Commit Graph

165 Commits

Author SHA1 Message Date
ee777e4083 Standardise on British spelling: -ize -> -ise
OpenFOAM is predominantly written in Britain with British spelling conventions
so -ise is preferred to -ize.
2021-06-01 19:11:58 +01:00
55f751641e Standardise on British spelling: initialize -> initialise
OpenFOAM is predominantly written in Britain with British spelling conventions
so -ise is preferred to -ize.
2021-06-01 14:51:48 +01:00
a997ddae5f buoyantReactingFoam: Added optional hydrostatic initialisation and replaced fireFoam
The fireFoam solver has solver has been replaced by the more general
buoyantReactingFoam solver, which supports buoyant compressible reacting flow
coupled to multiple run-time-selectable lagrangian clouds and surface film
modelling and optional hydrostatic initialisation of the pressure and p_rgh.

Hydrostatic initialisation of the pressure fields is useful for large fires in
open domains where the stability of the initial flow is dominated by the initial
pressure distribution in the domain and at the boundaries.  The optional
hydrostaticInitialization switch in fvSolution/PIMPLE with
nHydrostaticCorrectors enables hydrostatic initialisation, e.g.

PIMPLE
{
    momentumPredictor yes;
    nOuterCorrectors  1;
    nCorrectors       2;
    nNonOrthogonalCorrectors 0;

    hydrostaticInitialization yes;
    nHydrostaticCorrectors 5;
}

and the resulting ph_rgh field can be used with the prghTotalHydrostaticPressure
p_rgh boundary condition to apply this hydrostatic pressure distribution at the
boundaries throughout the simulation.

See the following cases for examples transferred from fireFoam:

    $FOAM_TUTORIALS/combustion/buoyantReactingFoam/RAS
2021-05-31 15:05:19 +01:00
49ce8f6507 fvModels: Added new clouds and surfaceFilm fvModels to replace specialised solvers
With the new fvModels framework it is now possible to implement complex models
and wrappers around existing complex models which can then be optionally
selected in any general solver which provides compatible fields and
thermophysical properties.  This simplifies code development and maintenance by
significantly reducing complex code duplication and also provide the opportunity
of running these models in other solvers without the need for code duplication
and alteration.

The immediate advantage of this development is the replacement of the
specialised Lagrangian solvers with their general counterparts:

reactingParticleFoam        -> reactingFoam
reactingParcelFoam          -> reactingFoam
sprayFoam                   -> reactingFoam
simpleReactingParticleFoam  -> reactingFoam
buoyantReactingParticleFoam -> buoyantReactingFoam

For example to run a reactingParticleFoam case in reactingFoam add the following
entries in constant/fvModels:

buoyancyForce
{
    type        buoyancyForce;
}

clouds
{
    type    clouds;
    libs    ("liblagrangianParcel.so");
}

which add the acceleration due to gravity needed by Lagrangian clouds and the
clouds themselves.

See the following cases for examples converted from reactingParticleFoam:

    $FOAM_TUTORIALS/combustion/reactingFoam/Lagrangian

and to run a buoyantReactingParticleFoam case in buoyantReactingFoam add the
following entry constant/fvModels:

clouds
{
    type    clouds;
    libs    ("liblagrangianParcel.so");
}

to add support for Lagrangian clouds and/or

surfaceFilm
{
    type    surfaceFilm;
    libs    ("libsurfaceFilmModels.so");
}

to add support for surface film.  The buoyancyForce fvModel is not required in
this case as the buoyantReactingFoam solver has built-in support for buoyancy
utilising the p_rgh formulation to provide better numerical handling for this
force for strongly buoyancy-driven flows.

See the following cases for examples converted from buoyantReactingParticleFoam:

    $FOAM_TUTORIALS/combustion/buoyantReactingFoam/Lagrangian

All the tutorial cases for the redundant solvers have been updated and converted
into their new equivalents and redirection scripts replace these solvers to
provide users with prompts on which solvers have been replaced by which and
information on how to upgrade their cases.

