Commit Graph

12 Commits

Author SHA1 Message Date
476bb42b04 unitConversion: Unit conversions on all input parameters
The majority of input parameters now support automatic unit conversion.
Units are specified within square brackets, either before or after the
value. Primitive parameters (e.g., scalars, vectors, tensors, ...),
dimensioned types, fields, Function1-s and Function2-s all support unit
conversion in this way.

Unit conversion occurs on input only. OpenFOAM writes out all fields and
parameters in standard units. It is recommended to use '.orig' files in
the 0 directory to preserve user-readable input if those files are being
modified by pre-processing applications (e.g., setFields).

For example, to specify a volumetric flow rate inlet boundary in litres
per second [l/s], rather than metres-cubed per second [m^3/s], in 0/U:

    boundaryField
    {
        inlet
        {
            type            flowRateInletVelocity;
            volumetricFlowRate 0.1 [l/s];
            value           $internalField;
        }

        ...
    }

Or, to specify the pressure field in bar, in 0/p:

    internalField   uniform 1 [bar];

Or, to convert the parameters of an Arrhenius reaction rate from a
cm-mol-kcal unit system, in constant/chemistryProperties:

    reactions
    {
        methaneReaction
        {
            type    irreversibleArrhenius;
            reaction "CH4^0.2 + 2O2^1.3 = CO2 + 2H2O";
            A       6.7e12 [(mol/cm^3)^-0.5/s];
            beta    0;
            Ea      48.4 [kcal/mol];
        }
    }

Or, to define a time-varying outlet pressure using a CSV file in which
the pressure column is in mega-pascals [MPa], in 0/p:

    boundaryField
    {
        outlet
        {
            type            uniformFixedValue;
            value
            {
                type            table;
                format          csv;
                nHeaderLine     1;
                units           ([s] [MPa]); // <-- new units entry
                columns         (0 1);
                mergeSeparators no;
                file            "data/pressure.csv";
                outOfBounds     clamp;
                interpolationScheme linear;
            }
        }

        ...
    }

(Note also that a new 'columns' entry replaces the old 'refColumn' and
'componentColumns'. This is is considered to be more intuitive, and has
a consistent syntax with the new 'units' entry. 'columns' and
'componentColumns' have been retained for backwards compatibility and
will continue to work for the time being.)

Unit definitions can be added in the global or case controlDict files.
See UnitConversions in $WM_PROJECT_DIR/etc/controlDict for examples.
Currently available units include:

    Standard: kg m s K kmol A Cd

     Derived: Hz N Pa J W g um mm cm km l ml us ms min hr mol
              rpm bar atm kPa MPa cal kcal cSt cP % rad rot deg

A user-time unit is also provided if user-time is in operation. This
allows it to be specified locally whether a parameter relates to
real-time or to user-time. For example, to define a mass source that
ramps up from a given engine-time (in crank-angle-degrees [CAD]) over a
duration in real-time, in constant/fvModels:

    massSource1
    {
        type        massSource;
        points      ((1 2 3));
        massFlowRate
        {
            type        scale;
            scale       linearRamp;
            start       20 [CAD];
            duration    50 [ms];
            value       0.1 [g/s];
        }
    }

Specified units will be checked against the parameter's dimensions where
possible, and an error generated if they are not consistent. For the
dimensions to be available for this check, the code requires
modification, and work propagating this change across OpenFOAM is
ongoing. Unit conversions are still possible without these changes, but
the validity of such conversions will not be checked.

Units are no longer permitted in 'dimensions' entries in field files.
These 'dimensions' entries can now, instead, take the names of
dimensions. The names of the available dimensions are:

    Standard: mass length time temperature
              moles current luminousIntensity

     Derived: area volume rate velocity momentum acceleration density
              force energy power pressure kinematicPressure
              compressibility gasConstant specificHeatCapacity
              kinematicViscosity dynamicViscosity thermalConductivity
              volumetricFlux massFlux

So, for example, a 0/epsilon file might specify the dimensions as
follows:

    dimensions      [energy/mass/time];

And a 0/alphat file might have:

    dimensions      [thermalConductivity/specificHeatCapacity];

*** Development Notes ***

A unit conversion can construct trivially from a dimension set,
resulting in a "standard" unit with a conversion factor of one. This
means the functions which perform unit conversion on read can be
provided dimension sets or unit conversion objects interchangeably.

A basic `dict.lookup<vector>("Umean")` call will do unit conversion, but
it does not know the parameter's dimensions, so it cannot check the
validity of the supplied units. A corresponding lookup function has been
added in which the dimensions or units can be provided; in this case the
corresponding call would be `dict.lookup<vector>("Umean", dimVelocity)`.
This function enables additional checking and should be used wherever
possible.

Function1-s and Function2-s have had their constructors and selectors
changed so that dimensions/units must be specified by calling code. In
the case of Function1, two unit arguments must be given; one for the
x-axis and one for the value-axis. For Function2-s, three must be
provided.

In some cases, it is desirable (or at least established practice), that
a given non-standard unit be used in the absence of specific
user-defined units. Commonly this includes reading angles in degrees
(rather than radians) and reading times in user-time (rather than
real-time). The primitive lookup functions and Function1 and Function2
selectors both support specifying a non-standard default unit. For
example, `theta_ = dict.lookup<scalar>("theta", unitDegrees)` will read
an angle in degrees by default. If this is done within a model which
also supports writing then the write call must be modified accordingly
so that the data is also written out in degrees. Overloads of writeEntry
have been created for this purpose. In this case, the angle theta should
be written out with `writeEntry(os, "theta", unitDegrees, theta_)`.
Function1-s and Function2-s behave similarly, but with greater numbers
of dimensions/units arguments as before.

