style mesocnt <bond_mesocnt>` and
:doc:`angle style mesocnt <angle_mesocnt>`.
MPIIO package
-------------
.. deprecated:: 21Nov2023
The MPIIO package has been removed from LAMMPS since it was unmaintained
for many years and thus not updated to incorporate required changes that
had been applied to the corresponding non-MPIIO commands. As a
consequence the MPIIO commands had become unreliable and sometimes
crashing LAMMPS or corrupting data. Similar functionality is available
through the :ref:`ADIOS package <PKG-ADIOS>` and the :ref:`NETCDF
package <PKG-NETCDF>`. Also, the :doc:`dump_modify nfile or dump_modify
fileper <dump_modify>` keywords may be used for an efficient way of
writing out dump files when running on large numbers of processors.
Similarly, the "nfile" and "fileper" keywords exist for restarts:
see :doc:`restart <restart>`, :doc:`read_restart <read_restart>`,
:doc:`write_restart <write_restart>`.
MSCG package
------------
.. deprecated:: 21Nov2023
The MSCG package has been removed from LAMMPS since it was unmaintained
for many years and instead superseded by the `OpenMSCG software
<https://software.rcc.uchicago.edu/mscg/>`_ of the Voth group at the
University of Chicago, which can be used independent from LAMMPS.
REAX package
------------
The REAX package has been removed since it was superseded by the
:ref:`REAXFF package <PKG-REAXFF>`. The REAXFF package has been tested
to yield equivalent results to the REAX package, offers better
performance, supports OpenMP multi-threading via OPENMP, and GPU and
threading parallelization through KOKKOS. The new pair styles are not
syntax compatible with the removed reax pair style, so input files will
have to be adapted. The REAXFF package was originally called
USER-REAXC.
USER-REAXC package
------------------
.. deprecated:: 7Feb2024
The USER-REAXC package has been renamed to :ref:`REAXFF <PKG-REAXFF>`.
In the process also the pair style and related fixes were renamed to use
the "reaxff" string instead of "reax/c". For a while LAMMPS was maintaining
backward compatibility by providing aliases for the styles. These have
been removed, so using "reaxff" is now *required*.
USER-CUDA package
-----------------
.. deprecated:: 31May2016
The USER-CUDA package had been removed, since it had been unmaintained
for a long time and had known bugs and problems. Significant parts of
the design were transferred to the
@ -181,39 +160,19 @@ performance characteristics on NVIDIA GPUs. Both, the KOKKOS
and the :ref:`GPU package <PKG-GPU>` are maintained
and allow running LAMMPS with GPU acceleration.
Compute atom/molecule
---------------------
i-PI tool
---------
.. deprecated:: 11 Dec2015
.. versionchanged:: 27Jun2024
The atom/molecule command has been removed from LAMMPS since it was superseded
by the more general and extensible "chunk infrastructure". Here the system is
partitioned in one of many possible ways - including using molecule IDs -
through the :doc:`compute chunk/atom <compute_chunk_atom>` command and then
summing is done using :doc:`compute reduce/chunk <compute_reduce_chunk>` Please
refer to the :doc:`chunk HOWTO <Howto_chunk>` section for an overview.
The i-PI tool has been removed from the LAMMPS distribution. Instead,
instructions to install i-PI from PyPI via pip are provided.
Fix ave/spatial and fix ave/spatial/sphere
------------------------------------------
LAMMPS shell
------------
.. deprecated:: 11Dec2015
.. versionchanged:: 29Aug2024
The fixes ave/spatial and ave/spatial/sphere have been removed from LAMMPS
since they were superseded by the more general and extensible "chunk
infrastructure". Here the system is partitioned in one of many possible
ways through the :doc:`compute chunk/atom <compute_chunk_atom>` command
and then averaging is done using :doc:`fix ave/chunk <fix_ave_chunk>`.
Please refer to the :doc:`chunk HOWTO <Howto_chunk>` section for an overview.
restart2data tool
-----------------
.. deprecated:: 23Nov2013
The functionality of the restart2data tool has been folded into the
LAMMPS executable directly instead of having a separate tool. A
combination of the commands :doc:`read_restart <read_restart>` and
:doc:`write_data <write_data>` can be used to the same effect. For
added convenience this conversion can also be triggered by
:doc:`command-line flags <Run_options>`
The LAMMPS shell has been removed from the LAMMPS distribution. Users
are encouraged to use the :ref:`LAMMPS-GUI <lammps_gui>` tool instead.

View File

@ -24,5 +24,4 @@ of time and requests from the LAMMPS user community.
Classes
Developer_platform
Developer_utils
Developer_internal
Developer_grid

View File

@ -203,7 +203,6 @@ processed in the expected order before types are removed from dynamic
dispatch.
.. admonition:: Important Notes
:class: note
In order to be able to detect incompatibilities at compile time and
to avoid unexpected behavior, it is crucial that all member functions
@ -301,24 +300,18 @@ Formatting with the {fmt} library
The LAMMPS source code includes a copy of the `{fmt} library
<https://fmt.dev>`_, which is preferred over formatting with the
"printf()" family of functions. The primary reason is that it allows a
typesafe default format for any type of supported data. This is
"printf()" family of functions. The primary reason is that it allows
a typesafe default format for any type of supported data. This is
particularly useful for formatting integers of a given size (32-bit or
64-bit) which may require different format strings depending on compile
time settings or compilers/operating systems. Furthermore, {fmt} gives
better performance, has more functionality, a familiar formatting syntax
that has similarities to ``format()`` in Python, and provides a facility
that can be used to integrate format strings and a variable number of
arguments into custom functions in a much simpler way than the varargs
mechanism of the C library. Finally, {fmt} has been included into the
C++20 language standard as ``std::format()``, so changes to adopt it are
future-proof, for as long as they are not using any extensions that are
not (yet) included into C++.
The long-term plan is to switch to using ``std::format()`` instead of
``fmt::format()`` when the minimum C++ standard required for LAMMPS will
be set to C++20. See the :ref:`basic build instructions <compile>` for
more details.
64-bit) which may require different format strings depending on
compile time settings or compilers/operating systems. Furthermore,
{fmt} gives better performance, has more functionality, a familiar
formatting syntax that has similarities to ``format()`` in Python, and
provides a facility that can be used to integrate format strings and a
variable number of arguments into custom functions in a much simpler
way than the varargs mechanism of the C library. Finally, {fmt} has
been included into the C++20 language standard, so changes to adopt it
are future-proof.
Formatted strings are frequently created by calling the
``fmt::format()`` function, which will return a string as a
@ -326,13 +319,11 @@ Formatted strings are frequently created by calling the
``printf()``, the {fmt} library uses ``{}`` to embed format descriptors.
In the simplest case, no additional characters are needed, as {fmt} will
choose the default format based on the data type of the argument.
Otherwise, the :cpp:func:`utils::print() <LAMMPS_NS::utils::print>`
function may be used instead of ``printf()`` or ``fprintf()``. In
addition, several LAMMPS output functions, that originally accepted a
single string as argument have been overloaded to accept a format string
with optional arguments as well (e.g., ``Error::all()``,
``Error::one()``, :cpp:func:`utils::logmesg()
<LAMMPS_NS::utils::logmesg>`).
Otherwise, the ``fmt::print()`` function may be used instead of
``printf()`` or ``fprintf()``. In addition, several LAMMPS output
functions, that originally accepted a single string as argument have
been overloaded to accept a format string with optional arguments as
well (e.g., ``Error::all()``, ``Error::one()``, ``utils::logmesg()``).
Summary of the {fmt} format syntax
==================================

View File

@ -79,19 +79,19 @@ containing ``double`` values. To correctly store integers that may be
64-bit (bigint, tagint, imageint) in the buffer, you need to use the
:ref:`ubuf union <communication_buffer_coding_with_ubuf>` construct.
The *Fix*, *Bond*, *Compute*, and *Dump* classes can also invoke the
same kind of forward and reverse communication operations using the
same *Comm* class methods. Likewise, the same pack/unpack methods and
The *Fix*, *Compute*, and *Dump* classes can also invoke the same kind
of forward and reverse communication operations using the same *Comm*
class methods. Likewise, the same pack/unpack methods and
comm_forward/comm_reverse variables must be defined by the calling
*Fix*, *Bond*, *Compute*, or *Dump* class.
*Fix*, *Compute*, or *Dump* class.
For all of these classes, there is an optional second argument to the
For *Fix* classes, there is an optional second argument to the
*forward_comm()* and *reverse_comm()* call which can be used when the
class performs multiple modes of communication, with different numbers
of values per atom. The class should set the *comm_forward* and
fix performs multiple modes of communication, with different numbers
of values per atom. The fix should set the *comm_forward* and
*comm_reverse* variables to the maximum value, but can invoke the
communication for a particular mode with a smaller value. For this
to work, the *pack_forward_comm()*, etc. methods typically use a class
to work, the *pack_forward_comm()*, etc methods typically use a class
member variable to choose which values to pack/unpack into/from the
buffer.

View File

@ -209,7 +209,7 @@ nve, nvt, npt.
At the end of the timestep, fixes that contain an ``end_of_step()``
method are invoked. These typically perform a diagnostic calculation,
e.g. the ave/time and ave/chunk fixes. The final operation of the
e.g. the ave/time and ave/spatial fixes. The final operation of the
timestep is to perform any requested output, via the ``write()`` method
of the Output class. There are 3 kinds of LAMMPS output: thermodynamic
output to the screen and log file, snapshots of atom data to a dump

View File

@ -1,120 +0,0 @@
Internal Styles
---------------
LAMMPS has a number of styles that are not meant to be used in an input
file and thus are not documented in the :doc:`LAMMPS command
documentation <Commands_all>`. The differentiation between user
commands and internal commands is through the case of the command name:
user commands and styles are all lower case, internal styles are all
upper case. Internal styles are not called from the input file, but
their classes are instantiated by other styles. Often they are
created by other styles to store internal data or to perform actions
regularly at specific steps of the simulation.
The paragraphs below document some of those styles that have general
utility and may be used to avoid redundant implementation.
DEPRECATED Styles
^^^^^^^^^^^^^^^^^
The styles called DEPRECATED (e.g. pair, bond, fix, compute, region, etc.)
have the purpose to inform users that a specific style has been removed
or renamed. This is achieved by creating an alias for the deprecated
style to the corresponding class. For example, the fix style DEPRECATED
is aliased to fix style ave/spatial and fix style ave/spatial/sphere with
the following code:
.. code-block:: c++
FixStyle(DEPRECATED,FixDeprecated);
FixStyle(ave/spatial,FixDeprecated);
FixStyle(ave/spatial/sphere,FixDeprecated);
The individual class will then determine based on the style name
what action to perform:
- inform that the style has been removed and what style replaces it, if any, and then error out
- inform that the style has been renamed and then either execute the replacement or error out
- inform that the style is no longer required, and it is thus ignored and continue
There is also a section in the user's guide for :doc:`removed commands
and packages <Commands_removed>` with additional explanations.
Internal fix styles
^^^^^^^^^^^^^^^^^^^
These provide an implementation of features that would otherwise have
been replicated across multiple styles. The used fix ID is generally
derived from the compute or fix ID creating the fix with some string
appended. When needed, the fix can be looked up with
``Modify::get_fix_by_id()``, which returns a pointer to the fix
instance. The data managed by the fix can be accessed just as for other
fixes that can be used in input files.
fix DUMMY
"""""""""
Most fix classes cannot be instantiated before the simulation box has
been created since they access data that is only available then.
However, in some cases it is required that a fix must be at or close to
the top of the list of all fixes. In those cases an instance of the
DUMMY fix style may be created by calling ``Modify::add_fix()`` and then
later replaced by the intended fix through calling ``Modify::replace_fix()``.
fix STORE/ATOM
""""""""""""""
Fix STORE/ATOM can be used as persistent storage of per-atom data.
**Syntax**
.. code-block:: LAMMPS
fix ID group-ID STORE/ATOM N1 N2 gflag rflag
* ID, group-ID are documented in :doc:`fix <fix>` command
* STORE/ATOM = style name of this fix command
* N1 = 1, N2 = 0 : data is per-atom vector = single value per atom
* N1 > 1, N2 = 0 : data is per-atom array = N1 values per atom
* N1 > 0, N2 > 0 : data is per-atom tensor = N1xN2 values per atom
* gflag = 1 communicate per-atom values with ghost atoms, 0 do not update ghost atom data
* rflag = 1 store per-atom value in restart file, 0 do not store data in restart
Similar functionality is also available through using custom per-atom
properties with :doc:`fix property/atom <fix_property_atom>`. The
choice between the two fixes should be based on whether the user should
be able to access this per-atom data: if yes, then fix property/atom is
preferred, otherwise fix STORE/ATOM.
fix STORE/GLOBAL
""""""""""""""""
Fix STORE/GLOBAL can be used as persistent storage of global data with support for restarts
**Syntax**
.. code-block:: LAMMPS
fix ID group-ID STORE/GLOBAL N1 N2
* ID, group-ID are documented in :doc:`fix <fix>` command
* STORE/GLOBAL = style name of this fix command
* N1 >=1 : number of global items to store
* N2 = 1 : data is global vector of length N1
* N2 > 1 : data is global N1xN2 array
fix STORE/LOCAL
"""""""""""""""
Fix STORE/LOCAL can be used as persistent storage for local data
**Syntax**
.. code-block:: LAMMPS
fix ID group-ID STORE/LOCAL Nreset Nvalues
* ID, group-ID are documented in :doc:`fix <fix>` command
* STORE/LOCAL = style name of this fix command
* Nreset = frequency at which local data is available
* Nvalues = number of values per local item, that is the number of columns

View File

@ -7,7 +7,13 @@ typically document what a variable stores, what a small section of
code does, or what a function does and its input/outputs. The topics
on this page are intended to document code functionality at a higher level.
.. contents:: Available notes
Available topics are:
- `Reading and parsing of text and text files`_
- `Requesting and accessing neighbor lists`_
- `Choosing between a custom atom style, fix property/atom, and fix STORE/ATOM`_
- `Fix contributions to instantaneous energy, virial, and cumulative energy`_
- `KSpace PPPM FFT grids`_
----
@ -212,149 +218,6 @@ command:
neighbor->add_request(this, "delete_atoms", NeighConst::REQ_FULL);
Errors, warnings, and informational messages
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
LAMMPS has specialized functionality to handle errors (which should
terminate LAMMPS), warning messages (which should indicate possible
problems *without* terminating LAMMPS), and informational text for
messages about the progress and chosen settings. We *strongly*
encourage using these facilities and to *stay away* from using
``printf()`` or ``fprintf()`` or ``std::cout`` or ``std::cerr`` and
calling ``MPI_Abort()`` or ``exit()`` directly. Warnings and
informational messages should be printed only on MPI rank 0 to avoid
flooding the output when running in parallel with many MPI processes.
**Errors**
When LAMMPS encounters an error, for example a syntax error in the
input, then a suitable error message should be printed giving a brief,
one line remark about the reason and then call either ``Error::all()``
or ``Error::one()``. ``Error::all()`` must be called when the failing
code path is executed by *all* MPI processes and the error condition
will appear for *all* MPI processes the same. If desired, each MPI
process may set a flag to either 0 or 1 and then MPI_Allreduce()
searching for the maximum can be used to determine if there was an error
on *any* of the MPI processes and make this information available to
*all*. ``Error::one()`` in contrast needs to be called when only one or
a few MPI processes execute the code path or can have the error
condition. ``Error::all()`` is generally the preferred option.
Calling these functions does not abort LAMMPS directly, but rather
throws either a ``LAMMPSException`` (from ``Error::all()``) or a
``LAMMPSAbortException`` (from ``Error::one()``). These exceptions are
caught by the LAMMPS ``main()`` program and then handled accordingly.
The reason for this approach is to support applications, especially
graphical applications like :ref:`LAMMPS-GUI <lammps_gui>`, that are
linked to the LAMMPS library and have a mechanism to avoid that an error
in LAMMPS terminates the application. By catching the exceptions, the
application can delete the failing LAMMPS class instance and create a
new one to try again. In a similar fashion, the :doc:`LAMMPS Python
module <Python_module>` checks for this and then re-throws corresponding
Python exception, which in turn can be caught by the calling Python
code.
There are multiple "signatures" that can be called:
- ``Error::all(FLERR, "Error message")``: this will abort LAMMPS with
the error message "Error message", followed by the last line of input
that was read and processed before the error condition happened.
- ``Error::all(FLERR, Error::NOLASTLINE, "Error message")``: this is the
same as before but without the last line of input. This is preferred
for errors that would happen *during* a :doc:`run <run>` or
:doc:`minimization <minimize>`, since showing the "run" or "minimize"
command would be the last line, but is unrelated to the error.
- ``Error::all(FLERR, idx, "Error message")``: this is for argument
parsing where "idx" is the index (starting at 0) of the argument for a
LAMMPS command that is causing the failure (use -1 for the command
itself). For index 0, you need to use the constant ``Error::ARGZERO``
to work around the inability of some compilers to disambiguate between
a NULL pointer and an integer constant 0, even with an added type cast.
The output may also include the last input line *before* and
*after*, if they differ due to substituting variables. A textual
indicator is pointing to the specific word that failed. Using the
constant ``Error::NOPOINTER`` in place of the *idx* argument will
suppress the marker and then the behavior is like the *idx* argument
is not provided.
FLERR is a macro containing the filename and line where the Error class
is called and that information is appended to the error message. This
allows to quickly find the relevant source code causing the error. For
all three signatures, the single string "Error message" may be replaced
with a format string using '{}' placeholders and followed by a variable
number of arguments, one for each placeholder. This format string and
the arguments are then handed for formatting to the `{fmt} library
<https://fmt.dev>`_ (which is bundled with LAMMPS) and thus allow
processing similar to the "format()" functionality in Python.
.. note::
For commands like :doc:`fix ave/time <fix_ave_time>` that accept
wildcard arguments, the :cpp:func:`utils::expand_args` function
may be passed as an optional argument where the function will provide
a map to the original arguments from the expanded argument indices.
For complex errors, that can have multiple causes and which cannot be
explained in a single line, you can append to the error message, the
string created by :cpp:func:`utils::errorurl`, which then provides a
URL pointing to a paragraph of the :doc:`Errors_details` that
corresponds to the number provided. Example:
.. code-block:: c++
error->all(FLERR, "Unknown identifier in data file: {}{}", keyword, utils::errorurl(1));
This will output something like this:
.. parsed-literal::
ERROR: Unknown identifier in data file: Massess
For more information see https://docs.lammps.org/err0001 (src/read_data.cpp:1482)
Last input line: read_data data.peptide
Where the URL points to the first paragraph with explanations on
the :doc:`Errors_details` page in the manual.
**Warnings**
To print warnings, the ``Errors::warning()`` function should be used.
It also requires the FLERR macros as first argument to easily identify
the location of the warning in the source code. Same as with the error
functions above, the function has two variants: one just taking a single
string as final argument and a second that uses the `{fmt} library
<https://fmt.dev>`_ to make it similar to, say, ``fprintf()``. One
motivation to use this function is that it will output warnings with
always the same capitalization of the leading "WARNING" string. A
second is that it has a built in rate limiter. After a given number (by
default 100), that can be set via the :doc:`thermo_modify command
<thermo_modify>` no more warnings are printed. Also, warnings are
written consistently to both screen and logfile or not, depending on the
settings for :ref:`screen <screen>` or :doc:`logfile <log>` output.
.. note::
Unlike ``Error::all()``, the warning function will produce output on
*every* MPI process, so it typically would be prefixed with an if
statement testing for ``comm->me == 0``, i.e. limiting output to MPI
rank 0.
**Informational messages**
Finally, for informational message LAMMPS has the
:cpp:func:`utils::logmesg() convenience function
<LAMMPS_NS::utils::logmesg>`. It also uses the `{fmt} library
<https://fmt.dev>`_ to support using a format string followed by a
matching number of arguments. It will output the resulting formatted
text to both, the screen and the logfile and will honor the
corresponding settings about whether this output is active and to which
file it should be send. Same as for ``Error::warning()``, it would
produce output for every MPI process and thus should usually be called
only on MPI rank 0 to avoid flooding the output when running with many
parallel processes.
Choosing between a custom atom style, fix property/atom, and fix STORE/ATOM
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

View File

@ -94,12 +94,12 @@ represents what is generally referred to as an "instance of LAMMPS". It
is a composite holding pointers to instances of other core classes
providing the core functionality of the MD engine in LAMMPS and through
them abstractions of the required operations. The constructor of the
LAMMPS class will instantiate those instances, process the command-line
LAMMPS class will instantiate those instances, process the command line
flags, initialize MPI (if not already done) and set up file pointers for
input and output. The destructor will shut everything down and free all
associated memory. Thus code for the standalone LAMMPS executable in
``main.cpp`` simply initializes MPI, instantiates a single instance of
LAMMPS while passing it the command-line flags and input script. It
LAMMPS while passing it the command line flags and input script. It
deletes the LAMMPS instance after the method reading the input returns
and shuts down the MPI environment before it exits the executable.

