Removed more outdated code.

This commit is contained in:
tlichtenegger
2019-11-07 08:12:33 +01:00
parent 70a6c634d6
commit 33895f0cbd
8 changed files with 0 additions and 588 deletions

View File

@ -1,57 +0,0 @@
// contributions to internal energy equation can be found in
// Crowe et al.: "Multiphase flows with droplets and particles", CRC Press 1998
{
// dim he = J / kg
volScalarField& he = thermo.he();
particleCloud.energyContributions(Qsource);
particleCloud.energyCoefficients(QCoeff);
addSource =
(
he.name() == "e"
?
fvc::div(phi, K) +
fvc::div
(
fvc::absolute(phi/fvc::interpolate(rho), voidfraction*U),
p,
"div(phiv,p)"
)
: fvc::div(phi, K)
);
Cpv = he.name() == "e" ? thermo.Cv() : thermo.Cp();
// correct source for the thermodynamic reference temperature
dimensionedScalar Tref("Tref", dimTemperature, T[0]-he[0]/(Cpv[0]+SMALL));
Qsource += QCoeff*Tref;
fvScalarMatrix EEqn
(
fvm::div(phi, he)
+ addSource
- Qsource
- fvm::Sp(QCoeff/Cpv, he)
- fvm::laplacian(voidfraction*thCond/Cpv,he)
==
fvOptions(rho, he)
);
EEqn.relax();
fvOptions.constrain(EEqn);
EEqn.solve();
fvOptions.correct(he);
thermo.correct();
Info<< "T max/min : " << max(T).value() << " " << min(T).value() << endl;
particleCloud.clockM().start(31,"energySolve");
particleCloud.solve();
particleCloud.clockM().stop("energySolve");
}

View File

@ -1,3 +0,0 @@
cfdemSolverRhoSimple.C
EXE=$(CFDEM_APP_DIR)/cfdemSolverRhoSimple

View File

@ -1,32 +0,0 @@
include $(CFDEM_ADD_LIBS_DIR)/additionalLibs
PFLAGS+= -Dcompre
EXE_INC = \
$(PFLAGS) \
-I$(CFDEM_OFVERSION_DIR) \
-I$(LIB_SRC)/transportModels/compressible/lnInclude \
-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/compressible/lnInclude \
-I$(LIB_SRC)/finiteVolume/cfdTools \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/sampling/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/cfdTools \
EXE_LIBS = \
-L$(CFDEM_LIB_DIR)\
-lcompressibleTransportModels \
-lfluidThermophysicalModels \
-lspecie \
-lturbulenceModels \
-lcompressibleTurbulenceModels \
-lfiniteVolume \
-lmeshTools \
-lsampling \
-lfvOptions \
-l$(CFDEM_LIB_COMP_NAME) \
$(CFDEM_ADD_LIB_PATHS) \
$(CFDEM_ADD_LIBS)

View File

@ -1,30 +0,0 @@
// Solve the Momentum equation
particleCloud.otherForces(fOther);
tmp<fvVectorMatrix> tUEqn
(
fvm::div(phi, U)
+ particleCloud.divVoidfractionTau(U, voidfraction)
+ fvm::Sp(Ksl,U)
- fOther
==
fvOptions(rho, U)
);
fvVectorMatrix& UEqn = tUEqn.ref();
UEqn.relax();
fvOptions.constrain(UEqn);
if (modelType=="B" || modelType=="Bfull")
{
solve(UEqn == -fvc::grad(p)+ Ksl*Us);
}
else
{
solve(UEqn == -voidfraction*fvc::grad(p)+ Ksl*Us);
}
fvOptions.correct(U);
K = 0.5*magSqr(U);