To support this change and allow all previous Lagrangian tutorials to run as
before the special Lagrangian solver fvSolution/PIMPLE control
solvePrimaryRegion has been replaced by the more general and useful controls:

    models          : Enable the fvModels
    thermophysics   : Enable thermophysics (energy and optional composition)
    flow            : Enable flow (pressure/velocity system)

which also replace the fvSolution/PIMPLE control frozenFlow present in some
solvers.  These three controls can be used in various combinations to allow for
example only the fvModels to be evaluated, e.g. in

$FOAM_TUTORIALS/combustion/buoyantReactingFoam/Lagrangian/rivuletPanel

PIMPLE
{
    models          yes;
    thermophysics   no;
    flow            no;
    .
    .
    .

so that only the film is solved.  Or during the start-up of a case it might be
beneficial to run the pressure-velocity system for a while without updating
temperature which can be achieved by switching-off thermophysics.  Also the
behaviour of the previous frozenFlow switch can be reproduced by switching flow
off with the other two switches on, allowing for example reactions, temperature
and composition update without flow.
2021-05-31 10:45:16 +01:00
46e878e20d etc: pataview: Automatically detect the newest available version of cmake 2021-05-21 11:13:47 +01:00
845d5b16e3 transformPoints: Generalised to apply a sequence of transformations
This makes usage of transformPoints the same as for
surfaceTransformPoints. Transformations are supplied as a string and are
applied in sequence.

Usage
    transformPoints "\<transformations\>" [OPTION]

    Supported transformations:
      - "translate=<translation vector>"
        Translational transformation by given vector
      - "rotate=(<n1 vector> <n2 vector>)"
        Rotational transformation from unit vector n1 to n2
      - "Rx=<angle [deg] about x-axis>"
        Rotational transformation by given angle about x-axis
      - "Ry=<angle [deg] about y-axis>"
        Rotational transformation by given angle about y-axis
      - "Rz=<angle [deg] about z-axis>"
        Rotational transformation by given angle about z-axis
      - "Ra=<axis vector> <angle [deg] about axis>"
        Rotational transformation by given angle about given axis
      - "scale=<x-y-z scaling vector>"
        Anisotropic scaling by the given vector in the x, y, z
        coordinate directions

    Example usage:
        transformPoints \
            "translate=(-0.05 -0.05 0), \
            Rz=45, \
            translate=(0.05 0.05 0)"
2021-05-11 10:06:45 +01:00
c6e1d1b2f1 bash_completion: Updated 2021-04-30 09:17:00 +01:00
da3f4cc92e fvModels, fvConstraints: Rational separation of fvOptions between physical modelling and numerical constraints
The new fvModels is a general interface to optional physical models in the
finite volume framework, providing sources to the governing conservation
equations, thus ensuring consistency and conservation.  This structure is used
not only for simple sources and forces but also provides a general run-time
selection interface for more complex models such as radiation and film, in the
future this will be extended to Lagrangian, reaction, combustion etc.  For such
complex models the 'correct()' function is provided to update the state of these
models at the beginning of the PIMPLE loop.

fvModels are specified in the optional constant/fvModels dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.

The new fvConstraints is a general interface to optional numerical constraints
applied to the matrices of the governing equations after construction and/or to
the resulting field after solution.  This system allows arbitrary changes to
either the matrix or solution to ensure numerical or other constraints and hence
violates consistency with the governing equations and conservation but it often
useful to ensure numerical stability, particularly during the initial start-up
period of a run.  Complex manipulations can be achieved with fvConstraints, for
example 'meanVelocityForce' used to maintain a specified mean velocity in a
cyclic channel by manipulating the momentum matrix and the velocity solution.

fvConstraints are specified in the optional system/fvConstraints dictionary and
backward-compatibility with fvOption is provided by reading the
constant/fvOptions or system/fvOptions dictionary if present.

The separation of fvOptions into fvModels and fvConstraints provides a rational
and consistent separation between physical and numerical models which is easier
to understand and reason about, avoids the confusing issue of location of the
controlling dictionary file, improves maintainability and easier to extend to
handle current and future requirements for optional complex physical models and
numerical constraints.
2021-03-07 22:45:01 +00:00
c2f4c6191d interFoam: Added support for phase-change with cavitation models
The phase-change functionality in interPhaseChangeFoam has been generalised and
moved into the run-time selectable twoPhaseChange library included into
interFoam providing optional phase-change.  The three cavitation models provided
in interPhaseChangeFoam are now included in the twoPhaseChange library and the
two interPhaseChangeFoam cavitation tutorials updated for interFoam.

interPhaseChangeFoam has been replaced by a user redirection script which prints
the following message:

The interPhaseChangeFoam solver has solver has been replaced by the more general
interFoam solver, which now supports phase-change using the new twoPhaseChange
models library.