View File

@ -68,25 +68,24 @@ Members of ``lammpsplugin_t``
* - author
- String with the name and email of the author
* - creator.v1
- Pointer to factory function for pair, bond, angle, dihedral, improper, kspace, command, or minimize styles
- Pointer to factory function for pair, bond, angle, dihedral, improper, kspace, or command styles
* - creator.v2
- Pointer to factory function for compute, fix, region, or run styles
- Pointer to factory function for compute, fix, or region styles
* - handle
- Pointer to the open DSO file handle
Only one of the two alternate creator entries can be used at a time and
which of those is determined by the style of plugin. The "creator.v1"
element is for factory functions of supported styles computing forces
(i.e. pair, bond, angle, dihedral, or improper styles), command styles,
or minimize styles and the function takes as single argument the pointer
to the LAMMPS instance. The factory function is cast to the
``lammpsplugin_factory1`` type before assignment. The "creator.v2"
element is for factory functions creating an instance of a fix, compute,
region, or run style and takes three arguments: a pointer to the LAMMPS
instance, an integer with the length of the argument list and a ``char
**`` pointer to the list of arguments. The factory function pointer
needs to be cast to the ``lammpsplugin_factory2`` type before
assignment.
(i.e. pair, bond, angle, dihedral, or improper styles) or command styles
and the function takes as single argument the pointer to the LAMMPS
instance. The factory function is cast to the ``lammpsplugin_factory1``
type before assignment. The "creator.v2" element is for factory
functions creating an instance of a fix, compute, or region style and
takes three arguments: a pointer to the LAMMPS instance, an integer with
the length of the argument list and a ``char **`` pointer to the list of
arguments. The factory function pointer needs to be cast to the
``lammpsplugin_factory2`` type before assignment.
Pair style example
^^^^^^^^^^^^^^^^^^
@ -248,8 +247,8 @@ DSO handle. The registration function is called with a pointer to the address
of this struct and the pointer of the LAMMPS class. The registration function
will then add the factory function of the plugin style to the respective
style map under the provided name. It will also make a copy of the struct
in a global list of all loaded plugins and update the reference counter for
loaded plugins from this specific DSO file.
in a list of all loaded plugins and update the reference counter for loaded
plugins from this specific DSO file.
The pair style itself (i.e. the PairMorse2 class in this example) can be
written just like any other pair style that is included in LAMMPS. For
@ -264,21 +263,6 @@ the plugin will override the existing code. This can be used to modify
the behavior of existing styles or to debug new versions of them without
having to re-compile or re-install all of LAMMPS.
.. versionchanged:: 12Jun2025
When using the :doc:`clear <clear>` command, plugins are not unloaded
but restored to their respective style maps. This also applies when
multiple LAMMPS instances are created and deleted through the library
interface. The :doc:`plugin load <plugin>` load command may be issued
again, but for existing plugins they will be skipped. To replace
plugins they must be explicitly unloaded with :doc:`plugin unload
<plugin>`. When multiple LAMMPS instances are created concurrently, any
loaded plugins will be added to the global list of plugins, but are not
immediately available to any LAMMPS instance that was created before
loading the plugin. To "import" such plugins, the :doc:`plugin restore
<plugin>` may be used. Plugins are only removed when they are explicitly
unloaded or the LAMMPS interface is "finalized".
Compiling plugins
^^^^^^^^^^^^^^^^^

View File

@ -227,12 +227,12 @@ Tests for the C-style library interface
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Tests for validating the LAMMPS C-style library interface are in the
``unittest/c-library`` folder. They text either utility functions or
LAMMPS commands, but use the functions implemented in
``src/library.cpp`` as much as possible. There may be some overlap with
other tests as far as the LAMMPS functionality is concerned, but the
focus is on testing the C-style library API. The tests are distributed
over multiple test programs which try to match the grouping of the
``unittest/c-library`` folder. They are implemented either to be used
for utility functions or for LAMMPS commands, but use the functions
implemented in the ``src/library.cpp`` file as much as possible. There
may be some overlap with other tests, but only in as much as is required
to test the C-style library API. The tests are distributed over
multiple test programs which try to match the grouping of the
functions in the source code and :ref:`in the manual <lammps_c_api>`.
This group of tests also includes tests invoking LAMMPS in parallel
@ -258,7 +258,7 @@ Tests for the Python module and package
The ``unittest/python`` folder contains primarily tests for classes and
functions in the LAMMPS python module but also for commands in the
PYTHON package. These tests are only enabled, if the necessary
PYTHON package. These tests are only enabled if the necessary
prerequisites are detected or enabled during configuration and
compilation of LAMMPS (shared library build enabled, Python interpreter
found, Python development files found).
@ -272,30 +272,29 @@ Tests for the Fortran interface
Tests for using the Fortran module are in the ``unittest/fortran``
folder. Since they are also using the GoogleTest library, they require
test wrappers written in C++ that will call fortran functions with a C
function interface through ISO_C_BINDINGS which will in turn call the
functions in the LAMMPS Fortran module.
implementing test wrappers in C++ that will call fortran functions
which provide a C function interface through ISO_C_BINDINGS that will in
turn call the functions in the LAMMPS Fortran module.
Tests for the C++-style library interface
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The tests in the ``unittest/cplusplus`` folder are somewhat similar to
the tests for the C-style library interface, but do not need to test the
convenience and utility functions that are only available through the
C-style library interface. Instead they focus on the more generic
features that are used in LAMMPS internally. This part of the unit
tests is currently still mostly in the planning stage.
several convenience and utility functions that are only available through
the C-style interface. Instead it can focus on the more generic features
that are used internally. This part of the unit tests is currently still
mostly in the planning stage.
Tests for reading and writing file formats
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
The ``unittest/formats`` folder contains test programs for reading and
writing files like data files, restart files, potential files or dump
files. This covers simple things like the file i/o convenience
functions in the ``utils::`` namespace to complex tests of atom styles
where creating and deleting of atoms with different properties is tested
in different ways and through script commands or reading and writing of
data or restart files.
writing files like data files, restart files, potential files or dump files.
This covers simple things like the file i/o convenience functions in the
``utils::`` namespace to complex tests of atom styles where creating and
deleting atoms with different properties is tested in different ways
and through script commands or reading and writing of data or restart files.
Tests for styles computing or modifying forces
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
@ -444,7 +443,7 @@ file for a style that is similar to one to be tested. The file name should
follow the naming conventions described above and after copying the file,
the first step is to replace the style names where needed. The coefficient
values do not have to be meaningful, just in a reasonable range for the
given system. It does not matter if some forces are large, for as long as
given system. It does not matter if some forces are large, as long as
they do not diverge.
The template input files define a large number of index variables at the top
@ -477,7 +476,7 @@ the tabulated coulomb, to test both code paths. The reference results in the YA
files then should be compared manually, if they agree well enough within the limits
of those two approximations.
The ``test_pair_style`` and equivalent programs have special command-line options
The ``test_pair_style`` and equivalent programs have special command line options
to update the YAML files. Running a command like
.. code-block:: bash
@ -532,20 +531,19 @@ Python module.
Troubleshooting failed unit tests
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
There are by default no unit tests for newly added features (e.g. pair,
fix, or compute styles) unless your pull request also includes tests for
these added features. If you are modifying some existing LAMMPS
features, you may see failures for existing tests, if your modifications
have some unexpected side effects or your changes render the existing
test invalid. If you are adding an accelerated version of an existing
style, then only tests for INTEL, KOKKOS (with OpenMP only), OPENMP, and
OPT will be run automatically. Tests for the GPU package are time
consuming and thus are only run *after* a merge, or when a special
label, ``gpu_unit_tests`` is added to the pull request. After the test
has started, it is often best to remove the label since every PR
activity will re-trigger the test (that is a limitation of triggering a
test with a label). Support for unit tests using KOKKOS with GPU
acceleration is currently not supported.
The are by default no unit tests for newly added features (e.g. pair, fix,
or compute styles) unless your pull request also includes tests for the
added features. If you are modifying some features, you may see failures
for existing tests, if your modifications have some unexpected side effects
or your changes render the existing test invalid. If you are adding an
accelerated version of an existing style, then only tests for INTEL,
KOKKOS (with OpenMP only), OPENMP, and OPT will be run automatically.
Tests for the GPU package are time consuming and thus are only run
*after* a merge, or when a special label, ``gpu_unit_tests`` is added
to the pull request. After the test has started, it is often best to
remove the label since every PR activity will re-trigger the test (that
is a limitation of triggering a test with a label). Support for unit
tests when using KOKKOS with GPU acceleration is currently not supported.
When you see a failed build on GitHub, click on ``Details`` to be taken
to the corresponding LAMMPS Jenkins CI web page. Click on the "Exit"
@ -590,7 +588,7 @@ While the epsilon (relative precision) for a single, `IEEE 754 compliant
<https://en.wikipedia.org/wiki/IEEE_754>`_, double precision floating
point operation is at about 2.2e-16, the achievable precision for the
tests is lower due to most numbers being sums over intermediate results
for which the non-associativity of floating point math leads to larger
and the non-associativity of floating point math leading to larger
errors. As a rule of thumb, the test epsilon can often be in the range
5.0e-14 to 1.0e-13. But for "noisy" force kernels, e.g. those a larger
amount of arithmetic operations involving `exp()`, `log()` or `sin()`
@ -604,14 +602,14 @@ of floating point operations or that some or most intermediate operations
may be done using approximations or with single precision floating point
math.
To rerun a failed unit test individually, change to the ``build`` directory
To rerun the failed unit test individually, change to the ``build`` directory
and run the test with verbose output. For example,
.. code-block:: bash
env TEST_ARGS=-v ctest -R ^MolPairStyle:lj_cut_coul_long -V
``ctest`` with the ``-V`` flag also shows the exact command
``ctest`` with the ``-V`` flag also shows the exact command line
of the test. One can then use ``gdb --args`` to further debug and
catch exceptions with the test command, for example,

View File

@ -29,7 +29,6 @@ Available topics in mostly chronological order are:
- `Rename of fix STORE/PERATOM to fix STORE/ATOM and change of arguments`_
- `Use Output::get_dump_by_id() instead of Output::find_dump()`_
- `Refactored grid communication using Grid3d/Grid2d classes instead of GridComm`_
- `FLERR as first argument to minimum image functions in Domain class`_
----
@ -611,47 +610,3 @@ KSpace solvers which use distributed FFT grids:
- ``src/KSPACE/pppm.cpp``
This change is **required** or else the code will not compile.
FLERR as first argument to minimum image functions in Domain class
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. versionchanged:: 12Jun2025
The ``Domain::minimum_image()`` and ``Domain::minimum_image_big()``
functions were changed to take the ``FLERR`` macros as first argument.
This way the error message indicates *where* the function was called
instead of pointing to the implementation of the function. Example:
Old:
.. code-block:: c++
double delx1 = x[i1][0] - x[i2][0];
double dely1 = x[i1][1] - x[i2][1];
double delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(delx1, dely1, delz1);
double r1 = sqrt(delx1 * delx1 + dely1 * dely1 + delz1 * delz1);
double delx2 = x[i3][0] - x[i2][0];
double dely2 = x[i3][1] - x[i2][1];
double delz2 = x[i3][2] - x[i2][2];
domain->minimum_image_big(delx2, dely2, delz2);
double r2 = sqrt(delx2 * delx2 + dely2 * dely2 + delz2 * delz2);
New:
.. code-block:: c++
double delx1 = x[i1][0] - x[i2][0];
double dely1 = x[i1][1] - x[i2][1];
double delz1 = x[i1][2] - x[i2][2];
domain->minimum_image(FLERR, delx1, dely1, delz1);
double r1 = sqrt(delx1 * delx1 + dely1 * dely1 + delz1 * delz1);
double delx2 = x[i3][0] - x[i2][0];
double dely2 = x[i3][1] - x[i2][1];
double delz2 = x[i3][2] - x[i2][2];
domain->minimum_image_big(FLERR, delx2, dely2, delz2);
double r2 = sqrt(delx2 * delx2 + dely2 * dely2 + delz2 * delz2);
This change is **required** or else the code will not compile.

View File

@ -133,9 +133,6 @@ and parsing files or arguments.
.. doxygenfunction:: trim_comment
:project: progguide
.. doxygenfunction:: strcompress
:project: progguide
.. doxygenfunction:: strip_style_suffix
:project: progguide
@ -169,9 +166,6 @@ and parsing files or arguments.
.. doxygenfunction:: split_lines
:project: progguide
.. doxygenfunction:: strsame
:project: progguide
.. doxygenfunction:: strmatch
:project: progguide
@ -238,21 +232,12 @@ Convenience functions
.. doxygenfunction:: logmesg(LAMMPS *lmp, const std::string &mesg)
:project: progguide
.. doxygenfunction:: print(FILE *fp, const std::string &format, Args&&... args)
:project: progguide
.. doxygenfunction:: print(FILE *fp, const std::string &mesg)
:project: progguide
.. doxygenfunction:: errorurl
:project: progguide
.. doxygenfunction:: missing_cmd_args
:project: progguide
.. doxygenfunction:: point_to_error
:project: progguide
.. doxygenfunction:: flush_buffers(LAMMPS *lmp)
:project: progguide

View File

@ -96,8 +96,8 @@ Here the we specify which methods of the fix should be called during
MPI_Allreduce(localAvgVel, globalAvgVel, 4, MPI_DOUBLE, MPI_SUM, world);
scale3(1.0 / globalAvgVel[3], globalAvgVel);
if ((comm->me == 0) && screen) {
utils::print(screen, "{}, {}, {}\n",
globalAvgVel[0], globalAvgVel[1], globalAvgVel[2]);
fmt::print(screen,"{}, {}, {}\n",
globalAvgVel[0], globalAvgVel[1], globalAvgVel[2]);
}
}

View File

@ -310,7 +310,7 @@ the constructor and the destructor.
Pair styles are different from most classes in LAMMPS that define a
"style", as their constructor only uses the LAMMPS class instance
pointer as an argument, but **not** the arguments of the
pointer as an argument, but **not** the command line arguments of the
:doc:`pair_style command <pair_style>`. Instead, those arguments are
processed in the ``Pair::settings()`` function (or rather the version in
the derived class). The constructor is the place where global defaults
@ -891,7 +891,7 @@ originally created from mixing or not).
These data file output functions are only useful for true pair-wise
additive potentials, where the potential parameters can be entered
through *multiple* :doc:`pair_coeff commands <pair_coeff>`. Pair styles
that require a single "pair_coeff \* \*" command are not compatible
that require a single "pair_coeff \* \*" command line are not compatible
with reading their parameters from data files. For pair styles like
*born/gauss* that do support writing to data files, the potential
parameters will be read from the data file, if present, and
@ -1122,7 +1122,7 @@ once. Thus, the ``coeff()`` function has to do three tasks, each of
which is delegated to a function in the ``PairTersoff`` class:
#. map elements to atom types. Those follow the potential file name in the
command arguments and are processed by the ``map_element2type()`` function.
command line arguments and are processed by the ``map_element2type()`` function.
#. read and parse the potential parameter file in the ``read_file()`` function.
#. Build data structures where the original and derived parameters are
indexed by all possible triples of atom types and thus can be looked
@ -1356,8 +1356,8 @@ either 0 or 1.
The ``morseflag`` variable defaults to 0 and is set to 1 in the
``PairAIREBOMorse::settings()`` function which is called by the
:doc:`pair_style <pair_style>` command. This function delegates all
command argument processing and setting of other parameters to the
:doc:`pair_style <pair_style>` command. This function delegates
all command line processing and setting of other parameters to the
``PairAIREBO::settings()`` function of the base class.
.. code-block:: c++

View File

@ -83,7 +83,7 @@ Run LAMMPS from within the debugger
Running LAMMPS under the control of the debugger as shown below only
works for a single MPI rank (for debugging a program running in parallel
you usually need a parallel debugger program). A simple way to launch
GDB is to prefix the LAMMPS command-line with ``gdb --args`` and then
GDB is to prefix the LAMMPS command line with ``gdb --args`` and then
type the command "run" at the GDB prompt. This will launch the
debugger, load the LAMMPS executable and its debug info, and then run
it. When it reaches the code causing the segmentation fault, it will
@ -180,7 +180,7 @@ inspect the behavior of a compiled program by essentially emulating a
CPU and instrumenting the program while running. This slows down
execution quite significantly, but can also report issues that are not
resulting in a crash. The default valgrind tool is a memory checker and
you can use it by prefixing the normal command-line with ``valgrind``.
you can use it by prefixing the normal command line with ``valgrind``.
Unlike GDB, this will also work for parallel execution, but it is
recommended to redirect the valgrind output to a file (e.g. with
``--log-file=crash-%p.txt``, the %p will be substituted with the
@ -235,53 +235,3 @@ from GDB. In addition you get a more specific hint about what cause the
segmentation fault, i.e. that it is a NULL pointer dereference. To find
out which pointer exactly was NULL, you need to use the debugger, though.
Debugging when LAMMPS appears to be stuck
=========================================
Sometimes the LAMMPS calculation appears to be stuck, that is the LAMMPS
process or processes are active, but there is no visible progress. This
can have multiple reasons:
- The selected styles are slow and require a lot of CPU time and the
system is large. When extrapolating the expected speed from smaller
systems, one has to factor in that not all models scale linearly with
system size, e.g. :doc:`kspace styles like ewald or pppm
<kspace_style>`. There is very little that can be done in this case.
- The output interval is not set or set to a large value with the
:doc:`thermo <thermo>` command. I the first case, there will be output
only at the first and last step.
- The output is block-buffered and instead of line-buffered. The output
will only be written to the screen after 4096 or 8192 characters of
output have accumulated. This most often happens for files but also
with MPI parallel executables for output to the screen, since the
output to the screen is handled by the MPI library so that output from
all processes can be shown. This can be suppressed by using the
``-nonblock`` or ``-nb`` command-line flag, which turns off buffering
for screen and logfile output.
- An MPI parallel calculation has a bug where a collective MPI function
is called (e.g. ``MPI_Barrier()``, ``MPI_Bcast()``,
``MPI_Allreduce()`` and so on) before pending point-to-point
communications are completed or when the collective function is only
called from a subset of the MPI processes. This also applies to some
internal LAMMPS functions like ``Error::all()`` which uses
``MPI_Barrier()`` and thus ``Error::one()`` must be called, if the
error condition does not happen on all MPI processes simultaneously.
- Some function in LAMMPS has a bug where a ``for`` or ``while`` loop
does not trigger the exit condition and thus will loop forever. This
can happen when the wrong variable is incremented or when one value in
a comparison becomes ``NaN`` due to an overflow.
In the latter two cases, further information and stack traces (see above)
can be obtain by attaching a debugger to a running process. For that the
process ID (PID) is needed; this can be found on Linux machines with the
``top``, ``htop``, ``ps``, or ``pstree`` commands.
Then running the (GNU) debugger ``gdb`` with the ``-p`` flag followed by
the process id will attach the process to the debugger and stop
execution of that specific process. From there on it is possible to
issue all debugger commands in the same way as when LAMMPS was started
from the debugger (see above). Most importantly it is possible to
obtain a stack trace with the ``where`` command and thus determine where
in the execution of a timestep this process is. Also internal data can
be printed and execution single stepped or continued. When the debugger
is exited, the calculation will resume normally.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,15 +1,11 @@
Warning messages
================
This is an alphabetic list of some of the WARNING messages LAMMPS prints
out and the reason why. If the explanation here is not sufficient, the
documentation for the offending command may help. This is a historic
list and no longer updated. Instead the LAMMPS developers are trying
to provide more details right with the error message or link to a
paragraph with :doc:`detailed explanations <Errors_details>`.
Warning messages also list the source file and line number where the
warning was generated. For example, a message like this:
This is an alphabetic list of the WARNING messages LAMMPS prints out
and the reason why. If the explanation here is not sufficient, the
documentation for the offending command may help. Warning messages
also list the source file and line number where the warning was
generated. For example, a message like this:
.. parsed-literal::
@ -18,7 +14,7 @@ warning was generated. For example, a message like this:
means that line #187 in the file src/domain.cpp generated the error.
Looking in the source code may help you figure out what went wrong.
Please also see the page with :doc:`Error messages <Errors_messages>`
Doc page with :doc:`ERROR messages <Errors_messages>`
----------
@ -32,10 +28,16 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
cutoff is set too short or the angle has blown apart and an atom is
too far away.
*Angle style in data file differs from currently defined angle style*
Self-explanatory.
*Angles are defined but no angle style is set*
The topology contains angles, but there are no angle forces computed
since there was no angle_style command.
*Atom style in data file differs from currently defined atom style*
Self-explanatory.
*Bond atom missing in box size check*
The second atom needed to compute a particular bond is missing on this
processor. Typically this is because the pairwise cutoff is set too
@ -51,6 +53,9 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
processor. Typically this is because the pairwise cutoff is set too
short or the bond has blown apart and an atom is too far away.
*Bond style in data file differs from currently defined bond style*
Self-explanatory.
*Bonds are defined but no bond style is set*
The topology contains bonds, but there are no bond forces computed
since there was no bond_style command.
@ -63,6 +68,9 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
length, multiplying by the number of bonds in the interaction (e.g. 3
for a dihedral) and adding a small amount of stretch.
*Both groups in compute group/group have a net charge; the Kspace boundary correction to energy will be non-zero*
Self-explanatory.
*Calling write_dump before a full system init.*
The write_dump command is used before the system has been fully
initialized as part of a 'run' or 'minimize' command. Not all dump
@ -78,6 +86,18 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
This means the temperature associated with the rigid bodies may be
incorrect on this timestep.
*Cannot include log terms without 1/r terms; setting flagHI to 1*
Self-explanatory.
*Cannot include log terms without 1/r terms; setting flagHI to 1.*
Self-explanatory.
*Charges are set, but coulombic solver is not used*
Self-explanatory.
*Charges did not converge at step %ld: %lg*
Self-explanatory.
*Communication cutoff is 0.0. No ghost atoms will be generated. Atoms may get lost*
The communication cutoff defaults to the maximum of what is inferred from
pair and bond styles (will be zero, if none are defined) and what is specified
@ -103,6 +123,9 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
is not changed automatically and the warning may be ignored depending
on the specific system being simulated.
*Communication cutoff is too small for SNAP micro load balancing, increased to %lf*
Self-explanatory.
*Compute cna/atom cutoff may be too large to find ghost atom neighbors*
The neighbor cutoff used may not encompass enough ghost atoms
to perform this operation correctly.
@ -135,6 +158,9 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
Conformation of the 4 listed dihedral atoms is extreme; you may want
to check your simulation geometry.
*Dihedral style in data file differs from currently defined dihedral style*
Self-explanatory.
*Dihedrals are defined but no dihedral style is set*
The topology contains dihedrals, but there are no dihedral forces computed
since there was no dihedral_style command.
@ -151,6 +177,9 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
*Estimated error in splitting of dispersion coeffs is %g*
Error is greater than 0.0001 percent.
*Ewald/disp Newton solver failed, using old method to estimate g_ewald*
Self-explanatory. Choosing a different cutoff value may help.
*FENE bond too long*
A FENE bond has stretched dangerously far. It's interaction strength
will be truncated to attempt to prevent the bond from blowing up.
@ -163,6 +192,9 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
A FENE bond has stretched dangerously far. It's interaction strength
will be truncated to attempt to prevent the bond from blowing up.
*Fix halt condition for fix-id %s met on step %ld with value %g*
Self explanatory.
*Fix SRD walls overlap but fix srd overlap not set*
You likely want to set this in your input script.
@ -206,12 +238,21 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
*Fix property/atom mol or charge w/out ghost communication*
A model typically needs these properties defined for ghost atoms.
*Fix qeq CG convergence failed (%g) after %d iterations at %ld step*
Self-explanatory.
*Fix qeq has non-zero lower Taper radius cutoff*
Absolute value must be <= 0.01.
*Fix qeq has very low Taper radius cutoff*
Value should typically be >= 5.0.
*Fix qeq/dynamic tolerance may be too small for damped dynamics*
Self-explanatory.
*Fix qeq/fire tolerance may be too small for damped fires*
Self-explanatory.
*Fix rattle should come after all other integration fixes*
This fix is designed to work after all other integration fixes change
atom positions. Thus it should be the last integration fix specified.
@ -244,6 +285,9 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
The user-specified force accuracy cannot be achieved unless the table
feature is disabled by using 'pair_modify table 0'.
*Geometric mixing assumed for 1/r\^6 coefficients*
Self-explanatory.
*Group for fix_modify temp != fix group*
The fix_modify command is specifying a temperature computation that
computes a temperature on a different group of atoms than the fix
@ -266,14 +310,46 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
Conformation of the 4 listed improper atoms is extreme; you may want
to check your simulation geometry.
*Improper style in data file differs from currently defined improper style*
Self-explanatory.
*Impropers are defined but no improper style is set*
The topology contains impropers, but there are no improper forces computed
since there was no improper_style command.
*Inconsistent image flags*
The image flags for a pair on bonded atoms appear to be inconsistent.
Inconsistent means that when the coordinates of the two atoms are
unwrapped using the image flags, the two atoms are far apart.
Specifically they are further apart than half a periodic box length.
Or they are more than a box length apart in a non-periodic dimension.
This is usually due to the initial data file not having correct image
flags for the two atoms in a bond that straddles a periodic boundary.
They should be different by 1 in that case. This is a warning because
inconsistent image flags will not cause problems for dynamics or most
LAMMPS simulations. However they can cause problems when such atoms
are used with the fix rigid or replicate commands. Note that if you
have an infinite periodic crystal with bonds then it is impossible to
have fully consistent image flags, since some bonds will cross
periodic boundaries and connect two atoms with the same image
flag.
*Increasing communication cutoff for GPU style*
The pair style has increased the communication cutoff to be consistent with
the communication cutoff requirements for this pair style when run on the GPU.
*KIM Model does not provide 'energy'; Potential energy will be zero*
Self-explanatory.
*KIM Model does not provide 'forces'; Forces will be zero*
Self-explanatory.
*KIM Model does not provide 'particleEnergy'; energy per atom will be zero*
Self-explanatory.
*KIM Model does not provide 'particleVirial'; virial per atom will be zero*
Self-explanatory.
*Kspace_modify slab param < 2.0 may cause unphysical behavior*
The kspace_modify slab parameter should be larger to ensure periodic
grids padded with empty space do not overlap.
@ -325,10 +401,20 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
box, or moved further than one processor's subdomain away before
reneighboring.
*MSM mesh too small, increasing to 2 points in each direction*
Self-explanatory.
*Mismatch between velocity and compute groups*
The temperature computation used by the velocity command will not be
on the same group of atoms that velocities are being set for.
*Mixing forced for lj coefficients*
Self-explanatory.
*Molecule attributes do not match system attributes*
An attribute is specified (e.g. diameter, charge) that is
not defined for the specified atom style.
*Molecule has bond topology but no special bond settings*
This means the bonded atoms will not be excluded in pairwise
interactions.
@ -363,6 +449,9 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
*More than one compute damage/atom*
It is not efficient to use compute ke/atom more than once.
*More than one compute dilatation/atom*
Self-explanatory.
*More than one compute erotate/sphere/atom*
It is not efficient to use compute erorate/sphere/atom more than once.
@ -375,6 +464,24 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
*More than one compute orientorder/atom*
It is not efficient to use compute orientorder/atom more than once.
*More than one compute plasticity/atom*
Self-explanatory.
*More than one compute sna/atom*
Self-explanatory.
*More than one compute sna/grid*
Self-explanatory.
*More than one compute sna/grid/local*
Self-explanatory.
*More than one compute snad/atom*
Self-explanatory.
*More than one compute snav/atom*
Self-explanatory.
*More than one fix poems*
It is not efficient to use fix poems more than once.
@ -450,12 +557,21 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
*Pair COMB charge %.10f with force %.10f hit min barrier*
Something is possibly wrong with your model.
*Pair brownian needs newton pair on for momentum conservation*
Self-explanatory.
*Pair dpd needs newton pair on for momentum conservation*
Self-explanatory.
*Pair dsmc: num_of_collisions > number_of_A*
Collision model in DSMC is breaking down.
*Pair dsmc: num_of_collisions > number_of_B*
Collision model in DSMC is breaking down.
*Pair style in data file differs from currently defined pair style*
Self-explanatory.
*Pair style restartinfo set but has no restart support*
This pair style has a bug, where it does not support reading and
writing information to a restart file, but does not set the member
@ -565,6 +681,9 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
cluster specified by the fix shake command is numerically suspect. LAMMPS
will set it to 0.0 and continue.
*Shell command '%s' failed with error '%s'*
Self-explanatory.
*Shell command returned with non-zero status*
This may indicate the shell command did not operate as expected.
@ -575,9 +694,15 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
This will lead to invalid constraint forces in the SHAKE/RATTLE
computation.
*Simulations might be very slow because of large number of structure factors*
Self-explanatory.
*Slab correction not needed for MSM*
Slab correction is intended to be used with Ewald or PPPM and is not needed by MSM.
*Specifying an 'subset' value of '0' is equivalent to no 'subset' keyword*
Self-explanatory.
*System is not charge neutral, net charge = %g*
The total charge on all atoms on the system is not 0.0.
For some KSpace solvers this is only a warning.
@ -609,6 +734,9 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
assumed to also be for all atoms. Thus the pressure printed by thermo
could be inaccurate.
*The fix ave/spatial command has been replaced by the more flexible fix ave/chunk and compute chunk/atom commands -- fix ave/spatial will be removed in the summer of 2015*
Self-explanatory.
*The minimizer does not re-orient dipoles when using fix efield*
This means that only the atom coordinates will be minimized,
not the orientation of the dipoles.
@ -617,6 +745,9 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
More than the maximum # of neighbors was found multiple times. This
was unexpected.
*Too many inner timesteps in fix ttm*
Self-explanatory.
*Too many neighbors in CNA for %d atoms*
More than the maximum # of neighbors was found multiple times. This
was unexpected.
@ -644,6 +775,24 @@ Please also see the page with :doc:`Error messages <Errors_messages>`
The deformation will heat the SRD particles so this can
be dangerous.
*Using kspace solver on system with no charge*
Self-explanatory.
*Using largest cut-off for lj/long/dipole/long long long*
Self-explanatory.
*Using largest cutoff for buck/long/coul/long*
Self-explanatory.
*Using largest cutoff for lj/long/coul/long*
Self-explanatory.
*Using largest cutoff for pair_style lj/long/tip4p/long*
Self-explanatory.
*Using package gpu without any pair style defined*
Self-explanatory.
*Using pair potential shift with pair_modify compute no*
The shift effects will thus not be computed.

View File

@ -54,7 +54,7 @@ Lowercase directories
+-------------+------------------------------------------------------------------+
| body | body particles, 2d system |
+-------------+------------------------------------------------------------------+
| bpm | simulations of solid elastic/plastic deformation and fracture |
| bpm | BPM simulations of pouring elastic grains and plate impact |
+-------------+------------------------------------------------------------------+
| cmap | CMAP 5-body contributions to CHARMM force field |
+-------------+------------------------------------------------------------------+
@ -146,8 +146,6 @@ Lowercase directories
+-------------+------------------------------------------------------------------+
| streitz | use of Streitz/Mintmire potential with charge equilibration |
+-------------+------------------------------------------------------------------+
| stress_vcm | removing binned rigid body motion from binned stress profile |
+-------------+------------------------------------------------------------------+
| tad | temperature-accelerated dynamics of vacancy diffusion in bulk Si |
+-------------+------------------------------------------------------------------+
| threebody | regression test input for a variety of manybody potentials |

View File

@ -16,7 +16,7 @@ compiled alongside the code using it from the source code in
``fortran/lammps.f90`` *and* with the same compiler used to build the
rest of the Fortran code that interfaces to LAMMPS. When linking, you
also need to :doc:`link to the LAMMPS library <Build_link>`. A typical
command for a simple program using the Fortran interface would be:
command line for a simple program using the Fortran interface would be:
.. code-block:: bash
@ -69,11 +69,10 @@ statement. Internally, it will call either
:cpp:func:`lammps_open_fortran` or :cpp:func:`lammps_open_no_mpi` from
the C library API to create the class instance. All arguments are
optional and :cpp:func:`lammps_mpi_init` will be called automatically
if it is needed. Similarly, optional calls to
:cpp:func:`lammps_mpi_finalize`, :cpp:func:`lammps_kokkos_finalize`,
:cpp:func:`lammps_python_finalize`, and :cpp:func:`lammps_plugin_finalize`
are integrated into the :f:func:`close` function and triggered with the
optional logical argument set to ``.TRUE.``. Here is a simple example:
if it is needed. Similarly, a possible call to
:cpp:func:`lammps_mpi_finalize` is integrated into the :f:func:`close`
function and triggered with the optional logical argument set to
``.TRUE.``. Here is a simple example:
.. code-block:: fortran
@ -92,12 +91,12 @@ optional logical argument set to ``.TRUE.``. Here is a simple example:
CALL lmp%close(.TRUE.)
END PROGRAM testlib
It is also possible to pass command-line flags from Fortran to C/C++ and
It is also possible to pass command line flags from Fortran to C/C++ and
thus make the resulting executable behave similarly to the standalone
executable (it will ignore the `-in/-i` flag, though). This allows
using the command-line to configure accelerator and suffix settings,
using the command line to configure accelerator and suffix settings,
configure screen and logfile output, or to set index style variables
from the command-line and more. Here is a correspondingly adapted
from the command line and more. Here is a correspondingly adapted
version of the previous example:
.. code-block:: fortran
@ -109,7 +108,7 @@ version of the previous example:
CHARACTER(LEN=128), ALLOCATABLE :: command_args(:)
INTEGER :: i, argc
! copy command-line flags to `command_args()`
! copy command line flags to `command_args()`
argc = COMMAND_ARGUMENT_COUNT()
ALLOCATE(command_args(0:argc))
DO i=0, argc
@ -322,14 +321,6 @@ of the contents of the :f:mod:`LIBLAMMPS` Fortran interface to LAMMPS.
:ftype set_string_variable: subroutine
:f set_internal_variable: :f:subr:`set_internal_variable`
:ftype set_internal_variable: subroutine
:f eval: :f:func:`eval`
:ftype eval: function
:f clearstep_compute: :f:subr:`clearstep_compute`
:ftype clearstep_compute: subroutine
:f addstep_compute: :f:subr:`addstep_compute`
:ftype addstep_compute: subroutine
:f addstep_compute_all: :f:subr:`addstep_compute_all`
:ftype addstep_compute_all: subroutine
:f gather_atoms: :f:subr:`gather_atoms`
:ftype gather_atoms: subroutine
:f gather_atoms_concat: :f:subr:`gather_atoms_concat`
@ -457,7 +448,7 @@ of the contents of the :f:mod:`LIBLAMMPS` Fortran interface to LAMMPS.
compiled with MPI support, it will also initialize MPI, if it has
not already been initialized before.
The *args* argument with the list of command-line parameters is
The *args* argument with the list of command line parameters is
optional and so it the *comm* argument with the MPI communicator.
If *comm* is not provided, ``MPI_COMM_WORLD`` is assumed. For
more details please see the documentation of :cpp:func:`lammps_open`.
@ -522,8 +513,8 @@ Procedures Bound to the :f:type:`lammps` Derived Type
This method will close down the LAMMPS instance through calling
:cpp:func:`lammps_close`. If the *finalize* argument is present and
has a value of ``.TRUE.``, then this subroutine also calls
:cpp:func:`lammps_kokkos_finalize`, :cpp:func:`lammps_mpi_finalize`,
:cpp:func:`lammps_python_finalize`, and :cpp:func:`lammps_plugin_finalize`.
:cpp:func:`lammps_kokkos_finalize` and
:cpp:func:`lammps_mpi_finalize`.
:o finalize: shut down the MPI environment of the LAMMPS
library if ``.TRUE.``.
@ -531,8 +522,6 @@ Procedures Bound to the :f:type:`lammps` Derived Type
:to: :cpp:func:`lammps_close`
:to: :cpp:func:`lammps_mpi_finalize`
:to: :cpp:func:`lammps_kokkos_finalize`
:to: :cpp:func:`lammps_python_finalize`
:to: :cpp:func:`lammps_plugin_finalize`
--------
@ -965,7 +954,6 @@ Procedures Bound to the :f:type:`lammps` Derived Type
:f:func:`extract_atom` between runs.
.. admonition:: Array index order
:class: tip
Two-dimensional arrays returned from :f:func:`extract_atom` will be
**transposed** from equivalent arrays in C, and they will be indexed
@ -1078,7 +1066,6 @@ Procedures Bound to the :f:type:`lammps` Derived Type
you based on data from the :cpp:class:`Compute` class.
.. admonition:: Array index order
:class: tip
Two-dimensional arrays returned from :f:func:`extract_compute` will be
**transposed** from equivalent arrays in C, and they will be indexed
@ -1337,7 +1324,6 @@ Procedures Bound to the :f:type:`lammps` Derived Type
:rtype data: polymorphic
.. admonition:: Array index order
:class: tip
Two-dimensional global, per-atom, or local array data from
:f:func:`extract_fix` will be **transposed** from equivalent arrays in
@ -1462,62 +1448,11 @@ Procedures Bound to the :f:type:`lammps` Derived Type
an internal-style variable, an error is generated.
:p character(len=*) name: name of the variable
:p real(c_double) val: new value to assign to the variable
:p read(c_double) val: new value to assign to the variable
:to: :cpp:func:`lammps_set_internal_variable`
--------
.. f:function:: eval(expr)
This function is a wrapper around :cpp:func:`lammps_eval` that takes a
LAMMPS equal style variable string, evaluates it and returns the resulting
scalar value as a floating-point number.
.. versionadded:: 4Feb2025
:p character(len=\*) expr: string to be evaluated
:to: :cpp:func:`lammps_eval`
:r value [real(c_double)]: result of the evaluated string
--------
.. f:subroutine:: clearstep_compute()
Clear whether a compute has been invoked
.. versionadded:: 4Feb2025
:to: :cpp:func:`lammps_clearstep_compute`
--------
.. f:subroutine:: addstep_compute(nextstep)
Add timestep to list of future compute invocations
if the compute has been invoked on the current timestep
.. versionadded:: 4Feb2025
overloaded for 32-bit and 64-bit integer arguments
:p integer(kind=8 or kind=4) nextstep: next timestep
:to: :cpp:func:`lammps_addstep_compute`
--------
.. f:subroutine:: addstep_compute_all(nextstep)
Add timestep to list of future compute invocations
.. versionadded:: 4Feb2025
overloaded for 32-bit and 64-bit integer arguments
:p integer(kind=8 or kind=4) nextstep: next timestep
:to: :cpp:func:`lammps_addstep_compute_all`
--------
.. f:subroutine:: gather_atoms(name, count, data)
This function calls :cpp:func:`lammps_gather_atoms` to gather the named
@ -2776,7 +2711,8 @@ Procedures Bound to the :f:type:`lammps` Derived Type
END SUBROUTINE external_callback
END INTERFACE
where ``c_bigint`` is ``c_int64_t`` and ``c_tagint`` is ``c_int64_t`` if
where ``c_bigint`` is ``c_int`` if ``-DLAMMPS_SMALLSMALL`` was used and
``c_int64_t`` otherwise; and ``c_tagint`` is ``c_int64_t`` if
``-DLAMMPS_BIGBIG`` was used and ``c_int`` otherwise.
The argument *caller* to :f:subr:`set_fix_external_callback` is unlimited