The non-standard user-time unit can be accessed by a `userUnits()`
method that has been added to Time. Use of this user-time unit in the
construction of Function1-s should prevent the need for explicit
user-time conversion in boundary conditions and sub-models and similar.

Some models might contain non-typed stream-based lookups of the form
`dict.lookup("p0") >> p0_` (e.g., in a re-read method), or
`Umean_(dict.lookup("Umean"))` (e.g., in an initialiser list). These
calls cannot facilitate unit conversion and are therefore discouraged.
They should be replaced with
`p0_ = dict.lookup<scalar>("p0", dimPressure)` and
`Umean_(dict.lookup<vector>("Umean", dimVelocity))` and similar whenever
they are found.
2024-05-16 09:01:46 +01:00
3f1e6e796f surface meshes: Renamed movePoints -> setPoints for consistency with polyMesh
The surface mesh setPoints function resets the points without caching the old
points or swept areas so is the equivalent of the polyMesh::setPoints rather
than movePoints.
2024-03-08 17:28:55 +00:00
57a4460d08 surfaceTransformPoints, transformPoints: documented transformations in '-help' option 2021-08-14 17:42:51 +01:00
845d5b16e3 transformPoints: Generalised to apply a sequence of transformations
This makes usage of transformPoints the same as for
surfaceTransformPoints. Transformations are supplied as a string and are
applied in sequence.

Usage
    transformPoints "\<transformations\>" [OPTION]

    Supported transformations:
      - "translate=<translation vector>"
        Translational transformation by given vector
      - "rotate=(<n1 vector> <n2 vector>)"
        Rotational transformation from unit vector n1 to n2
      - "Rx=<angle [deg] about x-axis>"
        Rotational transformation by given angle about x-axis
      - "Ry=<angle [deg] about y-axis>"
        Rotational transformation by given angle about y-axis
      - "Rz=<angle [deg] about z-axis>"
        Rotational transformation by given angle about z-axis
      - "Ra=<axis vector> <angle [deg] about axis>"
        Rotational transformation by given angle about given axis
      - "scale=<x-y-z scaling vector>"
        Anisotropic scaling by the given vector in the x, y, z
        coordinate directions

    Example usage:
        transformPoints \
            "translate=(-0.05 -0.05 0), \
            Rz=45, \
            translate=(0.05 0.05 0)"
2021-05-11 10:06:45 +01:00
0d679d926a surfaceTransformPoints: Updated to use the new transformer class
Description
    Transform (translate, rotate, scale) a surface.

Usage
    \b surfaceTransformPoints "\<transformations\>" \<input\> \<output\>
    Supported transformations:
      - \par translate=<translation vector>
        Translational transformation by given vector
      - \par rotate=(\<n1 vector\> \<n2 vector\>)
        Rotational transformation from unit vector n1 to n2
      - \par Rx=\<angle [deg] about x-axis\>
        Rotational transformation by given angle about x-axis
      - \par Ry=\<angle [deg] about y-axis\>
        Rotational transformation by given angle about y-axis
      - \par Rz=\<angle [deg] about z-axis\>
        Rotational transformation by given angle about z-axis
      - \par Ra=\<axis vector\> \<angle [deg] about axis\>
        Rotational transformation by given angle about given axis
      - \par scale=\<x-y-z scaling vector\>
        Anisotropic scaling by the given vector in the x, y, z
        coordinate directions

    Example usage:
        surfaceTransformPoints \
            "translate=(-0.586 0 -0.156), \
            Ry=3.485, \
            translate=(0.586 0 0.156)" \
            constant/geometry/w3_orig.stl constant/geometry/w3.stl
2021-03-29 16:14:48 +01:00
45dca30c51 surfaceTransformPoints: Generalised to apply a sequence of transformations
The transformation sequence is specified like a substitution string used by

Description
    Transform (translate, rotate, scale) a surface.

    The rollPitchYaw option takes three angles (degrees):
    - roll (rotation about x) followed by
    - pitch (rotation about y) followed by
    - yaw (rotation about z)

    The yawPitchRoll does yaw followed by pitch followed by roll.

Usage
    \b surfaceTransformPoints "\<transformations\>" \<input\> \<output\>

    Example usage:
        surfaceTransformPoints \
            "translate=(-0.586 0 -0.156), \
            rollPitchYaw=(0 -3.485 0), \
            translate=(0.586 0 0.156)" \
            constant/geometry/w3_orig.stl constant/geometry/w3.stl
2021-03-28 13:36:50 +01:00
bf54ab67e1 Updated OpenFOAM Foundation web-link in headers 2018-07-06 21:42:54 +01:00
2e1825a50f utilities: Remove unused case related options 2018-06-11 15:21:34 +01:00
da6b1bf361 Surface utilities: standardised argument naming and ordering
for input and output surface files
2017-05-12 14:43:10 +01:00
04e8de2cf0 transformPoints, surfaceTransformPoints: Updated quaternion construction from Euler-angles
Resolves bug-report http://www.openfoam.org/mantisbt/view.php?id=2024
2016-03-14 16:40:35 +00:00
10aea96ae5 applications: Update ...ErrorIn -> ...ErrorInFunction
Avoids the clutter and maintenance effort associated with providing the
function signature string.
2015-11-10 17:53:31 +00:00
446e5777f0 Add the OpenFOAM source tree 2014-12-10 22:40:10 +00:00