reactingEulerFoam/.../coalescenceModels/PrinceBlanch: Added laminar shear contribution
Patch contributed by Institute of Fluid Dynamics, Helmholtz-Zentrum Dresden - Rossendorf (HZDR)
This commit is contained in:
@ -27,6 +27,7 @@ License
|
||||
#include "addToRunTimeSelectionTable.H"
|
||||
#include "mathematicalConstants.H"
|
||||
#include "phaseCompressibleTurbulenceModel.H"
|
||||
#include "fvcGrad.H"
|
||||
|
||||
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
|
||||
|
||||
@ -84,11 +85,44 @@ PrinceBlanch
|
||||
turbulence_(dict.lookup("turbulence")),
|
||||
buoyancy_(dict.lookup("buoyancy")),
|
||||
laminarShear_(dict.lookup("laminarShear"))
|
||||
{}
|
||||
{
|
||||
if (laminarShear_)
|
||||
{
|
||||
shearStrainRate_.set
|
||||
(
|
||||
new volScalarField
|
||||
(
|
||||
IOobject
|
||||
(
|
||||
"shearStrainRate",
|
||||
popBal_.time().timeName(),
|
||||
popBal_.mesh()
|
||||
),
|
||||
popBal_.mesh(),
|
||||
dimensionedScalar
|
||||
(
|
||||
"shearStrainRate",
|
||||
dimVelocity/dimLength,
|
||||
Zero
|
||||
)
|
||||
)
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
|
||||
|
||||
void Foam::diameterModels::coalescenceModels::PrinceBlanch::correct()
|
||||
{
|
||||
if (laminarShear_)
|
||||
{
|
||||
shearStrainRate_() =
|
||||
sqrt(2.0)*mag(symm(fvc::grad(popBal_.continuousPhase().U())));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void Foam::diameterModels::coalescenceModels::PrinceBlanch::
|
||||
addToCoalescenceRate
|
||||
(
|
||||
@ -103,7 +137,7 @@ addToCoalescenceRate
|
||||
const uniformDimensionedVectorField& g =
|
||||
popBal_.mesh().lookupObject<uniformDimensionedVectorField>("g");
|
||||
|
||||
const dimensionedScalar rij(1.0/(1.0/fi.dSph() + 1.0/fj.dSph()));
|
||||
const dimensionedScalar rij(1/(1/fi.dSph() + 1/fj.dSph()));
|
||||
|
||||
const volScalarField collisionEfficiency
|
||||
(
|
||||
@ -112,7 +146,7 @@ addToCoalescenceRate
|
||||
- sqrt
|
||||
(
|
||||
pow3(rij)*continuousPhase.rho()
|
||||
/(16.0*popBal_.sigmaWithContinuousPhase(fi.phase()))
|
||||
/(16*popBal_.sigmaWithContinuousPhase(fi.phase()))
|
||||
)
|
||||
*log(h0_/hf_)
|
||||
*cbrt(popBal_.continuousTurbulence().epsilon())/pow(rij, 2.0/3.0)
|
||||
@ -132,7 +166,7 @@ addToCoalescenceRate
|
||||
|
||||
if (buoyancy_)
|
||||
{
|
||||
const dimensionedScalar Sij(pi/4.0*sqr(fi.dSph() + fj.dSph()));
|
||||
const dimensionedScalar Sij(pi/4*sqr(fi.dSph() + fj.dSph()));
|
||||
|
||||
coalescenceRate +=
|
||||
(
|
||||
@ -158,10 +192,9 @@ addToCoalescenceRate
|
||||
|
||||
if (laminarShear_)
|
||||
{
|
||||
FatalErrorInFunction
|
||||
<< "Laminar shear collision contribution not implemented for "
|
||||
<< this->type() << " coalescence model."
|
||||
<< exit(FatalError);
|
||||
coalescenceRate +=
|
||||
1.0/6.0*pow3(fi.d() + fj.d())*shearStrainRate_()
|
||||
*collisionEfficiency;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -29,7 +29,7 @@ Description
|
||||
|
||||
\f[
|
||||
\left( \theta_{ij}^{T} + \theta_{ij}^{B} + \theta_{ij}^{LS} \right)
|
||||
\lambda_{ij}
|
||||
\lambda_{ij}\;,
|
||||
\f]
|
||||
|
||||
with the coalescence efficiency
|
||||
@ -52,13 +52,20 @@ Description
|
||||
\sqrt{d_{i}^{2/3} + d_{j}^{2/3}}\;,
|
||||
\f]
|
||||
|
||||
and the buoyancy-driven collision rate
|
||||
the buoyancy-driven collision rate
|
||||
|
||||
\f[
|
||||
\theta_{ij}^{B} = S_{ij} \left| u_{ri} - u_{rj} \right|\;,
|
||||
\f]
|
||||
|
||||
where the rise velocity of bubble i is calculated by
|
||||
and the laminar shear collision rate
|
||||
|
||||
\f[
|
||||
\theta_{ij}^{LS} =
|
||||
\frac{1}{6} \left(d_i + d_j\right)^{3} \gamma_c\;.
|
||||
\f]
|
||||
|
||||
The rise velocity of bubble i is calculated by
|
||||
|
||||
\f[
|
||||
u_{ri} = \sqrt{2.14 \sigma / \left(\rho_c d_i \right) + 0.505 g d_i}\;,
|
||||
@ -67,37 +74,43 @@ Description
|
||||
the equivalent radius by
|
||||
|
||||
\f[
|
||||
r_{ij} = \left( \frac{1}{d_i} + \frac{1}{d_j} \right)^{-1}
|
||||
r_{ij} = \left( \frac{1}{d_i} + \frac{1}{d_j} \right)^{-1}\;,
|
||||
\f]
|
||||
|
||||
and the collision cross sectional area by
|
||||
the collision cross sectional area by
|
||||
|
||||
\f[
|
||||
S_{ij} = \frac{\pi}{4} \left(d_i + d_j\right)^{2}\;.
|
||||
S_{ij} = \frac{\pi}{4} \left(d_i + d_j\right)^{2}\;,
|
||||
\f]
|
||||
|
||||
and the shear strain rate by
|
||||
|
||||
\f[
|
||||
\dot{\gamma_{b}} = \mathrm{mag}(\mathrm{symm}(\mathrm{grad}(U_c)))\;.
|
||||
\f]
|
||||
|
||||
Note that in equation 2, the bubble radius has been substituted by the
|
||||
bubble diameter. Also the expression for the equivalent radius r_ij
|
||||
(equation 19 in the paper of Prince and Blanch (1990)) was corrected.
|
||||
The collision rate contribution due to laminar shear in the continuous phase
|
||||
is currently neglected.
|
||||
|
||||
\vartable
|
||||
\theta_{ij}^{T} | Turbulent collision rate [m^3/s]
|
||||
\theta_{ij}^{B} | Buoyancy-driven collision rate [m^3/s]
|
||||
\theta_{ij}^{LS}| Laminar shear collision rate [m^3/s]
|
||||
\lambda_{ij} | Coalescence efficiency [-]
|
||||
r_{ij} | Equivalent radius [m]
|
||||
\rho_c | Density of continuous phase [kg/m^3]
|
||||
\sigma | Surface tension [N/m]
|
||||
h_0 | Initial film thickness [m]
|
||||
h_f | Critical film thickness [m]
|
||||
\epsilon_c | Continuous phase turbulent dissipation rate [m^2/s^3]
|
||||
d_i | Diameter of bubble i [m]
|
||||
d_j | Diameter of bubble j [m]
|
||||
u_{ri} | Rise velocity of bubble i [m/s]
|
||||
S_{ij} | Collision cross sectional area [m^2]
|
||||
g | Gravitational constant [m/s^2]
|
||||
\theta_{ij}^{T} | Turbulent collision rate [m3/s]
|
||||
\theta_{ij}^{B} | Buoyancy-driven collision rate [m3/s]
|
||||
\theta_{ij}^{LS} | Laminar shear collision rate [m3/s]
|
||||
\lambda_{ij} | Coalescence efficiency [-]
|
||||
r_{ij} | Equivalent radius [m]
|
||||
\rho_c | Density of continuous phase [kg/m3]
|
||||
\sigma | Surface tension [N/m]
|
||||
h_0 | Initial film thickness [m]
|
||||
h_f | Critical film thickness [m]
|
||||
\epsilon_c | Continuous phase turbulent dissipation rate [m2/s3]
|
||||
d_i | Diameter of bubble i [m]
|
||||
d_j | Diameter of bubble j [m]
|
||||
u_{ri} | Rise velocity of bubble i [m/s]
|
||||
S_{ij} | Collision cross sectional area [m2]
|
||||
g | Gravitational constant [m/s2]
|
||||
\gamma_c | Continuous phase shear strain rate [1/s]
|
||||
U_c | Continuous phase velocity field [m/s]
|
||||
\endvartable
|
||||
|
||||
Reference:
|
||||
@ -165,6 +178,9 @@ class PrinceBlanch
|
||||
//- Switch for considering buoyancy-induced collisions
|
||||
Switch laminarShear_;
|
||||
|
||||
//- Continuous phase shear strain rate
|
||||
autoPtr<volScalarField> shearStrainRate_;
|
||||
|
||||
|
||||
public:
|
||||
|
||||
@ -187,6 +203,9 @@ public:
|
||||
|
||||
// Member Functions
|
||||
|
||||
//- Correct diameter independent expressions
|
||||
virtual void correct();
|
||||
|
||||
//- Add to coalescenceRate
|
||||
virtual void addToCoalescenceRate
|
||||
(
|
||||
|
||||
Reference in New Issue
Block a user