View File

@ -40,7 +40,6 @@ Settings howto
Howto_walls
Howto_nemd
Howto_dispersion
Howto_bulk2slab
Analysis howto
==============
@ -66,7 +65,6 @@ Force fields howto
:name: force_howto
:maxdepth: 1
Howto_FFgeneral
Howto_bioFF
Howto_amoeba
Howto_tip3p
@ -105,7 +103,6 @@ Tutorials howto
Howto_github
Howto_lammps_gui
Howto_moltemplate
Howto_python
Howto_pylammps
Howto_wsl

View File

@ -1,55 +0,0 @@
Some general force field considerations
=======================================
A compact summary of the concepts, definitions, and properties of force
fields with explicit bonded interactions (like the ones discussed in
this HowTo) is given in :ref:`(Gissinger) <Typelabel2>`.
A force field has 2 parts: the formulas that define its potential
functions and the coefficients used for a particular system. To assign
parameters it is first required to assign atom types. Those are not
only based on the elements, but also on the chemical environment due to
the atoms bound to them. This often follows the chemical concept of
*functional groups*. Example: a carbon atom bound with a single bond to
a single OH-group (alcohol) would be a different atom type than a carbon
atom bound to a methyl CH3 group (aliphatic carbon). The atom types
usually then determine the non-bonded Lennard-Jones parameters and the
parameters for bonds, angles, dihedrals, and impropers. On top of that,
partial charges have to be applied. Those are usually independent of
the atom types and are determined either for groups of atoms called
residues with some fitting procedure based on quantum mechanical
calculations, or based on some increment system that add or subtract
increments from the partial charge of an atom based on the types of
the neighboring atoms.
Force fields differ in the strategies they employ to determine the
parameters and charge distribution in how generic or specific they are
which in turn has an impact on the accuracy (compare for example
CGenFF to CHARMM and GAFF to Amber). Because of the different
strategies, it is not a good idea to use a mix of parameters from
different force field *families* (like CHARMM, Amber, or GROMOS)
and that extends to the parameters for the solvent, especially
water. The publication describing the parameterization of a force
field will describe which water model to use. Changing the water
model usually leads to overall worse results (even if it may improve
on the water itself).
In addition, one has to consider that *families* of force fields like
CHARMM, Amber, OPLS, or GROMOS have evolved over time and thus provide
different *revisions* of the force field parameters. These often
corresponds to changes in the functional form or the parameterization
strategies. This may also result in changes required for simulation
settings like the preferred cutoff or how Coulomb interactions are
computed (cutoff, smoothed/shifted cutoff, or long-range with Ewald
summation or equivalent). Unless explicitly stated in the publication
describing the force field, the Coulomb interaction cannot be chosen at
will but must match the revision of the force field. That said,
liberties may be taken during the initial equilibration of a system to
speed up the process, but not for production simulations.
----------
.. _Typelabel2:
**(Gissinger)** J. R. Gissinger, I. Nikiforov, Y. Afshar, B. Waters, M. Choi, D. S. Karls, A. Stukowski, W. Im, H. Heinz, A. Kohlmeyer, and E. B. Tadmor, J Phys Chem B, 128, 3282-3297 (2024).

View File

@ -10,21 +10,20 @@ and/or pressure (P) is specified by the user, and the thermostat or
barostat attempts to equilibrate the system to the requested T and/or
P.
Barostatting in LAMMPS is performed by :doc:`fixes <fix>`. Three
Barostatting in LAMMPS is performed by :doc:`fixes <fix>`. Two
barostatting methods are currently available: Nose-Hoover (npt and
nph), Berendsen, and various linear controllers in deform/pressure:
nph) and Berendsen:
* :doc:`fix npt <fix_nh>`
* :doc:`fix npt/sphere <fix_npt_sphere>`
* :doc:`fix npt/asphere <fix_npt_asphere>`
* :doc:`fix nph <fix_nh>`
* :doc:`fix press/berendsen <fix_press_berendsen>`
* :doc:`fix deform/pressure <fix_deform_pressure>`
The :doc:`fix npt <fix_nh>` commands include a Nose-Hoover thermostat
and barostat. :doc:`Fix nph <fix_nh>` is just a Nose/Hoover barostat;
it does no thermostatting. The fixes :doc:`nph <fix_nh>`, :doc:`press/berendsen <fix_press_berendsen>`, and :doc:`deform/pressure <fix_deform_pressure>`
can be used in conjunction with any of the thermostatting fixes.
it does no thermostatting. Both :doc:`fix nph <fix_nh>` and :doc:`fix press/berendsen <fix_press_berendsen>` can be used in conjunction
with any of the thermostatting fixes.
As with the :doc:`thermostats <Howto_thermostat>`, :doc:`fix npt <fix_nh>`
and :doc:`fix nph <fix_nh>` only use translational motion of the
@ -45,9 +44,9 @@ a temperature or pressure compute to a barostatting fix.
.. note::
As with the thermostats, the Nose/Hoover methods (:doc:`fix npt <fix_nh>` and :doc:`fix nph <fix_nh>`) perform time integration.
:doc:`Fix press/berendsen <fix_press_berendsen>` and :doc:`fix deform/pressure <fix_deform_pressure>`
do NOT, so they should be used with one of the constant NVE fixes or with
one of the NVT fixes.
:doc:`Fix press/berendsen <fix_press_berendsen>` does NOT, so it should
be used with one of the constant NVE fixes or with one of the NVT
fixes.
Thermodynamic output, which can be setup via the
:doc:`thermo_style <thermo_style>` command, often includes pressure

View File

@ -1,16 +1,22 @@
CHARMM, AMBER, COMPASS, DREIDING, and OPLS force fields
=======================================================
Here we only discuss formulas implemented in LAMMPS that correspond to
formulas commonly used in the CHARMM, AMBER, COMPASS, and DREIDING force
fields. Setting coefficients is done either from special sections in an
input data file via the :doc:`read_data <read_data>` command or in the
input script with commands like :doc:`pair_coeff <pair_coeff>` or
:doc:`bond_coeff <bond_coeff>` and so on. See the :doc:`Tools <Tools>`
doc page for additional tools that can use CHARMM, AMBER, or Materials
Studio generated files to assign force field coefficients and convert
their output into LAMMPS input. LAMMPS input scripts can also be
generated by `charmm-gui.org <https://charmm-gui.org/>`_.
A compact summary of the concepts, definitions, and properties of
force fields with explicit bonded interactions (like the ones discussed
in this HowTo) is given in :ref:`(Gissinger) <Typelabel2>`.
A force field has 2 parts: the formulas that define it and the
coefficients used for a particular system. Here we only discuss
formulas implemented in LAMMPS that correspond to formulas commonly used
in the CHARMM, AMBER, COMPASS, and DREIDING force fields. Setting
coefficients is done either from special sections in an input data file
via the :doc:`read_data <read_data>` command or in the input script with
commands like :doc:`pair_coeff <pair_coeff>` or :doc:`bond_coeff
<bond_coeff>` and so on. See the :doc:`Tools <Tools>` doc page for
additional tools that can use CHARMM, AMBER, or Materials Studio
generated files to assign force field coefficients and convert their
output into LAMMPS input. LAMMPS input scripts can also be generated by
`charmm-gui.org <https://charmm-gui.org/>`_.
CHARMM and AMBER
----------------
@ -197,11 +203,9 @@ rather than individual force constants and geometric parameters that
depend on the particular combinations of atoms involved in the bond,
angle, or torsion terms. DREIDING has an :doc:`explicit hydrogen bond
term <pair_hbond_dreiding>` to describe interactions involving a
hydrogen atom on very electronegative atoms (N, O, F). Unlike CHARMM or
AMBER, the DREIDING force field has not been parameterized for
considering solvents (like water) and has no rules for assigning
(partial) charges. That will seriously limit its accuracy when used for
simulating systems where those matter.
hydrogen atom on very electronegative atoms (N, O, F). Unlike CHARMM
or AMBER, the DREIDING force field has not been parameterized for
considering solvents (like water).
See :ref:`(Mayo) <howto-Mayo>` for a description of the DREIDING force field
@ -268,6 +272,10 @@ compatible with a subset of OPLS interactions.
----------
.. _Typelabel2:
**(Gissinger)** J. R. Gissinger, I. Nikiforov, Y. Afshar, B. Waters, M. Choi, D. S. Karls, A. Stukowski, W. Im, H. Heinz, A. Kohlmeyer, and E. B. Tadmor, J Phys Chem B, 128, 3282-3297 (2024).
.. _howto-MacKerell:
**(MacKerell)** MacKerell, Bashford, Bellott, Dunbrack, Evanseck, Field, Fischer, Gao, Guo, Ha, et al (1998). J Phys Chem, 102, 3586 . https://doi.org/10.1021/jp973084f

View File

@ -42,14 +42,12 @@ such as those created by pouring grains using :doc:`fix pour
----------
Currently, there are three types of bonds included in the BPM package. The
Currently, there are two types of bonds included in the BPM package. The
first bond style, :doc:`bond bpm/spring <bond_bpm_spring>`, only applies
pairwise, central body forces. Point particles must have :doc:`bond atom
style <atom_style>` and may be thought of as nodes in a spring
network. An optional multibody term can be used to adjust the network's
Poisson's ratio. The :doc:`bpm/spring/plastic <bond_bpm_spring_plastic>`
bond style is similar except it adds a plastic yield strain.
Alternatively, the third bond style, :doc:`bond bpm/rotational
Poisson's ratio. Alternatively, the second bond style, :doc:`bond bpm/rotational
<bond_bpm_rotational>`, resolves tangential forces and torques arising
with the shearing, bending, and twisting of the bond due to rotation or
displacement of particles. Particles are similar to those used in the

View File

@ -1,160 +0,0 @@
===========================
Convert bulk system to slab
===========================
A regularly encountered simulation problem is how to convert a bulk
system that has been run for a while to equilibrate into a slab system
with some vacuum space and free surfaces. The challenge here is that
one cannot just change the box dimensions with the :doc:`change_box
command <change_box>` or edit the box boundaries in a data file because
some atoms will have non-zero image flags from diffusing around.
Changing the box dimensions results in an undesired displacement of
those atoms, since the image flags indicate how many times the box
length in x-, y-, or z-direction needs to be added or subtracted to get
the "unwrapped" coordinates. By changing the box dimension this
distance is changed and thus those atoms move unphysically relative to
their neighbors with zero image flags. Setting image flags forcibly to
zero creates problems because that could break apart molecules by having
one atom of a bond on the top of the system and the other at the bottom.
.. _bulk2slab:
.. figure:: JPG/rhodo-both.jpg
:figwidth: 80%
:figclass: align-center
Snapshots of the bulk Rhodopsin in lipid layer and water system (right)
and the generated slab geometry (left)
.. admonition:: Disclaimer
:class: note
The following workflow will work for many bulk systems, but not all.
Some systems cannot be converted (e.g. polymers with bonds to the
same molecule across periodic boundaries, sometimes called "infinite
polymers"). The amount of vacuum that needs to be added depends on
the length of the molecules where the system is split (the example
here splits where there is water with short molecules). In some
cases, the system may need to be re-centered in the box first using
the :doc:`displace_atoms command <displace_atoms>`. Also, the time
spent on strong thermalization and equilibration will depend on the
specific system and its thermodynamic conditions.
Below is a suggested workflow using the :doc:`Rhodopsin benchmark input
<Speed_bench>` for demonstration. The figure shows the state *before*
the procedure on the left (with unwrapped atoms that have diffused out
of the box) and *after* on the right (with the vacuum added above and
below). The procedure is implemented by modifying a copy of the
``in.rhodo`` input file. The first lines up to and including the
:doc:`read_data command <read_data>` remain unchanged. Then we insert
the following lines to add vacuum to the z direction above and below the
system:
.. code-block:: LAMMPS
variable delta index 10.0
reset_atoms image all
write_dump all custom rhodo-unwrap.lammpstrj id xu yu zu
change_box all z final $(zlo-2.0*v_delta) $(zhi+2.0*v_delta) &
boundary p p f
read_dump rhodo-unwrap.lammpstrj 0 x y z box no replace yes
kspace_modify slab 3.0
Specifically, the :doc:`variable delta <variable>` (set to 10.0)
represents a distance that determines the amount of vacuum added: we add
twice its value in each direction to the z-dimension; thus in total
:math:`40 \AA` get added. The :doc:`reset_atoms image all
<reset_atoms>` command shall reset any image flags to become either 0 or
:math:`\pm 1` and thus have the minimum distance from the center of the
simulation box, but the correct relative distance for bonded atoms.
The :doc:`write_dump command <write_dump>` then writes out the resulting
*unwrapped* coordinates of the system. After expanding the box,
coordinates that were outside the box should now be inside and the
unwrapped coordinates will become "wrapped", while atoms outside the
periodic boundaries will be wrapped back into the box and their image
flags in those directions restored.
The :doc:`change_box command <change_box>` adds the desired
distance to the low and high box boundary in z-direction and then changes
the :doc:`boundary to "p p f" <boundary>` which will force the image
flags in z-direction to zero and create an undesired displacement for
the atoms with non-zero image flags.
With the :doc:`read_dump command <read_dump>` we read back and replace
partially incorrect coordinates with the previously saved, unwrapped
coordinates. It is important to ignore the box dimensions stored in the
dump file. We want to preserve the expanded box. Finally, we turn on
the slab correction for the PPPM long-range solver with the
:doc:`kspace_modify command <kspace_modify>` as required when using a
long range Coulomb solver for non-periodic z-dimension.
Next we replace the :doc:`fix npt command <fix_nh>` with:
.. code-block:: LAMMPS
fix 2 nvt temp 300.0 300.0 10.0
We now have an open system and thus the adjustment of the cell in
z-direction is no longer required. Since splitting the bulk water
region where the vacuum is inserted, creates surface atoms with high
potential energy, we reduce the thermostat time constant from 100.0 to
10.0 to remove excess kinetic energy resulting from that change faster.
Also the high potential energy of the surface atoms can cause that some
of them are ejected from the slab. In order to suppress that, we add
soft harmonic walls to push back any atoms that want to leave the slab.
To determine the position of the wall, we first need to to determine the
extent of the atoms in z-direction and then place the harmonic walls
based on that information:
.. code-block:: LAMMPS
compute zmin all reduce min z
compute zmax all reduce max z
thermo_style custom zlo c_zmin zhi c_zmax
run 0 post no
fix 3 all wall/harmonic zhi $(c_zmax+v_delta) 10.0 0.0 ${delta} &
zlo $(c_zmin-v_delta) 10.0 0.0 ${delta}
The two :doc:`compute reduce <compute_reduce>` command determine the
minimum and maximum z-coordinate across all atoms. In order to trigger
the execution of the compute commands we need to "consume" them. This
is done with the :doc:`thermo_style custom <thermo_style>` command
followed by the :doc:`run 0 <run>` command. This avoids and error
accessing the min/max values determined by the compute commands to
compute the location of the wall in lower and upper direction. This
uses the previously defined *delta* variable to determine the distance
of the wall from the extent of the system and the cutoff for the wall
interaction. This way only atoms that move beyond the min/max values in
z-direction will experience a restoring force, nudging them back to the
slab. The force constant of :math:`10.0 \frac{\mathrm{kcal/mol}}{\AA}`
was determined empirically.
Adding these "restoring" soft walls assist in making the free surfaces
above and below the slab flat, instead of having rugged or ondulated
surfaces. The impact of the walls can be changed by adjusting the force
constant, cutoff, and position of the wall.
Finally, we replace the :doc:`run 100 <run>` of the original input with:
.. code-block:: LAMMPS
run 1000 post no
unfix 3
fix 2 all nvt temp 300.0 300.0 100.0
run 1000 post no
write_data data.rhodo-slab
This runs the system converted to a slab first for 1000 MD steps using
the walls and stronger Nose-Hoover thermostat. Then the walls are
removed with :doc:`unfix 3 <unfix>` and the thermostat time constant
reset to 100.0 and the system run for another 1000 steps. Finally the
resulting slab geometry is written to a new data file
``data.rhodo-slab`` with a :doc:`write_data command <write_data>`. The
number of MD steps required to reach a proper equilibrium state is very
likely larger. The number of 1000 steps (corresponding to 2
picoseconds) was chosen for demonstration purposes, so that the
procedure can be easily and quickly tested.

View File

@ -56,7 +56,7 @@ using a shell like Bash or Zsh.
Visual Studio IDE with the bundled CMake or from the Windows command prompt using
a separately installed CMake package, both using the native Microsoft Visual C++
compilers and (optionally) the Microsoft MPI SDK. This tutorial, however, only
covers unix-like command-line interfaces.
covers unix-like command line interfaces.
We also assume that you have downloaded and unpacked a recent LAMMPS source code package
or used Git to create a clone of the LAMMPS sources on your compilation machine.
@ -277,7 +277,7 @@ Setting options
---------------
Options that enable, disable or modify settings are modified by setting
the value of CMake variables. This is done on the command-line with the
the value of CMake variables. This is done on the command line with the
*-D* flag in the format ``-D VARIABLE=value``, e.g. ``-D
CMAKE_BUILD_TYPE=Release`` or ``-D BUILD_MPI=on``. There is one quirk:
when used before the CMake directory, there may be a space between the
@ -285,7 +285,7 @@ when used before the CMake directory, there may be a space between the
can have boolean values (on/off, yes/no, or 1/0 are all valid) or are
strings representing a choice, or a path, or are free format. If the
string would contain whitespace, it must be put in quotes, for example
``-D CMAKE_CXX_FLAGS="-O3 -Wall -ftree-vectorize -ffast-math"``.
``-D CMAKE_TUNE_FLAGS="-ftree-vectorize -ffast-math"``.
CMake variables fall into two categories: 1) common CMake variables that
are used by default for any CMake configuration setup and 2) project
@ -341,6 +341,8 @@ Some common LAMMPS specific variables
- compile some additional executables from the ``tools`` folder (default: ``off``)
* - ``BUILD_DOC``
- include building the HTML format documentation for packaging/installing (default: ``off``)
* - ``CMAKE_TUNE_FLAGS``
- common compiler flags, for optimization or instrumentation (default:)
* - ``LAMMPS_MACHINE``
- when set to ``name`` the LAMMPS executable and library will be called ``lmp_name`` and ``liblammps_name.a``
* - ``FFT``
@ -374,7 +376,7 @@ Using presets
-------------
Since LAMMPS has a lot of optional features and packages, specifying
them all on the command-line can be tedious. Or when selecting a
them all on the command line can be tedious. Or when selecting a
different compiler toolchain, multiple options have to be changed
consistently and that is rather error prone. Or when enabling certain
packages, they require consistent settings to be operated in a
@ -382,7 +384,7 @@ particular mode. For this purpose, we are providing a selection of
"preset files" for CMake in the folder ``cmake/presets``. They
represent a way to pre-load or override the CMake configuration cache by
setting or changing CMake variables. Preset files are loaded using the
*-C* command-line flag. You can combine loading multiple preset files or
*-C* command line flag. You can combine loading multiple preset files or
change some variables later with additional *-D* flags. A few examples:
.. code-block:: bash

View File

@ -163,7 +163,7 @@ After everything is done, add the files to the branch and commit them:
*git rm*, *git mv* for adding, removing, renaming individual files,
respectively, and then *git commit* to finalize the commit.
Carefully check all pending changes with *git status* before
committing them. If you find doing this on the command-line too
committing them. If you find doing this on the command line too
tedious, consider using a GUI, for example the one included in git
distributions written in Tk, i.e. use *git gui* (on some Linux
distributions it may be required to install an additional package to
@ -487,10 +487,10 @@ updates are back-ported from the *develop* branch to the *maintenance*
branch and occasionally merged to *stable* as an update release.
Furthermore, the naming of the release tags now follow the pattern
"patch\_<Day><Month><Year>" to simplify comparisons between releases.
For stable releases additional "stable\_<Day><Month><Year>" tags are
"patch_<Day><Month><Year>" to simplify comparisons between releases.
For stable releases additional "stable_<Day><Month><Year>" tags are
applied and update releases are tagged with
"stable\_<Day><Month><Year>\_update<Number>", Finally, all releases and
"stable_<Day><Month><Year>_update<Number>", Finally, all releases and
submissions are subject to automatic testing and code checks to make
sure they compile with a variety of compilers and popular operating
systems. Some unit and regression testing is applied as well.
@ -498,7 +498,3 @@ systems. Some unit and regression testing is applied as well.
A detailed discussion of the LAMMPS developer GitHub workflow can be
found in the file `doc/github-development-workflow.md
<https://github.com/lammps/lammps/blob/develop/doc/github-development-workflow.md>`_
.. raw:: latex
\clearpage

