release on 2013-03-27_09-12-24

This commit is contained in:
goniva
2013-03-27 09:12:24 +01:00
parent ae430feff5
commit 5936f7cc93
13 changed files with 290 additions and 13 deletions

81
README Normal file
View File

@ -0,0 +1,81 @@
/*---------------------------------------------------------------------------*\
CFDEMcoupling - Open Source CFD-DEM coupling
CFDEMcoupling is part of the CFDEMproject
www.cfdem.com
Christoph Goniva, christoph.goniva@cfdem.com
Copyright 2009-2012 JKU Linz
Copyright 2012- DCS Computing GmbH, Linz
-------------------------------------------------------------------------------
License
This file is part of CFDEMcoupling.
CFDEMcoupling is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
CFDEMcoupling is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with CFDEMcoupling; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Description
This code is designed to realize coupled CFD-DEM simulations using LIGGGHTS
and OpenFOAM. Note: this code is not part of OpenFOAM (see DISCLAIMER).
\*---------------------------------------------------------------------------*/
CFDEM coupling provides an open source parallel coupled CFD-DEM framework
combining the strengths of LIGGGHTS DEM code and the Open Source
CFD package OpenFOAM(R)(*). The CFDEMcoupling toolbox allows to expand
standard CFD solvers of OpenFOAM(R)(*) to include a coupling to the DEM
code LIGGGHTS. In this toolbox the particle representation within the
CFD solver is organized by "cloud" classes. Key functionalities are organised
in sub-models (e.g. force models, data exchange models, etc.) which can easily
be selected and combined by dictionary settings.
The coupled solvers run fully parallel on distributed-memory clusters.
Features are:
- its modular approach allows users to easily implement new models
- its MPI parallelization enables to use it for large scale problems
- the "forum"_lws on CFD-DEM gives the possibility to exchange with other
users / developers
- the use of GIT allows to easily update to the latest version
- basic documentation is provided
The file structure:
- "src" directory including the source files of the coupling toolbox and models
- "applications" directory including the solver files for coupled CFD-DEM simulations
- "doc" directory including the documentation of CFDEMcoupling
- "tutorials" directory including basic tutorial cases showing the functionality
Details on installation are given on the "www.cfdem.com"
The functionality of this CFD-DEM framwork is described via "tutorial cases" showing
how to use different solvers and models.
CFDEMcoupling stands for Computational Fluid Dynamics (CFD) -
Discrete Element Method (DEM) coupling.
CFDEMcoupling is an open-source code, distributed freely under the terms of the
GNU Public License (GPL).
Core development of CFDEMcoupling is done by
Christoph Goniva and Christoph Kloss, both at DCS Computing GmbH, 2012
\*---------------------------------------------------------------------------*/
(*) "OpenFOAM(R)"_of is a registered trade mark of the ESI Group.
This offering is not affiliated, approved or endorsed by ESI Group,
the producer of the OpenFOAM® software and owner of the OpenFOAM® trade mark.
\*---------------------------------------------------------------------------*/

View File

@ -0,0 +1,22 @@
// Solve the Momentum equation
tmp<fvVectorMatrix> UEqn
(
fvm::ddt(voidfraction,U)
+ fvm::div(phi, U)
+ particleCloud.divVoidfractionTau(U, voidfraction)
==
- fvm::Sp(Ksl/rho,U)
);
UEqn().relax();
sources.constrain(UEqn());
if (pimple.momentumPredictor())
{
//solve(UEqn() == -fvc::grad(p) + sources(U));
if (modelType=="B")
solve(UEqn() == - fvc::grad(p) + Ksl/rho*Us);
else
solve(UEqn() == - voidfraction*fvc::grad(p) + Ksl/rho*Us);
}

View File

@ -0,0 +1,109 @@
Info<< "Reading field p\n" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "Reading field U\n" << endl;
volVectorField U
(
IOobject
(
"U",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
//===============================
// particle interaction modelling
//===============================
Info<< "\nReading momentum exchange field Ksl\n" << endl;
volScalarField Ksl
(
IOobject
(
"Ksl",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
//dimensionedScalar("0", dimensionSet(1, -3, -1, 0, 0), 1.0)
);
Info<< "\nReading voidfraction field voidfraction = (Vgas/Vparticle)\n" << endl;
volScalarField voidfraction
(
IOobject
(
"voidfraction",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
Info<< "\nCreating dummy density field rho\n" << endl;
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh//,
//dimensionedScalar("0", dimensionSet(1, -3, 0, 0, 0), 1.0)
);
Info<< "Reading particle velocity field Us\n" << endl;
volVectorField Us
(
IOobject
(
"Us",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
//===============================
#include "createPhi.H"
label pRefCell = 0;
scalar pRefValue = 0.0;
setRefCell(p, mesh.solutionDict().subDict("PIMPLE"), pRefCell, pRefValue);
singlePhaseTransportModel laminarTransport(U, phi);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(U, phi, laminarTransport)
);
IObasicSourceList sources(mesh);