View File

@ -1,140 +0,0 @@
/*---------------------------------------------------------------------------*\
License
This is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This code is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this code. If not, see <http://www.gnu.org/licenses/>.
Copyright (C) 2015- Thomas Lichtenegger, JKU Linz, Austria
Application
cfdemSolverRhoSimple
Description
Steady-state solver for turbulent flow of compressible fluids based on
rhoSimpleFoam where functionality for CFD-DEM coupling has been added.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "psiThermo.H"
#include "turbulentFluidThermoModel.H"
#include "bound.H"
#include "simpleControl.H"
#include "fvOptions.H"
#include "localEulerDdtScheme.H"
#include "fvcSmooth.H"
#include "cfdemCloudEnergy.H"
#include "implicitCouple.H"
#include "clockModel.H"
#include "smoothingModel.H"
#include "forceModel.H"
#include "thermCondModel.H"
#include "energyModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "postProcess.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createTimeControls.H"
#include "createRDeltaT.H"
#include "initContinuityErrs.H"
#include "createFields.H"
#include "createFieldRefs.H"
#include "createFvOptions.H"
// create cfdemCloud
#include "readGravitationalAcceleration.H"
cfdemCloudEnergy particleCloud(mesh);
#include "checkModelType.H"
turbulence->validate();
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nStarting time loop\n" << endl;
while (simple.loop())
{
particleCloud.clockM().start(1,"Global");
Info<< "Time = " << runTime.timeName() << nl << endl;
// do particle stuff
particleCloud.clockM().start(2,"Coupling");
bool hasEvolved = particleCloud.evolve(voidfraction,Us,U);
if(hasEvolved)
{
particleCloud.smoothingM().smoothen(particleCloud.forceM(0).impParticleForces());
}
Info << "update Ksl.internalField()" << endl;
Ksl = particleCloud.momCoupleM(0).impMomSource();
Ksl.correctBoundaryConditions();
//Force Checks
vector fTotal(0,0,0);
vector fImpTotal = sum(mesh.V()*Ksl.primitiveFieldRef()*(Us.primitiveFieldRef()-U.primitiveFieldRef()));
reduce(fImpTotal, sumOp<vector>());
Info << "TotalForceExp: " << fTotal << endl;
Info << "TotalForceImp: " << fImpTotal << endl;
#include "solverDebugInfo.H"
particleCloud.clockM().stop("Coupling");
particleCloud.clockM().start(26,"Flow");
volScalarField rhoeps("rhoeps",rho*voidfraction);
// Pressure-velocity SIMPLE corrector
#include "UEqn.H"
// besides this pEqn, OF offers a "simple consistent"-option
#include "pEqn.H"
rhoeps=rho*voidfraction;
#include "EEqn.H"
turbulence->correct();
particleCloud.clockM().start(32,"postFlow");
if(hasEvolved) particleCloud.postFlow();
particleCloud.clockM().stop("postFlow");
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
particleCloud.clockM().stop("Flow");
particleCloud.clockM().stop("Global");
}
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //

View File

@ -1,2 +0,0 @@
const volScalarField& T = thermo.T();
const volScalarField& psi = thermo.psi();