View File

@ -1,37 +1,44 @@
Using LAMMPS-GUI
================
LAMMPS-GUI is a graphical text editor programmed using the `Qt Framework
<https://www.qt.io/>`_ and customized for editing LAMMPS input files. It
is linked to the :ref:`LAMMPS library <lammps_c_api>` and thus can run
LAMMPS directly using the contents of the editor's text buffer as input.
It *differs* from other known interfaces to LAMMPS in that it can
retrieve and display information from LAMMPS *while it is running*,
display visualizations created with the :doc:`dump image command
<dump_image>`, can launch the online LAMMPS documentation for known
LAMMPS commands and styles, and directly integrates with a collection
of LAMMPS tutorials (:ref:`Gravelle1 <Gravelle1>`).
This document describes **LAMMPS-GUI version 1.6**.
-----
.. contents::
LAMMPS-GUI is a graphical text editor customized for editing LAMMPS
input files that is linked to the :ref:`LAMMPS library <lammps_c_api>`
and thus can run LAMMPS directly using the contents of the editor's text
buffer as input. It can retrieve and display information from LAMMPS
while it is running, display visualizations created with the :doc:`dump
image command <dump_image>`, and is adapted specifically for editing
LAMMPS input files through text completion and reformatting, and linking
to the online LAMMPS documentation for known LAMMPS commands and styles.
----
.. note::
Pre-compiled, ready-to-use LAMMPS-GUI executables for Linux x86\_64
(Ubuntu 20.04LTS or later and compatible), macOS (version 11 aka Big
Sur or later), and Windows (version 10 or later) :ref:`are available
<lammps_gui_install>` for download. Non-MPI LAMMPS executables (as
``lmp``) for running LAMMPS from the command line and :doc:`some
LAMMPS tools <Tools>` compiled executables are also included.
The source code for LAMMPS-GUI is included in the LAMMPS source code
distribution and can be found in the ``tools/lammps-gui`` folder. It
can be compiled alongside LAMMPS when :doc:`compiling with CMake
<Build_cmake>`.
LAMMPS-GUI tries to provide an experience similar to what people
traditionally would have running LAMMPS using a command-line window and
traditionally would have running LAMMPS using a command line window and
the console LAMMPS executable but just rolled into a single executable:
- writing & editing LAMMPS input files with a text editor
- run LAMMPS on those input file with selected command-line flags
- run LAMMPS on those input file with selected command line flags
- extract data from the created files and visualize it with and
external software
That procedure is quite effective for people proficient in using the
command-line, as that allows them to use tools for the individual steps
command line, as that allows them to use tools for the individual steps
that they are most comfortable with. In fact, it is often *required* to
adopt this workflow when running LAMMPS simulations on high-performance
computing facilities.
@ -54,45 +61,19 @@ simple LAMMPS simulations. It is very suitable for tutorials on LAMMPS
since you only need to learn how to use a single program for most tasks
and thus time can be saved and people can focus on learning LAMMPS.
The tutorials at https://lammpstutorials.github.io/ are specifically
updated for use with LAMMPS-GUI and their tutorial materials can
be downloaded and edited directly from the GUI.
updated for use with LAMMPS-GUI.
Another design goal is to keep the barrier low when replacing part of
the functionality of LAMMPS-GUI with external tools. That said, LAMMPS-GUI
has some unique functionality that is not found elsewhere:
- auto-adapting to features available in the integrated LAMMPS library
- auto-completion for LAMMPS commands and options
- context-sensitive online help
- start and stop of simulations via mouse or keyboard
- monitoring of simulation progress
- interactive visualization using the :doc:`dump image <dump_image>`
command with the option to copy-paste the resulting settings
- automatic slide show generation from dump image output at runtime
- automatic plotting of thermodynamic data at runtime
- automatic slide show generation from dump image out at runtime
- automatic plotting of thermodynamics data at runtime
- inspection of binary restart files
.. admonition:: Download LAMMPS-GUI for your platform
:class: Hint
Pre-compiled, ready-to-use LAMMPS-GUI executables for Linux x86\_64
(Ubuntu 20.04LTS or later and compatible), macOS (version 11 aka Big
Sur or later), and Windows (version 10 or later) :ref:`are available
<lammps_gui_install>` for download. Non-MPI LAMMPS executables (as
``lmp``) for running LAMMPS from the command-line and :doc:`some
LAMMPS tools <Tools>` compiled executables are also included. Also,
the pre-compiled LAMMPS-GUI packages include the WHAM executables
from http://membrane.urmc.rochester.edu/content/wham/ for use with
LAMMPS tutorials documented in this paper (:ref:`Gravelle1
<Gravelle1>`).
The source code for LAMMPS-GUI is included in the LAMMPS source code
distribution and can be found in the ``tools/lammps-gui`` folder. It
can be compiled alongside LAMMPS when :doc:`compiling with CMake
<Build_cmake>`.
-----
The following text provides a detailed tour of the features and
functionality of LAMMPS-GUI. Suggestions for new features and
reports of bugs are always welcome. You can use the :doc:`the same
@ -103,12 +84,9 @@ channels as for LAMMPS itself <Errors_bugs>` for that purpose.
Installing Pre-compiled LAMMPS-GUI Packages
-------------------------------------------
LAMMPS-GUI is available for download as pre-compiled binary packages for
Linux x86\_64 (Ubuntu 20.04LTS or later and compatible), macOS (version
11 aka Big Sur or later), and Windows (version 10 or later) from the
`LAMMPS release pages on GitHub <https://github.com/lammps/lammps/releases/>`_.
A backup download location is at https://download.lammps.org/static/
Alternately, LAMMPS-GUI can be compiled from source when building LAMMPS.
LAMMPS-GUI is available as pre-compiled binary packages for Linux
x86\_64, macOS 11 and later, and Windows 10 and later. Alternately, it
can be compiled from source.
Windows 10 and later
^^^^^^^^^^^^^^^^^^^^
@ -122,11 +100,10 @@ MacOS 11 and later
^^^^^^^^^^^^^^^^^^
After downloading the ``LAMMPS-macOS-multiarch-GUI-<version>.dmg``
application bundle disk image, you need to double-click it and then, in
the window that opens, drag the app bundle as indicated into the
"Applications" folder. Afterwards, the disk image can be unmounted.
Then follow the instructions in the "README.txt" file to get access to
the other included command-line executables.
installer package, you need to double-click it and then, in the window
that opens, drag the app bundle as indicated into the "Applications"
folder. The follow the instructions in the "README.txt" file to
get access to the other included executables.
Linux on x86\_64
^^^^^^^^^^^^^^^^
@ -140,25 +117,15 @@ into the "LAMMPS_GUI" folder and execute "./lammps-gui" directly.
The second variant uses `flatpak <https://www.flatpak.org>`_ and
requires the flatpak management and runtime software to be installed.
After downloading the ``LAMMPS-GUI-Linux-x86_64-GUI-<version>.flatpak``
After downloading the ``LAMMPS-GUI-Linux-x86_64-GUI-<version>.tar.gz``
flatpak bundle, you can install it with ``flatpak install --user
LAMMPS-GUI-Linux-x86_64-GUI-<version>.flatpak``. After installation,
LAMMPS-GUI-Linux-x86_64-GUI-<version>.tar.gz``. After installation,
LAMMPS-GUI should be integrated into your desktop environment under
"Applications > Science" but also can be launched from the console with
``flatpak run org.lammps.lammps-gui``. The flatpak bundle also includes
the console LAMMPS executable ``lmp`` which can be launched to run
simulations with, for example with:
.. code-block:: sh
flatpak run --command=lmp org.lammps.lammps-gui -in in.melt
Other bundled command-line executables are run the same way and can be
listed with:
.. code-block:: sh
ls $(flatpak info --show-location org.lammps.lammps-gui )/files/bin
simulations with, for example: ``flatpak run --command=lmp
org.lammps.lammps-gui -in in.melt``.
Compiling from Source
@ -198,9 +165,9 @@ window is stored when exiting and restored when starting again.
Opening Files
^^^^^^^^^^^^^
The LAMMPS-GUI application can be launched without command-line arguments
The LAMMPS-GUI application can be launched without command line arguments
and then starts with an empty buffer in the *Editor* window. If arguments
are given LAMMPS will use first command-line argument as the file name for
are given LAMMPS will use first command line argument as the file name for
the *Editor* buffer and reads its contents into the buffer, if the file
exists. All further arguments are ignored. Files can also be opened via
the *File* menu, the `Ctrl-O` (`Command-O` on macOS) keyboard shortcut
@ -294,24 +261,14 @@ Output Window
By default, when starting a run, an *Output* window opens that displays
the screen output of the running LAMMPS calculation, as shown below.
This text would normally be seen in the command-line window.
This text would normally be seen in the command line window.
.. image:: JPG/lammps-gui-log.png
:align: center
:scale: 50%
LAMMPS-GUI captures the screen output from LAMMPS as it is generated and
updates the *Output* window regularly during a run. If there are any
warnings or errors in the LAMMPS output, they are highlighted by using
bold text colored in red. There is a small panel at the bottom center
of the *Output* window showing how many warnings and errors were
detected and how many lines the entire output has. By clicking on the
button on the right with the warning symbol or by using the keyboard
shortcut `Ctrl-N` (`Command-N` on macOS), you can jump to the next
line with a warning or error. If there is a URL pointing to additional
explanations in the online manual, that URL will be highlighted and
double-clicking on it shall open the corresponding manual page in
the web browser. The option is also available from the context menu.
updates the *Output* window regularly during a run.
By default, the *Output* window is replaced each time a run is started.
The runs are counted and the run number for the current run is displayed
@ -366,13 +323,8 @@ data or both. The smoothing uses a `Savitzky-Golay convolution filter
window width (left) and order (right) parameters can be set in the boxes
next to the drop down menu. Default settings are 10 and 4 which means
that the smoothing window includes 10 points each to the left and the
right of the current data point for a total of 21 points and a fourth
order polynomial is fitted to the data in the window.
The "Title:" and "Y:" input boxes allow to edit the text shown as the
plot title and the y-axis label, respectively. The text entered in the
"Title:" box is applied to *all* charts, while the "Y:" text changes
only the y-axis label of the currently *selected* plot.
right of the current data point and a fourth order polynomial is fit to
the data in the window.
You can use the mouse to zoom into the graph (hold the left button and
drag to mark an area) or zoom out (right click) and you can reset the
@ -404,11 +356,6 @@ here you get the compounded data set starting with the last change of
output fields or timestep setting, while the export from the log will
contain *all* YAML output but *segmented* into individual runs.
The *Preferences* dialog has a *Charts* tab, where you can configure
multiple chart-related settings, like the default title, colors for the
graphs, default choice of the raw / smooth graph selection, and the
default chart graph size.
Image Slide Show
----------------
@ -451,7 +398,7 @@ below.
Like for the *Output* and *Charts* windows, its content is continuously
updated during a run. It will show "(none)" if there are no variables
defined. Note that it is also possible to *set* :doc:`index style
variables <variable>`, that would normally be set via command-line
variables <variable>`, that would normally be set via command line
flags, via the "Set Variables..." dialog from the *Run* menu.
LAMMPS-GUI automatically defines the variable "gui_run" to the current
value of the run counter. That way it is possible to automatically
@ -488,11 +435,11 @@ correspond to (via their mass) and then colorize them in the image and
set their atom diameters accordingly. If this is not possible, for
instance when using reduced (= 'lj') :doc:`units <units>`, then
LAMMPS-GUI will check the current pair style and if it is a
Lennard-Jones type potential, it will extract the *sigma* parameter for
each atom type and assign atom diameters from those numbers. For cases
where atom diameters are not auto-detected, the *Atom size* field can be
edited and a suitable value set manually. The default value is inferred
from the x-direction lattice spacing.
Lennard-Jones type potential, it will extract the *sigma* parameter
for each atom type and assign atom diameters from those numbers.
For cases where atom diameters are not auto-detected, the *Atom size* field
can be edited and a suitable value set manually. The default value
is inferred from the x-direction lattice spacing.
If elements cannot be detected the default sequence of colors of the
:doc:`dump image <dump_image>` command is assigned to the different atom
@ -507,31 +454,22 @@ types.
|gui-image1| |gui-image2|
The default image size, some default image quality settings, the view
style and some colors can be changed in the *Preferences* dialog window.
From the image viewer window further adjustments can be made: actual
image size, high-quality (SSAO) rendering, anti-aliasing, view style,
display of box or axes, zoom factor. The view of the system can be
rotated horizontally and vertically.
It is also possible to display only the atoms within a :doc:`group
defined in the input script <group>` (default is "all"). The available
groups can be selected from the drop down list next to the "Group:"
label. Similarly, if there are :doc:`molecules defined in the input
<molecule>`, it is possible to select one of them (default is "none")
and visualize it (it will be shown at the center of the simulation box).
While a molecule is selected, the group selection is disabled. It can
be restored by selecting the molecule "none".
The image can also be re-centered on the center of mass of the selected
group. After each change, the image is rendered again and the display
updated. The small palette icon on the top left is colored while LAMMPS
is running to render the new image; it is grayed out when LAMMPS is
finished. When there are many atoms to render and high quality images
with anti-aliasing are requested, re-rendering may take several seconds.
From the *File* menu of the image window, the current image can be saved
to a file (keyboard shortcut `Ctrl-S`) or copied to the clipboard
(keyboard shortcut `Ctrl-C`) for pasting the image into another
application.
style and some colors can be changed in the *Preferences* dialog
window. From the image viewer window further adjustments can be made:
actual image size, high-quality (SSAO) rendering, anti-aliasing, view
style, display of box or axes, zoom factor. The view of the system can
be rotated horizontally and vertically. It is also possible to only
display the atoms within a group defined in the input script (default is
"all"). The image can also be re-centered on the center of mass of the
selected group. After each change, the image is rendered again and the
display updated. The small palette icon on the top left is colored
while LAMMPS is running to render the new image; it is grayed out when
LAMMPS is finished. When there are many atoms to render and high
quality images with anti-aliasing are requested, re-rendering may take
several seconds. From the *File* menu of the image window, the
current image can be saved to a file (keyboard shortcut `Ctrl-S`) or
copied to the clipboard (keyboard shortcut `Ctrl-C`) for pasting the
image into another application.
From the *File* menu it is also possible to copy the current
:doc:`dump image <dump_image>` and :doc:`dump_modify <dump_image>`
@ -756,22 +694,6 @@ output, charts, slide show, variables, or snapshot images. The
default settings for their visibility can be changed in the
*Preferences* dialog.
Tutorials
^^^^^^^^^
The *Tutorials* menu is to support the set of LAMMPS tutorials for
beginners and intermediate LAMMPS users documented in (:ref:`Gravelle1
<Gravelle1>`). From the drop down menu you can select which of the
eight currently available tutorial sessions you want to begin. This
opens a 'wizard' dialog where you can choose in which folder you want to
work, whether you want that folder to be wiped from *any* files, whether
you want to download the solutions files (which can be large) to a
``solution`` sub-folder, and whether you want the corresponding
tutorial's online version opened in your web browser. The dialog will
then start downloading the files requested (download progress is
reported in the status line) and load the first input file for the
selected session into LAMMPS-GUI.
About
^^^^^
@ -835,32 +757,29 @@ look of LAMMPS-GUI. The settings are grouped and each group is
displayed within a tab.
.. |guiprefs1| image:: JPG/lammps-gui-prefs-general.png
:width: 19%
:width: 24%
.. |guiprefs2| image:: JPG/lammps-gui-prefs-accel.png
:width: 19%
:width: 24%
.. |guiprefs3| image:: JPG/lammps-gui-prefs-image.png
:width: 19%
:width: 24%
.. |guiprefs4| image:: JPG/lammps-gui-prefs-editor.png
:width: 19%
:width: 24%
.. |guiprefs5| image:: JPG/lammps-gui-prefs-charts.png
:width: 19%
|guiprefs1| |guiprefs2| |guiprefs3| |guiprefs4| |guiprefs5|
|guiprefs1| |guiprefs2| |guiprefs3| |guiprefs4|
General Settings:
^^^^^^^^^^^^^^^^^
- *Echo input to log:* when checked, all input commands, including
variable expansions, are echoed to the *Output* window. This is
equivalent to using `-echo screen` at the command-line. There is no
equivalent to using `-echo screen` at the command line. There is no
log *file* produced by default, since LAMMPS-GUI uses `-log none`.
- *Include citation details:* when checked full citation info will be
included to the log window. This is equivalent to using `-cite
screen` on the command-line.
screen` on the command line.
- *Show log window by default:* when checked, the screen output of a
LAMMPS run will be collected in a log window during the run
- *Show chart window by default:* when checked, the thermodynamic
@ -903,18 +822,13 @@ General Settings:
the plots in the *Charts* window in milliseconds. The default is to
redraw the plots every 500 milliseconds. This is just for the drawing,
data collection is managed with the previous setting.
- *HTTPS proxy setting:* Allows to enter a URL for an HTTPS proxy. This
may be needed when the LAMMPS input contains :doc:`geturl commands <geturl>`
or for downloading tutorial files from the *Tutorials* menu. If the
``https_proxy`` environment variable was set externally, its value is
displayed but cannot be changed.
Accelerators:
^^^^^^^^^^^^^
This tab enables selection of an accelerator package for LAMMPS to use
and is equivalent to using the `-suffix` and `-package` flags on the
command-line. Only settings supported by the LAMMPS library and local
command line. Only settings supported by the LAMMPS library and local
hardware are available. The `Number of threads` field allows setting
the maximum number of threads for the accelerator packages that use
threads.
@ -944,7 +858,7 @@ lists to select the background and box colors.
Editor Settings:
^^^^^^^^^^^^^^^^
This tab allows tweaking settings of the editor window. Specifically,
This tab allows tweaking settings of the editor window. Specifically
the amount of padding to be added to LAMMPS commands, types or type
ranges, IDs (e.g. for fixes), and names (e.g. for groups). The value
set is the minimum width for the text element and it can be chosen in
@ -956,16 +870,6 @@ the completion pop-up window, and whether auto-save mode is enabled.
In auto-save mode the editor buffer is saved before a run or before
exiting LAMMPS-GUI.
Charts Settings:
----------------
This tab allows tweaking settings of the *Charts* window. Specifically,
one can set the default chart title (if the title contains '%f' it will
be replaced with the name of the current input file), one can select
whether by default the raw data, the smoothed data or both will be
plotted, one can set the colors for the two lines, the default smoothing
parameters, and the default size of the chart graph in pixels.
-----------
Keyboard Shortcuts
@ -1046,25 +950,10 @@ available (On macOS use the Command key instead of Ctrl/Control).
- Ctrl+Shift+T
- LAMMPS Tutorial
Further keybindings of the editor window `are documented with the Qt
documentation
Further editing keybindings `are documented with the Qt documentation
<https://doc.qt.io/qt-5/qplaintextedit.html#editing-key-bindings>`_. In
case of conflicts the list above takes precedence.
All other windows only support a subset of keyboard shortcuts listed
above. Typically, the shortcuts `Ctrl-/` (Stop Run), `Ctrl-W` (Close
Window), and `Ctrl-Q` (Quit Application) are supported.
-------------
.. _Gravelle1:
**(Gravelle1)** Gravelle, Gissinger, Kohlmeyer, `arXiv:2503.14020 \[physics.comp-ph\] <https://doi.org/10.48550/arXiv.2503.14020>`_ (2025)
.. _Gravelle2:
**(Gravelle2)** Gravelle https://lammpstutorials.github.io/
.. raw:: latex
\clearpage

View File

@ -2,18 +2,14 @@ Moltemplate Tutorial
====================
In this tutorial, we are going to use the tool :ref:`Moltemplate
<Moltemplate1>` from https://moltemplate.org/ to set up a classical
molecular dynamic simulation using the :ref:`OPLS-AA force field
<oplsaa2024>`. The first task is to describe an organic compound and
create a complete input deck for LAMMPS. The second task is to use
moltemplate to build a polymer. The third task is to map the OPLS-AA
force field to a molecular sample created with an external tool,
e.g. PACKMOL, and exported as a PDB file. The files used in this
tutorial can be found in the ``tools/moltemplate/tutorial-files`` folder
of the LAMMPS source code distribution.
Many more examples can be found here: https://moltemplate.org/examples.html
<moltemplate>` to set up a classical molecular dynamic simulation using
the :ref:`OPLS-AA force field <OPLSAA96>`. The first
task is to describe an organic compound and create a complete input deck
for LAMMPS. The second task is to map the OPLS-AA force field to a
molecular sample created with an external tool, e.g. PACKMOL, and
exported as a PDB file. The files used in this tutorial can be found
in the ``tools/moltemplate/tutorial-files`` folder of the LAMMPS
source code distribution.
Simulating an organic solvent
"""""""""""""""""""""""""""""
@ -21,13 +17,14 @@ Simulating an organic solvent
This example aims to create a cubic box of the organic solvent
formamide.
The first step is to create a molecular topology in the LAMMPS-template
(LT) file format representing a single molecule, which will be
stored in a Moltemplate object called ``_FAM inherits OPLSAA {}``.
The first step is to create a molecular topology in the
LAMMPS-template (LT) file format representing a single molecule, which
will be stored in a Moltemplate object called ``_FAM inherits OPLSAA {}``.
This command states that the object ``_FAM`` is based on an existing
object called ``OPLSAA``, which contains OPLS-AA parameters, atom type
definitions, partial charges, masses and bond-angle rules for many organic
and biological compounds.
The atomic structure is the starting point to populate the command
``write('Data Atoms') {}``, which will write the ``Atoms`` section in the
LAMMPS data file. The OPLS-AA force field uses the ``atom_style full``,
@ -39,23 +36,21 @@ to the ``molID``, except that the same variable is used for the whole
molecule. The atom types are assigned using ``@``-type variables. The
assignment of atom types (e.g. ``@atom:177``, ``@atom:178``) is done using
the OPLS-AA atom types defined in the "In Charges" section of the file
``oplsaa2024.lt``, looking for a reasonable match with the description of the atom.
``oplsaa.lt``, looking for a reasonable match with the description of the atom.
The resulting file (``formamide.lt``) follows:
.. code-block:: bash
import /usr/local/moltemplate/moltemplate/force_fields/oplsaa2024.lt # defines OPLSAA
_FAM inherits OPLSAA {
# atomID molID atomType charge coordX coordY coordZ
write('Data Atoms') {
$atom:C00 $mol @atom:235 0.00 0.100 0.490 0.0
$atom:O01 $mol @atom:236 0.00 1.091 -0.250 0.0
$atom:N02 $mol @atom:237 0.00 -1.121 -0.181 0.0
$atom:H03 $mol @atom:240 0.00 -2.013 0.272 0.0
$atom:H04 $mol @atom:240 0.00 -1.056 -1.190 0.0
$atom:H05 $mol @atom:279 0.00 0.144 1.570 0.0
$atom:C00 $mol @atom:177 0.00 0.100 0.490 0.0
$atom:O01 $mol @atom:178 0.00 1.091 -0.250 0.0
$atom:N02 $mol @atom:179 0.00 -1.121 -0.181 0.0
$atom:H03 $mol @atom:182 0.00 -2.013 0.272 0.0
$atom:H04 $mol @atom:182 0.00 -1.056 -1.190 0.0
$atom:H05 $mol @atom:221 0.00 0.144 1.570 0.0
}
# A list of the bonds in the molecule:
@ -69,17 +64,16 @@ The resulting file (``formamide.lt``) follows:
}
}
You don't have to specify the charge in this example because the OPLSAA
force-field assigns charge according to the atom type. (This is not true
when using other force fields.) A "Data Bond List" section is needed as
the atom type will determine the bond type. The other bonded interactions
(e.g. angles, dihedrals, and impropers) will be automatically generated by
You don't have to specify the charge in this example because they will
be assigned according to the atom type. Analogously, only a
"Data Bond List" section is needed as the atom type will determine the
bond type. The other bonded interactions (e.g. angles,
dihedrals, and impropers) will be automatically generated by
Moltemplate.
If the simulation is not charge-neutral, or Moltemplate complains that
you have missing bond, angle, or dihedral types, this probably means that
at least one of your atom types is incorrect (or that perhaps there is no
suitable atom type currently defined in the ``oplsaa2024.lt`` file).
If the simulation is non-neutral, or Moltemplate complains that you have
missing bond, angle, or dihedral types, this means at least one of your
atom types is incorrect.
The second step is to create a master file with instructions to build a
starting structure and the LAMMPS commands to run an NPT simulation. The
@ -87,9 +81,11 @@ master file (``solv_01.lt``) follows:
.. code-block:: bash
import formamide.lt # Defines "_FAM" and OPLSAA
# Import the force field.
import /usr/local/moltemplate/moltemplate/force_fields/oplsaa.lt
import formamide.lt # after oplsaa.lt, as it depends on it.
# Distribute the molecules on a 5x5x5 cubic grid with spacing 4.6
# Create the input sample.
solv = new _FAM [5].move( 4.6, 0, 0)
[5].move( 0, 4.6, 0)
[5].move( 0, 0, 4.6)
@ -102,11 +98,8 @@ master file (``solv_01.lt``) follows:
-11.5 11.5 zlo zhi
}
# Note: The lines below in the "In Run" section are often omitted.
write_once("In Run"){
# Create an input deck for LAMMPS.
# Run an NPT simulation.
# Create an input deck for LAMMPS.
write_once("In Init"){
# Input variables.
variable run string solv_01 # output name
variable ts equal 1 # timestep
@ -116,6 +109,12 @@ master file (``solv_01.lt``) follows:
variable equi equal 5000 # Equilibration steps
variable prod equal 30000 # Production steps
# PBC (set them before the creation of the box).
boundary p p p
}
# Run an NPT simulation.
write_once("In Run"){
# Derived variables.
variable tcouple equal \$\{ts\}*100
variable pcouple equal \$\{ts\}*1000
@ -144,7 +143,7 @@ master file (``solv_01.lt``) follows:
unfix NPT
}
The first two commands insert the content of files ``oplsaa2024.lt`` and
The first two commands insert the content of files ``oplsaa.lt`` and
``formamide.lt`` into the master file. At this point, we can use the
command ``solv = new _FAM [N]`` to create N copies of a molecule of type
``_FAM``. In this case, we create an array of 5*5*5 molecules on a cubic
@ -154,37 +153,21 @@ the sample was created from scratch, we also specify the simulation box
size in the "Data Boundary" section.
The LAMMPS setting for the force field are specified in the file
``oplsaa2024.lt`` and are written automatically in the input deck. We also
``oplsaa.lt`` and are written automatically in the input deck. We also
specify the boundary conditions and a set of variables in
the "In Init" section.
The remaining commands to run an NPT simulation
the "In Init" section. The remaining commands to run an NPT simulation
are written in the "In Run" section. Note that in this script, LAMMPS
variables are protected with the escape character ``\`` to distinguish
them from Moltemplate variables, e.g. ``\$\{run\}`` is a LAMMPS
variable that is written in the input deck as ``${run}``.
(Note: Moltemplate can be slow to run, so you need to change you run
settings frequently, I recommended moving those commands (from "In Run")
out of your .lt files and into a separate file. Moltemplate creates a
file named ``run.in.EXAMPLE`` for this purpose. You can put your run
settings and fixes that file and then invoke LAMMPS using
``mpirun -np 4 lmp -in run.in.EXAMPLE`` instead.)
Compile the master file with:
.. code-block:: bash
moltemplate.sh solv_01.lt
cleanup_moltemplate.sh # <-- optional: see below
moltemplate.sh -overlay-all solv_01.lt
(Note: The optional "cleanup_moltemplate.sh" command deletes
unused atom types, which sometimes makes LAMMPS run faster.
But it does not work with many-body pair styles or dreiding-style h-bonds.
Fortunately most force fields, including OPLSAA, don't use those features.)
Then execute the simulation with the following:
And execute the simulation with the following:
.. code-block:: bash
@ -197,116 +180,15 @@ Then execute the simulation with the following:
Snapshot of the sample at the beginning and end of the simulation.
Rendered with Ovito.
Building a simple polymer
"""""""""""""""""""""""""
Moltemplate is particularly useful for building polymers (and other molecules
with sub-units). As an simple example, consider butane:
.. figure:: JPG/butane.jpg
The ``butane.lt`` file below defines Butane as a polymer containing
4 monomers (of type ``CH3``, ``CH2``, ``CH2``, ``CH3``).
.. code-block:: bash
import /usr/local/moltemplate/moltemplate/force_fields/oplsaa2024.lt # defines OPLSAA
CH3 inherits OPLSAA {
# atomID molID atomType charge coordX coordY coordZ
write("Data Atoms") {
$atom:c $mol:... @atom:54 0.0 0.000000 0.4431163 0.000000
$atom:h1 $mol:... @atom:60 0.0 0.000000 1.0741603 0.892431
$atom:h2 $mol:... @atom:60 0.0 0.000000 1.0741603 -0.892431
$atom:h3 $mol:... @atom:60 0.0 -0.892431 -0.1879277 0.000000
}
# (Using "$mol:..." indicates this object ("CH3") is part of a larger
# molecule. Moltemplate will share the molecule-ID with that molecule.)
# A list of the bonds within the "CH3" molecular sub-unit:
# BondID AtomID1 AtomID2
write('Data Bond List') {
$bond:ch1 $atom:c $atom:h1
$bond:ch2 $atom:c $atom:h2
$bond:ch3 $atom:c $atom:h3
}
}
CH2 inherits OPLSAA {
# atomID molID atomType charge coordX coordY coordZ
write("Data Atoms") {
$atom:c $mol:... @atom:57 0.0 0.000000 0.4431163 0.000000
$atom:h1 $mol:... @atom:60 0.0 0.000000 1.0741603 0.892431
$atom:h2 $mol:... @atom:60 0.0 0.000000 1.0741603 -0.892431
}
# A list of the bonds within the "CH2" molecular sub-unit:
# BondID AtomID1 AtomID2
write('Data Bond List') {
$bond:ch1 $atom:c $atom:h1
$bond:ch2 $atom:c $atom:h2
}
}
Butane inherits OPLSAA {
create_var {$mol} # optional:force all monomers to share the same molecule-ID
# - Create 4 monomers
# - Move them along the X axis using ".move()",
# - Rotate them 180 degrees with respect to the previous monomer
monomer1 = new CH3
monomer2 = new CH2.rot(180,1,0,0).move(1.2533223,0,0)
monomer3 = new CH2.move(2.5066446,0,0)
monomer4 = new CH3.rot(180,0,0,1).move(3.7599669,0,0)
# A list of the bonds connecting different monomers together:
write('Data Bond List') {
$bond:b1 $atom:monomer1/c $atom:monomer2/c
$bond:b2 $atom:monomer2/c $atom:monomer3/c
$bond:b3 $atom:monomer3/c $atom:monomer4/c
}
}
Again, you don't have to specify the charge in this example because OPLSAA
assigns charges according to the atom type.
This ``Butane`` object is a molecule which can be used anywhere other molecules
can be used. (You can arrange ``Butane`` molecules on a lattice, as we did previously.
You can also modify individual butane molecules by adding or deleting atoms or bonds.
You can add bonds between specific butane molecules or use ``Butane`` as a
sub-unit to define even larger molecules. See the moltemplate manual for details.)
How to build a complex polymer
""""""""""""""""""""""""""""""""""""""""""
A similar procedure can be used to create more complicated polymers,
such as the NIPAM polymer example shown below. For details, see:
https://github.com/jewettaij/moltemplate/tree/master/examples/all_atom/force_field_OPLSAA/NIPAM_polymer+water+ions
Mapping an existing structure
"""""""""""""""""""""""""""""
Another helpful way to use Moltemplate is mapping an existing molecular
sample to a force field. This is useful when a complex sample is assembled
from different simulations or created with specialized software (e.g. PACKMOL).
(Note: The previous link shows how to build this entire system from scratch
using only moltemplate. However here we will assume instead that we obtained
a PDB file for this system using PACKMOL.)
As in the previous examples, all molecular species in the sample
are defined using single-molecule Moltemplate objects.
For this example, we use a short polymer in a box containing
sample to a force field. This is useful when a complex sample is
assembled from different simulations or created with specialized
software (e.g. PACKMOL). As in the previous example, all molecular
species in the sample must be defined using single-molecule Moltemplate
objects. For this example, we use a short polymer in a box containing
water molecules and ions in the PDB file ``model.pdb``.
It is essential to understand that the order of atoms in the PDB file
@ -364,25 +246,25 @@ The resulting master LT file defining short annealing at a fixed volume
.. code-block:: bash
# Use the OPLS-AA force field for all species.
import /usr/local/moltemplate/moltemplate/force_fields/oplsaa2024.lt
import /usr/local/moltemplate/moltemplate/force_fields/oplsaa.lt
import PolyNIPAM.lt
# Define the SPC water and ions as in the OPLS-AA
Ca inherits OPLSAA {
write("Data Atoms"){
$atom:a1 $mol:. @atom:412 0.0 0.00000 0.00000 0.000000
$atom:a1 $mol:. @atom:354 0.0 0.00000 0.00000 0.000000
}
}
Cl inherits OPLSAA {
write("Data Atoms"){
$atom:a1 $mol:. @atom:401 0.0 0.00000 0.00000 0.000000
$atom:a1 $mol:. @atom:344 0.0 0.00000 0.00000 0.000000
}
}
SPC inherits OPLSAA {
write("Data Atoms"){
$atom:O $mol:. @atom:9991 0. 0.0000000 0.00000 0.0000000
$atom:H1 $mol:. @atom:9990 0. 0.8164904 0.00000 0.5773590
$atom:H2 $mol:. @atom:9990 0. -0.8164904 0.00000 0.5773590
$atom:O $mol:. @atom:76 0. 0.0000000 0.00000 0.000000
$atom:H1 $mol:. @atom:77 0. 0.8164904 0.00000 0.5773590
$atom:H2 $mol:. @atom:77 0. -0.8164904 0.00000 0.5773590
}
write("Data Bond List") {
$bond:OH1 $atom:O $atom:H1
@ -403,15 +285,8 @@ The resulting master LT file defining short annealing at a fixed volume
0 26 zlo zhi
}
# Define the input variables.
write_once("In Init"){
boundary p p p # "p p p" is the default. This line is optional.
neighbor 3 bin # (This line is also optional in this example.)
}
# Note: The lines below in the "In Run" section are often omitted.
# Run an NVT simulation.
write_once("In Run"){
# Input variables.
variable run string sample01 # output name
variable ts equal 2 # timestep
@ -419,6 +294,13 @@ The resulting master LT file defining short annealing at a fixed volume
variable p equal 1. # equilibrium pressure
variable equi equal 30000 # equilibration steps
# PBC (set them before the creation of the box).
boundary p p p
neighbor 3 bin
}
# Run an NVT simulation.
write_once("In Run"){
# Set the output.
thermo 1000
thermo_style custom step etotal evdwl ecoul elong ebond eangle &
@ -432,8 +314,8 @@ The resulting master LT file defining short annealing at a fixed volume
write_data \$\{run\}.min
# Set the constrains.
group watergroup type @atom:9991 @atom:9990
fix 0 watergroup shake 0.0001 10 0 b @bond:spcO_spcH a @angle:spcH_spcO_spcH
group watergroup type @atom:76 @atom:77
fix 0 watergroup shake 0.0001 10 0 b @bond:042_043 a @angle:043_042_043
# Short annealing.
timestep \$\{ts\}
@ -445,7 +327,7 @@ The resulting master LT file defining short annealing at a fixed volume
In this example, the water model is SPC and it is defined in the
``oplsaa2024.lt`` file with atom types ``@atom:9991`` and ``@atom:9990``. For
``oplsaa.lt`` file with atom types ``@atom:76`` and ``@atom:77``. For
water we also use the ``group`` and ``fix shake`` commands with
Moltemplate ``@``-type variables, to ensure consistency with the
numerical values assigned during compilation. To identify the bond and
@ -454,20 +336,19 @@ are:
.. code-block:: bash
replace{ @atom:9991 @atom:9991_bspcO_aspcO_dspcO_ispcO }
replace{ @atom:9990 @atom:9990_bspcH_aspcH_dspcH_ispcH }
replace{ @atom:76 @atom:76_b042_a042_d042_i042 }
replace{ @atom:77 @atom:77_b043_a043_d043_i043 }
From which we can identify the following "Data Bonds By Type":
``@bond:spcO_spcH @atom:*_bspcO*_a*_d*_i* @atom:*_bspcH*_a*_d*_i*``
and "Data Angles By Type":
``@angle:spcH_spcO_spcH @atom:*_b*_aspcH*_d*_i* @atom:*_b*_aspcO*_d*_i* @atom:*_b*_aspcH*_d*_i*``
``@bond:042_043 @atom:*_b042*_a*_d*_i* @atom:*_b043*_a*_d*_i*`` and
"Data Angles By Type": ``@angle:043_042_043 @atom:*_b*_a043*_d*_i*
@atom:*_b*_a042*_d*_i* @atom:*_b*_a043*_d*_i*``
Compile the master file with:
.. code-block:: bash
moltemplate.sh -pdb model.pdb sample01.lt
cleanup_moltemplate.sh
moltemplate.sh -overlay-all -pdb model.pdb sample01.lt
And execute the simulation with the following:
@ -482,13 +363,8 @@ And execute the simulation with the following:
Sample visualized with Ovito loading the trajectory into the DATA
file written after minimization.
------------
.. _oplsaa2024:
.. _OPLSAA96:
**(OPLS-AA)** Jorgensen, W.L., Ghahremanpour, M.M., Saar, A., Tirado-Rives, J., J. Phys. Chem. B, 128(1), 250-262 (2024).
.. _Moltemplate1:
**(Moltemplate)** Jewett et al., J. Mol. Biol., 433(11), 166841 (2021)
**(OPLS-AA)** Jorgensen, Maxwell, Tirado-Rives, J Am Chem Soc, 118(45), 11225-11236 (1996).

View File

@ -197,7 +197,7 @@ The LPS model has a force scalar state
.. math::
\underline{t} = \frac{3K\theta}{m}\underline{\omega}\,\underline{x} +
\alpha \underline{\omega}\,\underline{e}^\mathrm{d}, \qquad\qquad\textrm{(3)}
\alpha \underline{\omega}\,\underline{e}^{\rm d}, \qquad\qquad\textrm{(3)}
with :math:`K` the bulk modulus and :math:`\alpha` related to the shear
modulus :math:`G` as
@ -242,14 +242,14 @@ scalar state are defined, respectively, as
.. math::
\underline{e}^\mathrm{i}=\frac{\theta \underline{x}}{3}, \qquad
\underline{e}^\mathrm{d} = \underline{e}- \underline{e}^\mathrm{i},
\underline{e}^{\rm i}=\frac{\theta \underline{x}}{3}, \qquad
\underline{e}^{\rm d} = \underline{e}- \underline{e}^{\rm i},
where the arguments of the state functions and the vectors on which they
operate are omitted for simplicity. We note that the LPS model is linear
in the dilatation :math:`\theta`, and in the deviatoric part of the
extension :math:`\underline{e}^\mathrm{d}`.
extension :math:`\underline{e}^{\rm d}`.
.. note::
@ -738,8 +738,8 @@ command.
This can be done, for example, by using the built-in visualizer of the
:doc:`dump image or dump movie <dump_image>` command to create snapshot
images or a movie. Below are example command for using dump image with
the :ref:`example listed below <periexample>` and a set of images
images or a movie. Below are example command lines for using dump image
with the :ref:`example listed below <periexample>` and a set of images
created for steps 300, 600, and 2000 this way.
.. code-block:: LAMMPS

View File

@ -1,6 +1,564 @@
PyLammps Tutorial
=================
The PyLammps interface is deprecated and will be removed in a future release of
LAMMPS. As such, the PyLammps version of this tutorial has been removed and is
replaced by the :doc:`Python_head`.
.. contents::
Overview
--------
:py:class:`PyLammps <lammps.PyLammps>` is a Python wrapper class for
LAMMPS which can be created on its own or use an existing
:py:class:`lammps Python <lammps.lammps>` object. It creates a simpler,
more "pythonic" interface to common LAMMPS functionality, in contrast to
the :py:class:`lammps <lammps.lammps>` wrapper for the LAMMPS :ref:`C
language library interface API <lammps_c_api>` which is written using
`Python ctypes <ctypes_>`_. The :py:class:`lammps <lammps.lammps>`
wrapper is discussed on the :doc:`Python_head` doc page.
Unlike the flat `ctypes <ctypes_>`_ interface, PyLammps exposes a
discoverable API. It no longer requires knowledge of the underlying C++
code implementation. Finally, the :py:class:`IPyLammps
<lammps.IPyLammps>` wrapper builds on top of :py:class:`PyLammps
<lammps.PyLammps>` and adds some additional features for `IPython
integration <ipython_>`_ into `Jupyter notebooks <jupyter_>`_, e.g. for
embedded visualization output from :doc:`dump style image <dump_image>`.
.. _ctypes: https://docs.python.org/3/library/ctypes.html
.. _ipython: https://ipython.org/
.. _jupyter: https://jupyter.org/
Comparison of lammps and PyLammps interfaces
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
lammps.lammps
"""""""""""""
* uses `ctypes <ctypes_>`_
* direct memory access to native C++ data with optional support for NumPy arrays
* provides functions to send and receive data to LAMMPS
* interface modeled after the LAMMPS :ref:`C language library interface API <lammps_c_api>`
* requires knowledge of how LAMMPS internally works (C pointers, etc)
* full support for running Python with MPI using `mpi4py <https://mpi4py.readthedocs.io>`_
* no overhead from creating a more Python-like interface
lammps.PyLammps
"""""""""""""""
* higher-level abstraction built on *top* of the original :py:class:`ctypes based interface <lammps.lammps>`
* manipulation of Python objects
* communication with LAMMPS is hidden from API user
* shorter, more concise Python
* better IPython integration, designed for quick prototyping
* designed for serial execution
* additional overhead from capturing and parsing the LAMMPS screen output
Quick Start
-----------
System-wide Installation
^^^^^^^^^^^^^^^^^^^^^^^^
Step 1: Building LAMMPS as a shared library
"""""""""""""""""""""""""""""""""""""""""""
To use LAMMPS inside of Python it has to be compiled as shared
library. This library is then loaded by the Python interface. In this
example we enable the MOLECULE package and compile LAMMPS with PNG, JPEG
and FFMPEG output support enabled.
Step 1a: For the CMake based build system, the steps are:
.. code-block:: bash
mkdir $LAMMPS_DIR/build-shared
cd $LAMMPS_DIR/build-shared
# MPI, PNG, Jpeg, FFMPEG are auto-detected
cmake ../cmake -DPKG_MOLECULE=yes -DBUILD_LIB=yes -DBUILD_SHARED_LIBS=yes
make
Step 1b: For the legacy, make based build system, the steps are:
.. code-block:: bash
cd $LAMMPS_DIR/src
# add packages if necessary
make yes-MOLECULE
# compile shared library using Makefile
make mpi mode=shlib LMP_INC="-DLAMMPS_PNG -DLAMMPS_JPEG -DLAMMPS_FFMPEG" JPG_LIB="-lpng -ljpeg"
Step 2: Installing the LAMMPS Python package
""""""""""""""""""""""""""""""""""""""""""""
PyLammps is part of the lammps Python package. To install it simply install
that package into your current Python installation with:
.. code-block:: bash
make install-python
.. note::
Recompiling the shared library requires re-installing the Python package
Installation inside of a virtualenv
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can use virtualenv to create a custom Python environment specifically tuned
for your workflow.
Benefits of using a virtualenv
""""""""""""""""""""""""""""""
* isolation of your system Python installation from your development installation
* installation can happen in your user directory without root access (useful for HPC clusters)
* installing packages through pip allows you to get newer versions of packages than e.g., through apt-get or yum package managers (and without root access)
* you can even install specific old versions of a package if necessary
**Prerequisite (e.g. on Ubuntu)**
.. code-block:: bash
apt-get install python-virtualenv
Creating a virtualenv with lammps installed
"""""""""""""""""""""""""""""""""""""""""""
.. code-block:: bash
# create virtualenv named 'testing'
virtualenv $HOME/python/testing
# activate 'testing' environment
source $HOME/python/testing/bin/activate
Now configure and compile the LAMMPS shared library as outlined above.
When using CMake and the shared library has already been build, you
need to re-run CMake to update the location of the python executable
to the location in the virtual environment with:
.. code-block:: bash
cmake . -DPython_EXECUTABLE=$(which python)
# install LAMMPS package in virtualenv
(testing) make install-python
# install other useful packages
(testing) pip install matplotlib jupyter mpi4py
...
# return to original shell
(testing) deactivate
Creating a new instance of PyLammps
-----------------------------------
To create a PyLammps object you need to first import the class from the lammps
module. By using the default constructor, a new *lammps* instance is created.
.. code-block:: python
from lammps import PyLammps
L = PyLammps()
You can also initialize PyLammps on top of this existing *lammps* object:
.. code-block:: python
from lammps import lammps, PyLammps
lmp = lammps()
L = PyLammps(ptr=lmp)
Commands
--------
Sending a LAMMPS command with the existing library interfaces is done using
the command method of the lammps object instance.
For instance, let's take the following LAMMPS command:
.. code-block:: LAMMPS
region box block 0 10 0 5 -0.5 0.5
In the original interface this command can be executed with the following
Python code if *L* was a lammps instance:
.. code-block:: python
L.command("region box block 0 10 0 5 -0.5 0.5")
With the PyLammps interface, any command can be split up into arbitrary parts
separated by white-space, passed as individual arguments to a region method.
.. code-block:: python
L.region("box block", 0, 10, 0, 5, -0.5, 0.5)
Note that each parameter is set as Python literal floating-point number. In the
PyLammps interface, each command takes an arbitrary parameter list and transparently
merges it to a single command string, separating individual parameters by white-space.
The benefit of this approach is avoiding redundant command calls and easier
parameterization. In the original interface parameterization needed to be done
manually by creating formatted strings.
.. code-block:: python
L.command("region box block %f %f %f %f %f %f" % (xlo, xhi, ylo, yhi, zlo, zhi))
In contrast, methods of PyLammps accept parameters directly and will convert
them automatically to a final command string.
.. code-block:: python
L.region("box block", xlo, xhi, ylo, yhi, zlo, zhi)
System state
------------
In addition to dispatching commands directly through the PyLammps object, it
also provides several properties which allow you to query the system state.
L.system
Is a dictionary describing the system such as the bounding box or number of atoms
L.system.xlo, L.system.xhi
bounding box limits along x-axis
L.system.ylo, L.system.yhi
bounding box limits along y-axis
L.system.zlo, L.system.zhi
bounding box limits along z-axis
L.communication
configuration of communication subsystem, such as the number of threads or processors
L.communication.nthreads
number of threads used by each LAMMPS process
L.communication.nprocs
number of MPI processes used by LAMMPS
L.fixes
List of fixes in the current system
L.computes
List of active computes in the current system
L.dump
List of active dumps in the current system
L.groups
List of groups present in the current system
Working with LAMMPS variables
-----------------------------
LAMMPS variables can be both defined and accessed via the PyLammps interface.
To define a variable you can use the :doc:`variable <variable>` command:
.. code-block:: python
L.variable("a index 2")
A dictionary of all variables is returned by L.variables
you can access an individual variable by retrieving a variable object from the
L.variables dictionary by name
.. code-block:: python
a = L.variables['a']
The variable value can then be easily read and written by accessing the value
property of this object.
.. code-block:: python
print(a.value)
a.value = 4
Retrieving the value of an arbitrary LAMMPS expressions
-------------------------------------------------------
LAMMPS expressions can be immediately evaluated by using the eval method. The
passed string parameter can be any expression containing global thermo values,
variables, compute or fix data.
.. code-block:: python
result = L.eval("ke") # kinetic energy
result = L.eval("pe") # potential energy
result = L.eval("v_t/2.0")
Accessing atom data
-------------------
All atoms in the current simulation can be accessed by using the L.atoms list.
Each element of this list is an object which exposes its properties (id, type,
position, velocity, force, etc.).
.. code-block:: python
# access first atom
L.atoms[0].id
L.atoms[0].type
# access second atom
L.atoms[1].position
L.atoms[1].velocity
L.atoms[1].force
Some properties can also be used to set:
.. code-block:: python
# set position in 2D simulation
L.atoms[0].position = (1.0, 0.0)
# set position in 3D simulation
L.atoms[0].position = (1.0, 0.0, 1.)
Evaluating thermo data
----------------------
Each simulation run usually produces thermo output based on system state,
computes, fixes or variables. The trajectories of these values can be queried
after a run via the L.runs list. This list contains a growing list of run data.
The first element is the output of the first run, the second element that of
the second run.
.. code-block:: python
L.run(1000)
L.runs[0] # data of first 1000 time steps
L.run(1000)
L.runs[1] # data of second 1000 time steps
Each run contains a dictionary of all trajectories. Each trajectory is
accessible through its thermo name:
.. code-block:: python
L.runs[0].thermo.Step # list of time steps in first run
L.runs[0].thermo.Ke # list of kinetic energy values in first run
Together with matplotlib plotting data out of LAMMPS becomes simple:
.. code-block:: python
import matplotlib.plot as plt
steps = L.runs[0].thermo.Step
ke = L.runs[0].thermo.Ke
plt.plot(steps, ke)
Error handling with PyLammps
----------------------------
Using C++ exceptions in LAMMPS for errors allows capturing them on the
C++ side and rethrowing them on the Python side. This way you can handle
LAMMPS errors through the Python exception handling mechanism.
.. warning::
Capturing a LAMMPS exception in Python can still mean that the
current LAMMPS process is in an illegal state and must be
terminated. It is advised to save your data and terminate the Python
instance as quickly as possible.
Using PyLammps in IPython notebooks and Jupyter
-----------------------------------------------
If the LAMMPS Python package is installed for the same Python interpreter as
IPython, you can use PyLammps directly inside of an IPython notebook inside of
Jupyter. Jupyter is a powerful integrated development environment (IDE) for
many dynamic languages like Python, Julia and others, which operates inside of
any web browser. Besides auto-completion and syntax highlighting it allows you
to create formatted documents using Markup, mathematical formulas, graphics and
animations intermixed with executable Python code. It is a great format for
tutorials and showcasing your latest research.
To launch an instance of Jupyter simply run the following command inside your
Python environment (this assumes you followed the Quick Start instructions):
.. code-block:: bash
jupyter notebook
IPyLammps Examples
------------------
Examples of IPython notebooks can be found in the python/examples/pylammps
subdirectory. To open these notebooks launch *jupyter notebook* inside this
directory and navigate to one of them. If you compiled and installed
a LAMMPS shared library with exceptions, PNG, JPEG and FFMPEG support
you should be able to rerun all of these notebooks.
Validating a dihedral potential
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This example showcases how an IPython Notebook can be used to compare a simple
LAMMPS simulation of a harmonic dihedral potential to its analytical solution.
Four atoms are placed in the simulation and the dihedral potential is applied on
them using a datafile. Then one of the atoms is rotated along the central axis by
setting its position from Python, which changes the dihedral angle.
.. code-block:: python
phi = [d \* math.pi / 180 for d in range(360)]
pos = [(1.0, math.cos(p), math.sin(p)) for p in phi]
pe = []
for p in pos:
L.atoms[3].position = p
L.run(0)
pe.append(L.eval("pe"))
By evaluating the potential energy for each position we can verify that
trajectory with the analytical formula. To compare both solutions, we plot
both trajectories over each other using matplotlib, which embeds the generated
plot inside the IPython notebook.
.. image:: JPG/pylammps_dihedral.jpg
:align: center
Running a Monte Carlo relaxation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This second example shows how to use PyLammps to create a 2D Monte Carlo Relaxation
simulation, computing and plotting energy terms and even embedding video output.
Initially, a 2D system is created in a state with minimal energy.
.. image:: JPG/pylammps_mc_minimum.jpg
:align: center
It is then disordered by moving each atom by a random delta.
.. code-block:: python
random.seed(27848)
deltaperturb = 0.2
for i in range(L.system.natoms):
x, y = L.atoms[i].position
dx = deltaperturb \* random.uniform(-1, 1)
dy = deltaperturb \* random.uniform(-1, 1)
L.atoms[i].position = (x+dx, y+dy)
L.run(0)
.. image:: JPG/pylammps_mc_disordered.jpg
:align: center
Finally, the Monte Carlo algorithm is implemented in Python. It continuously
moves random atoms by a random delta and only accepts certain moves.
.. code-block:: python
estart = L.eval("pe")
elast = estart
naccept = 0
energies = [estart]
niterations = 3000
deltamove = 0.1
kT = 0.05
natoms = L.system.natoms
for i in range(niterations):
iatom = random.randrange(0, natoms)
current_atom = L.atoms[iatom]
x0, y0 = current_atom.position
dx = deltamove \* random.uniform(-1, 1)
dy = deltamove \* random.uniform(-1, 1)
current_atom.position = (x0+dx, y0+dy)
L.run(1, "pre no post no")
e = L.eval("pe")
energies.append(e)
if e <= elast:
naccept += 1
elast = e
elif random.random() <= math.exp(natoms\*(elast-e)/kT):
naccept += 1
elast = e
else:
current_atom.position = (x0, y0)
The energies of each iteration are collected in a Python list and finally plotted using matplotlib.
.. image:: JPG/pylammps_mc_energies_plot.jpg
:align: center
The IPython notebook also shows how to use dump commands and embed video files
inside of the IPython notebook.
Using PyLammps and mpi4py (Experimental)
----------------------------------------
PyLammps can be run in parallel using `mpi4py
<https://mpi4py.readthedocs.io>`_. This python package can be installed
using
.. code-block:: bash
pip install mpi4py
.. warning::
Usually, any :py:class:`PyLammps <lammps.PyLammps>` command must be
executed by *all* MPI processes. However, evaluations and querying
the system state is only available on MPI rank 0. Using these
functions from other MPI ranks will raise an exception.
The following is a short example which reads in an existing LAMMPS input
file and executes it in parallel. You can find in.melt in the
examples/melt folder. Please take note that the
:py:meth:`PyLammps.eval() <lammps.PyLammps.eval>` is called only from
MPI rank 0.
.. code-block:: python
from mpi4py import MPI
from lammps import PyLammps
L = PyLammps()
L.file("in.melt")
if MPI.COMM_WORLD.rank == 0:
print("Potential energy: ", L.eval("pe"))
MPI.Finalize()
To run this script (melt.py) in parallel using 4 MPI processes we invoke the
following mpirun command:
.. code-block:: bash
mpirun -np 4 python melt.py
Feedback and Contributing
-------------------------
If you find this Python interface useful, please feel free to provide feedback
and ideas on how to improve it to Richard Berger (richard.berger@outlook.com). We also
want to encourage people to write tutorial style IPython notebooks showcasing LAMMPS usage
and maybe their latest research results.