View File

@ -0,0 +1,54 @@
volScalarField rAU(1.0/UEqn().A());
surfaceScalarField rUAf("(1|A(U))", fvc::interpolate(rAU));
U = rAU*(UEqn() == sources(U))().H(); // new formulation
//U = rAU*UEqn().H(); // old
if (pimple.nCorrPISO() <= 1)
{
UEqn.clear();
}
phi = (fvc::interpolate(U*voidfraction) & mesh.Sf())
+ fvc::ddtPhiCorr(rAU, U, phi);
//adjustPhi(phi, U, p);//??
surfaceScalarField phiS(fvc::interpolate(Us*voidfraction) & mesh.Sf());
surfaceScalarField phiGes = phi + rUAf*(fvc::interpolate(Ksl/rho) * phiS);
volScalarField rUAvoidfraction("(voidfraction2|A(U))",rAU*voidfraction);
if (modelType=="A")
rUAvoidfraction = volScalarField("(voidfraction2|A(U))",rAU*voidfraction*voidfraction);
// Non-orthogonal pressure corrector loop
while (pimple.correctNonOrthogonal())
{
// Pressure corrector
fvScalarMatrix pEqn
(
fvm::laplacian(rUAvoidfraction, p) == fvc::div(phiGes) + fvc::ddt(voidfraction)
);
pEqn.setReference(pRefCell, pRefValue);
pEqn.solve(mesh.solver(p.select(pimple.finalInnerIter())));
if (pimple.finalNonOrthogonalIter())
{
phiGes -= pEqn.flux();
}
}
#include "continuityErrs.H"
// Explicitly relax pressure for momentum corrector
p.relax();
if (modelType=="B")
U -= rAU*fvc::grad(p) - Ksl/rho*Us*rAU;
else
U -= voidfraction*rAU*fvc::grad(p) - Ksl/rho*Us*rAU;
U.correctBoundaryConditions();
sources.correct(U);

View File

@ -75,7 +75,7 @@ The functionality of this CFD-DEM framwork is described via <A HREF = "#_1_2">tu
</P>
<HR>
<P>(*) <A HREF = "http://www.openfoam.com">OpenFOAM(R)</A> is a registered trade mark of the ESI Group. This offering is not affiliated, approved or endorsed by ESI Group, the producer of the OpenFOAM(R) software and owner of the OpenFOAM(R) trade mark.
<P>(*) This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks. OPENFOAM® is a registered trade mark of OpenCFD Limited, a wholly owned subsidiary of the ESI Group.
</P>
<HR>

Binary file not shown.

View File

@ -56,7 +56,7 @@ Core development of CFDEMcoupling is done by Christoph Goniva and Christoph Klos
This documentation was written by Christoph Goniva, DCS Computing GmbH, 2012
:line
(*) "OpenFOAM(R)"_of is a registered trade mark of the ESI Group. This offering is not affiliated, approved or endorsed by ESI Group, the producer of the OpenFOAM(R) software and owner of the OpenFOAM(R) trade mark.
(*) This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks. OPENFOAM® is a registered trade mark of OpenCFD Limited, a wholly owned subsidiary of the ESI Group.
:line

View File

@ -19,7 +19,7 @@
</P>
<HR>
<P>(*) <A HREF = "of">OpenFOAM(R)</A> is a registered trade mark of Silicon Graphics International Corp. This offering is not affiliated, approved or endorsed by Silicon Graphics International Corp., the producer of the OpenFOAM(R) software and owner of the OpenFOAM(R) trademark.
<P>(*) This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks. OPENFOAM® is a registered trade mark of OpenCFD Limited, a wholly owned subsidiary of the ESI Group.
</P>
<HR>

View File

@ -19,6 +19,6 @@ GONIVA, C., KLOSS, C., HAGER,A. and PIRKER, S. (2010): "An Open Source CFD-DEM P
:line
(*) "OpenFOAM(R)"_of is a registered trade mark of Silicon Graphics International Corp. This offering is not affiliated, approved or endorsed by Silicon Graphics International Corp., the producer of the OpenFOAM(R) software and owner of the OpenFOAM(R) trademark.
(*) This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks. OPENFOAM® is a registered trade mark of OpenCFD Limited, a wholly owned subsidiary of the ESI Group.
:line

View File

@ -19,7 +19,7 @@
</P>
<HR>
<P>(*) <A HREF = "of">OpenFOAM(R)</A> is a registered trade mark of Silicon Graphics International Corp. This offering is not affiliated, approved or endorsed by Silicon Graphics International Corp., the producer of the OpenFOAM(R) software and owner of the OpenFOAM(R) trademark.
<P>(*) This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks. OPENFOAM® is a registered trade mark of OpenCFD Limited, a wholly owned subsidiary of the ESI Group.
</P>
<HR>

View File

@ -17,6 +17,6 @@ GONIVA, C., KLOSS, C., HAGER,A. and PIRKER, S. (2010): "An Open Source CFD-DEM P
:line
(*) "OpenFOAM(R)"_of is a registered trade mark of Silicon Graphics International Corp. This offering is not affiliated, approved or endorsed by Silicon Graphics International Corp., the producer of the OpenFOAM(R) software and owner of the OpenFOAM(R) trademark.
(*) This offering is not approved or endorsed by OpenCFD Limited, the producer of the OpenFOAM software and owner of the OPENFOAM® and OpenCFD® trade marks. OPENFOAM® is a registered trade mark of OpenCFD Limited, a wholly owned subsidiary of the ESI Group.
:line

Binary file not shown.

View File

@ -6,7 +6,6 @@ voidFractionModels = subModels/voidFractionModel
locateModels = subModels/locateModel
meshMotionModels = subModels/meshMotionModel
momCoupleModels = subModels/momCoupleModel
regionModels = subModels/regionModel
dataExchangeModels = subModels/dataExchangeModel
averagingModels = subModels/averagingModel
clockModels = subModels/clockModel
@ -21,18 +20,33 @@ $(forceModels)/forceModel/newForceModel.C
$(forceModels)/noDrag/noDrag.C
$(forceModels)/checkCouplingInterval/checkCouplingInterval.C
$(forceModels)/DiFeliceDrag/DiFeliceDrag.C
$(forceModels)/DiFeliceDragNLift/DiFeliceDragNLift.C
$(forceModels)/GidaspowDrag/GidaspowDrag.C
$(forceModels)/SchillerNaumannDrag/SchillerNaumannDrag.C
$(forceModels)/Archimedes/Archimedes.C
$(forceModels)/ArchimedesIB/ArchimedesIB.C
$(forceModels)/interface/interface.C
$(forceModels)/ShirgaonkarIB/ShirgaonkarIB.C
$(forceModels)/fieldTimeAverage/fieldTimeAverage.C
$(forceModels)/fieldBound/fieldBound.C
$(forceModels)/volWeightedAverage/volWeightedAverage.C
$(forceModels)/totalMomentumExchange/totalMomentumExchange.C
$(forceModels)/KochHillDrag/KochHillDrag.C
$(forceModels)/BeetstraDrag/multiphaseFlowBasic/multiphaseFlowBasic.C
$(forceModels)/BeetstraDrag/BeetstraDrag.C
$(forceModels)/LaEuScalarLiquid/LaEuScalarLiquid.C
$(forceModels)/LaEuScalarTemp/LaEuScalarTemp.C
$(forceModels)/LaEuScalarDust/LaEuScalarDust.C
$(forceModels)/virtualMassForce/virtualMassForce.C
$(forceModels)/gradPForce/gradPForce.C
$(forceModels)/gradULiftForce/gradULiftForce.C
$(forceModels)/viscForce/viscForce.C
$(forceModels)/MeiLift/MeiLift.C
$(forceModels)/KochHillDragNLift/KochHillDragNLift.C
$(forceModels)/solidsPressureForce/solidsPressureForce.C
$(forceModels)/periodicPressure/periodicPressure.C
$(forceModels)/periodicPressureControl/periodicPressureControl.C
$(forceModels)/averageSlipVel/averageSlipVel.C
$(forceModelsMS)/forceModelMS/forceModelMS.C
$(forceModelsMS)/forceModelMS/newForceModelMS.C
@ -62,21 +76,18 @@ $(locateModels)/turboEngineSearch/turboEngineSearch.C
$(locateModels)/turboEngineSearchM2M/turboEngineSearchM2M.C
$(locateModels)/engineSearchIB/engineSearchIB.C
$(meshMotionModels)/meshMotionModel/meshMotionModel.C
$(meshMotionModels)/meshMotionModel/newMeshMotionModel.C
$(meshMotionModels)/noMeshMotion/noMeshMotion.C
$(meshMotionModels)/DEMdrivenMeshMotion/DEMdrivenMeshMotion.C
$(momCoupleModels)/momCoupleModel/momCoupleModel.C
$(momCoupleModels)/momCoupleModel/newMomCoupleModel.C
$(momCoupleModels)/explicitCouple/explicitCouple.C
$(momCoupleModels)/explicitCoupleSource/explicitCoupleSource.C
$(momCoupleModels)/implicitCouple/implicitCouple.C
$(momCoupleModels)/noCouple/noCouple.C
$(regionModels)/regionModel/regionModel.C
$(regionModels)/regionModel/newRegionModel.C
$(regionModels)/allRegion/allRegion.C
$(dataExchangeModels)/dataExchangeModel/dataExchangeModel.C
$(dataExchangeModels)/dataExchangeModel/newDataExchangeModel.C
$(dataExchangeModels)/oneWayVTK/oneWayVTK.C
@ -102,4 +113,4 @@ $(liggghtsCommandModels)/runLiggghts/runLiggghts.C
$(liggghtsCommandModels)/writeLiggghts/writeLiggghts.C
$(liggghtsCommandModels)/readLiggghtsData/readLiggghtsData.C
LIB = $(FOAM_USER_LIBBIN)/lib$(CFDEM_LIB_NAME)
LIB = $(CFDEM_LIB_DIR)/lib$(CFDEM_LIB_NAME)