View File

@ -1,243 +0,0 @@
Info<< "Reading thermophysical properties\n" << endl;
autoPtr<psiThermo> pThermo
(
psiThermo::New(mesh)
);
psiThermo& thermo = pThermo();
thermo.validate(args.executable(), "h", "e");
volScalarField& p = thermo.p();
Info<< "Reading field rho\n" << endl;
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
thermo.rho()
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "\nReading voidfraction field voidfraction = (Vgas/Vparticle)\n" << endl;
volScalarField voidfraction
(
IOobject
(
"voidfraction",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volScalarField addSource
(
IOobject
(
"addSource",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "\nCreating fluid-particle heat flux field\n" << endl;
volScalarField Qsource
(
IOobject
(
"Qsource",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,-1,-3,0,0,0,0), 0.0)
);
Info<< "\nCreating fluid-particle heat flux coefficient field\n" << endl;
volScalarField QCoeff
(
IOobject
(
"QCoeff",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,-1,-3,-1,0,0,0), 0.0)
);
Info<< "\nCreating thermal conductivity field\n" << endl;
volScalarField thCond
(
IOobject
(
"thCond",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(1,1,-3,-1,0,0,0), 0.0),
"zeroGradient"
);
Info<< "\nCreating heat capacity field\n" << endl;
volScalarField Cpv
(
IOobject
(
"Cpv",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("zero", dimensionSet(0,2,-2,-1,0,0,0), 0.0)
);
Info<< "\nCreating body force field\n" << endl;
volVectorField fOther
(
IOobject
(
"fOther",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedVector("zero", dimensionSet(1,-2,-2,0,0,0,0), vector::zero)
);
Info<< "Reading/calculating face flux field phi\n" << endl;
surfaceScalarField phi
(
IOobject
(
"phi",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
linearInterpolate(rho*U*voidfraction) & mesh.Sf()
);
dimensionedScalar rhoMax
(
dimensionedScalar::lookupOrDefault
(
"rhoMax",
simple.dict(),
dimDensity,
GREAT
)
);
dimensionedScalar rhoMin
(
dimensionedScalar::lookupOrDefault
(
"rhoMin",
simple.dict(),
dimDensity,
0
)
);
Info<< "Creating turbulence model\n" << endl;
autoPtr<compressible::turbulenceModel> turbulence
(
compressible::turbulenceModel::New
(
rho,
U,
phi,
thermo
)
);
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, simple.dict(), pRefCell, pRefValue);
mesh.setFluxRequired(p.name());
Info<< "Creating field dpdt\n" << endl;
volScalarField dpdt
(
IOobject
(
"dpdt",
runTime.timeName(),
mesh
),
mesh,
dimensionedScalar("dpdt", p.dimensions()/dimTime, 0)
);
Info<< "Creating field kinetic energy K\n" << endl;
volScalarField K("K", 0.5*magSqr(U));
Info<< "\nReading momentum exchange field Ksl\n" << endl;
volScalarField Ksl
(
IOobject
(
"Ksl",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
//dimensionedScalar("0", dimensionSet(1, -3, -1, 0, 0), 1.0)
);
Info<< "Reading particle velocity field Us\n" << endl;
volVectorField Us
(
IOobject
(
"Us",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
//===============================

View File

@ -1,81 +0,0 @@
rho = thermo.rho();
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();
volScalarField rAU(1.0/UEqn.A());
surfaceScalarField rhorAUf("rhorAUf", fvc::interpolate(rhoeps*rAU));
if (modelType=="A")
{
rhorAUf *= fvc::interpolate(voidfraction);
}
volVectorField HbyA(constrainHbyA(rAU*UEqn.H(), U, p));
surfaceScalarField phiUs("phiUs", fvc::interpolate(rhoeps*rAU*Ksl*Us)& mesh.Sf());
if (simple.transonic())
{
// transonic version not implemented yet
}
else
{
surfaceScalarField phiHbyA
(
"phiHbyA",
(
fvc::flux(rhoeps*HbyA)
)
);
// flux without pressure gradient contribution
phi = phiHbyA + phiUs;
// Update the pressure BCs to ensure flux consistency
constrainPressure(p, rhoeps, U, phi, rhorAUf);
while (simple.correctNonOrthogonal())
{
// Pressure corrector
fvScalarMatrix pEqn
(
fvc::div(phi)
- fvm::laplacian(rhorAUf, p)
==
fvOptions(psi, p, rho.name())
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve();
if (simple.finalNonOrthogonalIter())
{
phi += pEqn.flux();
}
}
}
// Explicitly relax pressure for momentum corrector
p.relax();
// Recalculate density from the relaxed pressure
rho = thermo.rho();
rho = max(rho, rhoMin);
rho = min(rho, rhoMax);
rho.relax();
Info<< "rho max/min : " << max(rho).value()
<< " " << min(rho).value() << endl;
if (modelType=="A")
{
U = HbyA - rAU*(voidfraction*fvc::grad(p)-Ksl*Us);
}
else
{
U = HbyA - rAU*(fvc::grad(p)-Ksl*Us);
}
U.correctBoundaryConditions();
fvOptions.correct(U);
K = 0.5*magSqr(U);