View File

@ -1,464 +0,0 @@
LAMMPS Python Tutorial
======================
.. contents::
-----
Overview
--------
The :py:class:`lammps <lammps.lammps>` Python module is a wrapper class for the
LAMMPS :ref:`C language library interface API <lammps_c_api>` which is written using
`Python ctypes <ctypes_>`_. The design choice of this wrapper class is to
follow the C language API closely with only small changes related to Python
specific requirements and to better accommodate object oriented programming.
In addition to this flat `ctypes <ctypes_>`_ interface, the
:py:class:`lammps <lammps.lammps>` wrapper class exposes a discoverable
API that doesn't require as much knowledge of the underlying C language
library interface or LAMMPS C++ code implementation.
Finally, the API exposes some additional features for `IPython integration
<ipython_>`_ into `Jupyter notebooks <jupyter_>`_, e.g. for embedded
visualization output from :doc:`dump style image <dump_image>`.
.. _ctypes: https://docs.python.org/3/library/ctypes.html
.. _ipython: https://ipython.org/
.. _jupyter: https://jupyter.org/
-----
Quick Start
-----------
System-wide or User Installation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Step 1: Building LAMMPS as a shared library
"""""""""""""""""""""""""""""""""""""""""""
To use LAMMPS inside of Python it has to be compiled as shared library.
This library is then loaded by the Python interface. In this example we
enable the :ref:`MOLECULE package <PKG-MOLECULE>` and compile LAMMPS
with :ref:`PNG, JPEG and FFMPEG output support <graphics>` enabled.
.. tabs::
.. tab:: CMake build
.. code-block:: bash
mkdir $LAMMPS_DIR/build-shared
cd $LAMMPS_DIR/build-shared
# MPI, PNG, Jpeg, FFMPEG are auto-detected
cmake ../cmake -DPKG_MOLECULE=yes -DPKG_PYTHON=on -DBUILD_SHARED_LIBS=yes
make
.. tab:: Traditional make
.. code-block:: bash
cd $LAMMPS_DIR/src
# add LAMMPS packages if necessary
make yes-MOLECULE
make yes-PYTHON
# compile shared library using Makefile
make mpi mode=shlib LMP_INC="-DLAMMPS_PNG -DLAMMPS_JPEG -DLAMMPS_FFMPEG" JPG_LIB="-lpng -ljpeg"
Step 2: Installing the LAMMPS Python module
"""""""""""""""""""""""""""""""""""""""""""
Next install the LAMMPS Python module into your current Python installation with:
.. code-block:: bash
make install-python
This will create a so-called `"wheel"
<https://packaging.python.org/en/latest/discussions/package-formats/#what-is-a-wheel>`_
and then install the LAMMPS Python module from that "wheel" into either
into a system folder (provided the command is executed with root
privileges) or into your personal Python module folder.
.. note::
Recompiling the shared library requires re-installing the Python
package.
.. _externally_managed:
.. admonition:: Handling an "externally-managed-environment" Error
:class: Hint
Some Python installations made through Linux distributions
(e.g. Ubuntu 24.04LTS or later) will prevent installing the LAMMPS
Python module into a system folder or a corresponding folder of the
individual user as attempted by ``make install-python`` with an error
stating that an *externally managed* python installation must be only
managed by the same package package management tool. This is an
optional setting, so not all Linux distributions follow it currently
(Spring 2025). The reasoning and explanations for this error can be
found in the `Python Packaging User Guide
<https://packaging.python.org/en/latest/specifications/externally-managed-environments/>`_
These guidelines suggest to create a virtual environment and install
the LAMMPS Python module there (see below). This is generally a good
idea and the LAMMPS developers recommend this, too. If, however, you
want to proceed and install the LAMMPS Python module regardless, you
can install the "wheel" file (see above) manually with the ``pip``
command by adding the ``--break-system-packages`` flag.
Installation inside of a virtual environment
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
You can use virtual environments to create a custom Python environment
specifically tuned for your workflow.
Benefits of using a virtualenv
""""""""""""""""""""""""""""""
* isolation of your system Python installation from your development installation
* installation can happen in your user directory without root access (useful for HPC clusters)
* installing packages through pip allows you to get newer versions of packages than e.g., through apt-get or yum package managers (and without root access)
* you can even install specific old versions of a package if necessary
**Prerequisite (e.g. on Ubuntu)**
.. code-block:: bash
apt-get install python-venv
Creating a virtualenv with lammps installed
"""""""""""""""""""""""""""""""""""""""""""
.. code-block:: bash
# create virtual envrionment named 'testing'
python3 -m venv $HOME/python/testing
# activate 'testing' environment
source $HOME/python/testing/bin/activate
Now configure and compile the LAMMPS shared library as outlined above.
When using CMake and the shared library has already been build, you
need to re-run CMake to update the location of the python executable
to the location in the virtual environment with:
.. code-block:: bash
cmake . -DPython_EXECUTABLE=$(which python)
# install LAMMPS package in virtualenv
(testing) make install-python
# install other useful packages
(testing) pip install matplotlib jupyter mpi4py pandas
...
# return to original shell
(testing) deactivate
-------
Creating a new lammps instance
------------------------------
To create a lammps object you need to first import the class from the lammps
module. By using the default constructor, a new :py:class:`lammps
<lammps.lammps>` instance is created.
.. code-block:: python
from lammps import lammps
L = lammps()
See the :doc:`LAMMPS Python documentation <Python_create>` for how to customize
the instance creation with optional arguments.
-----
Commands
--------
Sending a LAMMPS command with the library interface is done using
the ``command`` method of the lammps object.
For instance, let's take the following LAMMPS command:
.. code-block:: LAMMPS
region box block 0 10 0 5 -0.5 0.5
This command can be executed with the following Python code if ``L`` is a ``lammps``
instance:
.. code-block:: python
L.command("region box block 0 10 0 5 -0.5 0.5")
For convenience, the ``lammps`` class also provides a command wrapper ``cmd``
that turns any LAMMPS command into a regular function call:
.. code-block:: python
L.cmd.region("box block", 0, 10, 0, 5, -0.5, 0.5)
Note that each parameter is set as Python number literal. With
the wrapper each command takes an arbitrary parameter list and transparently
merges it to a single command string, separating individual parameters by
white-space.
The benefit of this approach is avoiding redundant command calls and easier
parameterization. With the ``command`` function each call needs to be assembled
manually using formatted strings.
.. code-block:: python
L.command(f"region box block {xlo} {xhi} {ylo} {yhi} {zlo} {zhi}")
The wrapper accepts parameters directly and will convert
them automatically to a final command string.
.. code-block:: python
L.cmd.region("box block", xlo, xhi, ylo, yhi, zlo, zhi)
.. note::
When running in IPython you can use Tab-completion after ``L.cmd.`` to see
all available LAMMPS commands.
-----
Accessing atom data
-------------------
All per-atom properties that are part of the :doc:`atom style
<atom_style>` in the current simulation can be accessed using the
:py:meth:`extract_atoms() <lammps.lammps.extract_atoms()>` method. This
can be retrieved as ctypes objects or as NumPy arrays through the
lammps.numpy module. Those represent the *local* atoms of the
individual sub-domain for the current MPI process and may contain
information for the local ghost atoms or not depending on the property.
Both can be accessed as lists, but for the ctypes list object the size
is not known and hast to be retrieved first to avoid out-of-bounds
accesses.
.. code-block:: python
nlocal = L.extract_setting("nlocal")
nall = L.extract_setting("nall")
print("Number of local atoms ", nlocal, " Number of local and ghost atoms ", nall);
# access via ctypes directly
atom_id = L.extract_atom("id")
print("Atom IDs", atom_id[0:nlocal])
# access through numpy wrapper
atom_type = L.numpy.extract_atom("type")
print("Atom types", atom_type)
x = L.numpy.extract_atom("x")
v = L.numpy.extract_atom("v")
print("positions array shape", x.shape)
print("velocity array shape", v.shape)
# turn on communicating velocities to ghost atoms
L.cmd.comm_modify("vel", "yes")
v = L.numpy.extract_atom('v')
print("velocity array shape", v.shape)
Some properties can also be set from Python since internally the
data of the C++ code is accessed directly:
.. code-block:: python
# set position in 2D simulation
x[0] = (1.0, 0.0)
# set position in 3D simulation
x[0] = (1.0, 0.0, 1.)
------
Retrieving the values of thermodynamic data and variables
---------------------------------------------------------
To access thermodynamic data from the last completed timestep,
you can use the :py:meth:`get_thermo() <lammps.lammps.get_thermo>`
method, and to extract the value of (compatible) variables, you
can use the :py:meth:`extract_variable() <lammps.lammps.extract_variable>`
method.
.. code-block:: python
result = L.get_thermo("ke") # kinetic energy
result = L.get_thermo("pe") # potential energy
result = L.extract_variable("t") / 2.0
Error handling
--------------
We are using C++ exceptions in LAMMPS for errors and the C language
library interface captures and records them. This allows checking
whether errors have happened in Python during a call into LAMMPS and
then re-throw the error as a Python exception. This way you can handle
LAMMPS errors in the conventional way through the Python exception
handling mechanism.
.. warning::
Capturing a LAMMPS exception in Python can still mean that the
current LAMMPS process is in an illegal state and must be
terminated. It is advised to save your data and terminate the Python
instance as quickly as possible.
Using LAMMPS in IPython notebooks and Jupyter
---------------------------------------------
If the LAMMPS Python package is installed for the same Python
interpreter as IPython, you can use LAMMPS directly inside of an IPython
notebook inside of Jupyter. Jupyter is a powerful integrated development
environment (IDE) for many dynamic languages like Python, Julia and
others, which operates inside of any web browser. Besides
auto-completion and syntax highlighting it allows you to create
formatted documents using Markup, mathematical formulas, graphics and
animations intermixed with executable Python code. It is a great format
for tutorials and showcasing your latest research.
To launch an instance of Jupyter simply run the following command inside your
Python environment (this assumes you followed the Quick Start instructions):
.. code-block:: bash
jupyter notebook
Interactive Python Examples
---------------------------
Examples of IPython notebooks can be found in the ``python/examples/ipython``
subdirectory. To open these notebooks launch ``jupyter notebook`` inside this
directory and navigate to one of them. If you compiled and installed
a LAMMPS shared library with PNG, JPEG and FFMPEG support
you should be able to rerun all of these notebooks.
Validating a dihedral potential
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This example showcases how an IPython Notebook can be used to compare a simple
LAMMPS simulation of a harmonic dihedral potential to its analytical solution.
Four atoms are placed in the simulation and the dihedral potential is applied on
them using a datafile. Then one of the atoms is rotated along the central axis by
setting its position from Python, which changes the dihedral angle.
.. code-block:: python
phi = [d \* math.pi / 180 for d in range(360)]
pos = [(1.0, math.cos(p), math.sin(p)) for p in phi]
x = L.numpy.extract_atom("x")
pe = []
for p in pos:
x[3] = p
L.cmd.run(0, "post", "no")
pe.append(L.get_thermo("pe"))
By evaluating the potential energy for each position we can verify that
trajectory with the analytical formula. To compare both solutions, we plot
both trajectories over each other using matplotlib, which embeds the generated
plot inside the IPython notebook.
.. image:: JPG/pylammps_dihedral.jpg
:align: center
Running a Monte Carlo relaxation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
This second example shows how to use the `lammps` Python interface to create a
2D Monte Carlo Relaxation simulation, computing and plotting energy terms and
even embedding video output.
Initially, a 2D system is created in a state with minimal energy.
.. image:: JPG/pylammps_mc_minimum.jpg
:align: center
It is then disordered by moving each atom by a random delta.
.. code-block:: python
random.seed(27848)
deltaperturb = 0.2
x = L.numpy.extract_atom("x")
natoms = x.shape[0]
for i in range(natoms):
dx = deltaperturb \* random.uniform(-1, 1)
dy = deltaperturb \* random.uniform(-1, 1)
x[i][0] += dx
x[i][1] += dy
L.cmd.run(0, "post", "no")
.. image:: JPG/pylammps_mc_disordered.jpg
:align: center
Finally, the Monte Carlo algorithm is implemented in Python. It continuously
moves random atoms by a random delta and only accepts certain moves.
.. code-block:: python
estart = L.get_thermo("pe")
elast = estart
naccept = 0
energies = [estart]
niterations = 3000
deltamove = 0.1
kT = 0.05
for i in range(niterations):
x = L.numpy.extract_atom("x")
natoms = x.shape[0]
iatom = random.randrange(0, natoms)
current_atom = x[iatom]
x0 = current_atom[0]
y0 = current_atom[1]
dx = deltamove \* random.uniform(-1, 1)
dy = deltamove \* random.uniform(-1, 1)
current_atom[0] = x0 + dx
current_atom[1] = y0 + dy
L.cmd.run(1, "pre no post no")
e = L.get_thermo("pe")
energies.append(e)
if e <= elast:
naccept += 1
elast = e
elif random.random() <= math.exp(natoms\*(elast-e)/kT):
naccept += 1
elast = e
else:
current_atom[0] = x0
current_atom[1] = y0
The energies of each iteration are collected in a Python list and finally plotted using matplotlib.
.. image:: JPG/pylammps_mc_energies_plot.jpg
:align: center
The IPython notebook also shows how to use dump commands and embed video files
inside of the IPython notebook.

View File

@ -15,9 +15,8 @@ details of the system, or develop new capabilities. For instance, the numerics
associated with calculating gradients, reproducing kernels, etc. are separated
into distinct classes to simplify the development of new integration schemes
which can call these calculations. Additional numerical details can be found in
:ref:`(Palermo) <howto_rheo_palermo>` and :ref:`(Clemmer) <howto_rheo_clemmer>`.
Example movies illustrating some of these capabilities are found at
https://www.lammps.org/movies.html#rheopackage.
:ref:`(Clemmer) <howto_rheo_clemmer>`. Example movies illustrating some of these
capabilities are found at https://www.lammps.org/movies.html#rheopackage.
Note, if you simply want to run a traditional SPH simulation, the :ref:`SPH package
<PKG-SPH>` package is likely better suited for your application. It has fewer advanced
@ -71,7 +70,7 @@ particles to solid (e.g. with the :doc:`set <set>` command), (b) create bpm
bonds between the particles (see the :doc:`bpm howto <Howto_bpm>` page for
more details), and (c) use :doc:`pair rheo/solid <pair_rheo_solid>` to
apply repulsive contact forces between distinct solid bodies. Akin to pair rheo,
pair rheo/solid considers a particle's fluid/solid phase to determine whether to
pair rheo/solid considers a particles fluid/solid phase to determine whether to
apply forces. However, unlike pair rheo, pair rheo/solid does obey special bond
settings such that contact forces do not have to be calculated between two bonded
solid particles in the same elastic body.
@ -80,10 +79,10 @@ In systems with thermal evolution, fix rheo/thermal can optionally set a
melting/solidification temperature allowing particles to dynamically swap their
state between fluid and solid when the temperature exceeds or drops below the
critical temperature, respectively. Using the *react* option, one can specify a maximum
bond length and a bond type. Then, when solidifying, particles search their
bond length and a bond type. Then, when solidifying, particles will search their
local neighbors and automatically create bonds with any neighboring solid particles
in range. For BPM bond styles, bonds then use the immediate position of the two
particles to calculate a reference state. When melting, particles delete any
in range. For BPM bond styles, bonds will then use the immediate position of the two
particles to calculate a reference state. When melting, particles will delete any
bonds of the specified type when reverting to a fluid state. Special bonds are updated
as bonds are created/broken.
@ -108,10 +107,6 @@ criteria for creating/deleting a bond or altering force calculations).
----------
.. _howto_rheo_palermo:
**(Palermo)** Palermo, Wolf, Clemmer, O'Connor, Phys. Fluids, 36, 113337 (2024).
.. _howto_rheo_clemmer:
**(Clemmer)** Clemmer, Pierce, O'Connor, Nevins, Jones, Lechman, Tencer, Appl. Math. Model., 130, 310-326 (2024).

View File

@ -1,5 +1,5 @@
SPC and SPC/E water model
=========================
SPC water model
===============
The SPC water model specifies a 3-site rigid water molecule with
charges and Lennard-Jones parameters assigned to each of the three atoms.

View File

@ -21,14 +21,9 @@ can be invoked via the *dpd/tstat* pair style:
* :doc:`fix nvt/sllod <fix_nvt_sllod>`
* :doc:`fix temp/berendsen <fix_temp_berendsen>`
* :doc:`fix temp/csvr <fix_temp_csvr>`
* :doc:`fix ffl <fix_ffl>`
* :doc:`fix gjf <fix_gjf>`
* :doc:`fix gld <fix_gld>`
* :doc:`fix gle <fix_gle>`
* :doc:`fix langevin <fix_langevin>`
* :doc:`fix temp/rescale <fix_temp_rescale>`
* :doc:`pair_style dpd/tstat <pair_dpd>`
* :doc:`pair_style dpd/ext/tstat <pair_dpd_ext>`
:doc:`Fix nvt <fix_nh>` only thermostats the translational velocity of
particles. :doc:`Fix nvt/sllod <fix_nvt_sllod>` also does this,
@ -87,10 +82,10 @@ that:
.. note::
Not all thermostat fixes perform time integration, meaning they update
Only the nvt fixes perform time integration, meaning they update
the velocities and positions of particles due to forces and velocities
respectively. The other thermostat fixes only adjust velocities; they
do NOT perform time integration updates. Thus, they should be used in
do NOT perform time integration updates. Thus they should be used in
conjunction with a constant NVE integration fix such as these:
* :doc:`fix nve <fix_nve>`

View File

@ -1,5 +1,5 @@
TIP4P and OPC water models
==========================
TIP4P water model
=================
The four-point TIP4P rigid water model extends the traditional
:doc:`three-point TIP3P <Howto_tip3p>` model by adding an additional
@ -9,11 +9,9 @@ the oxygen along the bisector of the HOH bond angle. A bond style of
:doc:`harmonic <bond_harmonic>` and an angle style of :doc:`harmonic
<angle_harmonic>` or :doc:`charmm <angle_charmm>` should also be used.
In case of rigid bonds also bond style :doc:`zero <bond_zero>` and angle
style :doc:`zero <angle_zero>` can be used. Very similar to the TIP4P
model is the OPC water model. It can be realized the same way as TIP4P
but has different geometry and force field parameters.
style :doc:`zero <angle_zero>` can be used.
There are two ways to implement TIP4P-like water in LAMMPS:
There are two ways to implement TIP4P water in LAMMPS:
#. Use a specially written pair style that uses the :ref:`TIP3P geometry
<tip3p_molecule>` without the point M. The point M location is then
@ -23,10 +21,7 @@ There are two ways to implement TIP4P-like water in LAMMPS:
computationally very efficient, but the charge distribution in space
is only correct within the tip4p labeled styles. So all other
computations using charges will "see" the negative charge incorrectly
located on the oxygen atom unless they are specially written for using
the TIP4P geometry internally as well, e.g. :doc:`compute dipole/tip4p
<compute_dipole>`, :doc:`fix efield/tip4p <fix_efield>`, or
:doc:`kspace_style pppm/tip4p <kspace_style>`.
on the oxygen atom.
This can be done with the following pair styles for Coulomb with a cutoff:
@ -73,90 +68,77 @@ TIP4P/2005 model :ref:`(Abascal2) <Abascal2>` and a version of TIP4P
parameters adjusted for use with a long-range Coulombic solver
(e.g. Ewald or PPPM in LAMMPS). Note that for implicit TIP4P models the
OM distance is specified in the :doc:`pair_style <pair_style>` command,
not as part of the pair coefficients. Also parameters for the OPC
model (:ref:`Izadi <Izadi>`) are provided.
not as part of the pair coefficients.
.. list-table::
:header-rows: 1
:widths: 40 12 12 14 11 11
:widths: 36 19 13 15 17
* - Parameter
- TIP4P (original)
- TIP4P/Ice
- TIP4P/2005
- TIP4P (Ewald)
- OPC
* - O mass (amu)
- 15.9994
- 15.9994
- 15.9994
- 15.9994
- 15.9994
* - H mass (amu)
- 1.008
- 1.008
- 1.008
- 1.008
- 1.008
* - O or M charge (:math:`e`)
- -1.040
- -1.1794
- -1.1128
- -1.04844
- -1.3582
* - H charge (:math:`e`)
- 0.520
- 0.5897
- 0.5564
- 0.52422
- 0.6791
* - LJ :math:`\epsilon` of OO (kcal/mole)
- 0.1550
- 0.21084
- 0.1852
- 0.16275
- 0.21280
* - LJ :math:`\sigma` of OO (:math:`\AA`)
- 3.1536
- 3.1668
- 3.1589
- 3.16435
- 3.1660
* - LJ :math:`\epsilon` of HH, MM, OH, OM, HM (kcal/mole)
- 0.0
- 0.0
- 0.0
- 0.0
- 0.0
* - LJ :math:`\sigma` of HH, MM, OH, OM, HM (:math:`\AA`)
- 1.0
- 1.0
- 1.0
- 1.0
- 1.0
* - :math:`r_0` of OH bond (:math:`\AA`)
- 0.9572
- 0.9572
- 0.9572
- 0.9572
- 0.8724
* - :math:`\theta_0` of HOH angle
- 104.52\ :math:`^{\circ}`
- 104.52\ :math:`^{\circ}`
- 104.52\ :math:`^{\circ}`
- 104.52\ :math:`^{\circ}`
- 103.60\ :math:`^{\circ}`
* - OM distance (:math:`\AA`)
- 0.15
- 0.1577
- 0.1546
- 0.1250
- 0.1594
Note that the when using a TIP4P pair style, the neighbor list cutoff
Note that the when using the TIP4P pair style, the neighbor list cutoff
for Coulomb interactions is effectively extended by a distance 2 \* (OM
distance), to account for the offset distance of the fictitious charges
on O atoms in water molecules. Thus, it is typically best in an
on O atoms in water molecules. Thus it is typically best in an
efficiency sense to use a LJ cutoff >= Coulomb cutoff + 2\*(OM
distance), to shrink the size of the neighbor list. This leads to
slightly larger cost for the long-range calculation, so you can test the
@ -210,94 +192,6 @@ file changed):
run 20000
write_data tip4p-implicit.data nocoeff
When constructing an OPC model, we cannot use the ``tip3p.mol`` file due
to the different geometry. Below is a molecule file providing the 3
sites of an implicit OPC geometry for use with TIP4P styles. Note, that
the "Shake" and "Special" sections are missing here. Those will be
auto-generated by LAMMPS when the molecule file is loaded *after* the
simulation box has been created. These sections are required only when
the molecule file is loaded *before*.
.. _opc3p_molecule:
.. code-block::
# Water molecule. 3 point geometry for OPC model
3 atoms
2 bonds
1 angles
Coords
1 0.00000 -0.06037 0.00000
2 0.68558 0.50250 0.00000
3 -0.68558 0.50250 0.00000
Types
1 1 # O
2 2 # H
3 2 # H
Charges
1 -1.3582
2 0.6791
3 0.6791
Bonds
1 1 1 2
2 1 1 3
Angles
1 1 2 1 3
Below is a LAMMPS input file using the implicit method to implement
the OPC model using the molecule file from above and including the
PPPM long-range Coulomb solver.
.. code-block:: LAMMPS
units real
atom_style full
region box block -5 5 -5 5 -5 5
create_box 2 box bond/types 1 angle/types 1 &
extra/bond/per/atom 2 extra/angle/per/atom 1 extra/special/per/atom 2
mass 1 15.9994
mass 2 1.008
pair_style lj/cut/tip4p/long 1 2 1 1 0.1594 12.0
pair_coeff 1 1 0.2128 3.166
pair_coeff 2 2 0.0 1.0
bond_style zero
bond_coeff 1 0.8724
angle_style zero
angle_coeff 1 103.6
kspace_style pppm/tip4p 1.0e-5
molecule water opc3p.mol # this file has the OPC geometry but is without M
create_atoms 0 random 33 34564 NULL mol water 25367 overlap 1.33
fix rigid all shake 0.001 10 10000 b 1 a 1
minimize 0.0 0.0 1000 10000
reset_timestep 0
timestep 1.0
velocity all create 300.0 5463576
fix integrate all nvt temp 300 300 100.0
thermo_style custom step temp press etotal pe
thermo 1000
run 20000
write_data opc-implicit.data nocoeff
Below is the code for a LAMMPS input file using the explicit method and
a TIP4P molecule file. Because of using :doc:`fix rigid/small
<fix_rigid>` no bonds need to be defined and thus no extra storage needs
@ -385,8 +279,3 @@ Phys, 79, 926 (1983).
**(Abascal2)** Abascal, J Chem Phys, 123, 234505 (2005)
https://doi.org/10.1063/1.2121687
.. _Izadi:
**(Izadi)** Izadi, Anandakrishnan, Onufriev, J. Phys. Chem. Lett., 5, 21, 3863 (2014)
https://doi.org/10.1021/jz501780a

Some files were not shown because too many files have changed in this diff Show More