To run with with phase-change create a constant/phaseChangeProperties dictionary
containing the phase-change model specification, e.g.

    phaseChangeModel SchnerrSauer;

    pSat            2300;   // Saturation pressure

See the following cases for an example converted from interPhaseChangeFoam:

    $FOAM_TUTORIALS/multiphase/interFoam/laminar/cavitatingBullet
    $FOAM_TUTORIALS/multiphase/interFoam/RAS/propeller
2021-01-24 23:35:17 +00:00
0539b6335b bash_completion: Updated for new executables and arguments 2021-01-07 16:37:05 +00:00
5893e29241 debug: Fixed behaviour of -listSwitches argument
There is now only one -listSwitches argument available to the
applications; -listUnsetSwitches and -listRegisteredSwitches have been
removed. -listSwitches prints everything, now also including the values.
It also categorises the output based on whether the switch has a
default, if it has the same value as that default, and whether or not it
is registered with a re-reader.

The list of debug switches in etc/controlDict has been reduced to only
the switches which have non-zero values. In general the list of valid
switches varies per application and per library, so it is not possible
to keep a single definitive list of all switches. The -listSwitches
argument provides the definitive list on a per applicaton basis.

Setting of defaults for named enum optimisation switches has been added.
2020-08-04 09:36:42 +01:00
208e5f1b33 etc/config.sh/bash_completion: Re-generated for new lagrangian solvers 2020-07-31 09:35:12 +01:00
e603417ef7 bin/tools/foamGenerateBashCompletion: Improved robustness of bracket parsing
Also minor formatting changes
2020-07-30 16:47:29 +01:00
074dbec0a5 etc/config.sh/bash_completion: Updated for new solvers and arguments
Also added foamGenerateBashCompletion to $WM_PROJECT_DIR/bin/tools to
generate the bash_completion file
2020-07-30 15:41:58 +01:00
37db7718ac foamListTimes: Added -withFunctionEntries option to execute functionEntries 2020-07-30 13:52:54 +01:00
68e4678221 reactingTwoPhaseEulerFoam: Replaced by multiphaseEulerFoam
The reactingtTwoPhaseEulerFoam solver has been replaced by the more general
multiphaseEulerFoam solver which supports two-phase and multiphase systems
containing fluid and stationary phases, compressible or incompressible, with
heat and mass transfer, reactions, size distribution and all the usual phase
interaction and transfer models.

All reactingtTwoPhaseEulerFoam tutorials have been ported to multiphaseEulerFoam
to demonstrate two-phase capability with a wide range of phase and
phase-interaction models.

When running with two-phases the optional referencePhase entry in
phaseProperties can be used to specify which phase fraction should not be
solved, providing compatibility with reactingtTwoPhaseEulerFoam, see

tutorials/multiphase/multiphaseEulerFoam/RAS/fluidisedBed
tutorials/multiphase/multiphaseEulerFoam/laminar/bubbleColumn

for examples.
2020-07-17 20:18:15 +01:00
9fd9172913 Rationalised the named of uncoupled particle tracing solvers and functionObject
Solvers
    icoUncoupledKinematicParcelFoam -> particleFoam
    uncoupledKinematicParcelFoam -> rhoParticleFoam

functionObjects
    icoUncoupledKinematicCloud -> particles
2020-07-16 13:06:08 +01:00
b832453b72 multiphaseEulerFoam: replacement for reactingMultiphaseEulerFoam
The new multiphaseEulerFoam is based on reactingMultiphaseEulerFoam with some
improvements and rationalisation to assist maintenance and further development.

The phase system solution has been enhanced to handle two phases more
effectively and all two-phase specific models updated for compatibility so that
multiphaseEulerFoam can also replace reactingTwoPhaseEulerFoam.
When running multiphaseEulerFoam with only two-phases the default behaviour is
to solve for both phase-fractions but optionally a reference phase can be
specified so that only the other phase-fraction is solved, providing better
compatibility with the behaviour of reactingTwoPhaseEulerFoam.

All reactingMultiphaseEulerFoam and reactingTwoPhaseEulerFoam tutorials have
been updated for multiphaseEulerFoam.
2020-07-15 18:13:40 +01:00
077138942f Intel MPI configuration: Updated for versions 19 and higher
Resolves feature request https://bugs.openfoam.org/view.php?id=3519
2020-07-11 17:20:25 +01:00
4b959ba566 multiphaseEulerFoam: Superseded by the much more general and extensible reactingMultiphaseEulerFoam 2020-07-10 20:17:25 +01:00
ed9e420ea1 wmake: added rules for linuxArm64Gcc to compile on aarch64 (Arm-based) processors.
No code change was required to compile OpenFOAM on Arm using the Gcc compiler.
2020-06-24 16:01:49 +01:00
7dd592ff40 boost: Corrected include path 2020-06-09 09:27:56 +01:00
83bd225910 foamyHexMesh: Updated to compile against CGAL 5.0+
CGAL and Boost are now used header-only. The minimum supported version
of CGAL is now 4.9.
2020-05-08 11:24:58 +01:00
98dde2522a paraview: Downgrade to version 5.6.3
Paraview 5.7.0+ has a bug relating to polygon and line offsetting which
means that when viewing a "Surface With Edges" representation at high
zoom excessive amounts of edges that should not be visible are shown.
This makes inspection of a typical mesh almost impossible.

See issues 19723 and 19437 on ParaView's gitlab.

Downgrading to version 5.6.3 until this issue is resolved.
2020-05-05 16:39:59 +01:00
9fabb9b002 paraview: Upgrade to 5.8.0
PVReaders now support compilation against ParaView version 5.7.0 and
greater. All references to ParaView versions less than 4.0.0 have been
removed.

Based on a patch contributed by CFD Support
2020-04-16 13:45:37 +01:00
e3cd634104 paraview: More corrections to library paths 2020-04-15 09:47:24 +01:00
48a3622bcc Merge branch 'master' of github.com-OpenFOAM:OpenFOAM/OpenFOAM-dev 2020-04-14 21:15:24 +01:00
de66b1be68 MomentumTransportModels: Update of the TurbulenceModels library for all flow types
providing the shear-stress term in the momentum equation for incompressible and
compressible Newtonian, non-Newtonian and visco-elastic laminar flow as well as
Reynolds averaged and large-eddy simulation of turbulent flow.

The general deviatoric shear-stress term provided by the MomentumTransportModels
library is named divDevTau for compressible flow and divDevSigma (sigma =
tau/rho) for incompressible flow, the spherical part of the shear-stress is
assumed to be either included in the pressure or handled separately.  The
corresponding stress function sigma is also provided which in the case of
Reynolds stress closure returns the effective Reynolds stress (including the
laminar contribution) or for other Reynolds averaged or large-eddy turbulence
closures returns the modelled Reynolds stress or sub-grid stress respectively.
For visco-elastic flow the sigma function returns the effective total stress
including the visco-elastic and Newtonian contributions.

For thermal flow the heat-flux generated by thermal diffusion is now handled by
the separate ThermophysicalTransportModels library allowing independent run-time
selection of the heat-flux model.

During the development of the MomentumTransportModels library significant effort
has been put into rationalising the components and supporting libraries,
removing redundant code, updating names to provide a more logical, consistent
and extensible interface and aid further development and maintenance.  All
solvers and tutorials have been updated correspondingly and backward
compatibility of the input dictionaries provided.

Henry G. Weller
CFD Direct Ltd.
2020-04-14 20:44:22 +01:00
a4efd0ed55 paraview: Corrected library paths 2020-04-14 12:18:06 +01:00
76a725b7b0 cyclicPolyPatch, GeometricBoundaryField: Updated diagnostic messages 2020-01-24 11:55:26 +00:00
f550db1a5f Scotch: Upgrade to 6.0.9
This is to resolve a bug in the ptscotch rebalancing of the LES
motorBike mesh when running with the new coupled patch ordering
2020-01-22 11:48:50 +00:00
05966af49c surfaceFeatureExtract: Removed deprecated utility, replaced by surfaceFeatures 2020-01-18 23:04:00 +00:00
612164005d foamDictionary: Removed the -disableFunctionEntries option 2019-11-19 13:28:40 +00:00
44753ff120 etc/config.*: Updated default ParaView version to 5.6.0 2019-07-05 13:30:52 +01:00
9bf34679bd buoyantBoussinesq[SP]impleFoam: replaced by the more general buoyant[SP]impleFoam solvers
With the selection of the Boussinesq equation of state the general buoyancy
solvers buoyantSimpleFoam and buoyantPimpleFoam can be used instead of the
specialised Boussinesq solvers avoiding the need for special implementation of
thermal and pressure boundary conditions and providing support for radiation and
fvOptions which would not have been feasible or practical in the Boussinesq
solvers.

Other incompressible equations of state are also supported; for most gaseous
problems the incompressiblePerfectGas equation of state is likely to be more
accurate than the Boussinesq equation of state.

The buoyantBoussinesq[SP]impleFoam tutorials have been updated and moved to the
corresponding buoyant[SP]impleFoam directories.
2019-03-26 21:42:14 +00:00
51a8b15afe Renamed MVAPICH2 -> MV2MPI for consistency with the MPI implementation naming convention
Resolves patch request https://bugs.openfoam.org/view.php?id=3153
2019-01-28 09:52:41 +00:00
b9ecc29687 basicChemistryModelTemplates: Added a space in message 2019-01-08 16:44:20 +00:00
cc79578c1e etc/config.*: Updated gcc versions to the latest patch for each version
so that they compile on machines with recent glibc versions.

Note that gcc-4.8.? and gcc-4.9.? do not compile on machines with recent glibc versions.
2019-01-02 14:40:32 +00:00
d95d68d7be Removed support for ancient platforms IA64 and SGIN32 2018-12-21 18:35:20 +00:00
1682a01327 etc/config.sh/compiler: Added gcc-7.2.0 for testing 2018-12-11 15:51:52 +00:00
d68e3afe2d config.sh/aliases: corrected wmRefresh for POSIX compliance 2018-12-04 21:31:47 +00:00
44630d3357 config.sh/aliases: removed "declare" for POSIX compliance 2018-12-04 16:37:19 +00:00
8372163972 foamGet: Filter WM_PROJECT_SITE if not set 2018-11-30 15:04:59 +00:00
bcbfe542cf Rationalised WM_PROJECT_SITE and WM_PROJECT_INST_DIR in foamEtcFile and etcFiles
for consistency with WM_PROJECT.  Now "etc" files are assumed to be in etc
sub-directories of WM_PROJECT_SITE and WM_PROJECT_INST_DIR allowing other files
to be stored in those directories.  The search order is now:

Search for files from user/group/shipped directories.
The search scheme allows for version-specific and
version-independent files using the following hierarchy:
- \b user settings:
  - ~/.OpenFOAM/\<VERSION\>/
  - ~/.OpenFOAM/
- \b group (site) settings (when $WM_PROJECT_SITE is set):
  - $WM_PROJECT_SITE/\<VERSION\>/etc/
  - $WM_PROJECT_SITE/etc/
- \b group (site) settings (when $WM_PROJECT_SITE is not set):
  - $WM_PROJECT_INST_DIR/site/\<VERSION\>/etc/
  - $WM_PROJECT_INST_DIR/site/etc/
- \b other (shipped) settings:
  - $WM_PROJECT_DIR/etc/

\return The list of full paths of all the matching files or
an empty list if the name cannot be found.
Optionally abort if the file cannot be found.
Optionally stop search after the first file has been found.

This change was proposed and agreed by the sponsors of the OpenFOAM project on
the OpenFOAM Hub, see https://openfoam.org/maintenance/
2018-11-28 22:00:34 +00:00
a0addf5e8f etc/config.sh/aliases: use a direct call to $wmProjectDir/etc/config.sh/unset rather than the wmUnset alias
Patch contributed by Bruno Santos
Resolves patch request https://bugs.openfoam.org/view.php?id=3088
2018-10-15 10:31:01 +01:00
f1a742a130 Upgraded Scotch to 6.0.6 2018-10-02 14:25:18 +01:00
3a7b76198e Downgraded OpenMPI to 2.1.1 to avoid bug in the new "vader" shared memory module
Resolves bug-report https://bugs.openfoam.org/view.php?id=3071
2018-09-21 09:58:31 +01:00
721b807122 Downgraded OpenMPI to 3.0.2 to avoid bug in latest version
Resolves bug-report https://bugs.openfoam.org/view.php?id=3071
2018-09-13 23:59:48 +01:00
380eca5586 Updated OpenMPI to version 3.1.1 2018-08-10 11:37:44 +01:00
d049c1b7fd etc/config.*: Added gcc-7.3.0 2018-08-05 11:29:06 +01:00