rCFD solver for turbulent single-phase transport

This commit is contained in:
asanaz
2018-09-06 12:54:35 +02:00
parent 67cd1bf561
commit fd71f367d7
6 changed files with 348 additions and 0 deletions

View File

@ -0,0 +1,3 @@
recSolverTurbTransport.C
EXE=$(CFDEM_APP_DIR)/recSolverTurbTransport

View File

@ -0,0 +1,27 @@
include $(CFDEM_ADD_LIBS_DIR)/additionalLibs
EXE_INC = \
-I$(CFDEM_OFVERSION_DIR) \
-I$(LIB_SRC)/finiteVolume/lnInclude \
-I$(LIB_SRC)/meshTools/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/turbulenceModels/lnInclude \
-I$(LIB_SRC)/TurbulenceModels/incompressible/lnInclude \
-I$(LIB_SRC)/transportModels \
-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/cfdTools \
-I$(CFDEM_SRC_DIR)/recurrence/lnInclude \
-I$(CFDEM_SRC_DIR)/lagrangian/cfdemParticle/derived/cfdemCloudRec \
EXE_LIBS = \
-L$(CFDEM_LIB_DIR)\
-lrecurrence \
-lturbulenceModels \
-lincompressibleTurbulenceModels \
-lincompressibleTransportModels \
-lfiniteVolume \
-lmeshTools \
-lfvOptions \
-l$(CFDEM_LIB_NAME) \
$(CFDEM_ADD_LIB_PATHS) \
$(CFDEM_ADD_LIBS)

View File

@ -0,0 +1,17 @@
volScalarField alphaEff("alphaEff", turbulence->nu()/Sc + dU2/Sct);
TEqn =
(
fvm::ddt(T)
+ fvm::div(phiRec, T)
- fvm::laplacian(alphaEff, T)
==
fvOptions(T)
);
TEqn.relax(relaxCoeff);
fvOptions.constrain(TEqn);
TEqn.solve();

View File

@ -0,0 +1,174 @@
// dummy fields
Info<< "\nCreating dummy pressure and density fields\n" << endl;
volScalarField p
(
IOobject
(
"p",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("p", dimensionSet(1, 2, -2, 0, 0), 1.0)
);
volScalarField rho
(
IOobject
(
"rho",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedScalar("rho", dimensionSet(1, -3, 0, 0, 0), 1.0)
);
// recurrence fields
Info<< "\nCreating recurrence fields.\n" << endl;
volVectorField URec
(
IOobject
(
"URec",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
volScalarField U2Rec
(
IOobject
(
"U2Rec",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
// calculated fields
Info<< "\nCreating fields subject to calculation\n" << endl;
volScalarField delta
(
IOobject
(
"delta",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
mesh,
dimensionedScalar("delta", dimLength, 0.0)
);
delta.primitiveFieldRef()=pow(mesh.V(),1.0/3.0);
delta.write();
Info<< "\ncreating dU2\n" << endl;
volScalarField dU2
(
IOobject
(
"dU2",
runTime.timeName(),
mesh,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
sqrt(0.5*mag(U2Rec - magSqr(URec)))*delta*0.094
);
forAll(dU2, cellI)
{
if (U2Rec[cellI]-magSqr(URec[cellI]) < 0.0)
{
dU2[cellI] = 0.0;
}
}
dU2.write();
Info<< "Calculating face flux field phiRec\n" << endl;
surfaceScalarField phiRec
(
IOobject
(
"phiRec",
runTime.timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
linearInterpolate(URec) & mesh.Sf()
);
phiRec.write();
singlePhaseTransportModel laminarTransport(URec, phiRec);
autoPtr<incompressible::turbulenceModel> turbulence
(
incompressible::turbulenceModel::New(URec, phiRec, laminarTransport)
);
dimensionedScalar Sc("Sc", dimless, laminarTransport);
dimensionedScalar Sct("Sct", dimless, laminarTransport);
// create concentration field
Info<< "Creating scalar transport field\n" << endl;
volScalarField T
(
IOobject
(
"T",
runTime.timeName(),
mesh,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
),
mesh
);
fvScalarMatrix TEqn(T, dimless*dimVolume/(dimTime));
scalar relaxCoeff(0.0);
Info<< "reading clockProperties\n" << endl;
IOdictionary clockProperties
(
IOobject
(
"clockProperties",
mesh.time().constant(),
mesh,
IOobject::MUST_READ,
IOobject::NO_WRITE
)
);
autoPtr<clockModel> myClock
(
clockModel::New
(
clockProperties,
mesh.time()
)
);

View File

@ -0,0 +1,14 @@
recurrenceBase.recM().exportVolScalarField("U2Mean",U2Rec);
recurrenceBase.recM().exportVolVectorField("UMean",URec);
phiRec=linearInterpolate(URec) & mesh.Sf();
dU2=sqrt(0.5*mag(U2Rec - magSqr(URec)))*delta*0.094;
forAll(dU2, cellI)
{
if (U2Rec[cellI]-magSqr(URec[cellI]) < 0.0)
{
dU2[cellI] = 0.0;
}
}

View File

@ -0,0 +1,113 @@
/*---------------------------------------------------------------------------*\
CFDEMcoupling academic - Open Source CFD-DEM coupling
Contributing authors:
Thomas Lichtenegger, Gerhard Holzinger
Copyright (C) 2015- Johannes Kepler University, Linz
-------------------------------------------------------------------------------
License
This file is part of CFDEMcoupling academic.
CFDEMcoupling academic is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
CFDEMcoupling academic is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with CFDEMcoupling academic. If not, see <http://www.gnu.org/licenses/>.
Application
Turbulent Transport Solver Recurrence
Description
Solves a transport equation for a passive scalar on a single-phase solution
for a solver based on recurrence statistics
Rules
Solution data to compute the recurrence statistics from, needs to
reside in $CASE_ROOT/dataBase
Time step data in dataBase needs to be evenly spaced in time
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "singlePhaseTransportModel.H"
#include "turbulentTransportModel.H"
#include "fvOptions.H"
#include "recBase.H"
#include "recModel.H"
#include "clockModel.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
#include "postProcess.H"
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
#include "createControl.H"
#include "createFields.H"
#include "createFvOptions.H"
recBase recurrenceBase(mesh);
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< "\nCalculating particle trajectories based on recurrence statistics\n" << endl;
label recTimeIndex(0);
scalar recTimeStep_=recurrenceBase.recM().recTimeStep();
while (runTime.run())
{
myClock().start(1,"Global");
runTime++;
Info<< "Time = " << runTime.timeName() << nl << endl;
myClock().start(2,"fieldUpdate");
if ( runTime.timeOutputValue() - (recTimeIndex+1)*recTimeStep_ + 1.0e-5 > 0.0 )
{
Info << "Updating fields at run time " << runTime.timeOutputValue()
<< " corresponding to recurrence time " << (recTimeIndex+1)*recTimeStep_ << ".\n" << endl;
recurrenceBase.updateRecFields();
#include "readFields.H"
recTimeIndex++;
}
myClock().stop("fieldUpdate");
myClock().start(3,"speciesEqn");
#include "TEq.H"
myClock().stop("speciesEqn");
runTime.write();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
myClock().stop("Global");
}
myClock().evalPar();
myClock().normHist();
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //